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Disoriented homology and double
branched covers
Brendan Owens and Sašo Strle
Abstract. This paper provides a convenient and practical method to compute the homology and
intersection pairing of a branched double cover of the 4-ball.

To projections of links in the 3-ball, and to projections of surfaces in the 4-ball into the boundary
sphere, we associate a sequence of homology groups, called the disoriented homology. We show that
the disoriented homology is isomorphic to the homology of the double branched cover of the link or
surface. We define a pairing on the first disoriented homology group of a surface and show that this
is equal to the intersection pairing of the branched cover. These results generalize work of Gordon
and Litherland, for embedded surfaces in the 3-sphere, to arbitrary surfaces in the 4-ball. We also
give a generalization of the signature formula of Gordon–Litherland to the general setting.

Our results are underpinned by a theorem describing a handle decomposition of the branched
double cover of a codimension-2 submanifold in the n-ball, which generalizes previous results of
Akbulut–Kirby and others.

1 Introduction

Branched covering spaces have proved to be an extremely efficient way of encoding
embedding information about submanifolds [2, 6, 10, 14]. The basic information about
a covering space is its homology; this is often the starting point for extracting other
invariants such as various gauge theoretic invariants. In [5], Gordon and Litherland
showed that the first homology of an embedded spanning surface F for a link L in S3

is isomorphic to the second homology of the double cover X of the 4-ball branched
along the properly embedded surface obtained by pushing the interior of F into the
ball. Moreover, they defined a bilinear form on H1(F) and showed that it is isomorphic
to the intersection form of X; they also derived a formula for the signature of L in terms
of this form.

The main goal of this paper is to generalize these results to embedded surfaces in
the 4-ball. As a warm-up, we consider links and tangles in the 3-ball. We use the radial
distance function to induce a bridge decomposition on the radial projection P ⊂ S2 of
the link or tangle L ⊂ B3, as in the example of the trefoil shown in Figure 1. We choose
a disorientation of each overbridge, again as shown in the figure: each segment of the
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732 B. Owens and S. Strle

Figure 1: A bridge decomposition of the left-handed trefoil. Underbridges are shown in green,
with overbridges in blue. The arrows on the overbridges specify a disorientation.

complement of the underbridges in the overbridge is given an orientation. These are
chosen so that the orientation switches at each crossing.

We use these data to define the disoriented chain complex DC∗(P) (see Section 2):
DC1(P) is the free abelian group generated by the overbridges, DC0(P) is generated
by the underbridges, and the boundary operator between them is given by counting
with sign how many times each overbridge points into or out of each underbridge.
The boundary operator from DC0(P) to DC−1(P) = Z is the augmentation homo-
morphism. We show that the homology of this complex computes that of the double
branched cover of L (for a precise statement, see Proposition 8.3; this is closely related
to the fact that the coloring matrix of a link diagram presents the first homology of the
double branched cover; cf. [7, 11]).

Theorem 1 The disoriented homology of a link or tangle L in B3 is isomorphic to the
shifted reduced homology of the double cover of B3 branched along L, i.e.,

H∗(DC∗(P)) ≅ H̃∗+1(Σ2(B3, L)).

The disoriented homology of a compact surface F properly embedded in the 4-ball,
with or without boundary, may be defined in a similar manner (see Section 5). Starting
with a handle decomposition of F ⊂ B4 induced by the radial distance function, we
consider the images of these handles in the radial projection Fs ⊂ S3 of F as handles
of Fs . Assuming the projection to be regular, Fs may be decomposed as a ribbon-
immersed surface and a union of disjoint disks that are 2-handles of Fs , as shown
in Figure 2. The group DCk(Fs) for k ≥ 0 is freely generated by the k-handles of Fs .
The boundary operator from DC2 to DC1 for each 2-handle essentially counts with
sign how many times the intersection of the 2-handle with a 1-handle goes over
that 1-handle; this is computed using disorientations of handles. Disorientations of
1-handles are orientations of their cores, switching each time they pass through a rib-
bon singularity; disorientations of 2-handles are determined by chessboard coloring
of the regions into which 2-handles are split by their intersections with the ribbon
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Figure 2: The radial projection of a projective plane with a compatible handle decomposition.
The round disk is the 0-handle, the green band is the 1-handle, and the red and blue disks
combine to give the 2-handle. The green arc signifies the ribbon singularity. The 2-handle is
split into four subdisks by its intersection with the ribbon surface.

surface. The remaining boundary homomorphisms are defined similarly to the 3-
dimensional case. We also show that taking linking numbers with double normal
push-offs gives rise to a pairing λ on the first disoriented homology group of Fs ,
which we call the GL-pairing of Fs . To define the pairing, we use a more geometric
description of the first disoriented homology group for a ribbon-immersed surface
(see Section 4); Figure 3 shows an example. We prove the following (see Theorem 9.3
for a more precise formulation).

Theorem 2 The disoriented homology of a properly embedded compact surface F in the
4-ball is isomorphic to the shifted reduced homology of the double cover Σ2(B4 , F) of the
4-ball branched along F, i.e.,

H∗(DC∗(Fs)) ≅ H̃∗+1(Σ2(B4 , F)).

Moreover, the intersection pairing of Σ2(B4 , F) under this identification agrees with the
GL-pairing λ.

The proof of this theorem relies on a Kirby diagram for the branched double
cover Σ2(B4 , F); in particular, we give a recipe for drawing the attaching spheres of
3-handles. This is illustrated in Example 9.2 for the surface in Figure 2.

A widely used application of the celebrated paper of Gordon and Litherland is
a convenient formula to compute the signature of a link using the signature of the
bilinear form associated with a spanning surface for the link in S3. We generalize this
to give a signature formula based on the GL-pairing of a slice surface as follows.

Theorem 3 Let a link L be the boundary of a slice surface F ⊂ B4, and let λ be the GL-
pairing on the first disoriented homology group of F. Then, for any choice L⃗ of orientation
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734 B. Owens and S. Strle

Figure 3: A generating set for disoriented homology. A ribbon-immersed annulus with a
generator of its first disoriented homology group. The ribbon singularity is shown in green.

for L, its signature is given by

σ(L⃗) = σ(λ) − 1
2

lk(L⃗, L⃗F),

where L⃗F is a parallel copy of L⃗ on the radial projection Fs of F, oriented consistently
with L⃗.

The organization of the paper is as follows: we define the disoriented homology
of a properly embedded tangle L ⊂ B3 in Section 2. For a properly embedded surface
F ⊂ B4, we define in Section 3 its description Fs ⊂ S3, which in the case of a ribbon sur-
face is its ribbon immersion; for a general surface, it is a decomposition of its regular
projection into the union of a ribbon-immersed surface and disks corresponding to
maxima. Based on this description, we define the disoriented homology DH∗(Fs),
for ribbon surfaces in Section 4 and for general slice surfaces in Section 5. In the
case of a ribbon surface, the first disoriented homology DH1(Fs) is a subgroup of the
singular homology group H1(Fs ;Z)of the ribbon-immersed surface Fs ⊂ S3 generated
by those cycles that in a neighborhood of every ribbon singularity are multiples of
the chain pictured in Figure 5; the structure of this chain also gives the homology its
name. We then extend the definition of disoriented homology to general slice surface
descriptions Fs and give several alternative descriptions of the groups.

We define the pairing λ on DH1(Fs) in Section 6, generalizing the Gordon–
Litherland pairing.

Section 7 is the technical core of the paper, in which we relate a handle decomposi-
tion of a codimension-2 submanifold F in the n-ball to a handle decomposition of its
double branched cover X. In Section 8, we show how a bridge decomposition of L gives
rise to a handle decomposition of the double cover Y of B3 branched along L and give
a recipe for drawing a Heegaard diagram of the double branched cover of a link in S3.
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Disoriented homology and double branched covers 735

We show in Proposition 8.3 that the disoriented homology of a tangle is isomorphic
to the shifted homology of Y, proving Theorem 1. In Section 9, we consider the case of
a surface F in the 4-ball and show how to construct a Kirby diagram for X based on a
handle decomposition of F. We use this to prove Theorem 2.

In Section 10, we prove Theorem 3.

2 Disoriented homology of tangles

Let L be a properly embedded compact 1-manifold in the 3-ball, i.e., a tangle or a
link, to which the radial distance function ρ restricts to be Morse, giving a handle
decomposition of L. This is known as a bridge decomposition of L. We assume
that the radial projection P ⊂ S2 of L has only ordinary double points. The bridge
decomposition of L induces a bridge decomposition of P which then carries the
same information as a diagram of L; we refer to double points of P as crossings.
In this context, 0-handles and 1-handles are called underbridges and overbridges,
respectively. We further assume that:

• all endpoints of P are contained in underbridges, and
• at each crossing, an overbridge crosses over an underbridge.

For each overbridge of P, choose a disorientation as follows: split the overbridge
into subarcs separated by crossings and give consecutive subarcs opposite orientations.
Denote the projection with this extra information (bridge decomposition and disori-
entations of overbridges) by P♭. Define the disoriented chain complex DC∗(P♭) of L
as follows. Let DC0(P♭) be the free abelian group generated by the underbridges, and
let DC1(P♭) be the free abelian group generated by the disoriented overbridges. The
boundary homomorphism ∂♭P ∶ DC1(P♭) →DC0(P♭) associates to each overbridge
a linear combination of underbridges, where if an oriented arc of the overbridge
points to/from an underbridge, it contributes plus/minus that underbridge. Note that
the contribution at each crossing is ±2 times the underbridge at the crossing. Let
DC−1(P♭) = Z and ε ∶ DC0(P♭) → Z be the augmentation homomorphism mapping
every underbridge to 1. Then

0 →DC1(P♭)
∂♭P	→DC0(P♭) ε→DC−1(P♭) → 0

is a chain complex that we refer to as the disoriented chain complex of L. The homology
of this complex is the disoriented homology of L. We will show in Section 8 that this is
isomorphic to the shifted homology of the double branched cover of B3 with branch
set L. In particular, this implies that the disoriented homology of L is independent of
the choices involved in its definition.

Example 2.1 We illustrate the above with the example of the trefoil L as shown in
Figure 1, using the bridge decomposition and the disorientations of the overbridges
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as shown in that figure. Relative to the labelings of the underbridges and overbridges,
the boundary homomorphism is given by the matrix

∂♭P =
⎡⎢⎢⎢⎢⎢⎣

1 −1 2
1 2 −1
−2 −1 −1

⎤⎥⎥⎥⎥⎥⎦
.

Since the rank of this matrix is 2, it follows that H1(DC∗(P♭)) ≅ Z.
To compute H0(DC∗(P♭)), observe that we may project the kernel of ε onto the

subspace generated by any two of the underbridges. Hence, we omit the first row of ∂♭P .
Then the columns generate an index 3 subgroup of Z2, showing that H0(DC∗(P♭)) ≅
Z/3Z.

3 Surfaces in the 4-ball and their representations in the 3-sphere

Let F ⊂ B4 be a properly embedded compact surface, not necessarily connected or
orientable. We will refer to F as a slice surface. Denote by L ⊂ S3 the link consisting
of the boundary components of F. We may assume (after an isotopy rel boundary)
that the radial distance function ρ in B4 restricts to a Morse function ρF on F. If
ρF has no critical points of index 2, then F is called a ribbon surface and it admits
a ribbon immersion into S3, in which case we denote the image of this immersion
by Fr . The immersed surface Fr can be described by first choosing pairwise disjoint
embeddings of the 0-handles of F into S3 and then connecting them with pairwise
disjoint 1-handles that may form ribbon singularities with the images of the 0-handles.
Such a surface has a finite number of ribbon singularities as shown in Figure 4a; the
preimage of each consists of two arcs in F, one of which is contained in the interior
of F (called the interior arc) and one which has its endpoints on the boundary of F
(called the properly embedded arc). The ribbon-immersed surface Fr is embedded away
from the ribbon singularities where it has two kinds of singular points: interior double
points (in the interior of a ribbon singularity) and boundary double points (endpoints
of a ribbon singularity).

Figure 4: A ribbon surface F and associated cut surface Fc .
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Note that F ⊂ B4 is obtained from Fr ⊂ S3 by pushing its interior into the interior
of B4, where the interior arc of each ribbon singularity is pushed further in than the
properly embedded arc. This may be done so that ρF is a Morse function with no
maxima.

Sometimes it will be convenient to convert the immersed surface Fr into an
embedded surface by removing a small neighborhood of the properly embedded arc
in the preimage of each ribbon singularity; we call this the cut surface associated with
Fr and denote it by Fc (see Figure 4b).

For a general slice surface F ⊂ B4, we may assume that ρF is a weakly self-indexing
Morse function, i.e., that critical points of higher index have greater radial distance
than critical points of lower index. In particular, we may assume that all minima and
saddle points lie in ρ−1(0, 2/3), and all maxima in ρ−1(2/3, 1). After a further isotopy,
supported near the noncritical level 2/3, we may assume that F is transverse to the
sphere of radius 2/3. Then the sublevel set F̂ = F ∩ B4

2/3 is a properly embedded ribbon
surface to which we associate a ribbon-immersed surface Fr ⊂ S3 as above. We also
assume that the radial projection of F to S3 restricts to an embedding on the union
of 2-handles of F, that on the interior of each 2-handle this projection is transverse
to Fr , and that this projection is generic. The last condition restricts possible types of
singularities of the projected surface (cf. [3], and further detail in Section 7).

The boundary L̂ of F̂ is the union of two sublinks: L̂0 and L̂1. The first of these is
an unlink consisting of those boundary components of F̂ that are capped off in F by
the 2-handles, and the second corresponds to L, in the sense that a part of the surface
F/ int F̂ defines an isotopy between L̂1 and L. In particular, the components L i of L̂0
bound pairwise disjoint embedded disks d i ⊂ S3 (images of 2-handles of F) that do
not intersect L̂1, but may intersect the interior of the immersed surface Fr . We call L̂0
a separated sublink of L̂. This yields a 3-dimensional description of the slice surface F
as the union, Fs , of the ribbon-immersed surface Fr and the disks d i .

Note that Fs may not be smoothly embedded along the boundaries of the disks d i .
The double points interior to d i form a 1-manifold that may have closed components
and arcs that end on the boundary of Fr . These endpoints may either be endpoints
of ribbon singularities of the ribbon surface Fr (where two sheets of the projected
surface Fs meet transversely) or may indeed be singular points of the projected surface,
called pinch points or Whitney umbrella singularities which occur when the framing
curve from d i intersects Fr ; note that the framings determined by d i and Fr along the
common boundary agree modulo 2. The standard model for the Whitney umbrella
is given by the solutions of x2 = y2z, with z ≥ 0. One may then consider the subset
with x y ≤ 0 as a part of the ribbon surface and the subset with x y ≥ 0 as a part of the
2-handle. The pinch point is at the origin, and the double points lie on the z-axis. The
last type of singularities in Fs are triple points, where d i passes through the interior of
a ribbon singularity of Fr .

Conversely, a slice surface description Fs ⊂ S3 determines a slice surface F ⊂ B4.
First, its ribbon-immersed subsurface Fr determines a ribbon surface F̂ ⊂ B4

2/3. If
L0 is a separated sublink of the boundary of Fr (or equivalently F̂), then F̂ may
be extended to a (possibly closed) slice surface in B4 obtained by capping off the
boundary components in L0.
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4 Disoriented homology of a ribbon surface

The domain of the Gordon–Litherland-type pairing for a ribbon-immersed surface
Fr ⊂ S3 is a subgroup of the first homology group of Fr which we now describe. We
note for emphasis that Fr is the image, not the domain, of an immersion into the
3-sphere.

Number the ribbon singularities from 1 to k, and choose coordinates in a cubical
ball B j centered on the jth ribbon singularity in Fr , with the surface inside the ball
consisting of the square [−2, 2] × [−2, 2] × {0} in the (x , y)-plane and the vertical
strip {0} × [−1, 1] × [−2, 2] lying in the (y, z)-plane. The local disoriented 1-chain � j
associated to the jth ribbon singularity is the sum of four oriented line segments in
this coordinate patch: two vertical segments, running from (0, 0,±2) to the origin,
and two horizontal segments, running from the origin to (±2, 0, 0). This is sketched
in Figure 5. A disoriented cycle is a 1-cycle on Fr of the form

a =
k
∑
j=1

n j� j + a′ ,

where the n j are integers and a′ is a 1-chain supported in the complement of int(B1 ∪
⋅ ⋅ ⋅ ∪ Bk). The (first) disoriented homology group DH1(Fr) of the immersed surface
Fr ⊂ S3 is defined to be the subgroup of H1(Fr ;Z) consisting of classes represented by
disoriented cycles.

The disoriented homology group DH1(Fr) of a ribbon-immersed surface is a free
abelian group (as a subgroup of H1(Fr)). In simple situations (such as in the lemma
below), it is abstractly isomorphic to the first homology of the underlying surface F,

Figure 5: Local picture near a ribbon singularity. The local disoriented 1-chain is shown in blue.
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which in the presence of ribbon singularities is a smaller group than the homology
group of the immersed surface Fr .

Lemma 4.1 Let Fr ⊂ S3 be a ribbon-immersed surface with associated ribbon surface
F ⊂ B4. Suppose that F has a handle decomposition with a single 0-handle and no
2-handles, such that all ribbon singularities are formed by 1-handles passing through
the 0-handle; or in other words, the interior arcs are contained in the 0-handle and the
properly embedded arcs are contained in the 1-handles. Then DH1(Fr) is isomorphic to
H1(F;Z).

Proof For each 1-handle h of F, choose an orientation of its core; these oriented
1-chains, which can be completed to 1-cycles γh with the addition of oriented arcs
in the 0-handle, give a generating set for H1(F;Z) as a free abelian group. We now
describe a corresponding set of generators for DH1(Fr). If a 1-handle h contains no
ribbon singularities, let αh = γh . Otherwise, construct a representative for the class
αh by starting with the core of h, split into subarcs by the ribbon singularities; orient
the first arc arbitrarily and propagate the orientation along the core by changing the
orientation of the arc after every ribbon singularity. Let ah be obtained from this chain
by adding appropriately oriented short pairs of arcs in the 0-handle emanating from
the ribbon singularities formed by h as prescribed in Figure 5. We claim that ah can
be completed to a 1-cycle in Fr by connecting its endpoints with oriented arcs in the
0-handle. Indeed, let m be the number of ribbon singularities along h. If m = 2s + 1 is
odd, then the endpoints of the core have the same orientation (pointing into or out
of the 0-handle) as 2s of the other endpoints of oriented arcs comprising ah , whereas
the remaining 2(s + 1) endpoints have the opposite orientation. Similarly, if m = 2s is
even, the endpoints of the core have opposite orientation, and the other endpoints of
oriented subarcs of ah may be split into two sets of size 2s each containing points
of one orientation. Hence, the endpoints of ah may be connected up by oriented
arcs supported in the 0-handle; we denote the resulting disoriented class by αh . This
homology class is well defined since any two choices of oriented arcs in the 0-handle
differ by a trivial cycle.

We now show that any class α ∈ DH1(Fr) can be uniquely expressed as a linear
combination of the αh ’s. By definition, α is represented by a 1-cycle in Fr of the form

a =
k
∑
j=1

n j� j + a′ ,

where {� j}k
j=1 are the local disoriented 1-chains at ribbon singularities and a′ is

supported in the complement of the chosen neighborhood of the ribbon singularities.
Note that the coefficients n j are uniquely determined by the homology class α as Fr
has the homotopy type of a 1-complex. Consider a 1-handle h of F with m > 0 ribbon
singularities, which we label j1 , . . . , jm in the order one encounters them traveling
from one end of h to the other. We claim that for all i < m, the coefficients satisfy the
relation n j i + n j i+1 = 0. To see this, consider the rectangular part of h between the ith
and (i + 1)st ribbon singularity. At the ith singularity, the part of a in the rectangle
consists of an arc of multiplicity n j i pointing toward it, and at the (i + 1)st singularity
of an arc of multiplicity n j i+1 . Since a is a cycle, the sum of the multiplicities of the
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Figure 6: A ribbon surface (shown in gray) with a virtual band (shown in violet). A generator
for the disoriented homology of the virtually banded surface is shown in blue.

endpoints of these arcs must be 0 from which the claim follows. We let nh = ±n j i

where the sign is chosen so that nh αh has the same local multiplicities as a at the
ribbon singularities along h. Then α −∑h nh αh is represented by a cycle in the cut
surface Fc and hence uniquely expressible as a linear combination of the classes αh for
those 1-handles h that do not contain ribbon singularities. ∎

Figure 3 shows an example of a ribbon-immersed surface satisfying the hypotheses
of the lemma. The conclusion of the lemma does not hold in general, as can be seen
in the example in Figure 6.

Suppose that Gr ⊂ S3 is a ribbon-immersed surface and Fr is a ribbon-immersed
subsurface of Gr . If Gr may be obtained from Fr by adding 1-handles (possibly
containing ribbon singularities), then the inclusion map of Fr into Gr induces a
monomorphism DH1(Fr) → DH1(Gr).

We give another description of DH1(Fr) which is often easier to work with, and
which enables us to also define the 0-dimensional disoriented homology group of Fr .
If the cut surface Fc is disconnected, we attach some embedded 1-handles, which we
call virtual bands, to Fr to form a new ribbon-immersed surface Gr ⊂ S3. Denote the
collection of virtual bands added to Fr to form Gr by V. These handles intersect Fr
only along their attaching arcs and are pairwise disjoint. They must also satisfy the
following conditions:

(1) A virtual band is attached to each component of the cut surface Fc that is not a
topological disk with two cuts on the boundary.

(2) A virtual band is attached to each component of the cut surface Fc containing the
interior arc of a ribbon singularity.

(3) The graph Π(V), with vertices corresponding to the components of Fc to which
virtual bands are attached and edges corresponding to virtual bands, is connected.
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For example, virtual bands may be attached to all components of Fc in such a way that
the graph in (3) is a tree.

An orientation of a virtual band is an orientation of its core; we fix a choice of
orientation for each virtual band. We call Gr a virtually banded surface associated
with Fr .

To a virtually banded surface Gr corresponding to (Fr ,V), we associate a chain
complex DC∗(Fr ,V) with two nontrivial groups. The group DC1(Fr ,V) is the dis-
oriented homology group DH1(Gr) of Gr ; this is typically easier to work with than
DH1(Fr) since it is possible to choose a generating set with at most one generator
intersecting each ribbon singularity. The group DC0(Fr ,V) is the free abelian group
on V. The boundary homomorphism

∂V ∶ DC1(Fr ,V) →DC0(Fr ,V),(4.1)

[a] ↦ ∑
V∈V

lk(a, KV)V

is defined as follows. For a virtual band V ∈ V, let KV be the boundary of an oriented
disk in S3 whose intersection with Gr is a cocore of V, where the orientation of the disk
is fixed by the requirement that the intersection number between the disk and the core
of V is +1. Then the boundary map ∂V is given by the linking numbers with the KV ’s,
or in other words by the signed count of how many times a disoriented homology class
passes over each virtual band in the chosen direction.

Proposition 4.2 Let Fr ⊂ S3 be a ribbon-immersed surface, and let Gr be a virtually
banded surface corresponding to (Fr ,V) as above. Then H∗(DC∗(Fr ,V)) is (up to
isomorphism) independent of the choices in the construction of Gr , and the inclusion
of Fr in Gr induces a canonical isomorphism

DH1(Fr) ≅ H1(DC∗(Fr ,V)).

We call the homology of the chain complex DC∗(Fr ,V) the disoriented homology of Fr ,
denoted by DH∗(Fr).

Proof We construct a handle decomposition of Gr without 2-handles and with a
single 0-handle containing all the interior arcs of ribbon singularities as follows. Start
with a handle decomposition without 2-handles of (the underlying surface of) Fr , so
that each component of the cut surface Fc to which a virtual band is attached contains
a single 0-handle, and there are no other 0-handles. We may assume that the virtual
bands are attached to the 0-handles, that the interior arcs of the ribbon singularities
are contained in the interiors of the 0-handles, and that the properly embedded arcs
of ribbon singularities are contained in the 1-handles.

Recall the graph Π(V) in condition (3) governing the attachment of virtual bands.
Since this graph is connected, we may choose V0 ⊂ V so that the graph Π(V0) is a
maximal tree of Π(V). Then the union of the 0-handles in Fr and the virtual bands in
V0 forms a single 0-handle in the decomposition of Gr that contains all the interior
arcs. Hence, by Lemma 4.1, the group DC1(Fr ,V) = DH1(Gr) is isomorphic to the
free abelian group with one generator for each 1-handle of Gr ; these are 1-handles of
Fr and virtual bands not in V0.
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Since the ribbon-immersed surface Gr is obtained from Fr by adding embedded
1-handles, the inclusion of Fr into Gr induces an inclusion of DH1(Fr) as a subgroup
of DH1(Gr). Note that disoriented 1-cycles in Fr do not intersect the virtual bands, so
these are in the kernel of ∂V. On the other hand, if a disoriented 1-cycle in Gr is in
the kernel of ∂V, then it is homologous to a disoriented 1-cycle in Fr by a homology
supported in the virtual bands of Gr . This proves that the inclusion Fr ↪ Gr induces
a canonical isomorphism H1(DC∗(Fr ,V)) ≅ DH1(Fr).

To prove independence of H0(DC∗(Fr ,V)) from the choices made in the construc-
tion, first note that adding a virtual band V to V and hence to Gr subject to the above
conditions yields a new surface G′r corresponding to V′ = V ∪ {V} with isomorphic
H0. Indeed, the chain complex DC∗(Fr ,V′) is obtained from DC∗(Fr ,V) by adding
a generator to each of its groups:

DC0(Fr ,V′) = DC0(Fr ,V) ⊕ZV , DC1(Fr ,V′) =DC1(Fr ,V) ⊕Zα,

where α is represented by a 1-cycle in G′r that passes over the virtual band V geo-
metrically once. This shows that the inclusion of DC∗(Fr ,V) into DC∗(Fr ,V′) is a
chain equivalence. Note that by condition (3) above at least one of the two (possibly
the same) components of Fc that V connects is in Gr already connected to a virtual
band, and hence to the 0-handle of Gr . If this holds for both components, then we
take V′0 = V0 and V becomes a 1-handle of G′r . The core of V may be completed in
the 0-handle of Gr to a 1-cycle in G′r proving the claim in this case. Otherwise V is
connected to a component A that in Gr does not have a virtual band attached to it,
and thus A is a part of a 1-handle h in Gr between two ribbon singularities. We take
V′0 = V0 ∪ {V} and change the handle decomposition of Fr by introducing another 0-
handle in A; this splits h into two 1-handles. Recall from the proof of Lemma 4.1 that
to h corresponds a generator αh in DH1(Gr) constructed from the chain ah . Then one
half of ah (corresponding to one of the new 1-handles) along with the core of V can
be as in the proof of that lemma completed to a cycle in G′r defining the class α. Since
the coefficient of V in ∂V′(α) is ±1, the claim follows.

It follows from the previous paragraph that we may assume that virtual bands in
V are attached to all components of the cut surface Fc and that the corresponding
graph Π(V) is a tree. We now verify that H0 agrees for such choices of collections
of virtual bands. Let V1 and V2 be two such collections, and denote by G1

r and G2
r

the corresponding virtually banded surfaces. Then G1
r can be transformed into G2

r by
a sequence of steps where in each step a virtual band V1 ∈ V1 is replaced by a virtual
band V2 ∈ V2; we may assume by an isotopy that V2 is disjoint from virtual bands inV1.
By induction, we assume that there is just one such step so that V1/{V1} = V2/{V2}.
Adding V2 to G1

r gives a new larger surface Ĝ whose graph Π(V1 ∪ {V2}) contains
a cycle that includes V1 and V2. This graph cycle gives rise to a cycle in the first
homology group of Ĝ. The homology class of this cycle (oriented consistently with
V1) is represented by a 1-chain b, which may be assumed to be disjoint from all
ribbon singularities. Then, for any class α = [a] ∈ DC1(Fr ,V1), we let φ(α) = [a −
lk(a, KV1)b]; clearly, the cycle on the right may be represented in G2

r . OnDC0(Fr ,V1),
we let φ act as the identity except that it sends V1 to −∑V∈V2 lk(b, KV)V . Clearly, φ is
a well-defined isomorphism of the chain complexes. ∎
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Example 4.3 Consider the ribbon-immersed surface Fr ⊂ S3 shown in Figure 6. The
disoriented chain complex for the indicated virtual band is

DC1 ≅ Z, DC0 ≅ Z,

where the boundary homomorphism is multiplication by 2. Hence, the disoriented
homology is

DH1(Fr) = 0, DH0(Fr) ≅ Z/2Z.

Let F ⊂ B4 be a properly embedded surface obtained by pushing the interior of Fr into
the 4-ball, and let X be the branched double cover of the 4-ball with branch set F. Then,
according to Theorem 9.3, the reduced homology of X is nontrivial only in dimension
1 and

H1(X;Z) ≅ Z/2Z.

5 Disoriented homology of a slice surface

A slice surface F ⊂ B4 can be described (as in Section 3) by Fs ⊂ S3 which consists of
a ribbon-immersed surface Fr ⊂ S3 along with a separated sublink L0 = {L1 , . . . , Lm}
of its boundary. Boundary components in L0 bound pairwise disjoint disks d i ⊂ S3

that do not intersect the rest of the boundary. Choose disjoint small closed regular
neighborhoods N i of d i . We assume that N i is small enough so that N i ∩ Fr is a
regular neighborhood of d i ∩ Fr and that the boundary spheres S i of N i intersect Fr
transversely in its interior. Then the intersection S i ∩ Fr is a 4-valent graph whose
vertices are the intersections of S i with the ribbon singularities.

Lemma 5.1 With the notation as above, the intersection S i ∩ Fr determines a disori-
ented 1-cycle b i and hence a homology class β i in DH1(Fr), well defined up to sign.

Proof Color the faces1 of the graph S i ∩ Fr on S i in a chessboard fashion. A choice
of orientation of the sphere induces orientations of the faces. Orient the edges of the
graph consistently with the black faces, as shown in Figure 7. Then the orientation on
the graph is consistent with it representing a disoriented 1-cycle b i in Fr .

If N ′i is another small neighborhood of D i as above, then the corresponding
disoriented cycle b′i is homologous to ±b i since there is a homotopy transforming
one into the other. ∎

Note that, in fact, L i uniquely determines the class β i . The sphere S i can be chosen
as any separating sphere for this component of ∂Fr . Any two such spheres are isotopic
in the complement of ∂Fr , and thus their intersections with Fr determine the same
disoriented homology class (up to sign).

Let Gr be any virtually banded surface associated with Fr through a choice
of virtual bands V. Together with the link L0, it determines a disoriented chain
complex DC∗(Fr ,V,L0) as follows. We let DCk(Fr ,V,L0) =DCk(Fr ,V) for k =
0, 1, and extend this complex to include another group, DC2(Fr ,V,L0), which
is the free abelian group with basis the disks d i . The boundary homomorphism

1The components of the complement.
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Figure 7: The disoriented cycle b i . Orienting the edges of the graph S i ∩ Fr as the boundary of
the black faces yields a disoriented homology class. Recall that vertices of the graph come from
ribbon singularities.

∂V∶DC2(Fr ,V,L0) →DC1(Fr ,V) sends d i to β i . Since the support of β i lies in Fr ,
it follows that (DC∗(Fr ,V,L0), ∂V) is indeed a chain complex.

Definition 5.2 We call the homology of the complex (DC∗(Fr ,V,L0), ∂V) the
disoriented homology of the slice surface description Fs and denote it by DH∗(Fs).

It is clear from the case of ribbon surfaces that the resulting homology is indepen-
dent of the choice of virtual bands.

We give yet another description of the disoriented homology of a slice surface that
is defined in terms of a handle decomposition of the surface. This is analogous to the
disoriented homology of a link and provides a convenient way of identification with
the homology of the double branched cover of the 4-ball.

A handle decomposition of F determines a ribbon subsurface of F. We will refer
to the images of the handles of F in the corresponding ribbon-immersed surface Fr
also as handles. We assume that all the ribbon singularities are formed by 1-handles
passing through the 0-handles of Fr . The handle decomposition also determines a
separated sublink L0 of the boundary of Fr whose components bound disks d i (the
2-handles). Given this, choose for each 1-handle h j of Fr a disorientation of its core,
i.e., orient the arcs into which ribbon singularities split the core in such a way that any
two consecutive arcs have opposite orientations. Denote the disoriented core of h j by
c j . Let Γi be the intersection of the disk d i with Fr ; we assume that this intersection
is transverse in the interior of d i . Then Γi is a graph that contains all of ∂d i and
whose interior vertices are 4-valent corresponding to ribbon singularities. Its vertices
on the boundary are 3-valent and correspond to pinch points or ribbon singularities.
Choose a chessboard coloring of the faces of Γi on d i . Then orienting all the black
faces consistently with one orientation of the disk d i and giving all the white faces
the opposite orientation determines a disorientation of the 2-handle d i —we denote
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the disk along with the chosen disorientation by d♭i . We denote this slice surface
description of F with a chosen handle decomposition of Fr and chosen disorientations
of its 1- and 2-handles as described above by F♭s .

The disoriented chain complex for F♭s is given as follows:

• DC0(F♭s ) is the free abelian group generated by the 0-handles.
• DC1(F♭s ) is the free abelian group generated by the disoriented cores of the 1-

handles.
• DC2(F♭s ) is the free abelian group generated by the disoriented 2-handles.

The boundary homomorphism ∂♭1 ∶ DC1(F♭s ) →DC0(F♭s ) is given by the signed count
of the number of times a given disoriented core points into (positive contribution)
or away from (negative contribution) a 0-handle; note that the contribution at each
ribbon singularity is ±2 times the zero handle containing the interior arc of the
singularity. To define the boundary homomorphism ∂♭2 ∶ DC2(F♭s ) →DC1(F♭s ), orient
the edges of Γi as the boundary of the black regions in d♭i . These data determine a
disoriented homology class β♭i = [b♭i ] in the ribbon-immersed surface Fr by letting
b♭i be the sum of the boundaries of the oriented faces of Γi . Hence, b♭i is the linear
combination of the oriented edges of Γi , where the edges lying in ∂d i have multiplicity
1 and the interior edges have multiplicity 2. For each 1-handle h j of Fr , we count how
many times b♭i passes over it as follows: choose an orientation of h j and orient one of
its attaching arcs a j so that the intersection number of a j and c j equals 1, a j ⋅ c j = 1.
Then the coefficient of c j in ∂♭2(d♭i ) is equal to the intersection number a j ⋅ b♭i .

Definition 5.3 We call the augmented chain complex (DC∗(F♭s ), ∂♭∗), where the aug-
mentation homomorphism ∂♭0 = ε ∶ DC0(F♭s ) →DC−1(F♭s ) = Z sends each 0-handle
to 1, the cellular disoriented complex of the slice surface description F♭s .

Proposition 5.4 The homology of the cellular disoriented complex (DC∗(F♭s ), ∂♭∗) is
isomorphic to the disoriented homology of Fs .

Proof We will construct a chain equivalence f∗ ∶ DC∗(F♭s ) →DC∗(Fr ,V,L0) for a
particular choice of a virtually banded surface Gr , determined by a collection of virtual
bands V for Fr . Choose a 0-handle m0 of Fr and connect this 0-handle to every other
0-handle m i , i ≥ 1, by a virtual band Vi . Orient virtual bands so that they point to m0.
Let f0 be given by

f0(m i) = Vi , i ≥ 1, f0(m0) = 0.

By Lemma 4.1,DC1(Fr ,V,L0) = DH1(Gr) is generated by elements corresponding
to 1-handles of Fr . In fact, a generator α j corresponding to a 1-handle h j may be
obtained by completing the disoriented core c j of h j to a disoriented 1-cycle c̄ j in Gr .
This defines the homomorphism f1:

f1(c j) = α j = [c̄ j].

Finally, f2 is given by sending each disoriented 2-handle d♭i to the disk d i .
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We refer to the following commutative diagram

DC2(F♭s )
∂♭2				→ DC1(F♭s )

∂♭1				→ DC0(F♭s )
ε				→ Z

≅
����

f2 ≅
����

f1 f0
����

f−1
����

DC2(Fr ,V,L0)
∂V				→ DC1(Fr ,V,L0)

∂V				→ DC0(Fr ,V,L0)
∂V				→ 0

to verify that f∗ is a chain map. Note that the (algebraic count of the) number of times
c̄ j goes over the virtual band Vi connecting m i to m0 is the same as the coefficient of
m i in ∂♭1 c j , and hence

∂V ○ f1 = f0 ○ ∂♭1 .

To show the commutativity of the left square, we need to see that for each disk d i , the
resulting 1-cycles b i and f1(b♭i) give the same element of disoriented homology (up
to sign). The sphere S i is a double push-off of the disk d i , and therefore a chessboard
coloring of d i determines a chessboard coloring of S i by changing all the colors on
one of the hemispheres. This orients the two edges of S i ∩ Fr corresponding to a given
interior edge of Γi consistently. A homotopy collapsing the sphere S i onto the disk d i
now induces a homology between b i and ±b♭i , as elements of the first homology group
of the immersed surface. We choose the sign of b i so that

∂V ○ f2 = f1 ○ ∂♭2
holds.

We claim that f∗ has a chain homotopy inverse g∗ ∶ DC∗(Fr ,V,L0) →DC∗(F♭s ),
where g i = f −1

i for i = 1, 2, and g0 is given by g0(Vi) = m i − m0. Clearly, g∗ is also
a chain map: the commutativity of the left and right squares is clear; for the middle
square, it follows from the argument for f∗ and the choice of g0. Note that also f0 ○
g0 = id, whereas g0( f0(m i)) = m i − m0 for i ≥ 1, and g0( f0(m0)) = 0. Hence, a chain
homotopy between id and g∗ ○ f∗ is given by H ∶ DC∗(F♭s ) →DC∗+1(F♭s ) whose only
nontrivial component is H−1, which sends 1 ∈ Z to m0. Thus,

id − g0 ○ f0 = H−1 ○ ε,

as required. ∎

6 The Gordon–Litherland-type pairing on the disoriented
homology group

Let Fr ⊂ S3 be a ribbon-immersed surface. Given two disoriented homology classes α,
β ∈ DH1(Fr) represented by disoriented cycles a and b, we wish to follow Gordon and
Litherland [5], and define the pairing of α and β to be the linking number of a and τb,
where τb is obtained by pushing b off Fr in the normal direction on both sides.

Of course, we need to take care in defining τb in the vicinity of a ribbon singularity.
Recall that b is represented by a 1-chain on Fr whose support near each ribbon
singularity is an integer multiple of the local disoriented 1-chain � j shown in Figure 5.
We take coordinates in a ball neighborhood B j of each ribbon singularity as before.
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Figure 8: The double push-off near a ribbon singularity. The local disoriented 1-chain is shown
in blue, with its double push-off in red.

The push-off τ� j of � j then consists of two disjoint oriented line segments in each of
the planes z = ±1 and x = ±1. The starting points of the segments in the plane z = 1 are
(±1, 0, 1), and the endpoints are (±2, 0, 1). We then take the vertical translates of these
two segments in the plane z = −1. Similarly, the segments in the plane x = 1 go from
(1, 0,±1) to (1, 0,±2), and we take horizontal translates of these in the plane x = −1.
Away from the ribbon singularity, we take normal push-offs on either side of Fr as
usual, chosen to match up with (the given multiple of) τ� j . The result is a (singular if
max ∣n j ∣ > 1) oriented link τb in S3/Fr , as illustrated in Figure 8.

The Gordon–Litherland-type form for the ribbon-immersed surface Fr ⊂ S3 is now
defined to be

λFr(α, β) = lk(a, τb).

Note that a and b in the above formula may be singular (see Section 6.1 for discussion
of linking numbers in this case).

Example 6.1 One may check that the square λFr(α, α) of the generator shown in
Figure 3 is 6, which agrees with the determinant of the boundary of the given surface.

Proposition 6.2 For a ribbon-immersed surface Fr , λFr is a well-defined symmetric
bilinear form on DH1(Fr). Moreover, if Gr is a ribbon-immersed surface obtained from
Fr by adding 1-handles, then the restriction of λGr to the disoriented homology of Fr
agrees with λFr .

Proof Since the linking number of two disjoint cycles a and τb depends only on the
homology classes of the cycles, and since a homology between b and b′ in Fr naturally
gives rise to a homology between τb and τb′ in the complement of Fr , it follows that
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λFr is well defined. That λFr is symmetric follows similarly as in the case of embedded
surfaces [5]. Let N be the immersed normal B1-bundle of Fr in S3. Self-intersections
of N are cubes located at ribbon singularities of Fr . Denote by ∂′N the part of the
boundary of N that comes from the S0-bundle; we smooth the corners in ∂′N along
the edges of the cubes at ribbon singularities. Let the positive normal direction to ∂′N
be given by the outward pointing normal and for any 1-cycle c on ∂′N denote by c+ a
nearby push-off of c in this direction and by c− a nearby push-off of c in the opposite
direction. Note that τa may be viewed as a 1-cycle in ∂′N and that it is homologous to
2a in N. Then

lk(a, τb) = lk(a, τb+) = lk(τa, τb+)/2,

and therefore

2(λFr([a], [b]) − λFr([b], [a])) = lk(τa, τb+) − lk(τb, τa+)
= lk(τa, τb+ − τb−) = τa ⋅ B,

where B is the 2-chain with boundary τb+ − τb−, obtained by restricting the normal
B1-bundle of ∂′N to τb. Note that each intersection point x between a and b in Fr
gives rise to a pair of intersection points τx between τa and τb in ∂′N at which the
orientations of the normal to ∂′N are opposite. In other words, the two patches of ∂′N
at the points τx have opposite orientations. Hence, the local intersection numbers
at the two points in τx are of the opposite sign and the intersection number above
vanishes.

The last claim of the proposition is clear from the definition of the pairing. ∎

Consider now a description Fs ⊂ S3 of a slice surface, consisting of a ribbon-
immersed surface Fr ⊂ S3 and a separated sublink L0 of its boundary. The following
lemma shows that the form λFr induces a well-defined symmetric bilinear form
λFs on DH1(Fs). Recall that, to any component L i of L0, we associate a class β i ∈
DH1(Fr) represented by a disoriented 1-chain b i whose support is the intersection of
a separating sphere S i for L i with Fr .

Lemma 6.3 With the notation as above, λFr(α, β i) = 0 for any α ∈ DH1(Fr).

Proof Since the sphere S i is transverse to Fr , we may take the double push-off τb i
to be the boundary of a bi-collar neighborhood of b i in S i . Recall that b i is oriented
consistently with the black regions in a chessboard coloring of its complement. The
complement of the open bi-collar is a union of disks, and if we let c be the 2-chain
which is given by the sum of all the black disks minus the sum of all the white disks,
then τb i is the boundary of this 2-chain. Since c does not intersect Fr , it follows that
the linking number of τb i with any (disoriented) 1-cycle on Fr is zero. ∎

Example 6.4 (The positive unknotted real projective plane) We compute the disori-
ented homology and the GL-pairing of the unknotted real projective plane P = RP

2 in
B4 with radial projection Ps given in Figure 9. Note that we have chosen a projection
with a ribbon singularity. Denote the 0-handle of P by m, its 1-handle by h, and 2-
handle by d. Let ch be the disoriented core of h, given by the part of the blue generator
in the left picture of Figure 10 lying on h. Choose a disorientation d♭ of d as shown in
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Figure 9: The real projective plane. The radial projection Ps of P is shown: the round disk is
the 0-handle, the green band is the 1-handle, and the red and blue disks combine to give the
2-handle. The green arc signifies the ribbon singularity, and the red and blue arcs represent
intersections between the 0-handle and the 2-handle.

Figure 10: The real projective plane. The left picture shows a generator for the first disoriented
homology (in blue) and its push-off (in red). The right picture gives a disorientation of the
2-handle and the resulting cycle b♭.

the right picture of Figure 10. Then the cellular disoriented chains of P are

DC0(P♭s ) = Zm, DC1(P♭s ) = Zch , DC2(P♭s ) = Zd♭ .

The boundary homomorphism on DC1 is trivial as there is only one 0-handle.
Furthermore, the boundary homomorphism on DC2 is trivial as can be seen from
the right picture of Figure 10 since the two arcs of the boundary cycle b♭ of d♭ have
opposite disorientations. Taking into account the augmentation homomorphism, it
follows that

DH0(P♭s ) = 0, DH1(P♭s ) ≅ Z, DH2(P♭s ) ≅ Z.
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The self-pairing of the generator of DH1(P♭s ) is equal to +1 as can be seen from the left
picture of Figure 10 since the linking number between the disoriented cycle in blue
and its push-off in red is equal to +1.

Note that if one changes the crossing in the projection of P, one obtains the negative
unknotted projective plane; one sees immediately that the disoriented homology
groups do not change, but the sign of the pairing on DH1 switches to negative.

We return to this example in Example 9.2 where we exhibit a Kirby diagram of the
branched double cover of the 4-ball with branch set P.

6.1 Remarks on linking numbers

Given two disjoint oriented knots K and K′ in R
3, represented as smooth maps from

S1 to R
3, their linking number lk(K , K′) may be defined as the degree of the map

(u, v) ↦ K(u) − K′(v)
∣K(u) − K′(v)∣

from S1 × S1 to S2. This implies that the linking number is an invariant of homotopy
classes of maps with disjoint images and that it is symmetric. The linking number
is then extended to links by requiring it to be bilinear: if L = K1 ∪ ⋅ ⋅ ⋅ ∪ Km and L′ =
K′1 ∪ ⋅ ⋅ ⋅ ∪ K′n are disjoint oriented links, then

lk(L, L′) = ∑
i , j

lk(K i , K′j).

Alternatively, lk(K , K′) may be defined as the multiple of the homology class
determined by K′ in H1(R3/K;Z) ≅ Z, where the generator is a positively oriented
meridian of K. So, in fact, the linking number depends only on the homology class
of K′ in the complement of K. To explicitly compute lk(K , K′), one usually relies on
a combinatorial description via diagrams: starting with a diagram of K ∪ K′, assign
to each crossing c between K and K′ a sign ηc ∈ {±1}, where ηc = 1 if a bug traveling
along the overcrossing arc in the chosen direction sees the undercrossing arc oriented
from right to left. Then

lk(K , K′) = 1
2 ∑

c
ηc ;

if one counts only overcrossings of one knot over the other, the same formula without
the half applies.

As pointed out in [15], the definition allows for each of L and L′ to be singular, as
long as they are disjoint. In fact, L and L′ may be any two disjoint 1-cycles. The case
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Figure 11: The linking number of the embedded Θ-graph with the knot K is +1. Two isotopy
representatives of K are shown.

of interest to us is when L and/or L′ is an embedded graph with oriented edges, with
nonnegative integer multiplicities associated with each edge, in such a way that the
signed weighted count of edges at each vertex (inward minus outward) is zero. An
example is shown in Figure 11; any such graph has an interpretation as a singular link
in which the multiplicity of an edge is the signed number of times it is traversed by
the components of the link. Clearly, one may apply the above combinatorial formula
to compute the linking number of such objects.

7 Double branched covers and handlebody decompositions

In this section, we describe the double cover of the n-ball Bn branched along a
smoothly and properly embedded codimension-2 submanifold F. We assume that
the radial distance function on Bn restricts to a Morse function on the branch locus
F. Recall the branched cover of an n-ball with branch locus an unknotted properly
embedded codimension-2 disk is again a copy of Bn . By considering the gluing of this
branched cover ball, we show that the induced handle decomposition of F determines
a handle decomposition of the branched cover.

A brief description of our method is as follows: we describe the change in the
branched double cover resulting from the addition of a single handle to the branch
locus. We use an imaginary ice cream scoop to remove a neighborhood of the handle
from the ball. Taking the double cover of a small scooped-out ball containing a
k-handle of the branch locus results in a (k + 1)-handle to attach to the previously
constructed double branched cover. Our main interest is in dimension 4, which
we consider in Section 9, but we begin here with a consideration of the general
case, followed by a warm-up in dimension 3 in Section 8. Working from a suitable
projection of the branch locus to ∂Bn , we produce either a Heegaard diagram of the
double branched cover if n = 3, or a Kirby diagram if n = 4.

Other sources dealing with Heegaard diagrams of branched covers include [7–9, 12,
13]. Our Kirby calculus description in dimension 4 generalizes those in [1, 2, 4], and
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will be used to prove that the disoriented homology of a slice surface F is isomorphic
to the homology of the double branched cover of B4 with branch set F.

7.1 Handles and double branched covers

Recall that a k-handle H of an n-dimensional manifold M is the image of the product
Bk × Bn−k under an embedding φ. The attaching region of H is φ(∂Bk × Bn−k), and
its attaching sphere is Σ ∶= φ(∂Bk × {0}). The framing of Σ is given by the product
structure on the normal disk bundle of Σ determined by φ. The remainder of the
boundary of H, φ(Bk × ∂Bn−k), is its coattaching region, and φ({0} × ∂Bn−k) is its
coattaching sphere, also commonly referred to as its belt sphere.

Denote by ρ the radial distance function on Bn . For any subset X ⊆ Bn and any r1 <
r2 in [0, 1], let Xr1 ,r2 denote X ∩ ρ−1([r1 , r2]) and for r ∈ (0, 1] let Xr = X0,r . Assume
that F ⊂ Bn is a properly embedded compact codimension-2 submanifold such that
the restriction ρF of ρ to F is Morse. Let R be a critical level of ρF that contains a single
critical point c whose index is k. Let ε > 0 be small enough so that c is the only critical
point of ρF in FR−ε,R+ε. We may choose a closed ball neighborhood D ⊂ Bn

R−ε,R+ε
about c so that h = D ∩ F has the structure of a k-handle of F corresponding to c
(see Figure 12). Denote the southern hemisphere (∂D)R of D by S and the northern
(∂D)R ,1 by N. Let CS (resp. CN ) be the radial projection of the core (resp. cocore) of h
to S (resp. N). The projection hS of h to S determines a framingFh of CS in S as follows:
the product structure on hS given by the framing of h along with the normal direction
to hS ⊂ S determines the product structure of the normal bundle of CS in S. Note
that this framing is uniquely determined by the framing of h. To simplify notation, we
identify S and N with their corresponding subsets of ∂Bn

R−ε and ∂Bn
R+ε in the rest of

this section.
We denote the double branched covering projection (and its restriction to any

subset) by π ∶ Σ2(Bn , F) → Bn and the preimage of any subset X ⊆ Bn under π by X̃.
The following theorem is the key technical result of this section.

Figure 12: A ball neighborhood D of a critical point. The part of F contained in D is a handle
h corresponding to the critical point c. We may imagine that D is attached to the sublevel set
Bn

R−ε along its southern hemisphere S and that its northern hemisphere N is contained in Bn
R+ε

by flowing the rest of these level sets into Bn
R .
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Figure 13: A standard model for the pair (D, h). Both figures show only the slice t = 0. The
left figure gives a model using a standard Morse function description of h inside Bn . On the
right, the handle has been moved to the level z = 0 of the product ball B and the subsets of ∂B
corresponding to S and N were adjusted accordingly; for t ∈ (−1, 1), the same picture describes
the intersections of S and N with the t-slice.

Theorem 7.1 With notation as above, there is the following identification of double
branched covering spaces:

Σ2(Bn
R+ε , FR+ε) ≅ Σ2(Bn

R−ε , FR−ε) ∪ H,(7.1)

where H is a (k + 1)-handle corresponding to Σ2(D, h). The attaching region of H in
∂Σ2(Bn

R−ε , FR−ε) is S̃, the preimage of S under π. The attaching sphere of H is C̃S , and
its framing FH is given by the preimage under π of the framing Fh .

Using identification (7.1), the restriction of π to Σ2(Bn
R+ε , FR+ε) agrees with that on

Σ2(Bn
R−ε , FR−ε) away from H. There are identifications of H and D with Bn , such that

the branch set h corresponds to Bn−2 × {(0, 0)} and π is the product of the identity
on Bn−2 and the standard branched double covering projection on the normal 2-disks.
The coattaching sphere C̃N of H then corresponds to {0k} × Sn−2−k × {0}, and the
coattaching region Ñ of H is a regular neighborhood of C̃N in Sn−1 that is diffeomorphic
to Bk × Sn−2−k × B1.

Proof A standard Morse theory argument shows that (Bn
R+ε , FR+ε) ≅ (Bn

R , FR) ∪
(D, h) and that (Bn

R−ε , FR−ε) ≅ (Bn
R , FR)/(D, h) modulo corners along the equator

S ∩ N of D (see Figure 12). Here and later, we suppress standard details regarding
smoothing of corners. The equality of the branched covering spaces then follows from
this after recognizing the branched double cover H of (D, h) as a (k + 1)-handle,
which is the goal of the rest of the proof.

We start by choosing a convenient model for the pair (D, h). Identifying D with
Bn , where the equator of D is identified with the equator of Bn , the handle h may
be identified with a part of the graph of the standard index k Morse function f ∶
R

k ×R
n−2−k × {0} → R, (x , y, 0) ↦ −∣∣x∣∣2 + ∣∣y∣∣2 (see the left side of Figure 13). Here

and below, the factor Rk gives the direction of the core of h and we will denote the
coordinate in this factor by x, the factor Rn−2−k gives the direction of the cocore of
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Figure 14: The double branched covering projection on B1 × B1 . The left and right sides of the
square map onto the union of right and top, and the bottom and top sides map onto the union
of left and bottom, respecting orientations.

h and we will denote the coordinate in this factor by y, the normal direction to R
n−2

in the domain of f corresponds to the normal direction to the radial projection of h
into a level sphere and we will denote the coordinate in this factor by t, and finally the
codomain of f corresponds to the radial direction, which we will denote by z.

Applying a diffeomorphism of Bn , we may assume that h is identified with Bn−2 ×
{(0, 0)}. As a final modification, we replace Bn by B ∶= Bk × Bn−2−k × B1 × B1 (pre-
serving the product structure in the ambient space), where the core of h corresponds
to Bk × {(0n−2−k , 0, 0)} and its cocore to {0k} × Bn−2−k × {(0, 0)} (see the right side
of Figure 13). Thus, we identify D with the product of h with a 2-disk; the first factor
of the 2-disk corresponds to the normal direction to the radial projection of h, and
the second to the radial direction. This already shows that H, the double branched
cover of (D, h), is also diffeomorphic to Bk × Bn−2−k × B1 × B1, with the branched
covering projection π acting nontrivially on the 2-disk B1 × B1 given by the last two
factors. This projection is essentially described by identifying B1 × B1 with the round
disk B2 and using the standard branched double covering projection on that space.
More precisely, we let π be the cone (with vertex at the origin) of the orientation
preserving map ∂(B1 × B1) → ∂(B1 × B1) that maps each of the two vertical sides
{±1} × [−1, 1] diffeomorphically onto the union of the top and right sides and each of
the two horizontal sides [−1, 1] × {±1} diffeomorphically onto the union of the bottom
and left sides (see Figure 14).

After the last modification, we may assume that (see the right side of Figure 13):
• S is the union of S−1 ∶= Bk × Bn−2−k × ({−1} × B1 ∪ B1 × {−1}) and S0 ∶= ∂Bk ×

Bn−2−k × B1 × B1.
• N is the closure of the complement of S in ∂B, and hence it is the union of N1 ∶=

Bk × Bn−2−k × ({1} × B1 ∪ B1 × {1}) and N0 ∶= Bk × ∂Bn−2−k × B1 × B1.

Note that we made a choice to include one of Bk × Bn−2−k × {±1} × B1 into N and one
into S.

Since S−1 does not intersect the branch set, S̃−1 consists of two copies of this set,
which are identified with Bk × Bn−2−k × B1 × {±1}. However, S0 intersects the branch
set in the attaching region ∂Bk × Bn−2−k × {(0, 0)} of h and so S̃0 may be identified
with ∂Bk × Bn−2−k × B1 × B1 where π is nontrivial on the 2-disk B1 × B1. Hence, S̃ =
S̃−1 ∪ S̃0 is identified with ∂Bk × Bn−2−k × B1 × B1 ∪ Bk × Bn−2−k × B1 × ∂B1 ≅ Sk ×
Bn−1−k . This implies that the attaching sphere of H is ∂(Bk × {(0n−2−k , 0)} × B1),
which corresponds to C̃S and its framing is given by the pullback of the product
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structure on the projection of h to S along with the direction normal to this
projection in S.

A similar argument as above shows that the coattaching sphere of H is {0k} ×
∂(Bn−2−k × B1) × {0} = C̃N and its coattaching region is Ñ = Bk × ∂(Bn−2−k × B1) ×
B1. The restriction of π to (Bk × ∂Bn−2−k) × (B1 × B1) is the product of the identity on
Bk × ∂Bn−2−k and the standard branched covering projection on the 2-disk B1 × B1,
and its restriction to Bk × Bn−2−k × {±1} × B1 stretches each of the vertical sides of
the 2-disk B1 × B1 to the union of its right and top sides as described above. This
description agrees with the one in the statement of the lemma after replacing the
product ball B by the round ball Bn . ∎

We give a more explicit description of the branched covering projection π on the
coattaching region of a handle as described in the proof of the previous lemma. This
is important for understanding gluings of handles in the branched double cover of
the ball of index greater than 1 as parts of their attaching regions go over coattaching
regions of lower index handles.

Corollary 7.2 Consider a handle h of F and its corresponding handle H in the branched
double cover Σ2(B4 , F) as in Theorem 7.1. Identify N with Bk × 2Bn−1−k where the radial
projection CN of the cocore of h corresponds to {0k} × Bn−2−k × {0} and the remaining
direction in 2Bn−1−k is normal to the radial projection of h in N. Let Δ ∶= Bn−2−k × B1

be obtained by cutting 2Bn−1−k along the annulus (2Bn−2−k/Bn−2−k) × {0}; the lateral
boundary ∂1Δ ∶= ∂Bn−2−k × B1 of Δ corresponds to the cut (see Figure 15). Then the
coattaching region Ñ ≅ Bk × Sn−2−k × B1 of H may be obtained from Bk × Δ± by gluing
pairs of points (x , y, z)− ∼ (x , y,−z)+ in Bk × ∂1Δ±.

Proof In the proof of the previous lemma, we identified the coattaching region
Ñ of H with Bk × ∂(Bn−2−k × B1) × B1, where the coattaching sphere C̃N is {0k} ×
∂(Bn−2−k × B1) × {0}. Recall that the covering transformation acts by the identity on
Bk × Bn−2−k and by the half-turn rotation on the disk B1 × B1. A fundamental domain
for this action on the coattaching region is Bk × (Bn−2−k × {1} ∪ ∂Bn−2−k × [0, 1]) ×
B1, as shown in Figure 15.

The branched covering projection π maps the first set bijectively to N1 = Bk ×
(Bn−2−k × {1} × B1 ∪ Bn−2−k × B1 × {1}) and the second onto N0 = Bk × ∂Bn−2−k ×
B1 × B1 identifying the points (x , y, 0, z) and (x , y, 0,−z). The branch set for π
restricted to Ñ is Bk × ∂Bn−2−k × {0} × {0}. Since the maps act as identity on the first
factor Bk , we restrict our attention to the remaining factors. We further identify the
rest of Ñ with the annulus Sn−2−k × B1, the fundamental domain for the action with
Sn−2−k
+ × B1 ≅ Bn−2−k × B1 =∶ Δ and the branch set with the equator Sn−3−k × {0}.

Then N (modulo Bk) is obtained from Δ by identifying pairs of points (y, z) ∼ (y,−z)
in Sn−3−k × B1 and hence may be identified with, 2Bn−1−k with the radial projection of
the cocore of h corresponding to Bn−2−k × {0}. Conversely, Ñ may be obtained from
two copies of 2Bn−1−k cut along the annulus (2Bn−2−k/Bn−2−k) × {0}. The cut ball
is diffeomorphic to Δ and the gluing of the two copies Δ± identifies pairs of points
(y, z)− ∼ (y,−z)+ in (Sn−3−k × B1)±. ∎

As usual with Morse theory arguments, the assumption that there is a unique
critical point in each critical level is unnecessary as the construction affects only a
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Figure 15: The coattaching region of H for n = 4 and k = 1. The top picture represents a round
model of Ñ as described in Theorem 7.1; the z-direction is projected into the yt-plane as the
thickness of the annulus. The bottom-left picture contains the fundamental domain Δ (in fact,
Bk × Δ). The bottom-right picture shows N, and the black rectangle is the radial projection of
the band (1-handle) h.

neighborhood of the critical point and its preimage. In fact, we may assume that all
the critical points of a given index are contained in the same level set, which we do in
the following discussion. In the rest of this section, we give a more detailed description
of gluings of handles of small indices; we refer to the notation in the proof of
Theorem 7.1.

7.2 Critical points of ρF of index k = 0

The sublevel set Bn
R−ε is a ball that does not intersect the branch set F, and hence its

branched double cover is the disjoint union of two n-balls oriented consistently with
Bn

R−ε, which we denote by Bn
±. Each critical point gives rise to a 1-handle connecting

the two balls. Consider a 0-handle m of F corresponding to a critical point c. The
attaching sphere {c− , c+} of the resulting 1-handle M is the preimage under π of the
radial projection of c to S, and the attaching region S̃ consists of two copies of S. Recall
that S is an (n − 1)-ball centered at the radial projection of c; more precisely, we identify
it with Bn−2 × B1 (where the radial projection mS of m to S is contained in the interior
of Bn−2) and the attaching map is given by

φ ∶ (Bn−2 × B1) × ∂B1 → (Bn−2 × B1)− ⊔ (Bn−2 × B1)+ ⊂ Bn
− ⊔ Bn

+,

(y, t, z) ↦ (y, zt)sign z .

Note that this is an orientable gluing.
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Alternatively, the addition of the 1-handle M may be realized by gluing the balls Bn
±

along the attaching regions (Bn−2 × B1)± via the map

(y, t) ↦ (y,−t).

This identifies the cocore Bn−2 × B1 × {0} of the handle with the attaching regions and
pushes one half of the handle into each of the n-balls. In this case, it is convenient to
replace the product ball Bn−2 × B1 with the round ball Bn−1. This ball is split in half
by Bn−2 × {0}, which we identify with the π-preimage m̃ of the 0-handle m of F, and
we identify the boundary ∂Bn−1 with the coattaching sphere C̃N . For each point in m,
which is identified with a point y ∈ Bn−2, we identify its corresponding points in C̃N
with the points (y,±t)− = (y,∓t)+. When considering attachments of higher index
handles, we can therefore imagine that the ball Bn−1 is being inflated from the flat
Bn−2, pushing the rest of the radial projection of F (cut along the interior of this Bn−2)
away while keeping the y-coordinates of the (doubled) points on the boundary fixed.

7.3 Critical points of ρF of index k = 1

The sublevel set Bn
R−ε is a ball that intersects the branch locus F in its 0-handles m i ,

and hence the branched double cover of Bn
R−ε is the disjoint union Bn

− ⊔ Bn
+ along

with a 1-handle M i connecting the two n-balls for each i. We choose to replace all the
1-handles by gluings as described above. Denote by P the radial projection of F into the
boundary sphere Sn−1; we refer to the projections of the handles of F into P as handles
of P. We assume that the 1-handles of P are pairwise disjoint and that the cores of the
1-handles intersect the interiors of the 0-handles transversely in P. More precisely,
there are two types of intersections:
• The attaching spheres of 1-handles lie in the union of the boundaries of 0-handles,

and we assume that P is smooth along the attaching regions of 1-handles.
• All other intersections are transverse and are interior to the cores of the 1-handles

and to the 0-handles of P.
This means that the union of 0- and 1-handles of P is smoothly embedded with the
exception of ribbon singularities at which the cores of the 1-handles intersect the
0-handles transversely. Consider a 1-handle h of F. The attaching circle C̃S of the 2-
handle H corresponding to h consists of two copies of CS cut along the interiors of
the 0-handles of F projected into S as described above. If h is attached to m i , then
C̃S intersects the coattaching sphere of M i transversely once and hence goes over M i
once. If the radial projection of a point in m i (identified with y ∈ Bn−2) in P belongs
to the radial projection of the core of h, then C̃S intersects the coattaching sphere of
M i twice (in points (y,±t)−) and hence it goes over M i twice.

The gluing of H = B1 × Bn−3 × B1 × B1 is determined by the attaching circle C̃S
corresponding to ∂(B1 × {(0, 0)} × B1) and by its framing. For n = 3, there is a unique
framing, and for n = 4, the framing is uniquely determined by the framing of h, given
by a parallel to the core of h, so by a boundary component of the π-preimage of hS ,
the radial projection of h to S.

For n = 4, we recall the description of the coattaching region Ñ of H from
Corollary 7.2. Choose a disk 2B2 in S3 that intersects the radial projection of h in its
cocore transversely and contains this cocore in its interior as B1 × {0}. Thicken this
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disk to a 3-ball N = B1 × 2B2, where the B1 factor corresponds to the core of the handle,
and cut it along B1 × (2B1/B1) × {0} to obtain B1 × B1 × B1 (see Figure 15). Then Ñ is
a solid torus B1 × S1 × B1 obtained from two copies (B1 × B1 × B1)± of the cutup N by
gluing pairs of points (x , y, z)− ∼ (x , y,−z)+ for y ∈ ∂B1. If the radial projection of
a 2-handle of F intersects N in a subset K, then a part of the attaching sphere of the
corresponding 3-handle intersects Ñ in two copies of K cut as N by the 0-handles of
F and glued as described above.

8 Double branched covers of the 3-ball and 3-sphere

Let L be a properly embedded compact 1-manifold in the 3-ball, i.e., a tangle or a
link, to which the radial distance function ρ restricts to be Morse, giving a handle
decomposition of L. This is known as a bridge decomposition of L. We assume
that the radial projection P ⊂ S2 of L has only ordinary double points. The bridge
decomposition of L induces a bridge decomposition of P which then carries the
same information as a diagram of L; we refer to double points of P as crossings.
In this context, 0-handles and 1-handles are called underbridges and overbridges,
respectively. We further assume that:
• Minima of L have ρ ∈ (0, 1/2), and maxima have ρ ∈ (1/2, 1).
• All endpoints of P are contained in underbridges.
• At each crossing, an overbridge crosses over an underbridge.

We build a handle decomposition of Σ2(B3 , L) using Theorem 7.1. We begin with
a description of this which takes as a starting point any projection P ⊂ S2 of L with
a chosen bridge decomposition as above. An example is shown in Figure 16. Inflate
each underbridge u to a closed disk U = B2 containing the underbridge as the equator
B1 × {0}, cutting any overbridge which crosses over u, and denote by D the resulting
union of disks connected by overbridge segments (see Figure 16). Let Y be the oriented
3-manifold obtained from the disjoint union B3

− ⊔ B3
+ of two copies of B3, each with

an identical copy of D in the boundary, as follows:
(1) glue each disk U = B2 in ∂B3

− to the corresponding disk in ∂B3
+ by the map

(y, t) ↦ (y,−t), then
(2) attach a 2-handle to the resulting handlebody for each overbridge, with the attach-

ing circle being the image in the handlebody of the union of the corresponding
pair of overbridges in ∂B3

− ⊔ ∂B3
+.

Note that each intersection of an overbridge with the boundary of a disk U in D results
in the corresponding 2-handle attaching circle passing once over the corresponding
1-handle. In particular, the attaching circle passes once over a 1-handle for each
endpoint, and twice for each crossing. The following proposition is immediate from
Theorem 7.1 and the discussion in Sections 7.2 and 7.3.
Proposition 8.1 Let L be a compact 1-manifold properly embedded in B3, and let Y be
the 3-manifold with boundary constructed as above from a bridge decomposition of a
projection of L. Then Y is diffeomorphic to the double cover Σ2(B3 , L) of B3 branched
along L.

We would like to modify the description of Σ2(B3 , L) from Proposition 8.1 to
obtain a Heegaard diagram for the double branched cover of the 3-sphere along L ⊂
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Figure 16: Double cover of a tangle in the 3-ball. The top row shows a tangle L, a bridge
decomposition of its projection P, and the associated diagram D with underbridges inflated
to disks. Below these, we see a handle decomposition of Σ2(B3 , L) with two 0-handles, four 1-
handles, and three 2-handles. Matching pairs of green disks are glued preserving the direction
along L and reversing the normal direction. The preimage of each blue overbridge from D gives
a single circle in the handlebody resulting from these disk gluings, and these are the attaching
circles for the 2-handles.

B3 ⊂ S3. It is convenient, though not essential, to isotope the projection P so that the
underbridges lie along the x-axis in R

2 ⊂ S2, and we will number them u0 , u1 , . . . , ug
from left to right. The resulting disks in the diagram D are correspondingly denoted
U0 , U1 , . . . , Ug from left to right. We may assume that no part of D lies to the left of
U0 with the possible exception of an arc emanating from the left endpoint of u0; any
other arcs may be swung across the point at infinity to the other side.

We now form a new planar diagram obtained as the connected sum of two copies
of D, with the connected sum taken at the disk U0, as follows. Draw one copy of D,
with the interior of U0 removed, in the right half-plane, with the disks U1 , . . . , Ug
drawn along the positive x-axis, and the boundary of U0 being along the y-axis, with
the rightmost boundary point of U0 at the origin and the leftmost one at infinity.
If there is an arc emerging from this leftmost boundary point of U0, redraw it as
being asymptotic to the positive x-axis as in the second diagram of Figure 17. For each
crossing involving u0, the corresponding pair of overbridge arcs should intersect the
y-axis in a pair of points symmetric about the origin. Draw a second copy of D in the
left half-plane as the rotated image of the right half-plane about the origin. Draw a red
α curve surrounding each of the disks in the left half-plane, as shown in Figure 17. The
pairs of disks along the x-axis are now taken to be the attaching disks for 3-dimensional
1-handles, identified via reflection across the y-axis; thus, the diagram now represents
a surface Σ of genus g as the boundary of a 3-dimensional handlebody. The blue curves
coming from the overbridges form g + 1 simple closed curves in Σ. Let H′ denote the
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Figure 17: A Heegaard diagram for the double branched cover of the left-handed trefoil in the
3-sphere. The chessboard coloring in the second diagram shows that the union of the blue
curves is nullhomologous.

resulting triple consisting of the surface Σ together with the red α and blue β curves,
and let H be the triple obtained from H′ by omitting an arbitrarily chosen β curve.

Proposition 8.2 Let L be a link in S3. Then H is a Heegaard diagram for the double
cover of S3 branched along L.

Proof It is straightforward to see that H′ agrees with the description of Σ2(B3 , L)
from Proposition 8.1: one first glues the two 0-handles together using the 1-handle
corresponding to U0 to get a single 0-handle. The remaining 1-handles are indicated
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by the pairs of disks, and the red curves are the belt spheres of the 1-handles. The blue
curves are the attaching circles of 2-handles.

For a link L, the boundary of Σ2(B3 , L) is a disjoint union of two 2-spheres, and
the double branched cover of S3 branched along L can be obtained from this by
attaching two 3-handles. We claim that one of these 3-handles can be cancelled with
an arbitrary choice of β curve. Morally, this follows from turning our construction
upside down, but we make a different argument. There are g + 1 blue β curves on the
genus g surface Σ, and compressing these curves converts Σ to a disjoint union of
two spheres. It follows that the collection of all the β curves spans H1(Σ). We claim
that with an appropriate orientation, the sum of all the β curves is nullhomologous,
from which it follows that any g of them span H1(Σ). To see this, begin by choosing
a chessboard coloring of the projection P of the link L, as in the first diagram of
Figure 17. Regions on opposite sides of an overbridge have opposite colors (shaded
and unshaded). This chessboard coloring is then inherited by the planar diagram D
in which the overbridges are inflated to disks. The Heegaard surface Σ is obtained
by taking two copies of this planar diagram, with the interiors of the inflated disks
removed, and gluing them together along the boundaries of the disks. This glues
together regions from opposite sides of each underbridge, so if we choose the opposite
chessboard coloring in one of the two copies of the planar surface being glued, then
the colors will match up in Σ. Thus, the union of the β curves bounds the union of the
shaded regions. ∎

Lastly, we observe that the handle decomposition of the double branched cover Y =
Σ2(B3 , L) described in Proposition 8.1 gives a simple way of computing the homology
of Y directly from a projection P of L, equipped with a bridge decomposition. In fact,
this homology is isomorphic to the disoriented homology of L, defined in Section 2.

Proposition 8.3 Let L be a link or tangle in B3, with projection P ⊂ S2. Choose a bridge
decomposition of L consistent with P and disorientations of the overbridges, determining
the data P♭. Then the homology of the disoriented chain complexDC∗(P♭) is isomorphic
to the shifted reduced homology of Σ2(B3 , L), i.e.,

H∗(DC∗(P♭)) ≅ H̃∗+1(Σ2(B3 , L)).

Proof This follows from the handle decomposition of Y = Σ2(B3 , L) described
in Proposition 8.1; we also use notation from there. Recall that 1-handles of this
decomposition correspond to underbridges and 2-handles to overbridges. One of the
1-handles connects the two 0-handles B3

− and B3
+, and the rest of them generate H1(Y).

The relations in H1(Y) come from the 2-handles.
We label the overbridges o0 , . . . , on . We claim that the chosen disorientation of

each ok determines an orientation of the attaching circle βk for the corresponding
2-handle. Orient the copy of ok in B3

− consistently with ok and choose the opposite
disorientation for the copy in B3

+. Since for an endpoint a of ok its two copies a± in
B3
− ⊔ B3

+ are identified in Y, the chosen orientations match up. For a pair of endpoints
c, d of ok at a crossing, c− is identified with d+ and d− with c+, and hence the chosen
orientations also match up and indeed a choice of disorientation of ok determines an
orientation of βk (see Figure 18).
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Figure 18: Disorientations of the overbridges determine orientations for the attaching circles of
the 2-handles. Arcs of overbridges ok in the two 0-handles have opposite orientations.

We orient the 1-handles of Y in such a way that the positive direction is from
B3
− to B3

+. Hence, a 2-handle βk goes over a 1-handle corresponding to u j in the
positive/negative direction at an endpoint e of one of its subarcs if at e this subarc
points to/from u j .

Since Y is connected and there are no 3-handles in the decomposition, the claimed
isomorphism follows. ∎

Thus, from Example 2.1, we see that the double cover of the 3-ball branched along
a trefoil knot has first homology group isomorphic to Z/3Z, and its second homology
group is a copy of Z. This is in agreement with the well-known fact that the double
cover of S3 branched along the left-handed trefoil is the lens space L(3, 1), and the
double cover of B3 branched along the same knot is thus obtained from L(3, 1) by
removing two balls.

9 Double branched covers of the 4-ball

Let F be a compact surface, with or without boundary, properly embedded in B4. We
assume that ρF , the restriction of the radial distance function to the surface, is Morse
giving a handle decomposition of F, and that all minima have ρ ∈ (0, 1/3), saddles have
ρ ∈ (1/3, 2/3), and maxima have ρ ∈ (2/3, 1). We further assume that:
• The radial projection to S3 restricts to an embedding on the union of k-handles of

F, for each 0 ≤ k ≤ 2, and we refer to the images of the handles as the handles of the
projection.

• The radial projection of the union of 0- and 1-handles is a ribbon-immersed surface
Fr , and moreover all ribbon singularities are formed by 1-handles passing through
0-handles of Fr .

• The radial projection P of F is generic, and the intersection of the interior of each
2-handle with Fr is transverse.

Under these assumptions, we defined a description Fs ⊂ S3 of F in Section 3, which
is given by the decomposition of P into the ribbon-immersed surface Fr and the 2-
handles d i . We also discussed possible singular points of Fs in that section. Recall
that the ribbon-immersed surface Fr and the 2-handles d i may form pinch point
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singularities along their common boundaries. To simplify the description of the
attaching spheres of 3-handles of the double branched cover, we also assume that

• pinch points do not occur along the boundaries of the 1-handles of Fr .

Indeed, they can always be transferred along the boundary of Fr by rotating the disk
d i about this boundary. Hence, an essential intersection of d i with some 1-handle of
Fr is either a component of the coattaching region of the 1-handle or is disjoint from
the coattaching region, so it runs along the core of the 1-handle.

We now describe a smooth 4-dimensional handlebody X diffeomorphic to the
double branched cover of (B4 , F), using the data above. The sublevel set B4

2/3 is
a ball that intersects the branch locus F in a ribbon surface F2/3 with projected
ribbon-immersed surface Fr . Then the description of the branched double cover
X2 = Σ2(B4

2/3 , F2/3) is as in Sections 7.2 and 7.3. Let d be a 2-handle of F, and let dP

be its radial projection into ∂B4
2/3. We know from Theorem 7.1 that d gives rise to a

3-handle D of X attached to ∂X2. The attaching sphere for D is the preimage of dP
under the branched covering projection. This sphere is formed by the union of the
two copies of dP cut along the interiors of the 0-handles of Fr in the boundaries of B4

±,
in the complement of the attaching regions of the 2-handles of X2, together with the
preimages of dP in the coattaching regions of the 2-handles of X2.

The coattaching region Ñh of a 2-handle H of X2 corresponding to 1-handle h of
F is a solid torus B1 × S1 × B1 whose core circle S1 is the π-preimage of the radially
projected cocore of h. The image Nh of the coattaching region under the branched
covering projection π may be identified with B1 × 2B1 × B1, where the first factor
corresponds to the core of h, the second to an extended cocore of h, and the third
to the normal direction to h. With the assumptions on the projection P of the surface
F we made above, there are two types of intersections between dP and 1-handles of Fr .
First, an arc A in the boundary of dP may be glued to one of the coattaching arcs of
a 1-handle h of F. Then the component ΔA of dP ∩ Nh containing A is a collar on A
in dP ; we denote the rest of the boundary of ΔA by A′ (compare Figure 15 where ΔA
could be one of the two reddish rectangles in the bottom-right picture). The preimage
π−1(ΔA) is a disk isotopic to B1 × {∗} × B1 whose boundary circle is π−1(A′). This disk
connects the two copies A′± of A′ inside the balls B4

± glued along the attaching regions
of the 1-handles. Since π−1(ΔA) intersects the core circle of the coattaching region of
H transversely once, the subdisk π−1(ΔA) of the attaching sphere π−1(dP) goes over
the 2-handle H once.

The second possibility is that dP intersects h in an interior arc B that in h runs
parallel to the core of h. Then the component ΔB of dP ∩ Nh containing B is identified
with B × [−1, 1] (with B corresponding to B × {0}) and π−1(ΔB) consists of two disks
transverse to the core of the coattaching region, each capping-off one component of
(∂ΔB)±.

We have now achieved the main goal of this section: a description of a handlebody
corresponding to the double branched cover of a slice surface in the 4-ball.

Proposition 9.1 Let F be a compact surface properly embedded in B4 as above, and let
X be the 4-dimensional handlebody constructed above using the slice surface description
Fs of F. Then X is diffeomorphic to the double cover Σ2(B4 , F) of B4 branched along F.
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We next describe how to draw a Kirby diagram of Σ2(B4 , F) based on the handle
decomposition from Proposition 9.1. For ribbon surfaces, this is similar to diagrams
described in [4, Section 6.3] and [1, Section 11.3]. The main adjustment that needs
to be made to the description above is that we need to cancel one of the two
0-handles, and draw the diagram in the boundary of the remaining 0-handle. This
is similar to what we did in the 3-dimensional case to obtain a Heegaard diagram (see
Proposition 8.2). We begin by isotoping the radial projection P of F in S3 to facilitate
this. We assume that P is contained in the upper half-space of R3 ⊂ S3 and that the
0-handles are round disks in the xz-plane, with their centers along a horizontal line
L one unit above the x-axis. We then want to “comb up” the 1- and 2-handles of P, so
that, as much as possible, they lie above the 0-handles in the upper half-space z ≥ 1
and close to the xz-plane. The 1-handles (bands) are attached at their ends to the
0-handles, and pass through the 0-handles making ribbon singularities. Away from
the ends and the ribbon singularities, they are isotoped to lie close to the xz-plane,
allowing for twisting in bands and crossings of bands over each other. We also isotope
so that the ribbon singularities all lie on the line L. This gives the preferred position
of the ribbon-immersed surface Fr . The embedded disks of the 2-handles are attached
along their boundaries to the boundary of Fr . Their interiors may intersect the interior
of Fr . Finally, they may “wrap around” the 0-handles. By changing the point at infinity
(placing it below a chosen 0-handle and above any 2-handles wrapping around it), we
may isotope P so that no 2-handle wraps around a particular 0-handle m0. We then
make a further isotopy, pulling m0 downward so that it lies on the x-axis, below the
other 0-handles.

Having isotoped the diagram in this way, we then construct the corresponding
handlebody description of X = Σ2(B4 , F) given prior to Proposition 9.1. We inflate m0
into a 3-ball in the boundary of B4. Since the interior of the 3-ball becomes interior to
the 4-manifold after gluing two copies of the diagram along the two copies of this 3-
ball, we may consider the complement of this interior in the boundary of B4, puncture
the resulting boundary 2-sphere at the south pole and isotope it onto the x y-plane
so that the boundary of m0 is mapped onto the x-axis. This may be done without
modifying the rest of the diagram which is all drawn above the x y-plane. This gives
one copy of the diagram, corresponding to B4

+. The other copy, corresponding to B4
−,

is obtained by revolving the first diagram about the x-axis so that it appears below
the x y-plane. We have now drawn the whole diagram in a single R

3 with rotational
symmetry about the x-axis. We inflate the remaining 0-handles of the diagram into
3-balls, remove the interiors, and identify their boundaries in pairs by the reflection
in the x y-plane. Recall that inflating cuts parts of the diagram that intersect interiors
of the 0-handles. We can push the glued 2-spheres together in the standard way to
replace them by dotted circles as in [1, Section 1.1] and [4, Section 5.4]. The rest of the
construction proceeds as described prior to Proposition 9.1. The two copies of the core
of each 1-handle of P above and below the x y-plane glue to form the attaching circle
for the corresponding 2-handle of X whose framing is given by one component of the
boundary of the annulus into which glue the two copies of the 1-handle of P; in fact,
in the absence of 2-handles of P, we may consider one component of the boundary of
the annulus to be the attaching circle of the 2-handle and the other to be its framing.
For each 2-handle d of P (cut by the interiors of the 0-handles), remove from its two
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Figure 19: A radial projection of the positive unknotted real projective plane in the 4-ball. The 0-
handle (bounded by the circle) and the 1-handle (the green band) combine to give an immersed
Möbius band, with a positive half-twist and a ribbon singularity (shown as a green arc). The
2-handle consists of the red and blue disks and is split into four subdisks by its intersections
with the ribbon surface shown as arcs. In the left figure, the upper two disks lie in front of
the 0-handle, whereas the lower ones lie behind. The lower two arcs of intersection connect a
pinch point with an endpoint of the ribbon singularity, and the remaining arc is bounded by
pinch points. The projection on the left is not in the preferred position, whereas the one on the
right is.

copies above and below the x y-plane the intersections with the images of coattaching
regions Nh for 1-handles h of P. If a removed component Δ contains a boundary arc
A of d, the two copies A′± of ∂Δ/A together bound a disk in the coattaching region of
h that goes once over the corresponding 2-handle H of X. If a removed component
Δ lies in the interior of d, each component of ∂Δ± bounds a disk in the coattaching
region of h that goes once over the corresponding 2-handle H of X.

Example 9.2 (The positive unknotted real projective plane) To illustrate the above
results, we return to the example of the unknotted real projective plane P = RP

2 in B4

with radial projection Ps given on the left side of Figure 19. Recall that we computed
the disoriented homology of this surface in Example 6.4. We complete the story now
by constructing a Kirby diagram for X = Σ2(B4 , P).

The projection Ps consists of a disk m representing the 0-handle, a band with a
positive half-twist representing the 1-handle h that forms a ribbon singularity with
the 0-handle, and a disk d split into four subdisks representing the 2-handle. The red,
blue, and purple curves represent intersections between d and m, and these divide d
into subdisks—the faded parts of d lie behind the 0-handle and the top part of the 1-
handle overlaps with two subdisks. The right part of Figure 19 shows Ps in the preferred
position: the attachment of the 1-handle h has been moved to the side, and the top arc
of intersection between d and m has been pushed away from the 1-handle. This is
realized by shortening the top-right subdisk and enlarging the top-left subdisk of d
that contains the hood at the top of the figure.
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Figure 20: A Kirby diagram for X = Σ2(B4 , P). The attaching circle (dashed black curve) of the
2-handle H of X is the +1-framed core of the annulus. The attaching sphere S of the 3-handle is
built from two copies of the subdisks of d (shown with the same color scheme as in Figure 19)
with a neighborhood of the annulus removed. The solid black curves are framing curves of H
along which two disks parallel to the core of H are attached to form S. The indicated orientations
of the framing curves come from a choice of orientation of the visible part of S.

The double cover X2 of B4 branched along the union of the 0- and 1-handles of P
consists of two 0-handles B4

− ⊔ B4
+ glued along the inflated copies of the 0-handle m

with a single 2-handle attached. The attaching region for the 2-handle is the union
of the two copies of the 1-handle h of Ps in the boundaries of B4

± cut at the ribbon
singularity and pushed away by inflation of m. The resulting four bands form an
annulus with a full positive twist. The core of the annulus is the attaching circle for
the 2-handle of X2, and the framing is given by either boundary component of the
annulus, and thus the framing coefficient is +1. The Kirby diagram for X2 is obtained
as described above by canceling the 1-handle with one of the 0-handles. This results in
a single 0-handle and 2-handle.

It remains to describe the attaching sphere S of the 3-handle of X. The part of S
contained in the boundary of X1 away from the attaching region of the 2-handle H
of X is obtained from the two copies d± of d, cut along the 0-handle of Ps and with
a neighborhood of the 1-handle h removed. The boundary of the resulting surface
consists of two oppositely oriented framing curves of H, and the attaching sphere is
completed by adding the two disks parallel to the core of H bounded by these curves
(see Figure 20). Of course, these disks may be pushed into the coattaching region of H,
showing that S is isotopic to an unknotted 2-sphere in the boundary of the 0-handle
of X. We conclude that X is diffeomorphic to a twice-punctured CP

2, as expected.
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We now prove the main theorem, establishing an isomorphism between the disori-
ented homology of a slice surface and the homology of the 4-ball branched along the
surface.

Theorem 9.3 Let F ⊂ B4 be a properly embedded compact surface, and let Fs ⊂ S3 be
its description. Choose disorientations of the cores of the 1-handles and disorientations
of the 2-handles of Fs . Then the homology of the cellular disoriented complex DC∗(F♭s )
is isomorphic to the shifted reduced homology of the branched double cover Σ2(B4 , F),
i.e.,

H∗(DC∗(F♭s )) ≅ H̃∗+1(Σ2(B4 , F)).

Moreover, the intersection pairing of Σ2(B4 , F) under this identification agrees with the
GL-pairing λ on DH1(F♭s ).

Proof We first show that the homology of the double branched cover X = Σ2(B4 , F)
with branch set a slice surface F ⊂ B4 is isomorphic to the disoriented homology
of the slice surface description Fs ⊂ S3 of F. Recall that a handle decomposition of
F determines a handle decomposition of the projected surface Fs ; the union of 0-
and 1-handles of Fs forms a ribbon-immersed surface Fr . According to Theorem 7.1,
there is a bijection between k-handles of Fs and (k + 1)-handles of X; more precisely,
the attaching sphere of a 4-dimensional handle is determined by the core of the
2-dimensional handle. Inspecting this correspondence, we see that the boundary
homomorphisms in the cellular disoriented complex of the surface, DC∗(F♭s ), and
in the cellular chain complex of X, C∗+1(X), agree in nonnegative dimensions. By
a slight abuse, we treat a handle of index k as a k-cell. We describe below a chain
equivalence

DC2(F♭s )
∂♭2				→ DC1(F♭s )

∂♭1				→ DC0(F♭s )
ε				→ Z 				→ 0

≅
����

f2 ≅
����

f1 ≅
����

f0
����

f−1
����

C3(X) ∂				→ C2(X) ∂				→ C1(X) ∂				→ C0(X) ε				→ Z

inducing the claimed isomorphism. Our description relies also on the Kirby diagram
described after Proposition 9.1.

Recall that X is built from the disjoint union of two 4-balls X0 ∶= B4
− ⊔ B4

+ by
attaching handles. The preimage of the core of each k-handle of Fs is a k-dimensional
sphere in the boundary of the handlebody Xk , built from X0 by attaching handles of
index at most k. Recall that the attaching sphere contains the two copies of the core in
B4
± away from its intersection with the surface of lower index handles, connected over

the coattaching regions of the corresponding handles in Xk .
Let f−1(1) = x+ − x−, where x± is the generator of C0(X) corresponding to B4

±. This
makes the rightmost square commutative.

To each 0-handle m of Fs there corresponds a 1-handle M in X (realized by gluing
the two 4-balls in X0 along the two copies of a 3-disk obtained by inflating m). We
orient (the core of) M from B4

− to B4
+ and let f0(m) = M, so f0 sends m to the oriented
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(core of the) 1-handle M. Since all the 1-handles connect the two 0-handles of X, the
equality ∂ ○ f0 = f−1 ○ ε follows from the definition of f−1.

For a 1-handle h of Fs , let c be its disoriented core. At each intersection of c
with a 0-handle m of Fs , the preimage π−1(c) = c− ∪ c+ of c in X1 goes over the
corresponding 1-handle M of X and continues in the other ball. Orienting c− con-
sistently with the chosen disorientation of c and giving c+ the opposite disorien-
tation yields an oriented circle that is the attaching circle for the 2-handle H of X
corresponding to h. Setting f1(h) = H, it follows that f0 ○ ∂♭1 = ∂ ○ f1 since at each
point of disorientation the attaching circle goes over the 1-handle twice in the same
direction.

The attaching sphere S of a 3-handle D of X corresponding to a disoriented 2-
handle d of Fs is obtained from the two preimages d± of d in X2. Recall that d is split
into faces of the graph Γ = d ∩ Fr and a disorientation of d is given by a chessboard
coloring of these faces. To construct S, change the disorientation of d+ and then
connect different colored faces of Γ± along the boundary of d± and the same colored
faces along the interior arcs of Γ±, where all the connections are made over the handles
in X2. More precisely, the two copies A± of an arc A along which d is attached to a 1-
handle h correspond to the inclusion of a disk that goes once over the 2-handle H
into S. The sign of this contribution to the boundary is determined by the chosen
orientation of S: if the disorientation of d induces in A the chosen disorientation of
h, the sign of H is positive, and negative otherwise. Similarly, the two copies B± of
an interior arc of intersection B ⊂ d with a 1-handle h correspond to the inclusion
into S of two disks each of which goes once over the 2-handle H. The sign of this
contribution may be determined from d− as before and is the same also for the other
component, since both the intervening disorientations (of 1- and 2-handle) have been
changed. Interpreting S in C2(X) now shows that it corresponds to the disoriented
1-cycle b♭ in the definition of ∂♭2d, proving the commutativity of the left square
above.

We now turn to the pairing. Note that it is enough to establish the correspondence
between pairings for ribbon surfaces. Start with a ribbon-immersed surface Fr in
preferred position as described in the construction of a Kirby diagram for X following
Proposition 9.1. To simplify the discussion, we additionally assume that no 1-handle of
Fr is attached along the boundary of the slice of a 0-handle bounded by the projection
of a 1-handle forming a ribbon singularity (see Figure 21). Choose two disoriented
cycles a and b in DC1(Fr). The Gordon–Litherland pairing λFr([a], [b]) is computed
as lk(a, τb), where τ is the double normal push-off away from ribbon singularities
and is described close to a ribbon singularity in Section 6 (see Figure 8). We construct
a push-off τb that is compatible with a “framing” of the curve corresponding to b in
∂X1, i.e., the push-off of the representative of the 2-dimensional homology class in
X corresponding to b. Recall that any disoriented 1-cycle is homologous to a linear
combination of cores of 1-handles of Fr whose endpoints are connected by 1-chains
in the union of 0-handles. For each 1-handle h of Fr , let its disoriented core ch be the
central curve of h with a chosen disorientation. Then construct its double push-off
τch as follows: starting at one end of h the two arcs of τch , one in front of Fr and
the other behind, both project to one side of ch in the xz-plane and are oriented
consistently with ch . These arcs can be extended along the handle by retaining relative
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Figure 21: Comparison of pairings for a surface description in S3 and for the corresponding
branched double cover X. The left figure shows the specific choice of framing curves (red)
for a generator (blue) corresponding to a 1-handle (green) of Fr near a ribbon singularity. The
local contribution of the ribbon singularity to the self-pairing is −1. The right figure shows the
corresponding attaching circle for the 2-handle (blue) and its framing (red), which also yield a
local contribution of −1 to the linking number.

positions of arcs with respect to h as it twists and turns in space. The only exceptions
to this are neighborhoods of ribbon singularities where the rule is as described in
Figure 21; if the projection of τch along h arrives to the other side of the projected
core as in the picture just switch their side relative to ch by passing one over and the
other under ch (alternatively one could use analogous models for the arcs on the other
side).

To compute linking numbers, we use the standard recipe of counting signs of
all double points in the projection and then dividing by two (we assume that all
intersection points in the projection of two curves to the xz-plane are regular). Note
first that 1-chains connecting (multiples of) disoriented cores inside the 0-handles
do not contribute to the linking number lk(a, τb) as an intersection between a and
b gives rise to a canceling pair of crossings between a and τb. Similarly, there is
no contribution to lk(a, τb) from intersections between projections of disoriented
cores and 1-chains contained in the 0-handles: if any such crossing appears, then it
involves a piece of disoriented core ch pointing into/out of a ribbon singularity, but
then the same arc of a 1-chain forms an intersection also with the other piece of ch
emanating from the same ribbon singularity. Since the two arcs of ch have the same
orientation (pointing into/out of the ribbon singularity) and one lies above and the
other below the 0-handle, local contributions to the linking number cancel in pairs.
The only contributions of arcs contained in the 0-handles of Fr thus come from ribbon
singularities when [a] = [b]. Figure 21 shows one possible configuration: the piece
of the 1-handle h lying in front of the 0-handle is on the left of the one behind. In
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Figure 22: Comparison of pairings for a surface description in S3 and for the corresponding
branched double cover X. The left figure corresponds to a crossing between disoriented cycles
a and b in a surface, and the right one to a point of intersection. In the surface diagram, the blue
curves represent parts of a and the red ones parts of τb. In X, the blue curves represent parts of
the attaching circle for the 2-handle corresponding to a and the red ones parts of the framing
curve for the 2-handle corresponding to b. In each case, the two crossings in the surface diagram
give rise to two crossings of the curves in the boundary of X1 with the same local contribution
to the linking number.

this case, the local contribution is −1. The other configuration is symmetric and yields
local contribution +1. This is consistent with the framing curve Φh for the attaching
circle Ch of the 2-handle H in X corresponding to h. The framing curve is obtained
from τch by keeping the “front” curve starting at the chosen end of h in the upper
half-space and rotating the other along with the diagram to the lower half-space. At a
ribbon singularity, this results in keeping both the front curves above the x y-plane and
rotating the behind ones or vice versa, disregarding the parts of the curves going away
from h and connecting resulting arcs in the obvious way. Then any pair of crossings
between ch i and τch j corresponding to an intersection point between the projection
of ch i and ch j results in two crossings between Ch i and Φh j (see Figure 22). The signs
of these crossings agree with the signs of the original crossings since disorientations of
the cores are preserved below and reversed above the x y-plane. The result now follows
by using the above remarks and bilinearity of linking numbers. ∎

10 The signature formula

In this section, we generalize Gordon and Litherland’s celebrated formula, relating the
signature of a link in S3 and the signature of the pairing on a spanning surface in S3,
to the case of a slice surface in the 4-ball.

Let F be a properly embedded surface in S3 × [0, 1] without closed components
whose boundary consists of two links L0 ⊂ S3 × {0} and L1 ⊂ S3 × {1} (one of which
could be empty). We make no assumption on orientability of F. We choose an orienta-
tion of the links Li and denote the oriented links by L⃗i ; recall that a link’s signature is
unaltered by the overall reversal of its orientation. The following proposition expresses
the change in the signature of the two links in terms of the data determined by the
cobordism F. This is a slight generalization of the signature formula in [5] and follows
similarly to that.
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Since F has the homotopy type of a 1-complex, the normal circle bundle of F admits
a section F′. Let L⃗′i denote the boundary links of F′, oriented consistently with L⃗i .
Finally, let WF be the double branched cover of S3 × [0, 1] with branch set F.

Lemma 10.1 With the notation as above, we have

σ(L⃗1) − σ(L⃗0) = σ(WF) +
1
2
(lk(L⃗0 , L⃗′0) − lk(L⃗1 , L⃗′1)) .

Proof Let Σ i be a Seifert surface for Li . Form a (smooth) 4-sphere by adding a 4-
disk to each of the boundary components of S3 × [0, 1]. Then, by pushing interiors of
Σ i into the disks, we may obtain a smooth surface F̂ as the union of F and the pushed-
in Seifert surfaces. Denoting the double branched cover of S4 with branch set F̂ by
ŴF , we obtain using Novikov additivity and the G-signature theorem

σ(ŴF) = σ(L⃗0) + σ(WF) − σ(L⃗1) = −
1
2

e(F̂),

where e(F̂) is the normal Euler number of F̂. Recall that the normal Euler number may
be computed by choosing a generic section of the normal bundle of the surface and
assigning intersection numbers to intersection points by local choice of orientation
of the surface and orienting the section consistently with this choice. The section F̂′
may be constructed by adding to F′ generic perturbations Σ′i of pushed-in Σ i . As is
well known (cf. [4, Section 4.5]), the linking number lk(L⃗0 , L⃗′0) is equal to the sum
of local intersection numbers between Σ0 and Σ′0. It follows that

e(F̂) = lk(L⃗0 , L⃗′0) − lk(L⃗1 , L⃗′1),

which proves the claimed formula. ∎

If the surface F ⊂ S3 × [0, 1] projects injectively to the sphere, giving an embedded
cobordism between the links, the signature of the double branched cover manifold
may be computed from the Gordon–Litherland pairing λp(F). Furthermore, the links
L⃗′i may be replaced by nearby parallels of L⃗i on the projected image of F.

Proposition 10.2 Let F ⊂ S3 × [0, 1] be a properly embedded surface such that the
restriction of the projection p along the interval to F is an embedding. Then, for any
choice of orientations of the boundary links L⃗i ⊂ S3 × {i} of F, we have

σ(L⃗1) − σ(L⃗0) = σ(λp(F)) +
1
2
(lk(L⃗0 , L⃗F

0 ) − lk(L⃗1 , L⃗F
1 )) ,

where L⃗F
i is a nearby parallel of L⃗i on p(F).

Proof This follows immediately from the above lemma after noting that λp(F) is
the intersection pairing of WF and that since F is a graph of p(F), we can choose
a section F′ for which L′i is homotopic to LF

i . Indeed, a section F′ can be constructed
starting withL′0 = LF

0 and pushing p(F) (with the collar betweenL0 andLF
0 removed)

slightly below F. This has to be completed by adding a collar on the image of L1 that
interpolates to S3 × {1}. Clearly, L′1 is then homotopic to LF

1 . ∎

Consider now a general slice surface F ⊂ B4 with boundary link L. We continue
assuming that F has no closed components. Let Fs ⊂ S3 be a description of F and λFs
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the corresponding pairing on DH1(Fs). Recall that Fs consists of a ribbon surface
description Fr and a separated sublink of ∂Fr consisting of those components that are
in F capped-off. Let LF be a nearby parallel of L on Fr .

Theorem 10.3 Let a link L be the boundary of a slice surface F ⊂ B4. Then, for any
choice L⃗ of orientation for L, its signature is given by

σ(L⃗) = σ(λFs) −
1
2

lk(L⃗, L⃗F),

where L⃗F is oriented consistently with L⃗.

Proof We may assume that the radial distance function in B4 induces a Morse
function on F so that the ball D0 of radius 1/3 contains exactly all critical points
of index 0 and the radial shell E1 between 1/3 and 2/3 contains exactly all critical
points of index 1. Then the part of F contained in D1 = D0 ∪ E1 is a ribbon surface.
We further assume that the interior arcs of ribbon singularities of Fr are contained in
the 0-handles.

Since only the double branched cover of E1 may have nontrivial signature, it
follows by Novikov additivity that the signature of the branched cover of E1 equals
the signature of the branched cover of D1 and to that of B4, which is equal to
σ(λFr) = σ(λFs). The result now follows from Proposition 10.2 after noting that the
lower boundary of the intersection of F with E1 is a 0-framed unlink and that the
radial projection restricted to F ∩ E1 is an embedding. ∎
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