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Gravito–capillary waves at free surfaces are ubiquitous in several natural and industrial
processes involving quiescent liquid pools bounded by cylindrical walls. These waves
emanate from the relaxation of initial interface distortions, which often take the form
of a cavity (depression) centred on the symmetry axis of the container. The surface
waves reflect from the container walls leading to a radially inward propagating wavetrain
converging (focussing) onto the symmetry axis. Under the inviscid approximation and
for sufficiently shallow cavities, the relaxation is well-described by the linearised
potential-flow equations. Naturally, adding viscosity to such a system introduces viscous
dissipation that enervates energy and dampens the oscillations at the symmetry axis.
However, for viscous liquids and deeper cavities, these equations are qualitatively
inaccurate. In this study, we decompose the initial localised interface distortion into
several Bessel functions and study their time evolution governing the propagation of
concentric gravito–capillary waves on a free surface. This is carried out for inviscid
as well as viscous liquids. For a sufficiently deep cavity, the inward focussing of
waves results in large interfacial oscillations at the axis, necessitating a second-order
nonlinear theory. We demonstrate that this theory effectively models the interfacial
behaviour and highlights the crucial role of nonlinearity near the symmetry axis. This
is rationalised via demonstration of the contribution of bound wave components to the
interface displacement at the symmetry axis Contrary to expectations, the addition of
slight viscosity further intensifies the oscillations at the symmetry axis although the
mechanism of wavetrain generation here is quite different compared with bubble bursting
where such behaviour is well known (Duchemin et al., Phys. Fluids, vol. 14, issue 9,
2002, pp. 3000–3008). This finding underscores the limitations of the potential flow
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model and suggests avenues for more accurate modelling of such complex free-surface
flows.

Key words: capillary waves, surface gravity waves

1. Introduction to wave focussing

Focussing of moderate amplitude, progressive surface waves can often in turn produce
unexpectedly large waves. At oceanic scales, spatial wave focussing, where large amplitude
waves form persistently in specific regions (Chavarria, Le Gal & Le Bars 2018; Torres et al.
2022), can produce waves powerful enough to damage or capsize ships. A famous example
is the Aghulas current region (The Editors of Encyclopaedia Britannica 2024) known
for giant waves and shipping accidents (Mallory 1974; Smith 1976). The role of current
generated refractive focussing leading to the birth of such giant waves, specifically in the
Agulhas, was anticipated by Peregrine (1976) (also see figure 8 in Dysthe, Krogstad &
Müller (2008) and § 2 in White & Fornberg (1998)). Refractive focussing of surface waves
(Peregrine 1986) has also been exploited to design ‘lenses’, i.e. submerged structures in a
water basin which focus incoming divergent, circular waves (see figure 1a in Stamnes et al.
(1983)), these being motivated from wave generation of power (McIver 1985; Murashige
& Kinoshita 1992).

In addition to spatial focussing, spatiotemporal focussing also occurs (Dysthe et al.
2008), where large wave amplitudes manifest at specific locations in space, albeit briefly.
Spatiotemporal focussing has obvious relevance not only towards understanding, for
example, rogue (freak) waves in the ocean (Charlie Wood 2020), but also to our current
study (next section). The physical mechanisms underlying spatiotemporal focussing
have been distinguished further into linear and nonlinear dispersive focussing (§§ 4.2
and 4.3, Dysthe et al. (2008)). Linear dispersive focussing of progressive waves relies on
constructive interference exploiting the dispersive nature of surface gravity waves and is
particularly simple to understand in the deep-water limit. For unidirectional wave packets
in deep water, generated from a wavemaker oscillating harmonically at frequencyΩ at one
end of a sufficiently long wave flume, the energy propagation velocity (group velocity) of
the packet is cg = g/2Ω where g is acceleration due to gravity. If the wavemaker frequency
varies linearly from Ω1 to Ω2 (Ω1 > Ω2) following dΩ/dt = −(g/2xf ) within the time
interval [t1, t2], Longuet-Higgins (1974) showed that the energy of each wave packet
emitted during this period will converge at x = xf simultaneously at t = tf (see Brown
& Jensen 2001). This focussing of wave energy thus causes a momentary but significant
increase in energy density at xf manifested as a transient, large amplitude wave at that
location around time tf . This technique has been discussed in Davis & Zarnick (1964) and
its variants have been employed extensively to generate breaking waves in the laboratory in
a predictable manner in two (Rapp & Melville 1990) and three dimensions (Johannessen
& Swan 2001; Wu & Nepf 2002; McAllister et al. 2022) as well as in other related contexts
such as generation of a parasitic capillary on large amplitude waves (Xu & Perlin 2023).

On the other hand, in nonlinear dispersive focussing, the modulational instability
(Benjamin & Feir 1967) of a uniform, finite-amplitude wavetrain (Stokes wave) plays
a crucial role. This instability can cause the wavetrain to split into groups, where
focussing within a group can produce a wave significantly larger than the others (Zakharov,
Dyachenko & Prokofiev 2006). For further details on nonlinear focussing, we refer readers
to the review by Onorato et al. (2013).
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1.1. Spatiotemporal focussing at gravito–capillary scales
Following this brief introduction to large-scale focussing, we now shift our attention to
length scales where gravitational and capillary restoring forces are nearly equivalent.
Our study aims to achieve an analytical understanding of wave focussing at these shorter
scales. Below, we illustrate two examples where such small-scale focussing can be readily
observed.

Stuhlman (1932) investigated the formation of drops from collapsing bubbles with
diameters under 0.12 cm in water–air interfaces and 0.15 cm in benzene–air interfaces.
He hypothesised that these drops emerged from Worthington jets created by the collapse
of the bubble cavity. However, contemporary research identifies this as just one of two
mechanisms responsible for drop generation (Villermaux, Wang & Deike 2022). The
first high-speed (≈6000 frames per second) images of jet formation were reported by
MacIntyre (1968, 1972) (see original experiments by Kientzler et al. (1954)). Interestingly,
these studies demonstrated that the surface ripples are created by the retraction of the
circular rim of the relaxing bubble cavity. These ripples travel towards the cavity base
before the jet emerges. In the words of MacIntyre (1972) (see abstract) ‘. . . an irrotational
solitary capillary ripple precedes the main toroidal rim transporting mass along the surface
at approximately 90 % of its phase velocity. The convergence of this flow creates opposed
jets . . .’. The seminal work by Duchemin et al. (2002) of collapsing bubbles (much smaller
than their capillary length scale) at a gas–liquid interface was able to resolve this focussing
process, via direct numerical simulations (DNS) of the axisymmetric Navier–Stokes
equations without gravity. Figure 1 depicts the generation of an axisymmetric, wavetrain
focussing towards the base of the bubble cavity (also the symmetry axis) for two different
Ohnesorge numbers (Oh) and at a fixed Bond number (Bo). The Bond number Bo ≡
ρLgR̂2

b/T determines the bubble shape, and the Ohnesorge number Oh ≡ μL/

√
ρLTR̂b

accounts for the ratio of viscous to capillary forces. Here ρL, μL, T, R̂b are the lower fluid
density, lower fluid viscosity, coefficient of surface tension and equivalent radius of the
bubble, respectively. We refer the readers to Deike (2022), Sanjay (2022) and Gordillo
& Blanco-Rodríguez (2023) for recent advances on the study of bubble collapse and jet
formation mechanisms.

Another example of axisymmetric focussing of surface waves was highlighted in the
study by Longuet-Higgins (1990), where several interesting observations were noted.
Longuet-Higgins (1990) studied the inverted conical shaped ‘impact cavities’ seen in
experiments and simulations (Oguz & Prosperetti 1990) of a liquid droplet falling on a
liquid pool. The author compared these cavities with an exact solution to the potential
flow equations without surface tension or gravity (Longuet-Higgins 1983), where the free
surface (gas–liquid interface) took the form of a cone at all times. The apex of this cone
(i.e. the impact cavity) is often seen to contain a bulge (see figure 2a in Longuet-Higgins
(1990)) and the formation of this was attributed to (we quote, § 6 first paragraph in
Longuet-Higgins (1990)) ‘a ripple on the surface of the cone converging towards the axis
of symmetry’, thus highlighting the role of wave focussing once again. Longuet-Higgins
(1990) insightfully remarked that this convergence process would be similar to the radially
inward propagation of a circular ripple on a water surface. The interface shape could thus
be approximated as being due to the linear superposition of an initial, localised wave packet
(generated by distorting an initially flat surface) whose Fourier–Bessel representation F(k)
(k being the wavenumber) slowly varies on a time scale t̄ (i.e. slow compared with the wave
packet propagation time scale t). Longuet-Higgins (1990) thus posits that the shape of the
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Figure 1. An example of capillary wave focussing obtained from DNS conducted using the open-source
code Basilisk (Popinet & Collaborators 2013–2024). The initial cavity shape, inset in (a i,b i), is obtained
by solving the Young–Laplace equation with gravity to determine the shape of a static bubble at the free
surface (without its cap). In centimetre–gram–second (CGS) units, initial bubble radius 0.075, surface tension
T = 72, gravity g = −981, density ρL = 1.0 and ρU = 0.001 for upper and lower fluid. Panel (a) (blue)
simulations are conducted using zero viscosity for both gas (above) and liquid (below). Panel (b) (red)
simulations have dynamic viscosity μU = 0.0001 and μL = 0.01. Axes are non-dimensionalised using initial

bubble radius. Time is non-dimensionalised using the capillary time scale t = t̂/
√
ρR̂3

b/T . For panel (a)

Bo ≡ ρLgR̂2
b/T = 0.076 and Oh = μL/

√
ρLTR̂b = 0; for panel (b) Bo = 0.076 and Oh = 0.0043.

perturbed interface η(r, t, t̄) may be represented as

η(r, t, t̄) =
∫
�k

F(k, t̄)J0(kr) exp (Iσ(k)t) k dk, (1.1)

where J0 is the Bessel function, r is the radial coordinate and the spectrum of the surface
perturbation F(k, t̄) evolves slowly on a time scale t̄, I ≡ √−1 and σ(k) satisfies the
dispersion relation for capillary waves (see equation (6.2) in Longuet-Higgins (1990)).
Note that if the slow variation of F(k, t̄) over t̄ is supressed, (1.1) represents the solution to
the linearised Cauchy–Poisson problem with an initial surface distortion whose Hankel
transform is F(k). Longuet-Higgins (1990), however, did not report any systematic
comparison of available experimental or simulation data (Oguz & Prosperetti 1990) with
(1.1) although the author anticipated that nonlinearity could become important during the
convergence (see the last paragraph on page 405 of Longuet-Higgins (1990)).

Our current study is partly motivated by the aforementioned observations of
Longuet-Higgins (1990) and Duchemin et al. (2002) and aims at obtaining an analytical
description of spatiotemporal wave focussing at these short scales. We seek an initial,
localised surface distortion which produces a wavetrain, and whose radial convergence
may be studied analytically, at least in the potential flow limit. We refer the reader to the
review by Eggers, Sprittles & Snoeijer (2024) where this limit corresponding to Ohnesorge
Oh = 0 is discussed. In the next section we present a localised initial surface distortion
which is expressible as a linear superposition of Bessel functions (Fourier–Bessel series).
It will be seen that this distortion generates a surface wavetrain which focuses towards
the symmetry axis of the container. We emphasise that the wavetrains or the solitary
ripple seen in Kientzler et al. (1954) and Longuet-Higgins (1990), respectively, have
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different physical origins compared with the ones we study here. However, following
Longuet-Higgins (1990) we intuitively expect there are aspects of their convergence which
do not sensitively depend on how these are generated in the first place.

Of particular relevance to us is also the interesting study by Fillette, Fauve & Falcon
(2022) who investigated forced capillary–gravity waves in a cylindrical container. These
waves were generated via a vertically vibrating ring at the gas–liquid interface. The authors
showed that the steady shape of the interface is well represented by the third-order,
(nonlinear) time-periodic solution due to Mack (1962). The agreement between the
analytical model and experimental data is particularly good around r = 0, although
differences persist away from the symmetry axis (see their figure 4b). With increasing
forcing amplitude, the authors note an interesting transition from the linear to the nonlinear
regime followed by a jet ejection regime. We demonstrate in Appendix D that a similar
transition is also seen for our initial condition (see discussion in the next paragraph) albeit
our study excludes external forcing. Due to the absence of forcing, it becomes feasible
to carry out a first principles mathematical analysis of the wave-focussing regime, as has
been reported here.

While wavetrain convergence and jet formation may often be concomitant, as apparent
from the bubble collapse simulations in figure 1, the two phenomena are distinct. Figure 3
of Deike et al. (2018), for example, describes experimental investigations of an air bubble
bursting at a silicon oil–air interface producing a jet, but without any visible signature
of a converging wavetrain towards the collapsing bubble base. On the other hand, the
converging wavetrain in the shape oscillations generated due to two coalescing bubbles
(Zhang & Thoroddsen (2008); their figure 12), lead to rapid interfacial oscillations at the
focal point, but no signature of pinch-off or a liquid jet. When a converging wavetrain
and a liquid jet are both present, the dynamics of the latter can be affected by the
former quite non-trivially. The fastest jet in such cases can occur at an ‘optimal’ value
of liquid viscosity, rather than in the inviscid limit; see experiments and figure 3(b) of
Ghabache et al. (2014a) in the context of bubble bursting. In view of this rather complex
aforementioned behaviour, it becomes desirable to have first principles studies of cavity
collapse with and without an accompanying wavetrain. The spatially localised interface
deformation considered in this study (figure 3), permits access to these phenomena
independently, through a tuning parameter. As shown in Appendix D, for small cavity
depth (relative to its width), the initial distortion generates a train of radially inward
focussed waves (after reflection), which we label as ‘wave focussing’ and whose physics
is of interest here. At larger cavity depth, a jet emerges already at short time due to ‘flow
focussing’. Notably, this jet is formed significantly before wall reflections can generate a
radially inward propagating wavetrain. The study in Basak, Farsoiya & Dasgupta (2021)
investigated such a jet, albeit obtained from a single Bessel function. In contrast, we study
here the wave focussing regime where no such jet is generated.

As further motivation of our current study, we note that the bubble whose collapse is
described in figure 1, is nearly spherical initially as its Bond number is low (�1). The
highly deformed, multivalued initial shape of such a bubble (inset of figure 1a i) precludes
expressing it as a Fourier–Bessel series. In contrast, figure 2(a) depicts the bubble shape in
the converse limit of large Bond number. Here the bubble shape appears like a cavity albeit
with sharp protrusions. Such an initial shape (with some smoothing of the protrusions) is
amenable to expression in a Fourier–Bessel series, whose coefficients may be evaluated
in time. The cavity treated in this study, may thus be considered a crude approximation
to a bubble at high Bond number. For numerical reasons, we have chosen our initial
deformation to be a cavity with smooth humps (see figure 3) in contrast to the bubble shape
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Figure 2. The effect of change of Bond number on the shape of a static bubble. (a) The bubble shape for
Bo = 222 � 1. (b) An air bubble corresponding to Bo = 0.076 � 1, also see inset in figure 1(a). As the Bond
number is increased, an increasingly larger fraction of the bubble shifts upwards (compared with the mean
interface level at large distance) and its ‘rim’, see sharp corners in (b), distorts into vertically pointing kinks
seen in (a). For Bo � 1, the bubble shape is a single-valued function η(r), the red curve in (a), and provides the
motivation for the initial interface distortion (albeit significantly smoother) in figure 3 and treated analytically
in this study. The curves in blue in (a,b) represent the bubble cap. The inset in (a), depicts the entire bubble
including its cap while the main figure, highlights the bubble ‘rim’.

with kinks in figure 2(a). We emphasise that for such an initial deformation as studied here,
the physical origin of the focussing wave train that appears in our simulations is different
from that of Gordillo & Rodríguez-Rodríguez (2019). Consequently, the focussing of the
wavetrain is not the same as that of the wavetrain in classical bursting of bubbles at low
Bo. However, qualitative similarities in certain aspects may be expected between the two
situations and are studied here (see Appendix E).

We develop an inviscid nonlinear theory for the focussing of a concentric wavetrain
resulting from the aforementioned a priori imposed free-surface deformation. This theory
developed from first principles here has no fitting parameters and helps delineate those
aspects of focussing which may be accounted for by linear theory compared with nonlinear
features. In a series of earlier theoretical and computational studies from our group
(Farsoiya, Mayya & Dasgupta 2017; Basak et al. 2021; Kayal, Basak & Dasgupta 2022;
Kayal & Dasgupta 2023), we have solved the initial-value problem corresponding to
delocalised, initial interface distortions in the form of a single Bessel function (J0(kr)) at
gravity-dominated large scales (Kayal & Dasgupta 2023), gravito–capillary intermediate
scales (Farsoiya et al. 2017; Basak et al. 2021) and capillarity-dominated small scales
(Kayal et al. 2022) (also see the recent study in Dhote et al. (2024) for a delocalised initial
perturbation on a sessile bubble). In contrast to these studies where the initial perturbation
was spatially delocalised, we study here a spatially localised initial excitation. Apart from
the obvious advantage of easier experimental realisation of this (see Ghabache, Séon &
Antkowiak (2014b) for experiments at gravity dominated scales), this initial condition has
the additional advantage that already at linear order, a radially propagating concentric
wavetrain is obtained and one can ask how does this converge at the axis of symmetry?
In contrast, for the single Bessel function initial excitation as in Basak et al. (2021), Kayal
et al. (2022) and Kayal & Dasgupta (2023), at linear order one obtains only a standing
wave and it is necessary to proceed to quadratic order and beyond to generate the focussing
wavetrain.

The manuscript is structured as follows. Section 2 illustrates the time evolution of
a relaxing cavity and introduces the analytical equations for wave evolution. Section 3
compares these analytical results with DNS. Finally, the paper culminates with discussions
and outlook in § 4.
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Figure 3. A (not to scale) cross-sectional representation of the initial interface distortion η̂(r̂, 0) shaped as
a cavity of half-width b̂ and depth â0 in a cylinder of radius R̂ filled with liquid (in blue). The functional
form chosen for η̂(r̂, 0) was first proposed by Miles (1968) and represents a volume preserving distortion on
radially unbounded domain. The red dotted line indicates the unperturbed level of the free surface of the liquid
pool. The gas–liquid surface tension is T . Liquid density and viscosity are ρ and μ, respectively, g is gravity.
The cavity shape can be considered as a crude representation to the Bo � 1 bubble shape in figure 2 with
the kinks smoothened drastically. It must be emphasised that our initial condition and the resulting wavetrain
are significantly different from that of a bursting bubble. However, we intuitively expect that there may be
qualitative similarities between the two processes and that it is possible to learn something about one by
studying the other, which incidentally has the advantage of analytical tractability.

2. Time evolution of a relaxing cavity

As shown in figure 3, the system consists of a cylindrical container of radius R̂ filled with
quiescent liquid (indicated in blue). As we do not model the upper fluid in our theory, here
onwards the superscript L is dropped from the variables representing fluid properties. For
simplicity of analytical calculation, the cylinder is assumed to be infinitely deep and the
gas–liquid density ratio is kept fixed at 0.001 for DNS only. In our theoretical calculations,
we approximate the gas–liquid interface as a free surface and neglect any motion in the
gas phase (although, it is modelled in our DNS). Some of the relevant length scales are
the gravito–capillary length lc ≡ √

T/ρg ≈ 2.7 mm and the viscocapillary length scale
lμ ≡ μ2/ρT ≈ 0.01 μm. For our chosen half-width of the initial interface perturbation
(b̂ = 8.0 mm), these length scales justify the inclusion of both capillarity as well as gravity
in the theoretical calculation while neglecting viscosity at the leading order. However,
we stress that viscosity is known to have a non-monotonic effect on wave focussing in a
collapsing bubble, as demonstrated by Ghabache et al. (2014a). Their figure 3 shows that
the jet velocity during bubble bursting varies non-monotonically with increasing viscosity.
Thus, the fastest jets occur not in an inviscid system but at an ‘optimal’ viscosity. In what
follows, we employ potential flow equations in our theory and do not treat the boundary
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layers expected to be generated at the air–water interface and the cylinder walls (Mei &
Liu 1973). We will address the inclusion of viscous effects later in the study.

Before delving into the theoretical formulation, it is instructive to discuss the
phenomenology of the problem. Figure 4(a–i) depict the interface at various time
instants as obtained from DNS. These are obtained by solving the inviscid, axisymmetric
and incompressible Euler’s equations with surface tension and gravity in cylindrical
coordinates (Basilisk, Popinet & Collaborators 2013–2024) (a script file is available as
Supplementary material (Kayal 2024)). The images in figure 4 are obtained by generating
the surface of revolution of axisymmetric DNS data. As shown in figure 4(a), the interface
is initially distorted in the shape of an axisymmetric, stationary and localised perturbation.
As this cavity relaxes, waves are generated which travel outward reflecting off the wall
(between figure 4e and figure 4f ). This produces a wavetrain which focusses at the
symmetry axis of the container (r = 0). One notes the formation of a small dimple-like
structure at the symmetry axis in figure 4(h). In § 3, we will demonstrate that neither the
dimple nor other interface features around the symmetry axis can be explained by the
linear theory.

2.1. Governing equations: potential flow
We now turn to the theoretical analysis of the phenomenology illustrated in figure 4. In the
base state, we consider a quiescent pool of liquid with density ρ and surface tension
T contained in a cylinder of radius R̂. For analytical simplicity, we assume this pool is
infinitely deep compared with the wavelength of the excited interface waves. For further
simplicity, we assume that the solid–liquid contact angle at the cylinder wall is always
fixed at π/2 and the contact line is free to move (∂nvt = 0). This is the simplest contact
line condition which allows for reflection of waves at the boundary without complicating
the analytical treatment of the problem (Snoeijer & Andreotti 2013). The variables η̂(r̂, t̂)
are used to represent the axisymmetric perturbed interface (see figure 1) and φ̂(r̂, ẑ, t̂)
is the disturbance velocity potential; r̂ and ẑ being the radial and axial coordinates in
cylindrical geometry, respectively. Variables with the dimensions of length (e.g. r̂, ẑ, η̂)

and time (t̂) are scaled using length and time scales L ≡ R̂ and T0 ≡
√

R̂/g, respectively.

The velocity potential φ̂ is non-dimensionalised using the scale L2/T0. Under the potential
flow approximation, the non-dimensional governing equations and boundary conditions
governing perturbed quantities are

∂2φ

∂r2 + 1
r
∂φ

∂r
+ ∂2φ

∂z2 = 0, (2.1a)

∂η

∂t
+
(
∂η

∂r

)(
∂φ

∂r

)
z=η

−
(
∂φ

∂z

)
z=η

= 0, (2.1b)

(
∂φ

∂t

)
z=η

+ η + 1
2

{(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
}

z=η

− 1
Bo

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
∂2η

∂r2{
1 +

(
∂η

∂r

)2
}3/2 + 1

r

∂η

∂r{
1 +

(
∂η

∂r

)2
}1/2

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
= 0, (2.1c)
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Focussing of concentric free-surface waves

(a)

(b) (c)

(d) (e)

( f ) (g)

(h) (i)

Figure 4. Wave focussing observed in DNS from the cavity-shaped interface distortion at t = 0 a). The figure
is to be read from left to right and top to bottom for the progression of time. After the waves reflect off the
cylinder wall (between panels (e) and ( f ); the confining walls are not shown), they focus inwards towards
r = 0 producing strongly nonlinear oscillations of increasing amplitude. The arrows indicate the instantaneous
direction of wave motion. The DNS parameters may be read from Case 1 in table 1.

∫ 1

0
rη(r, t) dr = 0,

(
∂φ

∂r

)
r=1

= 0, (2.1d,e)

lim
z→−∞φ → finite (2.1f )

η(r, t = 0) = −ε
(

1 − r2

b2

)
exp

(
− r2

b2

)
=

N∑
m=1

ηm(0)J0(kmr),

∂φ

∂n
(r, z = η(r, 0), t = 0) = 0, (2.1g,h)

where ε > 0 and n in (2.1h) is a distance coordinate measured normal to the free surface
at t = 0. The dimensionless parameters are defined as follows: 1/Bo ≡ α ≡ T/ρgR̂2,
representing the inverse Bond number (based on the cylinder radius); b ≡ b̂/R̂ is the
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0.5
(a) (b)

0

0

–0.01

–0.02
2b

ε

–0.03

–0.04

–0.05

–0.06

η ηm

–0.5
–1 0

r
1 5 10

m
15

Figure 5. (a) The gas–liquid interface initially deformed as a cavity of half-width b = b̂/R̂ and depth ε ≡
â0/R̂ (cavity shape at t = 0). (b) The coefficients ηm(0) are obtained by decomposing the initial distorted
interface. For this initial distortion, ε = 0.091, b = 0.187. It is seen that only the first 10 or so Bessel
functions/wavenumbers are excited initially (Bessel function coefficients). For accuracy, we consider the energy
in the first seventeen initially (m = 1, 2, 3, . . . , 17).

dimensionless measure of cavity width; and ε ≡ â0/R̂ is the dimensionless measure of
cavity depth (see figure 3 caption for the meaning of the symbols). Here onwards, we use
α to represent the inverse Bond number.

In cylindrical, axisymmetric coordinates (2.1a) is the Laplace equation, (2.1b) and (2.1c)
are the kinematic boundary condition and the Bernoulli equation applied at the free
surface, respectively. Equation (2.1d) restricts initial interfacial distortions to those
which are volume conserving while (2.1e) enforces no-penetration at the cylinder wall.
Equation (2.1f ) is the finiteness condition at infinite depth.

Equation (2.1g,h) represent the initial conditions. We decompose the initial
interface distortion, i.e. η(r, t = 0) = −ε(1 − r2/b2) exp(−(r2/b2)) (Miles 1968), into its
Fourier–Bessel series as indicated by the second equality sign in (2.1g) and J1(km) = 0 for
m ∈ Z

+ (from (2.1e); note the identity J′
0(·) = −J1(·), the prime indicating a derivative).

The numerical values of the coefficients ηm at t = 0, i.e. ηm(0) (m = 1, 2, 3, . . .) in (2.1g)
are determined from the orthogonality relation between Bessel functions, i.e. ηm(0) =∫ 1

0 dr rJ0(kmr)η(r, 0)/
∫ 1

0 dr rJ2
0(kmr). A sample representation of the initial condition

and its Fourier–Bessel coefficients is presented in figures 5(a) and 5(b), respectively,
where it is seen that approximately 17 wavenumbers are excited initially. Subject to these
initial and boundary conditions presented in (2.1a–h), we need to determine the amplitudes
ηm(t), m = 1, 2, 3 . . . as a function of time and this is carried out next.

2.2. Equations for ηj(t)
In this section we solve the initial, boundary-value problem posed in (2.1a–h). We derive
equations governing the time evolution of the coefficients ηj(t) up to quadratic order
(i.e. terms which are cubic or higher in the coefficients are neglected). The approach for
doing this is classical and was laid out in Hasselmann (1962) in Cartesian coordinates
although their initial conditions were random functions in contrast to the deterministic
initial distortion posed in (2.1g). The procedure below closely follows the approach of
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Focussing of concentric free-surface waves

Nayfeh (1987), who derived similar equations (his equations (14) and (15)) in the context
of the Faraday instability (i.e. with vertical oscillatory forcing) including gravity but not
surface tension (Nayfeh 1987) in his analysis. In contrast to forced waves being studied
by Nayfeh (1987), we consider free waves in our current study and include both surface
tension and gravity in the analysis. We first expand φ and η in (2.1) as

φ(r, z, t) =
∞∑

m=1

φm(t)J0(kmr) exp(kmz), η(r, t) =
∞∑

m=1

ηm(t)J0(kmr). (2.2a,b)

By construction, each term in the expansion in (2.1) satisfies the Laplace
equation (2.1a), (2.1d) (the integral mass conservation condition evaluates to be
numerically very small for the chosen parameters) and (2.1e) as well as the finiteness
condition (2.1f ). Taylor expanding (2.1b) and (2.1c) about z = 0 we obtain

∂η

∂t
−
(
∂φ

∂z

)
z=0

−
(
∂2φ

∂z2

)
z=0

η + ∂η

∂r

(
∂φ

∂r

)
z=0

+ H.O.T = 0, (2.3a)

(
∂φ

∂t

)
z=0

+ η

(
∂2φ

∂t∂z

)
z=0

+ η + 1
2

{(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
}

z=0

− α

{
∂2η

∂r2 + 1
r
∂η

∂r

}
+ H.O.T = 0 (2.3b)

where H.O.T represents higher-order terms. Substituting expansions (2.2a,b) into (2.3a,b)
and using orthogonality relations between Bessel functions we obtain for n, p,m ∈ Z

+ the
following:

dηn

dt
− knφn(t)+

∑
m,p

(
Dnpm − k2

mCnpm
)
φm(t)ηp(t) = 0, (2.4a)

dφn

dt
+ (

1 + αk2
n
)
ηn(t)+

∑
m,p

kmCnpm

(
dφm

dt

)
ηp(t)

+ 1
2

∑
m,p

(
Dnpm + kmkpCnpm

)
φm(t)φp(t) = 0

n = 1, 2, 3 . . . . (2.4b)

The nonlinear interaction coefficients Cnpm and Dnpm in (2.4) are related as (Nayfeh 1987)

Dnpm = 1
2

(
k2

p + k2
m − k2

n
)
Cnpm (2.5)

and Cnpm = ∫ 1
0 rJ0(knr)J0(kpr)J0(kmr) dr/

∫ 1
0 rJ2

0(knr) dr. For the benefit of the reader,
the detailed proof of (2.5) is provided in Appendix A. Retaining self-consistently up to
quadratic-order terms, (2.4a) and (2.4b) may be combined into a second-order equation
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for ηn alone. This is

d2ηn

dt2
+ ω2

nηn + kn
∑
m,p

[
1 + k2

p − k2
m − k2

n

2kmkn

]
Cnpm

(
d2ηm

dt2

)
ηp

+1
2

kn
∑
m,p

[
1 + k2

p + k2
m − k2

n

2kmkp
+ k2

p − k2
m − k2

n

kmkn

]
Cnpm

(
dηm

dt

)(
dηp

dt

)
= 0. (2.6)

Note that ωn is the linear oscillation frequency of the nth mode, viz. ωn ≡ √
kn(1 + αk2

n)

(the effect of the nonlinear terms due to curvature in (2.3b) and thus surface tension,
appears only through the linear-order dispersion relation up to second order). We solve
the coupled ordinary differential equation (ODE) (2.6) numerically subject to the initial
conditions discussed earlier for n = 1, 2, 3, . . . 34 (i.e. twice the initial number, see
figure 5b) using ‘DifferentialEquations.jl’, an open-source package by Rackauckas, Nie
& Collaborators (2017) and collaborators. The ‘DifferentialEquations.jl‘ automatically
chooses an ODE solver based on stiffness detection algorithms as described by
Rackauckas & Nie (2019). The Julia script file can be found in Kayal (2024). We note that
while numerically solving (2.6), we compute d2ηm/dt2 in the third term of the equation
(the nonlinear term) via the linear estimate, viz., d2ηm/dt2 = −ω2

mηm. Interestingly, the
solution to (2.6) shows instability albeit only at large time (compared with the focussing
time) when high wavenumbers (k) appear in our model. This instability could either
be numerical or physical and possibly related to instability of finite-amplitude capillary
waves. Further investigations are necessary to ascertain the origin of this and is outside
the scope of this study. As the instability occurs outside the time window of our study, it
does not impact the results presented in this work. We thus restrict ourselves to numerical
solutions to (2.6) within the time period of our interest where this instability does not
appear.

As benchmarking of our numerical solution procedure, we first solve (2.6) employing
the single Bessel function initial surface distortion that was studied in Basak et al. (2021),
i.e. in our current notation η(r, t = 0) = εJ0(l5 r), ε > 0 where l5 = 16.4706 is the fifth
non-trivial root of the Bessel function J1. For this initial condition, the second-order
accurate solution is expectedly of the form

η(r, t) = εη1(r, t)+ ε2η2(r, t), (2.7)

where explicit expressions for η1 and η2 were provided in Basak et al. (2021) (we note the
slight difference in non-dimensionalisation of length between the current study and the
one by Basak et al. (2021) involving a factor of lq). Figure 6 demonstrates a comparison
between the prediction of (2.7) (indicated in the figure as ‘B21’ for Basak et al. (2021)), the
solution obtained from solving (2.6) with the same initial condition (labelled in the figure
as ‘analytical’) and the numerical simulation from Basilisk (depicted as ‘simulation’).
Figure 6 demonstrates good agreement between the three, thereby providing confidence
on our numerical procedure for solving (2.6).

3. Comparison of DNS with theory

3.1. Description
We have used the open-source code Basilisk (Popinet & Collaborators 2013–2024) to solve
the Navier–Stokes equation with an interface viz.

∇ · u = 0, (3.1)
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(a) (b)

(c) (d)

0
η

–0.01

0.01

0.01

0η

–0.02

–0.01

0.04

0.02

0

–0.02

–0.2 –0.1 0 0.1 0.2 –0.2 –0.1 0 0.1 0.2

–0.2 –0.1 0

r r
0.1 0.2 –0.2 –0.1 0 0.1 0.2

0.02
Analytical

B21

Simulation
0

–0.02

Figure 6. Benchmarking of our solution procedure for solving the coupled ODEs in (2.6) against inviscid
DNS (indicated as ‘simulation’ in the legend of panel (a)) and analytical predictions by Basak et al. (2021),
indicated as ‘B21’. For DNS, the dimensionless parameters are ε ≡ a0/R̂ = 0.5

16.4706 = 0.03, α = 0.004 and
Oh = 0. Note that the initial condition here has a crest around r = 0, see the inset of panel (a). Here (a) t =
0.303; (b) t = 0.409; (c) t = 0.772; (d) t = 1.029.

∂u
∂t

+ ∇ · (u
⊗

u) = −∇p
ρ

+ g + T
ρ
κδsn + ν∇2u, (3.2)

∂f
∂t

+ ∇ · ( f u) = 0. (3.3)

Here, u, p, κ , T and f are the velocity field, pressure field, interface curvature, surface
tension and the colour-function field, respectively. Basilisk is a one-fluid solver where
the colour function f takes values 0 and 1 in the two phases with the interface being
represented geometrically using the volume-of-fluid algorithm in cells where 0 < f < 1.
The density and viscosity are represented as a weighted average of the respective values
of the two phases, employing the colour function as the weight. Figure 7 depicts the
simulation domain, the wall labelled 1 is the symmetry axis, and the liquid and gas
are indicated in different colours. We have solved (3.1), (3.2) and (3.3) numerically in
cylindrical axisymmetric coordinates, using an adaptive mesh based on temporal changes
of the colour function f , and velocity u. Grid resolution for different cases are provided
in table 1. In all the viscous simulations treated in the manuscript, we have used free-slip
walls with a 90◦ contact angle, in order to be compatible with a freely moving contact
line and obviate the well-known contact line singularity (Snoeijer & Andreotti 2013). By
using free-slip conditions, we maintain consistency with the analytical expressions used
in our study and facilitate a more direct comparison between our numerical results and
theoretical predictions. This boundary condition naturally enforces a 90◦ contact angle
at the wall, setting a vanishing gradient for the colour function close to the wall, which
is consistent with the assumptions in the theoretical model far from the centre of the
cavity. For discussions, we refer to Wildeman et al. (2016) which shows that the free-slip
condition with a 90◦ contact angle effectively eliminates dissipation close to the contact
line, allowing us to focus on the interfacial dynamics that are central to our study.
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2

3

4R̂

R̂

1

Figure 7. Simulation domain. Only half of the domain is depicted, due to the axis of symmetry (side
labelled 1). For both viscous as well as inviscid simulations, the boundaries labelled 2, 3 and 4 are modelled as
free-slip walls.

3.2. Comparison
In this section, we compare results from our DNS with the theory discussed in § 2. Before
this, it is instructive to rationalise the reflection process and estimate its duration. To
do this, we observe that the Fourier–Bessel spectrum of the initial interface distortion
prominently features a peak at m = 4 (see figure 5b). A rough estimate of the time required
for the energy associated with any wavenumber excited in the initial spectrum to complete
a return trip (from r̂ = 0 to the wall and back) can be derived from linear theory. When this
return time is estimated for the dominant wavenumber in the initial spectrum, we expect
the numerical value to roughly coincide with the generation time of the largest amplitude
oscillation at r̂ = 0 during the focussing process. This is illustrated in figure 8, where the
time signal from tracking the interface at r̂ = 0 is presented (Case 2 in table 1). Note
that this figure uses dimensional variables, denoted with hats. After the outward travelling
waves move away, the interface at r̂ = 0 remains relatively quiescent, as indicated by the
nearly flat time signal around t̂ = 0.2 s. As a result of reflection, the energy associated
with every wavenumber k present initially focusses back to r̂ = 0, this return trip is
carried out with its group velocity ĉg = (g + 3(T/ρ)k2)/(2

√
gk + Tk3/ρ). In figure 5(b),

the dominant wavenumber is kd = l4/R̂ and the largest oscillation at r̂ = 0 during the
focussing process is seen to be generated at t̂peak = 0.384 s from figure 8. Using the linear
estimate t̂peak ≈ 2R̂/ĉgd where ĉgd is the group velocity of the dominant wavenumber, we
obtain the value 0.403 s which is reasonably close to the observed t̂peak = 0.384 s.

In the collage of images in figures 9 and 10, we present the shape of the interface
as a function of time for Cases 1 and 2 in table 1, respectively, comparing this with
linear and nonlinear theoretical predictions. The only difference between these two figures
is in the value of ε, all other dimensionless numbers remaining the same. Here linear
theory implies solution to (2.6) without the nonlinear terms. Note that this is equivalent to
superposition of the form η(r, t) = ∑17

m=1 ηm(0)J0(kmr) cos(ωmt) where ωm(km) satisfies
the gravito–capillary dispersion relation for deep water. In figure 9, the transition
from outward propagating waves to inward propagating ones occur between figure 9(c)
and figure 9(d). For figure 9(a), figure 9(b) and figure 9(c) it is evident that linear
theory represents the outgoing waves accurately. However, as focussing commences from
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Focussing of concentric free-surface waves

Case ε ≡ â0

R̂
Oh ≡ μ√

ρTb̂
â0 μ Grid (maximum)

1 0.061 0 0.26 0 10
2 0.091 0 0.39 0 9, 10, 11
3 0.091 1.17 × 10−5 0.39 8.9 × 10−5 10
4 0.091 1.17 × 10−4 0.39 8.9 × 10−4 9, 10, 11
5 0.091 1.17 × 10−3 0.39 8.9 × 10−3 10
6 0.091 1.17 × 10−2 0.39 8.9 × 10−2 10
7 0.006 0 0.026 0
8 0.006 1.17 × 10−5 0.026 8.9 × 10−5 10
9 0.006 1.17 × 10−4 0.026 8.9 × 10−4 10
10 0.006 1.17 × 10−3 0.026 8.9 × 10−3 10
11 0.006 3.7 × 10−3 0.026 2.81 × 10−2 10
12 0.006 1.17 × 10−2 0.026 8.9 × 10−2 10
13 0.091 2.34 × 10−4 0.39 1.78 × 10−3 10
14 0.091 4.68 × 10−4 0.39 3.56 × 10−3 10
15 0.091 2.92 × 10−6 0.39 2.22 × 10−5 10
16 0.091 5.85 × 10−6 0.39 4.45 × 10−5 10

Table 1. All dimensional lengths are indicated with a hat. Values are quoted in CGS units. In all of the cases
we have used R̂ = 4.282 cm, b̂ = 0.8 cm, T = 72 dyne cm−1, g = −981 cm s−2, ρ = 1 gm cm−3. These imply
dimensionless values b ≡ b̂/R̂ = 0.187, α ≡ T/ρgR̂2 = 0.004. Here Oh has been defined using b̂, in order to
be comparable to its value for a bursting bubble where radius of the bubble is considered for defining Oh. One

may obtain a new Ohnesorge number Oh
′

based on R̂ by using the formulae Oh′ ≡ μ/

√
ρTR̂ = Oh × b1/2

with b ≡ b̂/R̂. The maximum grid resolution reported here are in powers of two. The conditions for adaptivity
may be found in further detail in the script files (Kayal 2024).

0.4

0.2

0η̂

–0.2

–0.4
0.2 0.3 0.4

t̂

t̂peak = 0.384

t̂ peak ≈ 
2R̂
ĉgd

= 0.403

Figure 8. Time signal of the interface at r̂ = 0. The green line indicates approximately the time window
when focussing takes place at r̂ = 0.

figure 9(d) onwards, we notice significant differences between linear theory and (inviscid)
DNS. Interestingly, second-order theory seems to predict the shape of the interface
around r = 0 quite well. Figure 10 shows a more intense scenario than figure 9, featuring
a larger ε = 0.091. The transition from predominantly linear to nonlinear behaviour
occurs between figure 10(c) and figure 10(d), representing outgoing and incoming waves,
respectively. Notably, sharp dimple-like structures emerge around r = 0, as seen in
figure 10(h), which are well described by nonlinear theory. Additionally, the tendency to
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form jets (although no clear jet is visible), as seen in figure 10( j), is noteworthy, although
the nonlinear theory is only qualitatively accurate in this context. We refer the reader to
the accompanying Supplementary Movie 1 available at https://doi.org/10.1017/jfm.2024.
1089 (ε = 0.061) and Movie 2 (ε = 0.091), see additional Supplementary material which
visualises these.

3.3. Role of nonlinearity at r = 0
Figures 9 and 10 show that although the linear solution is a reasonable model for the
interface evolution before reflection, it shows deviation from the fully nonlinear simulation
at the axis of symmetry during radial convergence of the wavetrain. Towards understanding
this better, we provide two sets of analysis in the following subsections. In § 3.3.1, we
analyse the time-periodic solution by Mack (1962), investigating the role of nonlinearity
generated bound components around r = 0. In § 3.3.2, we analyse the initial deformation
as a Bessel function, akin to Basak et al. (2021). It will be seen from both analysis that
bound components play an important role in the interface deformation around r = 0.

3.3.1. Comparison with time-periodic solution
Unlike the initial interface distortion studied so far which leads to aperiodic behaviour,
there also exist finite-amplitude deformations which generate time-periodic oscillations.
Such finite-amplitude, time-periodic solutions are the standing-wave counterparts of the
well-known Stokes travelling wave. In rectangular coordinates, such a standing-wave
solution was first developed by Rayleigh (Strutt 1915) and in further detail by Penney
et al. (1952). This was extended to radially bounded, cylindrical geometry for finite
liquid depth in Mack (1962). In the deep-water limit, Mack’s solution contains three
parameters, all appearing in the ‘free wave’ (see below) part of the solution represented by
ã0J0(kqr̂/R̂), q = 1, 2, 3, . . .. These in turn lead to two non-dimensional parameters viz.
ε̃ ≡ ã0/R̂ and a positive integer q = 1, 2, 3, . . . specifying the number of zero crossings of
J0 within the radial domain, a measure of crest-to-crest distance of the perturbation (J0 is
not periodic but becomes so asymptotically). In non-dimensional form the time-periodic
solution of Mack (1962) may be written as

η(r, t̃; ε̃, q) = T0(r; ε̃, q)+ T1(r; ε̃, q) cos(2πt̃)+ T2(r; ε̃, q) cos(4πt̃)

+ T3(r; ε̃, q) cos(6πt̃), (3.4)

where t̃ ≡ ωt̂/2π. Mack (1962) obtained expressions for T0(r), T1(r) and T2(r) for q = 1
employing ε̃ as perturbative parameter (up to O(ε̃3)) and expressions for these along with
the nonlinear frequency ω(ε̃, q = 1) are provided in Appendix A, adapted to our notation.

Note that the solution by Mack (1962) excludes capillary effects. Referring to
Appendix A, we note that T0(r) is of O(ε̃2) while T1(r), T2(r) and T3(r) are of O(ε̃),
O(ε̃2) and O(ε̃3), respectively. As a first step, we evaluate the accuracy of (3.4) at a
relatively high steepness of ε̃ ≈ 0.16703. This value is to be compared with its maximum
possible value viz. ε̃max = 0.208 (for q = 1) computed by Mack (1962) (ε̃ ≡ k1A11 in
the notation by Mack (1962)). In figure 11, we plot the shape of the interface at various
orders in ε̃. The first-order approximation (leading-order term in T1(r; ε̃)) is η(r, t̃; ε̃) =
ε̃J0(k1r) cos(2πt̃) and represents the so-called ‘free wave’, as the wavenumber k1 and
frequency ω satisfy the dispersion relation. However, all other corrections to η(r, t̃; ε̃)
in (3.4), including those in T1(r), represent ‘bound components’ as these do not satisfy
the dispersion relation. In figure 11 comparing the third-order approximation by Mack
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Figure 9. Waves generated from the cavity shaped interface distortion at t = 0 (inset of panel (a)). We compare
the interface shape as a function of time as predicted by linear theory (L, solid blue line), second-order
nonlinear theory (N, solid green line) and (inviscid) DNS (Sim, red symbols). The waves reflect off the cylinder
wall at r = 1 (not shown) and focus back towards r = 0 generating oscillations of increasing amplitude. This
corresponds to Case 1 of table 1 with ε = 0.061. To highlight the difference between linear and nonlinear
predictions, the figures have been plotted up to r = 0.5 instead of the entire radial domain up to r = 1. The
arrows depict the instantaneous direction of motion of the waves. Here (a) t = 0.166; (b) t = 0.439; (c) t =
1.075; (d) t = 4.056; (e) t = 4.117; ( f ) t = 4.435; (g) t = 4.753; (h) t = 5.358; (i) t = 5.615; ( j) t = 5.842.
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Figure 10. The same as figure 9, but for ε = 0.091 corresponding to Case 2 in table 1. Note the good qualitative
agreement between nonlinear theory and (inviscid) DNS but not linear theory, in capturing the dimple in
(h). Also note the large amplitude oscillations at r = 0 with a tendency to generate narrow jet-like structures
(i, j), although no jets are seen. Here (a) t = 0.166; (b) t = 0.439; (c) t = 1.075; (d) t = 4.056; (e) t = 4.117;
( f ) t = 4.435; (g) t = 4.753; (h) t = 5.358; (i) t = 5.165; ( j) t = 5.842.

(1962) with the numerically computed fourth-order solution, indicates that the former
is accurate at this chosen value of ε̃. It is also apparent from figure 11 that the effect
of systematically adding bound components (nonlinear contribution) in determining the
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Figure 11. The shape of the interface calculated from (3.4) by retaining terms up to various orders in ε̃ in the
expressions for T0(r),T1(r),T2(r),T3(r). We choose ε̃ = 0.16703 and q = 1 and plot the interface at t̃ = 0.5
when the velocity field everywhere is zero and the shape around r = 0 has a depression. A fourth-order interface
shape for the same ε̃ is also presented here, obtained following the numerical procedure given in Tsai & Yue
(1987).

0.2
Simulation
Mack 1962, third order
Second order
First order

0.1

0
η

–0.1

0 0.25

ε = A11 = 0.0436, t/T = 0.5058

0.50

r
0.75 1.00

Figure 12. Interface of various orders for q = 1 and ε̃ = 0.16703. The first, second and third-order solutions
are plotted at t̃ = 1 using (3.4) of Mack (1962). The numerical solution (indicated in blue as ‘simulation’) is
initialised using the third-order solution of Mack (1962) evaluated at t̃ = 0.5. Note that t̃ = 0.5 in (3.4) is used
to initialise the DNS and hence corresponds to t = 0 for the latter.

interface shape, has the largest effect at r = 0. This is further established in figure 12.
In this figure, the third-order interface depicted in figure 11 (t̃ = 0.5) is provided as
an initial condition to the simulation. Half a time-period later (t̃ = 1), we see that the
analytical approximations (i.e. the formulae in Mack (1962)) and the numerical simulation
produce a higher elevation at r = 0, compared with the first-order approximation (free
wave). We particularly highlight the asymmetry at r = 0 between the elevation and
depressions for the higher-order approximations. For example, the third-order interface
and the numerical simulation commence from a depression at r = 0 in figure 11, which
is visibly less than that for the first-order solution. At t̃ = 1 in figure 12, the elevation
at r = 0 is now significantly more for the solutions which include bound components
compared with the free-wave (the first-order solution). This behaviour, typical of nonlinear
oscillators, should be contrasted against that of the free wave (a linear oscillator) which
generates an elevation at t̃ = 1 of the same magnitude as the depression at t̃ = 0.5.
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Figure 13. (a) A localised cavity shaped deformation (blue) plotted against the delocalised third-order,
time-periodic solution (red) by Mack (1962) plotted at a time when it is shaped as a depression around r = 0.
The Fourier–Bessel series for both shapes are ηm(0)J0(kmr)where ηm are provided in (b). For the time-periodic
solution, ε̃ = 0.1014 (third order). The two profiles have been depth matched at r = 0. The cavity shape profile
has the same dominant Bessel function (k1) as the free wave in the third-order time periodic solution from
(3.4) (Mack 1962). Unlike the cavity, the time-periodic solution is spatially delocalised as it has significant
interface displacement at r = 1, see (a). (b) The deformations in (a) are expressed as Fourier–Bessel series
with coefficients ηm presented in (b). The colour scheme is the same in (a,b). Here (a) is the initial interface
shape; (b) ηm for the cavity (t = 0) and for (3.4).

In order to facilitate comparison of the localised initial deformation of current interest,
against the time-periodic solution by Mack (1962), it is useful to express (3.4) as a linear
superposition over Bessel functions. For this, we need to express the Ti(r), i = 0, 1, 2, 3
as a Fourier–Bessel series. Note that for a time-periodic solution, ηm(t; ε̃) in (3.5) are also
time-periodic and hence may be expressed as Fourier series, i.e.

η(r, t̃; ε̃) =
N∑

m=1

ηm(t̃; ε̃)J0(kmr) =
N∑

m=1

⎛⎝ 3∑
j=0

C( j)
m (ε̃) cos(2πjt̃)

⎞⎠ J0(kmr)

=
3∑

j=0

( N∑
m=1

C( j)
m (ε̃)J0(kmr)

)
cos(2πjt̃) ≡

3∑
j=0

Tj(r; ε̃) cos(2πjt̃) (3.5)

where ηm(t̃; ε̃) ≡ C( j)
m (ε̃) cos(2πjt̃) and the C( j)

m are determined from orthogonality
conditions by expressing the Tj(r) in Fourier–Bessel series. Figure 13(a) and 13(b) present
a comparison of the coefficients ηm for Mack (1962) versus ηm for a localised cavity. It is
seen that the initial cavity shape whose time evolution has been studied here, have ηm
which are significantly different, especially for the lowest wavenumbers. Notably, for the
time-periodic solution the ηm change sign, whereas they are all negative for the cavity.
In figure 14, we compare the time evolution of the profiles in figure 13(a), provided as
initial conditions. We refer the reader to the caption of this figure for analogous conclusions
about the importance of nonlinearity at r = 0.

3.3.2. Comparison with Basak et al. (2021)
In this subsection, we explain the apparent significance of nonlinearity around the
symmetry axis. To do this, we revisit results for the single Bessel function interface
distortion described by η(r, 0) = εJ0(k5r) (where ε > 0 corresponds to an initial crest
at r = 0 and q = 5 is the wavenumber excited at t = 0), as studied in Basak et al. (2021).
For this initial condition, the expression for η(r, t) was analytically derived up to O(ε2) in
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Figure 14. Time evolution starting from the two deformations (and zero velocity in the liquid) shown in
figure 13(a). Panels (a,c,e) show snapshots of evolution of the cavity at t = 0.56, 1.75, 11.06 from numerical
simulations (Sim), nonlinear theory (N) obtained from the numerical solution to (2.6) and linear theory. In all
cases, the nonlinear theory does significantly better than linear theory. The inward- and outward-propagating
arrows show the instantaneous direction of wave propagation. Panels (b,d, f ) are the time evolution of the
third-order interface shape depicted in figure 13(a) (time-periodic solution) at t̃ = 0.39, 0.79 and 1.0. One
notes the excellent agreement between nonlinear theory and simulations while the difference at r = 0 between
the linear and nonlinear predictions are maintained. The colour scheme is identical for both columns. Note that
air–water surface tension has been used for the simulations. To stay consistent with Mack (1962) where there is
no surface tension, we have considered a much larger cylindrical domain here compared with the earlier case.
For the simulations, we have used (CGS units) T = 80, g = 981, R̂0 = 100, ν = 0 (both fluids) with air–water
density ratio.

Basak et al. (2021) as

η(r, t) = εJ0(k5 r) cos(ω5t)︸ ︷︷ ︸
Primary wave

+ε2
∞∑

j=1

⎡⎢⎣ζ ( j)
1 cos(ωjt)︸ ︷︷ ︸
Free waves

+
Bound waves︷ ︸︸ ︷

ζ
( j)
2 cos(2ω5t)+ ζ

( j)
3

⎤⎥⎦ J0(kjr),

(3.6)
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Figure 15. Various approximations for describing the dimple produced from a single Bessel function initial
perturbation with moderately large amplitude.

where ζ ( j)
1 + ζ

( j)
2 + ζ

( j)
3 = 0, ∀j ∈ Z

+ to ensure that the initial condition is satisfied. Note
that that (3.6) has been suitably modified from Basak et al. (2021) to make this compatible
with the length and time scales in the present analysis. Here ε = â0/R̂, frequency ωj =√

kj(1 + αk2
j ) and expressions for ζ ( j)

1 , ζ
( j)
2 and ζ ( j)

3 are provided in the appendix of Basak
et al. (2021).

As highlighted in (3.6), the expression for η(r, t) comprises of three qualitatively
different parts. The first term on the right-hand side of (3.6) represents the primary
wavenumber which is excited at t = 0. This has wavenumber k5 and oscillates
harmonically with frequency ω5. For ε sufficiently large, the initial condition η = εJ0(k5r)
represents an interface distortion which is significantly different in shape from that of the
corresponding time-periodic solution by Mack (1962) having its free wave as k5. Due to
this mismatch in initial shape, other ‘free waves’ are generated at t > 0 in (3.6) and their
frequency satisfy the dispersion relation, i.e. Bessel functions with wavenumber kj have
frequency ωj. Another kind of waves viz. the ‘bound waves’ also appear at O(ε2) and these
do not satisfy the dispersion relation. These are necessary to cancel out the contribution
from the free waves at t = 0. Note that the amplitudes of the free waves viz. ε2ζ

( j)
1 in (3.6),

do not evolve in time unlike that in the recent study on triadic resonant interactions among
surface waves in Durey & Milewski (2023); see the multiple scale analysis around their
equation (4.1). An important difference between this initial condition (Basak et al. 2021)
and the third-order solution by Mack (1962) is that for the latter, there is only one free
component and the rest are all bound components at all t whereas in the former, infinite
free and bound components are generated at t > 0.

In figure 15, the interface from inviscid DNS with the initial condition η(r, 0) =
εJ0(k5r), ε = 0.03 > 0 is shown at an instant when it forms a dimple-like protrusion at
r = 0. This is represented by the curve with red dots, labelled as ‘simulation’. In the
same figure, we also plot the formula from Basak et al. (2021), excluding the bound
components (labelled as ‘primary + free’), i.e. setting ζ ( j)

2 = ζ
( j)
3 = 0 in (3.6). It is evident

that this approximation does not capture the dimple, which is otherwise predicted by the
full nonlinear expression (indicated as ‘nonlinear’ in the figure caption and referring to
(3.6)).

The above exercise can also be carried out when the initial interface deformation
takes the shape of a cavity. For this initial condition, η(r, 0) = ∑∞

m=1 ηm(0)J0(kmr),
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Figure 16. Shape of a dimple for a cavity with ε = 0.091.

as previously shown in figure 5(a). From the numerical solution to (2.6), the temporal
frequency spectrum at r = 0 is obtained. We track the time series generated by ηm(t) and
eliminate the frequencies 2ωm and 0 from its Fourier spectrum. Figure 16 demonstrates
that after the removal of these bound modes, the interface (labelled ‘primary + free’) fails
to capture the dimple shape. In contrast, the full numerical solution to (2.6) faithfully
reproduces the dimple. (We gratefully acknowledge an anonymous referee for several
technical clarifications in this section.)

3.4. Viscous effects: comparison with linear theory
In this section, we analyse viscous effects for the chosen initial condition. Using cylindrical
coordinates, Miles (1968) solved the problem of free-surface waves on a viscous liquid
in the linear regime within a radially unbounded domain for a continuous spectrum of
wavenumbers in the radial direction. Farsoiya et al. (2017) extended this theory to internal
waves, considering viscosity and density due to both upper and lower fluids, for a single
wavenumber in the initial spectrum. Due to the availability of superposition in the linear
regime, the results of Farsoiya et al. (2017) are easily extended to initial excitations with
multiple wavenumbers. In Cartesian geometry, the single wavenumber initial excitation
case was first explicitly studied by Prosperetti (1976) treating free-surface waves and
by Prosperetti (1981) treating internal waves. In the Laplace domain and in cylindrical
axisymmetric coordinates, the solution to the evolution of a single initial wavenumber km
was shown in Farsoiya et al. (2017) to be given by

η̃m(s) = η̂m(0)

s +
⎛⎝4k̃2

mν − 4k̃3
mν

k̃m +
√

k̃2
m + s/ν

⎞⎠
s2 +

⎛⎝4k̃2
mν − 4k̃3

mν

k̃m +
√

k̃2
m + s/ν

⎞⎠ s + ω̂2
m

,

ω̂2
m ≡ gk̃m + Tk̃3

m/ρ, k̃m ≡ km

R̂
.

(3.7)

Employing linear superposition, the corresponding (dimensional) expression for the
interface evolution in the time domain for the current case becomes

η̂(r̂, t̂) =
17∑

m=1

η̂m(t̂)J0

(
km

r̂

R̂

)
, η̂m(t̂) ≡ L−1 [η̃m(s)

]
. (3.8)
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Figure 17. Viscous DNS (indicated as ‘simulation’ with red dots in the legend to panel (a)) with ε = 0.006
and Oh = 1.17 × 10−3 corresponding to Case 10 in table 1. One notes the excellent agreement with linear,
viscous theory (blue line, ‘linear’, (3.8) in text) with hardly any nonlinear contribution.

Here L−1 is the inverse Laplace operator. We stress that (3.7) accounts for dissipation in
the bulk liquid and boundary layer, as demonstrated by Prosperetti (1976) in Cartesian
coordinates and by Farsoiya et al. (2017) in cylindrical coordinates. Equation (3.8) is
compared with DNS for two different values of ε and Oh in figures 17 and 18, where
inverse Laplace transforms were performed using the Cohen method by Henri Cohen &
Zagier (2000) which is a default method in mpmath (2023), a free Python library for
arbitrary-precision floating-point arithmetic; see Kayal (2024) for the code. Figure 17
benchmarks the theory at a relatively small ε = 0.006, where linear viscous theory is
expected to be accurate. Excellent agreement with linear viscous theory is observed in
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Figure 18. Viscous DNS (indicated as ‘simulation’ with red dots in the legend to panel (a)) with ε = 0.091
and Oh = 1.17 × 10−4 corresponding to Case 4 in table 1. In contrast to figure 17, increasing the value of
ε and a corresponding reduction in viscosity, has a dramatic effect in the simulations. We note that viscous
linear theory is no longer adequate particularly during the focussing process in ( f –h). In (h), we also provide a
comparison of the interface at this time instant, for the inviscid numerical simulation (Oh = 0) with the same
ε. It is seen that the viscous simulation has a crest which at the indicated instant of time, is taller than the one
obtained from the inviscid simulation.

figure 17. Conversely, figure 18 shows a clear distinction between linear and nonlinear
predictions.

To further investigate the impact of viscosity, figure 19(a) presents the interfacial
velocity at r = 0 from DNS for various Oh values while figure 19(b) represents
the interface displacement at r = 0, in the same time window. The most notable
observation is that the peak velocity at r = 0 during wave focussing occurs in the viscous
simulation rather than the inviscid one. This non-monotonic behaviour as a function
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Figure 19. (a) Velocity at the interface at r̂ = 0 for different values of Oh and fixed ε = 0.091. Note that the
viscous DNS for Oh = 1.17 × 10−4 (solid deep blue line) produces the largest velocity peak around t ≈ 5.7.
Note in particular that the inviscid signal (Oh = 0, red symbols) has a peak which is shorter by a factor of half.
This difference is because in the Oh = 0 case, we are not resolving the numerically generated boundary layer at
the current grid resolution. As discussed in the text, this introduces a degree of grid dependency in the inviscid
simulations which cannot be resolved in the numerical framework of the open-source code Basilisk (Popinet
& Collaborators 2013–2024). However, for Oh ≥ 1.17 × 10−4, we are resolving the boundary layers and the
results are grid convergent. (b) The interface height η(0, t) with the same colour scheme as in (a). We refer the
reader to Appendix C where the grid convergence results for this (and other) simulations are provided.

of the Ohnesorge number is a well-known phenomenon in other contexts (Duchemin
et al. 2002; Ghabache et al. 2014a), indicating a significant effect of viscosity. In
our analysis of converging waves, we attribute the observed non-monotonic behaviour
to viscous dissipation within the boundary layer at the gas–liquid interface. Even
as the Ohnesorge number approaches zero (Oh = 0+), this boundary layer remains
significant, similar to the dissipative anomaly seen in fully developed turbulence (Prandtl
1904; Onsager 1949; Eggers 2018; Dubrulle 2019) and recently explored in contexts
such as sheet retraction (Sanjay et al. 2022) and drop impact (Sanjay, Chantelot &
Lohse 2023; Sanjay & Lohse 2024) interfacial flows. Consequently, this non-zero
viscous dissipation intensifies the focussing of capillary waves, thereby increasing the
velocity at the centre (r = 0). To validate this hypothesis, in the next section, we next
employ the viscous potential flow approach, which accounts for bulk viscous dissipation
but neglects dissipation in the gas–liquid boundary layer, to model the converging
waves.

We emphasise that DNS for Oh < 1.17 × 10−4 exhibit grid dependency, as indicated
by the pink shaded region in figure 21(a,b). This dependency arises from insufficient
grid resolution to properly resolve the boundary layer in low-viscosity liquids, a challenge
analogous to those encountered in wall-bounded turbulence studies (Lohse & Shishkina
2024) and classical contact line simulations (Snoeijer & Andreotti 2013). These fields
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Focussing of concentric free-surface waves

continue to grapple with resolving multiple scales spanning orders of magnitude. We
designate this unresolved region in pink, highlighting an open problem for future
multiscale simulations. The Oh = 0 simulation, represented by symbols in figure 19(a),
demonstrates grid dependency in velocity at r = 0 for resolutions up to 20482 (maximum
adaptive level). This manifests as isolated ‘spike’ points in figure 24(a). In contrast, the
nonlinear analytical prediction, depicted by the green curve labelled ‘N’ in figure 19(a),
does not exhibit such spikes. In the (inviscid) Euler limit, our results align with inviscid
nonlinear theory (see figures 9 and 10). However, we stress that this scenario also exhibits
grid dependency. The one-fluid approximation used in Basilisk to solve Euler equations
creates an over-constrained system by enforcing continuity of tangential velocity at the
gas–liquid interface, which is incompatible with Euler equations. Consequently, indefinite
grid refinement generates deviations, as evident in figure 24(a). Lastly, despite setting
Oh = 0, our simulations retain a non-zero, grid-dependent viscosity. These factors should
be considered when interpreting comparisons between inviscid, potential flow theory
(where tangential velocity at the interface is discontinuous) and our numerical results
obtained from Basilisk.

3.5. Viscous potential flow
To further elucidate viscous effects, we incorporate viscosity into the nonlinear equations
using the viscous potential flow (VPF) model (Joseph 2006). Unlike the linear case
discussed previously, this method does not account for the boundary layer formed at
the free surface, since it does not enforce the zero shear stress boundary condition
(Moore 1963). As is well known, in this approach the normal stress boundary
condition (2.1c) is modified to incorporate the effect of bulk viscous damping to
obtain (

∂φ

∂t

)
z=η

+ η + 2 b Oh
√
α

(
∂2φ

∂z2

)
z=η

+ 1
2

{(
∂φ

∂r

)2

+
(
∂φ

∂z

)2
}

z=η

− α

(
∂2η

∂r2 + 1
r
∂η

∂r

)
= 0. (3.9)

We follow the same strategy as the inviscid case and obtain a modified differential equation
for ηn, i.e. the viscous counterpart of (2.6) leading to

d2ηn

dt2
+ ω2

nηn + 2 b Oh
√
α k2

n
dηn

dt
+ 2b Oh

√
α kn

∑
m,p

k2
mCnpm

dηm

dt
ηp

+ kn
∑
m,p

[
1 + k2

p − k2
m − k2

n

2kmkn

]
Cnpm

(
d2ηm

dt2

)
ηp

+ 1
2

kn
∑
m,p

[
1 + k2

p + k2
m − k2

n

2kmkp
+ k2

p − k2
m − k2

n

kmkn

]
Cnpm

(
dηm

dt

)(
dηp

dt

)
= 0.

(3.10)

In figure 20, we compare the nonlinear analytical inviscid solution (referred to as
‘inviscid’ in the legend), the VPF solution for ε = 0.091 and the viscous DNS (referred to
as ‘simulation’) for Case 4 in table 1. It is seen that the VPF solution, is indistinguishable
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Figure 20. Comparison of the VPF (black dotted line), inviscid solution (green solid line) and DNS (red
dots) at ε = 0.091 and Oh = 1.17 × 10−4, Case 4 in table 1.

from the inviscid one in the limit of Oh = 0+, highlighting the importance of resolving
the viscous boundary layer in theory.

To further quantify the comparison between these cases, in figure 21(a) shows the
maximum velocity at the axis of symmetry within a shallow cavity during focussing.
The linear viscous theory, which accounts for the boundary layer at the free surface,
describes the change in vz with Ohnesorge number slightly better than the VPF
model. Figure 21(b) presents results for a deeper cavity where nonlinearity plays a
significant role, and the non-monotonic behaviour observed in figure 19(a) as a function
of Oh is evident. The VPF model fails to capture this non-monotonic behaviour,
highlighting the importance of resolving the boundary layer at the gas–liquid interface,
as discussed in § 3.4. We propose developing a nonlinear-viscous theory superior
to the VPF model to explain the observations in figures 19 and 21(b) in future
work.

4. Conclusion and outlook

In this study, we have discussed the dynamics of a localised free-surface perturbation
in a cylindrical pool of liquid, which generates a train of waves. These waves, upon
reflecting from the container walls, converge back towards the axis of symmetry, leading
to progressively increasing free-surface oscillations at the centre. Using the potential flow
approximation, we derived a set of ODEs governing the evolution of amplitudes up to
second order.

For shallow cavities, linear theory suffices to explain the wave evolution. However, as
the cavity depth increases, the limitations of linear theory become evident, particularly in
predicting the focussing effects at r = 0. Our findings demonstrate that linear dispersive
focussing alone is inadequate to describe the intricate dimple shape forming at the axis
of symmetry for deeper cavities. A nonlinear theory that accounts for the generation of
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Figure 21. Comparison of the maximum velocity at r = 0, i.e. vmax
z (see arrows in figure 19a) after reflection

for different Ohnesorge number for a shallow cavity, Cases 7, 9, 10, 11, 12 in table 1 (panel (a)) and for a deep
cavity, Cases 2, 4, 5, 6, 13, 14 (panel (b)). In (a) the ‘+’ symbols represent DNS with finite viscosity. Black
dotted line represents DNS with zero viscosity. Red symbols represent the linear viscous solution obtained
by numerical inversion of (3.7). Green symbols indicate VPF approximation obtained from solving (3.10). At
the Oh = 0 limit, VPF (green dashed line) and linear viscous theory (red dashed line) coincide with the linear
inviscid theory (blue dashed line). In panel (b) the symbols have the same meaning as in (a), the only difference
is that we have employed nonlinear inviscid theory (blue dashed line) in this case. Note that non-monotonicity
in the velocity at r = 0 as a function of Oh. The VPF approximation despite being nonlinear is unable to
describe this non-monotonicity, presumably because of its inability to resolve the boundary layer at the free
surface. The dotted black line represents the velocity of inviscid DNS which shows grid dependency. In the
current figure, below a certain value of Oh (pink shaded region) grid dependency persists in our simulations,
due to the presence of an unresolved thin boundary layer. We do not depict this data here due to the lack of
this convergence. For Oh > 1.17 × 10−4, however, the boundary layers are resolved for simulation points ‘+’
and the data are grid converged. Note that the nonlinear inviscid theory (Oh = 0, dashed blue line) predicts
vmax

z (r = 0) which is smaller than the prediction by DNS for Oh ≈ 1.17 × 10−4 by a factor ≈ 2. A similar
albeit significantly more intensification at an optimal value of Oh was first noted in the case of bubble bursting
in the seminal study by Duchemin et al. (2002); see their figure 12. Here (a) shallow cavity with ε = 0.006;
(b) deep cavity with ε = 0.091.
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bound components is found to be essential for accurately modelling the focussing process.
The role of bound components is particularly critical in capturing the interface evolution
at the symmetry axis.

A notable observation is the significant influence of viscosity on the focussing process.
Interestingly, the maximum velocity at the axis of symmetry is higher for a slightly
viscous fluid than for an inviscid one. This non-monotonic behaviour with respect to the
Ohnesorge number Oh is not captured by either the linear viscous model (Prosperetti 1976;
Farsoiya et al. 2017) or the nonlinear VPF model (Joseph 2006). The VPF model’s failure,
stemming from its neglect of boundary layer effects, underscores the critical role of these
layers in the Oh → 0+ limit. As the VPF model converges to an inviscid solution in this
limit, it further emphasises the boundary layers’ importance in velocity enhancement.
The singular nature of the Oh → 0+ limit arises from fundamental disparities
between Navier–Stokes and Euler equations. Even as Oh approaches zero, the no-slip
condition at the liquid–gas interface necessitates a boundary layer, preserving viscous
effects.

In conclusion, we emphasise some interesting observations and hypothesis made in
Zhang & Thoroddsen (2008) concerning capillary wave focussing, albeit on a spherical
bubble unlike the flat surface treated here. Some of these find qualitative support from our
theory. In page 9, first column, first paragraph of Zhang & Thoroddsen (2008), the authors
remark insightfully that the wave convergence process is itself not necessarily nonlinear, as
the large amplitude oscillations seen in their figure 14 are also predicted by linear theory.
However, linear amplification itself may not be enough to trigger pinch-off, emphasising
the local importance of nonlinearity at the focal point. Our analysis establishes that this
is qualitatively true, cf. figure 18. In their section C (p. 9), Zhang & Thoroddsen (2008)
also emphasise that the phase and amplitude of the wavetrain is very important to the
convergence process. Our nonlinear analysis establishes the importance of the amplitude of
the wavetrain while the viscous analysis demonstrates that the VPF model (which does not
resolve the interface boundary layer) is unable to capture the non-monotonic dependence
of vertical velocity at r = 0 on Oh. Presumably, this non-monotonicity will be predicted
from a nonlinear, viscous model, which is still simpler than the full Navier–Stokes
equation and this is proposed as future work. Upcoming research thus needs to develop
a comprehensive, nonlinear viscous theory that incorporates boundary layer effects and
also accounts for the nonlinearity associated with focussing. Additionally, extending this
work to non-Newtonian fluids, such as viscoplastic or viscoelastic liquids (Sanjay, Lohse
& Jalaal 2021), could reveal new insights and broaden the applicability of our theoretical
framework.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.1089.
Movie 1, comparison of cavity evolution at ε = 0.61; movie 2, inviscid DNS of cavity evolution at ε = 0.91.
All codes are available at Kayal (2024).
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Appendix A

The expressions for the third-order approximation to η(r, t̃; ε̃) by Mack (1962) expressed
in our notation are

T0(r; ε̃) ≡ 1
4
ε̃2k1(J2

01 − J2
11), (A1)
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The O(ε̃3) accurate, nonlinear frequency ω(ε̃, q = 1) is given by

ω2(ε̃, q = 1) = k1

{
1 + ε̃2k4
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(A5)

with the functionals α[·] and γ [·] defined as

αn [F(r)] ≡
∫ 1

0 rF(r)J0n dr
1
2
(J0(kn))2

, Γi [F(r)] ≡ 2αn[J2
01] + 2αn[J2

11]

1 − kn

4k1

. (A6)

We have used the definitions J1(kn) = 0(n = 1, 2, 3, . . .) and the shorthand notation Jij =
Ji(kjr).

Appendix B

We derive the relation between the nonlinear interaction coefficients Cmnq and Dmnq
discussed in (2.5). This relation has been provided in Nayfeh (1987) and Miles (1976)
without proof and the same is presented here. Following Nayfeh (1987), we represent (2.1)
a in (semi) basis-independent notation as

φ(x, z, t) =
∞∑

m=1

φm(t)Ψm(x) exp(kmz), (B1)

where x is the horizontal position vector and Ψm satisfies the equation ∇2
HΨm + k2

mΨ = 0
as a consequence of φ satisfying the Laplace equation; note that ∇2 = ∇2

H + ∂2/∂z2. We
assume that Ψm(x) follow the orthogonality rule

∫∫
dS ψm(x)ψq(x) = δmqS where δmq

is the Kronecker delta. Using Stokes theorem to relate an area integral (over s) in two
dimensions to the line integral, we have for a vector field F (x)∫∫

ds ∇H · F =
∫

dl (F · n) . (B2)

Choosing F = ψqψm∇Hψn, (B2) leads to∫∫ [
ψq (∇Hψm · ∇Hψn)+ ψm

(∇Hψq · ∇Hψn
)+ ψqψm∇2

Hψn

]
ds = 0, (B3)

the right-hand side following from the no-penetration condition at the wall. Following the
same notation as Nayfeh (1987), we define∫∫

ds ψm(x)ψn(x)ψq(x) ≡ S Cmnq,

∫∫
ds (∇Hψm(x) · ∇Hψn(x)) ψq(x)≡S Dmnq.

(B4)
Note that Dnmq = Dmnq. Using (B4), (B3) may be written compactly as

Dmnq + Dqnm − k2
nCmnq = 0. (B5)

1003 A14-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

10
89

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1089


Focussing of concentric free-surface waves

0.05

(a) (b)

0
η

–0.05

–0.5 0 0.5

0.05

0

–0.05

–0.5 0 0.5

0.05

(c) (d)

0
η

–0.05

–0.5 0 0.5

0.05

0

–0.05

–0.5 0 0.5

0.05

(e) ( f )

0
η

–0.05

–0.5 0 0.5

0.05

0

–0.05

–0.5 0 0.5

0.05

(g) (h)

0
η

–0.05

–0.5 0

r r
0.5

0.05

0

–0.05

–0.5 0 0.5

t = 0.318 t = 0.681

t = 1.150 t = 1.801

t = 3.239 t = 4.223

t = 5.434 t = 5.858

512

1024

2048

Figure 22. Comparison of interface profile for Case 4 in table 1 at three different grid resolutions, 5122 (blue
dots), 10242 (red dots) and 20482 (green dots).

Replacing m → n, n → q, q → m in (B5), we obtain

Dnqm + Dmqn − k2
qCnqm = 0, (B6)

which may be rewritten as

Dqnm + Dqmn − k2
qCnqm = 0. (B7)

Using (B7) in (B5), we obtain

Dmnq = k2
nCmnq −

(
k2

qCnqm − Dqmn

)
. (B8)

Replacing once again m → q, n → m, q → n in (B5), we obtain

Dqmn + Dnmq − k2
mCqmn = 0. (B9)
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Figure 23. Comparison of interface profile for Case 2 in table 1 for three different grid resolutions, 5122

(blue dots), 10242 (red dots) and 20482 (green dots).

Combining (B8) and (B9) and the fact that Dmnq = Dnmq, we obtain

Dnmq = 1
2

(
k2

n + k2
m − k2

q

)
Cnmq. (B10)

After some manipulation, (2.5) follows from the above expression.

Appendix C

Figures 22 and 23 illustrate grid convergence results at three resolutions (5122, 10242

and 20482) for Cases 4 and 2, respectively, from table 1. Figure 24(a,b) present grid
convergence for the velocity at the symmetry axis.

For the inviscid case (Oh = 0, figure 24a), while the overall vertical velocity trend
remains consistent, the presence of spikes and the magnitude exhibit grid refinement
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Figure 24. Comparison of the vertical velocity for Case 2 (panel (a)) and Case 4 (panel (b)) for three different
grid resolutions, 5122 (red solid line), 10242 (blue solid line) and 20482 (green solid line). In (a), we also
provide the prediction from the numerical solution to the analytical model from (2.6) indicated as ‘N’ in the
figure. Here (a) Oh = 0; (b) Oh = 1.17 × 10−4.

sensitivity. To provide a robust reference, we include the inviscid, nonlinear analytical
solution in figure 24(a) denoted by ‘N’. This demonstrates good agreement with the
Oh = 0, DNS solution, capturing the main temporal velocity variation features without
spurious peaks, thus validating the observed simulation behaviour. As Oh approaches
zero, our one-fluid approximation made in the solver Basilisk (Popinet & Collaborators
2013–2024) imposes a no-slip condition at the liquid–gas interface. Resolving this
boundary layer requires a minimum grid size of� ∼ KLOh2, where L is the characteristic
length and K a system-dependent prefactor. This establishes a critical Oh above which
results converge well. We empirically determined this as Oh = 1.17 × 10−4 through
grid independence testing. Results below this critical value remain unresolved due
to insufficient grid resolution, indicated by the pink shaded region in figure 21(b).
Further computational method improvements are needed to resolve cases where
Oh < 1.17 × 10−4.

Appendix D

Figure 25 depicts the qualitative difference in behaviour starting from a cavity with
ε = 0.091 (figure 25a). Here no jet is seen initially and the wavetrain focusses at r = 0
after some time. In figure 25(b) with ε = 0.242, a jet is seen at a much earlier time, and
no focussing wavetrain is apparent. In this study, we focus on the regime indicated in
figure 25(a). The jet in figure 25(b) is close to the one that was reported in Basak et al.
(2021), albeit from a single Bessel function.
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Figure 25. Both (a) and (b) start with the interface deformed as a cavity shown in red with different ε. Here
(a) (red) interface at t = 0, (green dashed curve) numerical simulation and (blue) linear approximation at t =
0.36T , when the interface reaches its maximum height and (black curve) at a much later time t = 4.2T . (b) The
same colour code as in (a), (blue) for t = 0.48T . Here T is the dominant mode time period in the initial spectrum
(linear approximation). The arrows in (b) indicate the approximate direction of flow resulting from the initial
(capillary) pressure gradient. The jet which was studied in Basak et al. (2021) from η(r, t = 0) = εJ0(k5r) is
closely related to the jet in (b). Note the lack of any visible wavetrain when this jet is produced. In this case,
pressure difference arising due to the initial steep interface distortion around r = 0, triggers a radially inward
flow towards the same (indicated with arrows in figure 1b). The radial component of this inflow produces a
stagnation zone of high pressure at the base of the cavity and a resultant upward jet. We label this situation
as ‘flow focussing’. This jet in Basak et al. (2021) is associated with a large stagnation pressure at its base,
involving conversion of kinetic energy (nonlinear term in Bernoulli equation) to pressure energy. In contrast
in (a), no significant stagnation pressure zone develops initially (as the initial cavity is comparatively less
steep compared with panel (b)). In this case nonlinear effects become manifest much later when the wavetrain
focusses on to the symmetry axis, producing rapid interfacial oscillations at r = 0. The apparent importance of
nonlinearity around r = 0 in this case is somewhat akin to linear dispersive focussing of surface waves, where
nonlinearity becomes locally important at the focal point. Here (a) ε = 0.091, wave focussing; (b) ε = 0.242,
flow focussing.
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Figure 26. Measurement of interface elevation from simulations for the largest crest following it, for
(a) outward wave propagation and (b) inward propagation. The crests are generated from an initial cavity
with ε ≈ 0.091 (Case 2 in table 1). The slope of the linear fit indicates the propagation velocity which is
approximately equal to the phase speed of the dominant Bessel function. Similar to figure 4(b) in Gordillo &
Rodríguez-Rodríguez (2019), we observe a good agreement with the linear propagation speed, before and after
the reflection.

Appendix E. Comparison with Gordillo & Rodríguez-Rodríguez (2019)

Although the wavetrain in case of bubble bursting (Bo � 1) (Gordillo & Rodríguez-
Rodríguez 2019) is different from the one we study here, some qualitative comparisons
can be obtained between the two. In this section, we estimate the speed of propagation
of the dominant crest for ε = 0.091 and Oh = 0. Similar to the figure 4(b) in Gordillo
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∼ Oh0.22vz
max

Figure 27. The maximum vertical velocity at the symmetry axis vmax
z for different Oh. This figure is a superset

of simulation data provided in figure 21(b) with additional data points and power-law fits. The data for Oh <
1.17 × 10−4 is indicated as a hashed region to indicate the grid-sensitivity of this data as discussed earlier in
Appendix C.

& Rodríguez-Rodríguez (2019), we observe that the waves propagating outwards and
inwards propagate with the linear speed. This is validated in figure 26 by tracking the local
maxima on the free surface in simulations, before and after reflection. In both cases, the
propagation speed agrees with the phase speed of the dominant Bessel function (k4), see
figure 5(b). Figure 27 provides an approximate scaling relation (to act as guides only) for
the dependence of vz on Oh. We stress that we do not have theoretical description of these
power laws and they are distinct from the vmax

z ∼ VγOh established for bursting bubbles
for Oh > Ohc. Unlike the case of bubble bursting seen in figure 12 in the seminal study
by Duchemin et al. (2002), the intensification seen in vmax

z for our case for the optimal
Ohc compared with Oh → 0 is only approximately a factor of two. In the case of bubble
bursting, this factor can be as high as 10 (Gordillo & Blanco-Rodríguez 2023). Note that
Ohc appears as a fitting parameter in all existing bursting bubble theories and further work
is needed to estimate this value. Our analysis shows that a first-principles theory for this
may have to include nonlinearity and also resolve the boundary layer at the interface.
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