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In this paper, we study the rapid transition in Richtmyer–Meshkov instability (RMI) with
reshock through three-dimensional double-layer swirling vortex rings. The rapid transition
in RMI with reshock has an essential influence on the evolution of supernovas and the
ignition of inertial confinement fusion, which has been confirmed in numerical simulations
and experiments in shock-tube and high-energy-density facilities over the past few years.
Vortex evolution has been confirmed to dominate the late-time nonlinear development
of the perturbed interface. However, few studies have investigated the three-dimensional
characteristics and nonlinear interactions among vortex structures during the transition
to turbulent flows. The coexistence of co-rotating and counter-rotating vortices is
hypothesized to induce successive large-scale strain fields, which are the main driving
sources for rapid development. The three-dimensional effect is reflected in the presence
of local swirling motion in the azimuthal direction, and it decreases the translation
velocity of a vortex ring. Large-, middle- and small-scale strain fields are employed to
describe the development process of RMI with reshock, e.g. vorticity deposited by the
reshock, formation of the coexistence of the co-rotating and counter-rotating vortices,
iterative cascade under the amplification of the strain fields and viscous dissipation to
internal energy. This provides theoretical suggestions for designing practical applications,
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such as the estimation of the hydrodynamic instability and mixing during the late-time
acceleration phase of the inertial confinement fusion.

Key words: shock waves, transition to turbulence, vortex instability

1. Introduction

Richtmyer–Meshkov instability (RMI) occurs when a perturbed interface is accelerated
by an incident shock wave (Brouillette 2002). The vorticity deposited by the incident
shock wave leads to the growth of the mixing region, which can be divided into
different stages, e.g. linear, nonlinear, and eventual turbulent mixing. The RMI is
ubiquitous in many engineering applications (Ding et al. 2017; Grinstein, Gowardhan
& Ristorcelli 2017; Wang et al. 2017; Zhou et al. 2019, 2021; Liang & Luo 2023; Liu,
Zhang & Xiao 2023; Yuan et al. 2023; Zhou 2024; Zhou, Sadler & Hurricane 2025),
such as inertial confinement fusion (ICF), combustion engines, underwater explosions,
supernovas, molecular clouds, stellar interiors and geological flows.

In ICF experiments, interfaces separating deuterium-tritium (DT) fuel and an outer
plastic ablator are subjected to RMI due to shocks induced by high-energy lasers, and
a reshock as the former shocks converge and reflect at the shell centre (Leinov et al. 2009;
Weber et al. 2014; Li et al. 2022; Fu et al. 2023; Liu et al. 2024). The reshock interacts
with the developing perturbed interface and dramatically enhances mixing (Zhou 2017b;
Bender et al. 2021). The rapid development of RMI induces the outer ablative material into
the inner DT and decreases the temperature and density that are critical for self-sustaining
thermonuclear burn.

In the past few decades, many critical experimental studies have considered multiple
shock waves (Vetter & Sturtevant 1995; Balakumar et al. 2008, 2012; Leinov et al. 2008,
2009; Tomkins et al. 2013). Leinov et al. (2009) conducted shock-tube experiments and
revealed that the evolution of the mixing region after reshock depends on the strength
of the reshock itself rather than the arrival time of the reshock. Balakumar et al. (2012)
employed simultaneous velocity–density measurements in shock-tube experiments with
reshock, and confirmed the existence of a turbulent state after reshock. Noble et al. (2023)
used both high spatial resolution single-shot and lower spatial resolution, time-resolved,
high-speed simultaneous planar laser-induced fluorescence and particle image velocimetry
in the Wisconsin Shock Tube Laboratory’s vertical shock tube, where linear growth after
reshock was confirmed. They confirmed that the kinetic energy spectra are close to the
Kolmogorov −5/3 scaling, and the scalar spectra approximately follow the equation given
by Gibson (1968) as a function of the effective Schmidt number.

Nevertheless, owing to the limitations of experimental diagnostics, the fluid
field information obtained in shock-tube experiments cannot fully address the
three-dimensional temporal and spatial evolution (Malamud et al. 2014; Grinstein et al.
2017). Benefitting from rapid advances in supercomputers, numerical simulations provide
insight into RMI evolution with reshock by inspecting much refined temporal and
spatial scales. Numerical simulations were performed to address the above-mentioned
experiments. Hill, Pantano & Pullin (2006), Lombardini et al. (2011) and Lombardini,
Pullin & Meiron (2012) carried out large-eddy simulations (LES) of RMI with reshock
with respect to the shock-tube experiment of Vetter & Sturtevant (1995). The numerical
results obtained via LES were in good agreement with those of the shock-tube
experiments, and the Atwood and Mach number effects were also investigated. Malamud
et al. (2014) adopted a hydrodynamic code (LEEOR3D) with an arbitrary Lagrangian
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The role of double-layer vortex rings in RMI with reshock

Eulerian method to solve the Euler equations, and concluded that an initial perturbation
with a wide range of scales is needed for good agreement with shock-tube experiments
(Leinov et al. 2009). Bender et al. (2021) carried out numerical simulations of RMI
with multiple shocks in a high-energy-density environment, which refers to a series of
experiments performed at the National Ignition Facility. They highlighted the importance
of thermal conduction by free electrons, which results in a slightly smaller Reynolds
number and a much smaller conductive Péclet number. Many of these valuable works
concentrated on LES or implicit LES, and successfully predicted the late-time evolution
of the RMI. However, fine-scale information is still lacking, which is critical for
understanding the rapid transition to a turbulent state after reshock.

The missing fine-scale information of the RMI with reshock should be addressed via
direct numerical simulations (DNS), which are able to resolve all physical temporal and
spatial scales, but are also costly for large-scale applications of practical engineering flows,
especially those with high Reynolds numbers (Grinstein et al. 2017; Zhou 2021). However,
there are still several critical developments through DNS, such as RMI with a single shock
(Tritschler et al. 2014b; Liu & Xiao 2016; Groom & Thornber 2019, 2021; Zhou et al.
2023) and reshock (Leinov et al. 2009; Li et al. 2019, 2021a; Wong, Livescu & Lele 2019).
Although some do not resolve the Kolmogorov length scale, good mesh convergence has
been conducted. The advantages of RMI with reshock through DNS manifest themselves
in many aspects. The first is to resolve the rapid generation of small scales induced by
reshock, which is critical for determining the occurrence of turbulent mixing. The second
advantage is an accurate estimation of the role of viscosity. After multiple shocks, the
evolution of the RMI is similar to the decay of homogeneous and isotropic turbulent
flows. This means that viscosity dissipation plays an important role in system evolution.
The DNS can provide accurate physical dissipation rather than approximate numerical or
modelling dissipation. The third advantage is to eliminate the uncertainty of numerical
schemes or turbulent modelling. The setting of the numerical simulation should be as
consistent as possible with that of the shock-tube facility experiments. Although shock
wave/boundary layer interactions occur in a practical shock-tube facility, they have a
negligible effect on the growth rates of the mixing width (Vetter & Sturtevant 1995). Hence
the sidewalls of a shock-tube facility can be replaced by periodic boundary conditions, and
the computational domains in the cross-section can be smaller than those in the shock-tube
facility. However, the adopted computational domains should be large enough to capture
the dominant wavelengths (Hill et al. 2006; Leinov et al. 2009). Combined with the
affordable computational cost of DNS, a suitable computational domain is employed in
numerical simulations. Leinov et al. (2009) extracted a small computational domain to
perform coarse DNS of their experiments, which were used to investigate the large-scale
evolution.

Although the rapid transition to turbulent flows after reshock has been confirmed
in shock-tube facilities and numerical simulations (Leinov et al. 2009; Wong et al.
2019), there are few physical mechanisms from the perspective of vortex evolution to
describe or explain the transition process. For single-mode evolution in two-dimensional
configurations, the shear induced by the development of bubbles and spikes leads to
the formation of a vortex pair. Balakumar et al. (2012) proposed a two-dimensional
double-layer counter-rotating vortex pair configuration on the basis of their experimental
results. However, a detailed explanation of the double-layer counter-rotating configuration
for the rapid transition after reshock is still lacking. In addition, in three-dimensional RMI,
the vortex pair confirmed in the two-dimensional configuration is extended into a vortex
ring, which is consistent with three-dimensional flow characteristics.
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Both counter-rotating and co-rotating vortex pairs in two-dimensional flows are present
during the development of a mixing region. Between two adjacent bubbles or two adjacent
spikes, the streamline determines the formation of a counter-rotating vortex pair. Between
the bubble and spike, the streamline determines the formation of a co-rotating vortex pair.
In contrast to counter-rotating vortex pairs, the critical Reynolds number of co-rotating
vortex pairs is smaller and tends to transition to turbulent flows (Leweke, Le Dizès &
Williamson 2016). McKeown et al. (2020) proposed that turbulence can be generated
through an iterative cascade of elliptical instabilities for the counter-rotating vortex. Wadas
et al. (2024) carried out the stability analysis of a pair of vortex rings. They focused on
the interactions of a pair of vortex rings, and predicted an abrupt transition at a critical
Reynolds number, which is consistent with the experimentally observed rapid generation
of a turbulent puff. The additional vorticity deposited by the reshock alters the flow
structures within the mixing regions. The complex interaction of these flow structures
might lead to a rapid transition to turbulent flows.

In three-dimensional flows, many works have focused on investigating a single vortex
ring in jet flows, which has potential applications in combustion engineering (Gupta, Lilley
& Syred 1984; Grauer & Sideris 1991; Shariff 1992). Moreover, the study of a vortex ring
is beneficial for understanding the development of a disturbed interface, especially during
later stages of development (Zabusky & Zhang 2002; Zhang & Zabusky 2003; Thornber
& Zhou 2012; Kokkinakis, Drikakis & Youngs 2020; Ames 2023). Schneider & Gauthier
(2016) visualized the vortex structures in Rayleigh–Taylor instability, and the vortex ring
was visualized by the vorticity and concentration. Kokkinakis et al. (2020) confirmed
that coherent vortical structures crucially affect the mixing width and mixedness of the
disturbed interface. The onset of a vortex ring is confirmed numerically when the vorticity
exceeds a threshold. Owing to the existence of a fill tube in the ICF, the induced jet flows
promote the mixing of the ablation materials into the hot spot. The vortex ring is a typical
flow structure along with a jet flow induced by a fill tube, and the classical vortex ring
theory can be modified to predict the mixed mass (Wadas et al. 2023).

On the basis of the typical bubble and spike structures, we conclude that the
development of interfacial instability can be investigated from the perspective of
counter-rotating and co-rotating vortex pairs. When reshock occurs, which flow
configurations are affected to reduce stability of the combined counter-rotating and
co-rotating vortex pairs? It motivates us to explore the fundamental property of the flow
structures and confirm the role of reshock for a rapid transition. For the sake of visual
impression, we supply a pure schematic upon reshock selected from six typical instants
in figure 1. In figure 1, the double-layer vortex rings are represented by blue and green
toruses, respectively. The yellow twisted tubes denote the first-generation vortices, and
the red elements denote the second-generation vortices with the double-layer vortex rings
approaching each other. A schematic movie to show the basic flow structures and their
evolution process after reshock is provided in the supplementary material available at
https://doi.org/10.1017/jfm.2024.1220.

The paper is organized as follows. In § 2, the DNS of the single- and multi-mode RMI
via an open code OpenCFD are introduced. In § 3, three-dimensional double-layer vortex
rings with the local swirl are studied, and the role of reshock in a rapid transition from
the perspective of three-dimensional double-layer vortex rings with the local swirl is
discussed. In § 4, we provide a description of the transition process from the large-, middle-
and small-scale strain fields. Finally, conclusions are given in § 5.
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Upper layer

Upper layer

First-generation vortex

Second-generation vortex

Upper layer

Upper layer

The lower layer passes the upper layer.

Under the joint influence of co-rotating

and counter-rotating vortex pairs,

the induced strain field triggers the

mixing transition to turbulent flows …

Under the influence of co-rotating vortex pairs

along the vertical direction, the first-generation

vortex begins to appear, and develops gradually.

The lower layer catches up the upper layer.

The strain field induced by co-rotating

vortex pairs is intensified, and

plays a source role to accelerate

the development of the first- and

second-generation vortices.

Upper layer
Upper layer

Lower layer

Lower layer

Lower layer Lower layer

Lower layer Lower layer

Lower layer

Reshock begins. Vortex ring is accelerated inversely.

Lower layer

Lower layer

The lower layer is faster than the upper layer

and approaches the upper layer gradually.

Lower layer

Lower layer
Lower layer

(e)

(b)(a) (c)

(d ) ( f )

Figure 1. Schematic of the evolution process of double-layer swirling vortex rings upon reshock, from (a) to
( f ).

2. Numerical simulations

To achieve a reasonable agreement with the experimental results conducted in a shock-tube
facility, Leinov et al. (2009) and Malamud et al. (2014) suggested a suitable computational
domain. During the late-time acceleration phase, the DT fuel density is larger than the
plastic ablator density. Hence the reshock process is represented that the shock propagates
from the heavy material into light material. This vital process is similar with the shock-tube
experimental settings by Leinov et al. (2009). So the same computational setting is used in
our numerical simulations. The adopted computational domain and the grid numbers are
listed in table 1. The x-direction domain length is Lx = 0.085 m for the multi-mode case,
and Lx = 0.045 m for the single-mode case. The y- and z-direction domain lengths are
Ly = Lz = 0.01 m for the single- and multi-mode cases. The computational configurations
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Geometry Initial perturbation Ma Computational domain (m) Grid resolution

Planar Multi-mode 1.2 [−0.005, 0.08] × [0, 0.01] × [0, 0.01] 4352 × 512 × 512
Planar Single-mode 1.2 [−0.005, 0.04] × [0, 0.01] × [0, 0.01] 1216 × 256 × 256

Table 1. Initial parameter settings of the planar geometry.

z

x

Initial shock

Air Perturbed interface

Shock direction

Wall

SF6

y

Figure 2. Sketch diagram of the computational setting and initial conditions of the RMI with reshock.

initiated by multi-mode perturbation are shown schematically in figure 2. We adopt a
periodic boundary condition in the y- and z-directions, and an adiabatic wall boundary
on the right-hand side of the main computational domain along the x-direction.

The air and sulphur hexafluoride (SF6) are located on the left- and right-hand sides
of the initial perturbed interface, respectively. The initial shock Mach number Ma is set
to 1.2, propagating along the x-direction and then reflecting at the end wall. The initial
pressure before the shock is p0 = 23 000 Pa, and the temperature is T0 = 298 K. According
to the Rankine–Hugoniot conditions, more physical variables can be obtained through the
expressions (Tritschler et al. 2014a; Wong et al. 2019)

ρ′
air = ρair

(γair + 1)Ma2

2 + (γair − 1)Ma2 , (2.1a)

u′
air = Ma cair

(
1 − ρair

ρ′
air

)
, (2.1b)

p′
air = pair

(
1 + 2

γair

γair + 1
(Ma2 − 1)

)
, (2.1c)

where the sound speed is cair = √
γair pair/ρair, γair = 1.4 and γSF6 = 1.1. Here, ′ denotes

the corresponding post-shock variables, ρair is the density of the pre-shock air, pair is the
pressure of the pre-shock air, and ρ′

air, u′
air and p′

air are the post-shock density, velocity and
pressure, respectively. The initial perturbed interface is generated via a random multi-mode
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narrowband power spectrum method, and it has been commonly used in the RMI academic
community (Youngs 2004; Thornber et al. 2010, 2017; Groom & Thornber 2019, 2021;
Zhou, Groom & Thornber 2020).

The random multi-mode narrowband power spectrum method is discussed briefly below.
A perturbation power spectrum P(k) is assumed:

P(k) =
{

C, when kmin < k < kmax,

0, otherwise.
(2.2)

Here, k =
√

k2
y + k2

z is the perturbation wave vector, ky and kz denote the wave vectors in

the y- and z-directions, respectively, and kmin and kmax are the minimum and maximum
wavenumbers. The integral of the above perturbation power spectrum in spectral space is

σ 2 =
∫ ∞

0
P(k) dk = 1

2π

∫ ∞

−∞

∫ ∞

−∞
P(k)

k
dky dkz. (2.3)

Hence for a mode k, its amplitude is a(k) = √
P(k)/k.

Making an operation of the inverse Fourier transform on this relation, we can obtain

a( y, z) =
kmax∑

m,n=−kmax

Re
{
cm,n exp

[
ik0(my + nz)

]}
, (2.4)

where Re denotes the real part of a complex number, cm,n is the amplitude of the mode
number m in the y-direction and the mode number n in the z-direction, and k0 = 2π/Ly.

By expanding (2.4) via the Euler formula and trigonometric relations, the perturbed
amplitude can be written as

A( y, z) =
N∑

m,n=0

am,n cos(k0my) cos(k0nz)+ bm,n cos(k0my) sin(k0nz)

+ cm,n sin(k0my) cos(k0nz)+ dm,n sin(k0my) sin(k0nz). (2.5)

These coefficients are generated randomly to satisfy the standard deviation at a given
wavenumber km,n as follows:

1
4

(
ā2

m,n + b̄2
m,n + c̄2

m,n + d̄2
m,n

)
= 1

2π

P(km,n)

km,n
�ky�kz. (2.6)

The root mean square of the amplitude is set as 0.1λmin in the present numerical
simulation, and λmin = 2π/kmin. In addition, kmin = 8 and kmax = 16 in our numerical
simulations.

A diffuse interface with gradient thickness δ = Ly/32 is employed to compute the mass
fraction of SF6 as

YSF6(x, y, z) = 1
2

(
1 + tanh

(
x − A( y, z)

δ

))
, (2.7)

where A( y, z) is the amplitude of the initial perturbed interface. The hyperbolic tangent
function indicates that the gradient thickness δ only makes an apparent contribution around
the perturbed interface.
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Species a1,m a1,m a1,m a1,m

N2 −1.554 × 101 1.934 × 100 −1.674 × 10−1 7.228 × 10−3

O2 −1.602 × 101 2.174 × 100 −1.981 × 10−1 8.539 × 10−3

SF6 −1.058 × 101 −1.114 × 100 3.999 × 10−1 −2.618 × 10−2

Table 2. The fitting coefficients for viscosity.

The evolution of RMI can be described by the following three-dimensional compressible
Navier–Stokes equations with multiple species of miscible gases:

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.8a)

∂ρu
∂t

+ ∇ · (ρuu) = −∇(pδ − σ ), (2.8b)

∂E
∂t

+ ∇ · (ρ(E + p)u) = ∇(σ · u + q), (2.8c)

∂ρYm

∂t
+ ∇ · (ρYmu) = ∇ · (ρDm ∇Ym), (2.8d)

where ρ denotes the mixture density, u denotes the velocity vector, p is the static pressure,
and δ is the Kronecker function. Here, σ is the viscous stress tensor for a Newtonian fluid
without considering bulk viscosity, and E is the total energy per unit volume. They are
defined as

σij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
θδij

)
, E = 1

2
ρu2 +

N∑
m=1

ρmhm − p, (2.9a,b)

where θ = ∂uk/∂xk is the velocity divergence, μ is the mixture viscosity coefficient, N
denotes the total number of mixing species, ρm is the mth-species density, and hm is the
mth-species enthalpy. The conductive heat flux q can be computed according to Fourier’s
and Fick’s laws as

q = κ ∇T + ρ

N∑
m=1

Dmhm ∇Ym, (2.10)

where κ is the thermal conductivity of the mixture, T is the temperature of the mixture, Dm
is the mth-species effective binary diffusion coefficient, and Ym is the mth-species mass
fraction.

The mth-species viscosity μm and thermal conductivity κm can be computed by fitting
polynomials from CHEMKIN (Kee, Rupley & Miller 1989) as follows:

lnμm =
N∑

n=1

an,m(ln T)n−1, ln κm =
N∑

n=1

bn,m(ln T)n−1. (2.11a,b)

The fitting coefficients are listed in tables 2 and 3.
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Species b1,m b1,m b1,m b1,m

N2 7.599 × 100 −1.180 × 100 3.030 × 10−1 −1.539 × 10−2

O2 −2.129 × 100 2.990 × 100 −2.874 × 10−1 1.241 × 10−2

SF6 −8.058 × 101 3.758 × 101 −5.471 × 100 2.689 × 10−1

Table 3. The fitting coefficients for thermal conductivity.

Therefore, the mixture viscosity μ and the thermal conductivity of the mixture κ can be
obtained as

μ =
N∑

m=1

Xmμm∑K
j=1 XjΦmj

, κ = 1
2

( N∑
m=1

Xmκm + 1∑N
m=1 Xm/κm

)
, (2.12a,b)

where

Φmj = 1√
8

(
1 + Mm

Mj

)−1/2
[

1 +
(
μm

μj

)1/2 (Mj

Mk

)1/4
]2

. (2.13)

For the mixture diffusion coefficient, the Schmidt number is assumed to be 1, defined as
Scm = μ/ρDm (Thornber & Zhou 2012; Tritschler et al. 2014b; Groom & Thornber 2019,
2021).

To obtain high-fidelity flow fields, a high-order finite difference code (OpenCFD) is
employed to simulate the evolution of the RMI with reshock. In the numerical simulations
with multi-mode perturbations, a sixth-order monotonicity-preserved optimized scheme is
used to discretize the convective terms with the Lax–Friedrichs splitting method, and an
eighth-order central difference scheme is employed to discretize the viscosity terms. For
time marching, a third-order Runge–Kutta approach is used. This computational scheme
has been validated successfully in applications involving multi-component diffusion, such
as jet combustion (Fu et al. 2019), and cylindrical and spherical RMI (Li et al. 2021b; Yan
et al. 2022).

3. Three-dimensional double-layer vortex rings with the local swirl

3.1. Single-mode flow configuration
To investigate the three-dimensional flow structures, we first carry out DNS of single-mode
RMI with reshock because of its simple and visual flow structures. The initial single-mode
perturbation A( y, z) = A0 cos((2π/λ)y) cos((2π/λ)z) is adopted in the present numerical
simulations, with λ = 0.005 m and A0 = 0.04λ. The computational parameters are listed
in table 1. The bubble and spike positions are tracked along the shock-propagating
direction according to their initial positions. Their difference is defined as the mixing
width h, for the sake of the consistency with the following multi-mode analysis. It is
exhibited in figure 3(a), which shows the increase of the mixing width after the first
shock, and the decrease immediately after reshock. The outer-scale Reynolds number Reh

is defined as Reh = hḣ/〈ν〉. Here, ḣ denotes the growth rate of the mixing width, ν is the
kinematic viscosity coefficient, and 〈·〉 denotes the ensemble average within the mixing
regions. The circulation Reynolds number ReΓ is defined as ReΓ = Γ/〈ν〉, and Γ is the
circulation of half of a vortex ring. The temporal outer-scale and circulation Reynolds
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Figure 3. (a) The mixing width. (b) The outer-scale and circulation Reynolds numbers.
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Figure 4. Two-dimensional contour slice of the mixture density initiated by a single-mode perturbation at
different times: (a) t = 0.345 ms, (b) t = 0.375 ms, (c) t = 0.395 ms, (d) t = 0.415 ms, (e) t = 0.435 ms,
( f ) t = 0.495 ms.

number evolutions are shown in figure 3(b), and they are approximately 650 after the
first shock. In figure 4, the time evolution of the two-dimensional density field around
the reshock time is shown, and the selected instants are marked in figure 3(a). Before
reshock, the amplitude of the disturbed interface has increased to a relatively large value.
It corresponds that the interaction of the interface and vortex-induced velocity may be
strong to generate the second baroclinic vorticity (Peng et al. 2021a). When the reshock
interacts with the mixing region, the mixing region is compressed first, accompanied
by the occurrence of an inverse phase. After reshock, the mixing regions increase with
increasing velocity. The single-mode flow configuration captures the dominant physical
process, which enables the subsequent detailed analysis.

For the instant before the reshock is selected, the vortex structures along with the
bubble and spike structures are shown in figure 5. Three typical features of the flow
structures are identified and summarized schematically in figure 6. For convenience
in describing the flow structure evolution, a cylindrical coordinate system (r, θ, z′) is
introduced. Here, r denotes the radial direction, θ denotes the azimuthal direction,
and z′ denotes the axial direction. The relationships between the newly introduced
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Figure 5. (a) Two-dimensional contour slice of the mixture density before reshock. (b) Three-dimensional
vortex structures represented by Q = 0.01Qmax rendered by the streamwise velocity, where Q is the second
invariant of the velocity gradient tensor.
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Figure 6. (a) A pure three-dimensional schematic configuration to describe the coexistence of the co-rotating
and counter-rotating vortices after reshock. The deformed tube represents the fluid elements between the
co-rotating or counter-rotating vortices, and their shapes reflect the influence of the adjacent vortices. The
arrows denote the external forces acting on the fluid elements. (b) Trajectories of double-layer point vortex pairs
projected in the radial and axial directions (r, z′), with circulation Γ . The black straight arrows represent the
instantaneous velocity induced by other point vortices within a layer, and the yellow straight arrows represent
the instantaneous velocity induced by adjacent point vortices belonging to another layer. (c) Trajectories of
double-layer point vortex pairs projected in the azimuthal and axial directions (θ, z′).

cylindrical coordinates and the original Cartesian coordinates are y = r cos θ , z = r sin θ
and x = z′. The three-dimensional configuration is shown in figure 6(a). The radial and
axial dimensional configurations are shown in figure 6(b), and the azimuthal and axial
dimensional configurations are shown in figure 6(c). The instantaneous translation velocity
U , circulation Γ , and swirling direction are determined from the relative motions of the
double-layer vortex rings.

First, the flow element is a torus that rotates around the torus centre. The rotation
around the torus centre is reflected in the streamwise velocity difference within a torus
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in figure 5(b). According to the rotational symmetry in the azimuthal direction based
on the two-dimensional configuration in figure 5(a), the three-dimensional torus can
also be obtained. The three-dimensional rotation can be reduced to a two-dimensional
local rotation around the torus centre, which is consistent with the two-dimensional
configuration proposed by Balakumar et al. (2012). The streamline patterns of the
horizontal layer are the same, forming counter-rotating vortex pairs. However, the
streamline patterns of the vertical layer are opposite, and they form the co-rotating vortex
pairs.

Second, two layers of vortex rings exist, and they are two planes perpendicular to the
shock-propagating direction. These two layers are located around the bubble and spikes,
respectively. The two layers of flow structures before reshock are shown in figure 5(b),
represented by the white planes. This confirms that the double-layer characteristic is an
intrinsic property of the RMI and that the second-layer vortex ring is induced by the
first-layer vortex ring (Peng et al. 2021a; Peng, Yang & Xiao 2021b).

The swirl of a vortex ring is characterized by an azimuthal velocity (Gupta et al. 1984),
and it dominates turbulent mixing, transportation, drag and noise generation (Shariff
1992; Naitoh et al. 2014; Leweke et al. 2016). The existence of swirling motion in the
azimuthal direction can be proven from mathematical and physical perspectives. The
existence of a steady solution of the Euler equation was investigated by Moffatt (1969),
Turkington (1989) and Grauer & Sideris (1991) to confirm the existence of the swirl.
Due to elliptic instability or curvature instability, it is possible to generate swirl in
the cores of initially non-swirling rings (Chang, Hertzberg & Kerr 1997; Naitoh et al.
2002). In the present shocked-interface issue with a light–heavy distribution, after the
interaction of the first shock wave and the disturbed interface, the transmitted and reflected
shock waves are rippled. The transmitted and reflected rippled shock can be visualized
by the disturbed pressure field shown in figure 7(a), which is selected at the instant
(t = 0.015 ms) immediately after the first shock. Figure 7(b) shows the rippled shock
wave and the disturbed interface, corresponding to the pink cuboid marked in figure 7(a).
Subsequently, the rippled shock decays with oscillation, which leads to temporal-spatial
non-homogeneity (Zou et al. 2017, 2019). The temporal-spatial decay oscillation leads to
the formation of three-dimensional characteristics. The post-shock flow field is disturbed,
which is represented by the appearance of the spanwise velocity in the x–y plane.
In figures 7(c) and 7(d), two-dimensional contour slices of the post-shock and post-reshock
fields are presented, respectively. This finding confirms numerically the appearance of the
spanwise velocity in the x–y plane. Hence the swirl motion of a vortex ring originates from
the three-dimensional baroclinic process and rippled shock evolution. Notably, the swirl
motion is local rather than global rigid rotation. The numerical results in figures 7(c,d)
indicate that the swirl is relatively weak, with much smaller amplitude than the streamwise
velocity. The local weak swirl motion of the vortex ring along with the translation velocity
would induce the formation of small scales.

The swirling direction is associated with the translation of the vortex ring. This
conclusion is based on the Bragg–Hawthorne equation with the Euler solution of the Hill
spherical vortex (Bragg & Hawthorne 1950). The alternative solution of the corresponding
stream function ψ indicates that ψ ∼ U, where U is the vortex propagation velocity. From
the energy method of a thin-cored swirling vortex ring, the vortex propagation velocity U
can be expressed as

U = Γ

4πr0

(
ln

8r0

a
− 1

2
+ 1
Γ 2

∫ a

0

Γ 2
σ − 2C2

σ

σ
dσ

)
, (3.1)
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Figure 7. (a) Three-dimensional iso-surfaces of the disturbed pressure field, along with the shocked interface
at t = 0.015 ms. (b) Three-dimensional rippled shock and shocked interface within the spatial region marked
by the pink cuboid in (a). (c) Two-dimensional contour slice of the spanwise velocity at t = 0.125 ms.
(d) Two-dimensional contour slice of the spanwise velocity at t = 0.325 ms. The black arrow marks the
shock-propagating direction.

where Γ = ruθ , r0 is the circular radius, a is the cross-section radius, and uθ is the
azimuthal velocity in the cylindrical coordinate system. The detailed derivation process is
presented in Appendices A and B. Within a three-dimensional vortex ring, the circulation
of the extracted two-dimensional vortex pairs is opposite. According to the above
theoretical derivation, the azimuthal velocity direction is also opposite. If we transfer the
cylindrical coordinate system into the Cartesian coordinate system, then the perpendicular
velocity directions of the two-dimensional vortex pairs are the same. The numerical results
in figures 7(c,d) confirm this regulation.

In figure 8(a), we show the circulation of half of a vortex pair. After the first shock, the
circulation increases rapidly because of the baroclinic process. The well-known Kelvin
circulation theorem indicates that the circulation along any material loop is time-invariant
if and only if the acceleration is curl-free (Wu, Ma & Zhou 2007). During the free evolution
process of the mixing region, the dissipation and compressibility break the conservation
law of the circulation, and the circulation after the first shock decreases slowly. The
two-dimensional contour of the spanwise vorticity in figure 8(b) exhibits two peaks, which
correspond to the first- and second-layer vortex rings. When the reshock interacts with
the mixing region, the opposite baroclinic vorticity is induced. The opposite vorticity is
visualized in figure 8(c), with positive and negative spanwise vorticity separated by the
reshock. It is also reflected in figure 8(a).

The presence of the swirl in the azimuthal direction can cause the vortex ring to slow
and alternatively increase its stability (Widnall 1972). The swirling effect on the translation
velocity of a vortex ring is discussed briefly in Appendix B. However, the influence of the
appearance of the swirl on the dynamics of a vortex ring depends on the swirl strength,
the Reynolds number, the compactness of the vortex ring, etc. (Gupta et al. 1984; Liang &
Maxworthy 2005; Gargan-Shingles, Rudman & Ryan 2016; Hattori, Blanco-Rodríguez &
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Figure 8. (a) Circulation of half of a vortex pair. (b) Two-dimensional contour slices of the spanwise vorticity
before reshock marked with a black circle in (a). (c) Two-dimensional contour slices of the spanwise vorticity
when the reshock is inside the mixing regions marked with a red circle in (a).

Le Dizès 2019; He, Gan & Liu 2020). The appearance of the swirl results in an azimuthal
shear layer and centrifugal instability, which may lead to the small-scale generation.
For a vortex ring without the swirl, the Kelvin–Helmholtz instability is reflected in the
radial and axial dimensions, which is shown schematically in figure 6(b). However, the
azimuthal shear layers induced by the swirl correspond to the azimuthal Kelvin–Helmholtz
instability, and will modify the radial and axial Kelvin–Helmholtz instability without the
swirl. The radial pressure gradient can be deduced from the reduced form of the radial
momentum equation as

∂p
∂r

= ρu2
θ

r
. (3.2)

The radial pressure gradient play a role of centrifugal force, and the flow might experience
the centrifugal instability. Hence for a weak swirl, the combined axial and azimuthal
shear layers modify the Kelvin–Helmholtz instability appearing in the vortex ring without
the swirl, and the evolving vortex ring becomes tilted. However, with increasing swirl, a
central toroidal recirculation zone forms. When the swirl is strong enough, a strong wave
is stabilized after the breakdown of the vortex ring. The travel distance of a vortex depends
on the Reynolds number. When the Reynolds number is low, Naitoh et al. (2014) reported
that the travel distance decreases with increasing swirl number. However, He, Gan & Liu
(2019) concluded that the travel distance increases with increasing swirl number when the
Reynolds number is relatively high.

Hence the three-dimensional effect is represented by decreasing the translation velocity
for a single vortex ring. For the interfacial instability, this three-dimensional effect
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decreases the development of the mixing region while enhancing the degree of mixing.
The swirling effect might explain the growth rate in three dimensions being slower
than in two dimensions in RMI (Zhou 2017b). Nevertheless, the growth rate of the
three-dimensional mixing regions might be faster than that of the two-dimensional mixing
regions under some circumstances. The increasing mechanism is reflected in the induced
translation velocity of the double-layer co-rotating vortex pairs, as shown schematically
by the yellow straight arrows in figure 6(b). The stability of the swirling vortex ring
ensures this successive increase mechanism. Hence three-dimensional effects are reflected
in competitive decreasing and increasing mechanisms.

Third, the vertical co-rotating vortex pairs lead to strong shear between them, and
the lower transition Reynolds number is easily satisfied during the interfacial evolution.
We concluded that counter-rotating and co-rotating vortex pairs coexist during the
development of a mixing region. The fluid element located around the centre of
counter-rotating and co-rotating vortex pairs is affected by complex shear fields. The
streamline patterns might lead to an alternative torque on the fluid element, which is shown
schematically in figure 6(a). The external forcing acting on the fluid element inside the
vortex pairs is complex, and the torque is one of the possible interactions. The large-scale
strain induced by the double-layer co-rotating vortex pairs provides a successive source for
triggering the transition to turbulent mixing.

3.2. Transition to turbulent mixing initiated by multiple modes
After reshock, the transition to turbulent flows has been confirmed in shock-tube
experiments, whether with a single-mode perturbation or with a multi-mode perturbation
(Mohaghar et al. 2017). The flow evolution initiated with a multi-mode perturbation shows
finer scales, which is more appropriate for performing statistical analysis. Subsequently,
we carry out multi-mode three-dimensional RMI with reshock through DNS, which can
be analogous to experiments at late times. The multi-mode numerical settings refer to a
previous shock-tube facility (Leinov et al. 2009).

3.2.1. Wave diagram and mixing width
The mass fraction Y and volume fraction X of the heavy fluid SF6 are defined as

Y = ρSF6

ρ
, X = YMmix

MSF6

. (3.3a,b)

Here, M is the mean molecular weight. For the mixture, it is defined as (Kee et al. 1989)

Mmix = 1∑n
i=1 Yi/Mi

. (3.4)

We compute the mean volume fractions of the heavy fluid SF6 and light fluid air, and
determine the bubble and spike positions with thresholds of 1 % and 99 % (Mikaelian
2005; Zhou 2017a,b; Mikaelian & Olson 2020). The mixing centre is selected with
〈X〉yz = 50 %. Here, 〈·〉yz denotes the ensemble average along the y- and z-directions.
The displacements of the bubble, spike, mixing centre, shock, and rarefaction waves are
shown in figure 9(a). From the initial status, the shock wave propagates in the streamwise
direction and interacts with the perturbed interface for the first time. A shock wave is
reflected and propagates in the opposite direction, and another shock wave is transmitted
and propagates in the streamwise direction until it reaches the rigid wall. After the first
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Figure 9. (a) Displacement of the bubble, spike, mixing centre and wave structures. (b) The mixing width,
bubble height and spike height.

interaction of shock and a perturbed interface, the interface accelerates and moves in the
streamwise direction. Moreover, the perturbed modes also develop, and the mixing of light
and heavy fluid occurs intensively. The obstacle of the rigid wall changes the propagation
direction of the shock wave, and the reflected shock wave propagates in the opposite
direction from the rigid wall. With shock-wave propagation, the second interaction of the
developing interface and the shock wave occurs. The reshock leads to additional vorticity
deposits on the developing interface, and may result in a rapid transition to turbulent
mixing. To explore the rapid transition mechanism (Zhou 2017b), the changes in several
typical parameters with reshock via DNS are investigated in this paper.

The mixing width h is obtained from the difference between the bubble and spike
positions. The bubble height hb is computed as the difference between the bubble
position and the mixing centre, and the spike height hs is computed as the difference
between the mixing centre and the spike position. Their temporal evolutions are shown
in figure 9(b). After reshock, the growth of the mixing width is linear, and the growth
rate is approximately 23.1 m s−1. The linear growth is consistent with the results of
shock-tube experiments (Leinov et al. 2009; Malamud et al. 2014), which validate the
present numerical simulations. The spike height to bubble height ratio is approximately
3 : 1, which is consistent with other numerical results (Malamud et al. 2014).

The linear reshock model was proposed by Mikaelian (1989) for three-dimensional
multi-mode perturbations as

h = CMA+�V t, (3.5)

where A+ is the post reshock Atwood number (A+ = 0.714 in the present numerical
simulation), �V is the velocity jump of the interface with reshock (�V = 95.4 m s−1

in the present numerical simulation), CM is a constant, and the empirical coefficient
is 0.28 on the basis of Rayleigh–Taylor experiments (Mikaelian 1989). However, it
may depend on the Atwood number and other flow parameters. Dimonte & Schneider
(2000) and Oron et al. (2001) proposed that CM ranges from 0.28 to 0.39. Leinov et al.
(2009) determined an average value CM = 0.38 according to shock-tube experiments.
Ukai, Balakrishnan & Menon (2011) also reported that CM = 0.38 via three-dimensional
numerical simulations. Jacobs et al. (2013) reported that CM = 0.26 via membraneless
reshock experiments. In our numerical simulations, we obtain CM ≈ 0.34, which is
consistent with the experimental results (Leinov et al. 2009).
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Figure 10. The ratio of the Kolmogorov scale and mesh spacing for t1 = 0.4 ms (middle time after the first
shock), t2 = 0.7 ms (time before the reshock), t3 = 0.72 ms (time after the reshock) and t4 = 0.76 ms (late time
after the reshock).

The Kolmogorov scale η is regarded as the smallest scale in classic turbulent theory
(Pope 2010; Tritschler et al. 2014b; Li et al. 2019, 2021a), and is defined as

η =
(

〈ν〉3

〈ε〉

)1/4

, (3.6)

where ε is the viscosity dissipation rate of kinetic energy, which is defined as ε =
σij(∂ui/∂xj). The criterion of DNS is whether the mesh spacing can resolve the
Kolmogorov scale (Pope 2010). Pope (2010) proposed that the mesh spacing should be
less than twice that of the Kolmogorov scale. The ratio of the Kolmogorov scale and
mesh spacing is shown in figure 10, and the ratio is larger than 0.5 except around the time
when the shock wave interacts with the perturbed interface. This means that the current
mesh resolution is sufficient to resolve the smallest scale. The computed Kolmogorov scale
around the time when the shock wave interacts with the perturbed interface originates not
only from the flow itself but also from the large velocity gradient induced by the shock
wave. After the interaction of the shock wave and the perturbed interface, the Kolmogorov
scale increases with the decay of turbulent fluctuations. The numerical results in figure 10
indicate that the Kolmogorov scale with the reshock is slightly less than that with the
first shock. This finding confirms that additional small scales are generated by the reshock
(Zhou 2017b).

3.2.2. The numerical configuration of the mixing transition to turbulent flows
For the multi-mode case, the apparent scale separation and high Reynolds number should
satisfy the following transition criteria (Dimotakis 2000) for the characteristic length scale
l:

η < λV < l < λL < δL, (3.7)

where λV ≈ 50η is the inner viscous scale, λL = Clamλ is the Liepmann–Taylor scale with
Clam ≈ 5, and δL is the outer scale. Here, η is the Kolmogorov viscous length scale,
and λ is the Taylor microscale. Apparent scale separation is needed for fully developed
turbulent flows, which requires λL > λV (Groom & Thornber 2021). The mixing transition
phenomenon has been confirmed in many previous numerical simulations and shock-tube
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Figure 11. (a) The ratio of the directional Taylor microscales and mesh spacing. (b) Transverse Taylor-scale
Reynolds numbers and outer-scale Reynolds numbers.

facilities. The directional Taylor microscales are shown in figure 11(a). The streamwise
Taylor microscale after reshock increases to 200 times greater than the mesh spacing, and
the transition criterion (3.7) can be satisfied easily. It can be concluded that a single shock
may not be strong enough to induce a fully developed turbulent status, especially under the
present initial small-amplitude perturbation and weak shock strength. At the same time,
the reshock can deposit sufficient vorticity to result in three-dimensional fully developed
turbulent flows via apparent scale separation.

Similarly, a transverse Taylor-scale and outer-scale Reynolds number can also be
selected to estimate the transition process. The transverse Taylor-scale Reynolds number
is defined as

Reλi =
〈
u′′2

i
〉

〈ν〉
√〈(

∂u′′
i /∂xi

)2
〉 . (3.8)

Here, u′′
i denotes the ith-direction fluctuating velocity, which is computed as u′′

i =
ui − 〈ui〉. We show the evolution of the transverse Taylor-scale Reynolds numbers
and the outer-scale Reynolds number in figure 11(b). Dimotakis (2000) proposed that
Reλ ≥ 100–140 and Reh ≥ 1–2 × 104 for fully developed stationary turbulent flows. From
the perspective of the transverse Taylor-scale Reynolds number, their values satisfy this
requirement for a fraction of the time after the first shock and then decay. Under the
effect of the reshock, they increase rapidly to be larger than 1000, and subsequently decay.
Although the streamwise transverse Taylor-scale Reynolds number is always larger than
the values in the other two directions, all are always greater than 140 during a fraction
of the time after shock. The peak value of the outer-scale Reynolds number exceeds
400 after the first shock, and exceeds 4000 after reshock. However, it cannot satisfy the
criterion with Reh ≥ 1–2 × 104 proposed by Dimotakis (2000) and the minimum state
with Reh ≥ 1.6 × 105 proposed by Zhou (2007). Similar conclusions are also obtained in
a previous work (Groom & Thornber 2021), and the main reason lies in the pollution of
acoustic waves and imperfect boundary conditions in compressible numerical simulations,
especially with a rigid wall on the right-hand side.

Before the transition to turbulent flows, the flow structure should be similar to that
confirmed in numerical simulations with a single-mode perturbation. Hence we select an
instance before reshock (t2) in figure 12(a) to show the three-dimensional flow structures.
Owing to the complexity of the initial multi-mode perturbation, multiple-layer vortex
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Figure 12. Three-dimensional vortex structures represented by Q = 0.01Qmax rendered by the streamwise
velocity (a) before reshock and (b) after reshock, initiated with multi-mode perturbations. The two selected
instances correspond to t2 and t4 as marked in figure 10.

rings are present within the mixing regions. The streamwise velocity difference shown in
a single vortex ring corresponds to the streamwise translation through the self-induced
velocity. In contrast to single-mode perturbations, the flow structures initiated with
multi-mode perturbations are complex, including the vortex size, spatial distribution, and
dependence on the bubble and spike structures. However, the basic flow structures are
consistent with the vortex configuration shown in figure 6(a). The flow structures after the
transition to turbulent flows are shown in figure 12(b). It is found that the dominant vortex
rings have broken down into smaller scales, and they are similar to flow structures present
in fully developed turbulent flows.

3.2.3. Enstrophy budget around the reshock time
The interaction of the shock and the perturbed interface can be explained as the
baroclinicity of the density gradient and the pressure gradient, and it is regarded as an
alternative origin for the RMI (Zhou et al. 2003; Zhou 2017b). This physical description
can be expressed as the following vorticity governing equation (Chassaing et al. 2010; Yan
et al. 2019, 2020; Bender et al. 2021):

∂ωi

∂t
+ uj

∂ωi

∂xj
= ωjSij − ∂uj

∂xj
ωi + 1

ρ2 εijk
∂ρ

∂xj

∂p
∂xk

+ εijk
∂

∂xj

(
1
ρ

∂σkl

∂xl

)
, (3.9)

where ω = ∇ × u is the vorticity, Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the deformation strain
rate tensor, and εijk is the Levi-Civita symbol. An alternative definition of enstrophy in
compressible flows is Ω = ωiωi/2 (Bender et al. 2021).

The governing equation can be derived as

∂Ω

∂t
+ uj

∂Ω

∂xj
= ωjSijωi︸ ︷︷ ︸

VS

− 2Ω
∂uj

∂xj︸ ︷︷ ︸
KΩ

+ ωi

ρ2 εijk
∂ρ

∂xj

∂p
∂xk︸ ︷︷ ︸

B

+ωiεijk
∂

∂xj

(
1
ρ

∂σkl

∂xl

)
︸ ︷︷ ︸

DΩ

. (3.10)

On the right-hand side, the first term is the vorticity stretching term labelled VS, which is
associated with the energy cascade process in the classical turbulence theory (Pope 2010).
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Figure 13. (a) Mean enstrophy and turbulent kinetic energy. (b) The enstrophy budget and viscous dissipation
rate of the kinetic energy (〈ε〉) around the reshock time.

The second term originates from the compressibility, labelled KΩ , and the third term is the
baroclinic term, labelled B. Kida & Orszag (1990) proposed that the baroclinic mechanism
works inside the curved shock, and vorticity stretching is dominant outside shocks. This
means that the baroclinic term B makes an essential contribution to the vorticity generation
only when the shock interacts with the mixing regions, and the vorticity stretching term
VS is dominant after the interaction of the shock and mixing regions.

The increased magnitude of the enstrophy is shown in figure 13(a), and it is investigated
through the analysis of the enstrophy budget around the reshock time in figure 13(b). The
definition of the enstrophy determines that its unit is s−2, and the unit of its time derivative
is s−3. To be consistent with the horizontal axis, the units of the enstrophy and its budget
are changed to ms−2 and ms−3, respectively. The magnitude of the baroclinic term B
is smaller than the magnitude of the vorticity stretching term VS, whose contribution to
the enstrophy evolution is more apparent. This regulation could be explained through the
strong shear present in the definition of the vorticity stretching term VS and the co-rotating
vortex pairs of the above double-layer vortex rings with local swirl. Around the first shock,
the velocity gradient is small. However, the deformation stress tensor also develops with
the development of the perturbed interface. Until the reshock time, the velocity fluctuation
is much stronger than that with the first shock. Hence the vorticity stretching term makes an
apparent contribution. The turbulent kinetic energy (TKE) is defined as TKE = ρu′′

i u′′
i /2,

and its mean is also shown in figure 13(a). After reshock, its amplitude also increases
rapidly, which is similar to the regulation of enstrophy (Tritschler et al. 2014a; Zhou et al.
2020; Bender et al. 2021).

The determination of the transition time to turbulent mixing after reshock is an essential
issue for practical applications, and the flow evolution after reshock is similar to that of
decaying homogeneous and isotropic turbulence. Initiated by a random field, the flow
fully develops after the viscous dissipation rate peaks in decaying homogeneous and
isotropic turbulent flows. The characteristic time is the large-eddy turnover time, defined
as τi = Lfi/u

′. The directional integral length scale Lfi is

Lfi = 3π

2(u′
i)

2

∫ ∞

0

Eu(k)
k

dk, (3.11)

where Eu(k) is the power spectrum of the velocity, with
∫∞

0 Eu(k) dk = 〈u′2
i 〉/2, and

u′
i is the root mean square of the ith directional velocity. The time evolution of the

directional integral length scale and the corresponding large-eddy turnover time are
shown in figure 14. After reshock, the ratio of the directional integral length scale and
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Figure 14. (a) Ratio of the directional integral length scale and the Kolmogorov length scale.
(b) Corresponding directional large-eddy turnover times.

the Kolmogorov length scale increases rapidly, which represents large-scale separation.
Moreover, the large-eddy turnover time decreases rapidly, which indicates a smaller
characteristic time. Analogous to decaying homogeneous and isotropic turbulent flows,
the large-eddy turnover time immediately after reshock can be used to predict the
transition time. The average value of the three-directional large-eddy turnover time
is approximately 0.073 ms. The peak viscous dissipation rate, which reflects the fully
developed status, originates from the dominant strain field and is also associated with
the vortex stretching process. Hence the time of developing vortex stretching is referred to
as the characteristic time of mixing transition after reshock. This regulation is confirmed
numerically in figure 13(b), with close peak times of the vortex stretching process and
viscosity dissipation rate. The time from the reshock to the peak value of the viscosity
dissipation rate is approximately 0.077 ms, which is close to the time predicted by the
large-eddy turnover time method. Hence large-scale deposited vorticity is similar to
decaying homogeneous and isotropic turbulent flows (Tritschler et al. 2014b).

4. The description of the transition process from the strain field at large, middle and
small scales

The highlighted transition to turbulent flows induced by reshock is the reshock that
increases the instability of the involved counter-rotating and co-rotating vortex pairs, and
accelerates the iterative cascade process. Under the joint influence of the counter-rotating
and co-rotating vortex pairs, the flow evolution is unstable. After reshock, the deposited
baroclinic is opposite, and the counter-rotating and co-rotating vortex pairs still coexist.
Nevertheless, the vorticity increases dramatically from the deposited baroclinic vorticity,
which corresponds to the increased rotation velocity around the vortex ring centre. Hence
the Reynolds number increases rapidly and is larger than the critical Reynolds number of
the vortex pairs. The evolution of the two-dimensional contour slice of the mixture density
initiated by the single-mode perturbation is exhibited in figure 4 at different typical times.
After reshock, the spike and bubble first move close to each other, and their phases are
ultimately reversed. The relative motion introduces larger shear between the co-rotating
vortex pairs, which triggers the transition to turbulent mixing (Goto 2008; Leweke et al.
2016).

To summarize, it is the strong shear field that triggers the transition to turbulent
mixing. In contrast to the short-time baroclinic term induced by reshock, strong shear
destabilizes interface development during the transition to turbulent mixing, which occurs
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as a long-time source. The strong shear originates from the increased rotation velocity
and decreased distance of the co-rotating and counter-rotating vortex pairs induced by
reshock. Hence the reshock effect could be attributed to the generated large-scale strain
field. The iterative interaction of the large-scale strain fields leads to the generation of
next-generation vortices. To characterize the large-scale strain fields after reshock, we
show in figure 15 the two-dimensional contour slices of the heavy gas (SF6) density,
enstrophy and amplitude of the strain rate tensor at the four selected instants marked in
figure 10. Except for the instant immediately after reshock shown in figures 15(g–i), the
spatial distributions of the enstrophy and strain fields are similar, with the development of
the mixing region. The discrepancy lies in the characterization of the disturbed flow fields
induced by the complex wave diagram. In figures 15(a–c), the transmitted and reflected
shocks have passed away, and the induced perturbation into the flow field has dissipated
over a sufficiently long period. Hence the difference between the spatial distributions of
the enstrophy and strain fields is nearly negligible. A similar regulation is represented in
the instant before the reshock in figures 15(d–f ), except for the distribution of the reshock.
This is due to the oscillating decreasing property of the rippled shock. In figures 15( j–l),
after the interaction of the reshock and the mixing region, the reflected rarefaction wave
also ripples. It also induces additional perturbation of the flow field after passing through,
which is represented by the spatial distribution of the strain field on the right-hand side
in figure 15(l). Nevertheless, the spatial distributions of the enstrophy and strain fields
clearly differ immediately after reshock, as shown in figures 15(g–i). At this typical
instant, the density field of the SF6 in figure 15(g) indicates the compressed mixing region,
and the large-scale flow structures dominate the subsequent flow evolution. However, the
spatial distribution of the enstrophy in figure 15(h) is not sufficient to show the dominant
large-scale property. The spatial distribution of the strain field in figure 15(i) indicates that
the majority of the strain field is concentrated on large-scale structures, which is more
evident in large-scale flow structures.

For the inertial scale, the self-amplification of the strain fields is the main contributor
to the energy cascade process (Johnson 2020; Yang et al. 2022). The filtering technique
can be used to investigate the scale interactions in turbulent flows. For any variable f , the
filtered field is expressed as f̄ (x) = ∫

d3x Gl(r) f (x + r). Here, Gl(r) is a filter function,
such as the box filter, Gaussian filter, sharp spectral filter, Cauchy filter or Pao filter (Pope
2010). In compressible turbulent flows, the Favre filtered field considering the variable
density is induced, which is expressed as f̃ = ρ̄f /ρ̄ (Garnier, Adams & Sagaut 2009;
Gatski & Bonnet 2013). The energy cascade process is reflected in the unclosed term
of the governing equation of the large-scale kinetic energy (ρ̄ũ2

i /2) as

∂

∂t

(
1
2
ρ̄ũ2

i

)
+ Jl = −Π t

l +Φl − Dl. (4.1)

Here, Jl ≡ (∂/∂xj)(
1
2 ρ̄ũiũj + p̄ũj + ρ̄τ̃ijũi − ũiσ̄ij) is the spatial transportation term,

Π t
l ≡ −ρ̄τ̃ij(∂ ũi/∂xj) is the interscale kinetic energy flux, Φl ≡ p̄(∂ ũi/∂xi) is the

pressure-dilatation term, and Dl ≡ σ̄ij(∂ ũi/∂xj) is the viscous dissipation term. For the
kinetic energy cascade process termΠ t

l , previous valuable works have performed detailed
statistical investigations of RMI (Thornber & Zhou 2012; Liu & Xiao 2016; Zeng et al.
2018; Zhou, Ding & Cheng 2024) and Rayleigh–Taylor instability (Cook & Zhou 2002;
Zhao, Liu & Lu 2020; Luo & Wang 2022; Wong et al. 2022; Zhao, Betti & Aluie 2022).

To distinguish the contributions of the strain field and vortex stretching process to
the kinetic energy cascade process, the subgrid-scale stress ρ̄τ̃ can be expanded to the
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Figure 15. Two-dimensional contour slices of the heavy gas (SF6) density, enstrophy and amplitude of the
strain rate tensor, initiated by a multi-mode perturbation. They are shown at the selected instant t1 in (a–c), at
the selected instant t2 in (d–f ), at the selected instant t3 in (g–i), and at the selected instant t4 in ( j–l), as marked
in figure 10.
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first-order approximation with an isotropic filter as (Eyink 2006; Garnier et al. 2009; Pope
2010)

ρ̄τ̃ = ρ̄
(
ũiuj − ũiũj

) = l2

12
ρ̄
∂ ũi

∂xk

∂ ũj

∂xk
. (4.2)

The above expression is also an adaptation of the tensor-diffusivity model of LES for
compressible flows proposed by Vreman, Geurts & Kuerten (1995). A kinetic energy
flux constraint model is also proposed based on the above expanded expression, which
is employed to predict the transition process in compressible wall-bound turbulence
(Yu et al. 2022). The filtered velocity gradient can be decomposed into symmetric and
antisymmetric components as

∂ ũi

∂xj
= S̃ij − 1

2
εijkω̃k. (4.3)

Here, S̃ij = (∂ ũi/∂xj + ∂ ũj/∂xi)/2 is the filtered strain tensor. Substituting (4.3) and (4.2)
into the interscale kinetic energy flux, we can obtain the expression

Π t
l = − l2

12
ρ̄
∂ ũi

∂xk

∂ ũj

∂xk

∂ ũi

∂xj
≡ − l2

12
ρ̄S̃ikS̃jkS̃ij︸ ︷︷ ︸
ΠS

l

− l2

48
ρ̄ω̃iS̃ijω̃j︸ ︷︷ ︸
Πω

l

. (4.4)

On the right-hand side of the above expression, the first termΠS
l originates from the strain

field, and the second term Πω
l originates from the vortex stretching process. According to

Betchov’s relation, under incompressible and three-dimensional homogeneity conditions,
the ensemble average of the first term is three times the ensemble average of the second
term (Betchov 1956). The theoretical derivation indicates that the self-amplification of
the strain-rate field contributes mainly to the kinetic energy cascade process rather than
the vortex stretching process (Carbone & Bragg 2020; Johnson 2020; Johnson & Wilczek
2024).

The statistical properties of the kinetic energy flux and the contributions from the
strain field and vortex stretching process are subsequently investigated. We show their
ensemble averages at different length scales along the streamwise direction in the focused
four instants in figure 16. All the statistical results illustrate that the vortex stretching
process plays a less dominant role in the kinetic energy cascade process, which is
represented by the smaller amplitudes of the kinetic energy flux contributed by the vortex
stretching process shown in figures 16(c, f,i,l). At relatively large scales, the forward
kinetic energy cascade occurs mainly within the spike region, and the backward kinetic
energy cascade process occurs mainly within the bubble regions. This conclusion is
consistent with previous regulations (Thornber & Zhou 2012; Liu & Xiao 2016; Zhou
et al. 2024), but it does not apply immediately after reshock, as shown in figure 16(g).
Immediately after reshock, the backward kinetic energy cascade process dominates the
bubble and spike regions, except around the mixing centre. This reflects the large-scale
flow structure generation process during the compression stage induced by the reshock.
With the development of the mixing region after reshock, the forward kinetic energy
cascade process begins to be important, which is shown first around the mixing centre,
and then extended to the spike regions. At relatively small scales, the forward kinetic
energy cascade process is dominant. Hence a critical length scale exists for the bubble
regions. The numerical results shown in figure 16 indicate that the critical length scale is
approximately 10�x–20�x, which is associated with the initial perturbation distribution.
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Figure 16. The mean total kinetic energy flux 〈Π t
l 〉yz, the mean kinetic energy flux contributed from the strain

fields 〈ΠS
l 〉yz, and the mean kinetic energy flux contributed from the vortex stretching process 〈Πω

l 〉yz, at
different length scales along the streamwise direction. They are shown at the selected instant t1 in (a–c), at the
selected instant t2 in (d–f ), at the selected instant t3 in (g–i), and at the selected instant t4 in ( j–l), as marked
in figure 10. The three black dashed lines from left to right correspond to the spike position, mixing centre and
bubble position, respectively.

As the two components of the first-order approximation of the kinetic energy flux,
the theoretical relationship of their ensemble average under the three-dimensional
homogeneity condition illustrates that the contribution from the strain field is dominant.
In figure 16, their ensemble average at different length scales is also presented along
the streamwise direction. Although the amplitude discrepancy of the total kinetic energy
flux and the contribution from the strain fields exist, the spatial and scale distributions
are similar, including the dependence of the kinetic cascade process on the bubble and
spike regions, and the critical length scale separating the forward and backward kinetic
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energy cascade processes. The contribution from the vortex stretching process is small,
which indicates a large deviation in predicting the kinetic energy cascade process. The
amplitude discrepancy validates the conclusion that self-amplification of the strain rate
field contributes mainly to the kinetic energy cascade process. In addition, the vortex
stretching process cannot capture the inverse kinetic energy cascade process, which is
reflected in the negative values within the bubble regions. Immediately after reshock, the
vortex stretching process cannot capture the compression process of the mixing regions.
Nevertheless, the vortex stretching process can qualitatively reflect the forward kinetic
energy cascade process at small scales, even when the amplitude discrepancy is still large.

To further quantitatively investigate the total kinetic energy flux and contributions
from the strain field and vortex stretching process, their ensemble averages and ensemble
averages conditioned in bubble and spike regions with different length scales at the four
focused instants are shown in figure 17. These ensemble averages along the streamwise
directions are similar to the regulations shown in figure 16. At relatively large scales,
the cancellation of the forward kinetic energy cascade in the spike region, and backward
kinetic energy cascade in the bubble region, leads to a small value of the ensemble average
of the kinetic energy flux with the mixing regions. Hence the kinetic energy cascade
process should be associated with specific flow structures. The ensemble averages of the
kinetic energy flux within the mixing regions cover the coexistence of the forward and
backward kinetic energy cascade processes. This regulation indicates the potential value of
the tensor-diffusivity model in the application of modelling the RMI with multiple shocks,
even when facing possible numerical instability. However, the pure dissipative model,
such as the Smagorinsky model with a constant coefficient, might not be appropriate
for predicting RMI evolution. This statistical regulation indicates the use of a combined
LES model to predict the RMI evolution with multiple shocks. This means that the
Smagorinsky model can be employed at middle length scales to capture the kinetic energy
cascade process and provide numerical stability, and the tensor-diffusivity model can be
employed at large length scales to capture the kinetic energy cascade process.

Hence the rapid transition in RMI can be described from the perspective of strain field
at large, middle and small scales, respectively. At large scales, reshock induces short-time,
large-scale baroclinic vorticity, which intensifies the motion of the co-rotating vortex pairs.
It provides a large-scale strain field, which also serves as a source to sustain the multiscale
kinetic energy distribution. At middle scales, self-amplification of the middle-scale
strain field transfers kinetic energy from large scales to small scales. At small scales,
viscous dissipation is directly associated with the strain fields. To estimate the multiscale
distributions around the reshock time, we select four typical instants, marked in figure 10,
to show the kinetic energy spectrum in figure 18. Before reshock, the total kinetic energy
spectrum decays at all scales. Immediately after reshock, the amplitude of the kinetic
energy density increases dramatically, which originates from the large-scale deposited
baroclinic vorticity. The energy spectra density slope is relatively large, which means that
large-scale generation is dominant. Nevertheless, the kinetic energy transfers from large
to small scales after sufficient time. The energy spectra density slope is consistent with
that of the classical developed turbulent flows, which corresponds to the iterative cascade
of the strain fields induced by reshock. The three-dimensional iso-surfaces of the mass
fraction of SF6 with Y = 0.99 at different corresponding times with figure 18 are shown
in figure 19. Consistent with the two-dimensional flow configurations in figure 15, the
three-dimensional mixing regions in figures 19(a,b) can reflect the dissipation of the small
scales from t1 to t2. Figure 19(c) shows the mixing region decompressed by reshock, and
a fully developed mixing region is shown in figure 19(d).
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Figure 17. The mean total kinetic energy flux within the mixing region 〈Π t
l 〉, within the bubble region 〈Π t

l |
bubble〉, and within the spike region 〈Π t

l | spike〉; the mean kinetic energy flux contributed from the strain
fields within the mixing region 〈ΠS

l 〉, within the bubble region 〈ΠS
l | bubble〉, and within the spike region

〈ΠS
l | spike〉; and the mean kinetic energy flux contributed from the vortex stretching process within the mixing

region 〈Πω
l 〉, within the bubble region 〈Πω

l | bubble〉, and within the spike region 〈Πω
l | spike〉, at different

length scales. They are shown at the selected instant t1 in (a), at the selected instant t2 in (b), at the selected
instant t3 in (c), and at the selected instant t4 in (d), as marked in figure 10.
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Figure 18. Kinetic energy spectra initiated by a multi-mode perturbation at different times, where Π is the
energy flux, S is the strain field, S̃ is the large-scale strain field, ε is the viscous dissipation rate, and ν is the
kinematic viscosity coefficient.
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Figure 19. Three-dimensional iso-surfaces of the mass fraction of the heavy gas (SF6) with Y = 0.99. The
instant is t1 in (a), t2 in (b), t3 in (c) and t4 in (d).

5. Conclusions and discussion

In this paper, we carry out three-dimensional DNS of the RMI with reshock initiated
with single- and multi-mode perturbations, and investigate the transition process in the
RMI with reshock from the perspective of three-dimensional double-layer swirling vortex
rings. We extend the two-dimensional flow configuration to three dimensions by extending
the flow in the azimuthal direction, and investigate the evolution of the local swirling
vortex rings around the reshock time, which are located around the bubble and spikes.
The three-dimensional effect is represented by the local swirling motion in the azimuthal
direction, which originates from the three-dimensional rippled shock. This decreases the
translation velocity of a vortex ring, which might cause the mixing region to slow in
practical three-dimensional flows. Nevertheless, the double-layer co-rotating vortex pair
could increase the translation velocity of a vortex ring. The stability of the swirling vortex
ring ensures the successive increasing mechanism induced by the double-layer co-rotating
vortex pair. Hence increasing and decreasing mechanisms exist to form three-dimensional
effects relative to two-dimensional flows.

The coexistence of co-rotating and counter-rotating vortices provides the possibility
of triggering a rapid transition, and they are common flow structures within the scope
of interfacial mixing. We describe the rapid transition in RMI from the perspective of
strain field at large, middle and small scales, which provides a straightforward physical
configuration to uncover what happens during the mixing transition process. At large
scales, the reshock leads to large-scale vorticity deposition, which intensifies the evolution
of the vortex rings. The translation velocity difference of the double-layer vortex rings
induced by reshock causes them to approach each other, and the corresponding shear
field increases rapidly. The increased shear field serves as a large-scale source to trigger
turbulent mixing. At middle scales, self-amplification of the strain field dominates, and
apparent scale separation is present after a typical characteristic time. At small scales,
the strain field is directly associated with the viscous dissipation process. Based on the
similarity between the flow evolution of RMI with reshock and decaying homogeneous
and isotropic turbulent flows, we confirm that the large-eddy turnover time can be selected
as the characteristic time to determine the characteristic time of the transition process.
It can provide practical suggestions for the strategy design of implosion experiments and
exploration of supernovas.

The present numerical simulations and corresponding analysis are based on the shock
propagating from heavy material into light material, which is similar with the flow
evolution during the late-time acceleration phase in ICF. Nevertheless, we investigate the
rapid transition process from the fluid and mixing evolution, and the shock Mach number
is small. In the future, more factors associated with the high-energy-density conditions
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should be investigated to give a more comprehensive estimation of the implosion process
in ICF.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.1220.
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Appendix A. The steady solution of the Bragg–Hawthorne equation

It is often convenient to use a cylindrical coordinate system (r, θ, z) to describe the
geometric characteristics of a vortex ring, with velocity u = (u, v,w) and vorticity ω =
(ωr, ωθ , ωz). The three vorticity components are

ωr = 1
r
∂w
∂θ

− ∂v

∂z
, ωθ = ∂u

∂z
− ∂w
∂r
, ωz = 1

r
∂(rv)
∂r

− 1
r
∂u
∂θ
. (A1a–c)

We introduce a Stokes stream function ψ and a scalar function Γ = rv to express the
velocity and vorticity as

u = −1
r
∂ψ

∂z
, w = 1

r
∂ψ

∂r
, (A2a,b)

ωr = −1
r
∂Γ

∂z
, ωz = 1

r
∂Γ

∂r
, ωθ = −

[
∂

∂r

(
1
r
∂ψ

∂r

)
+ 1

r
∂2ψ

∂z2

]
. (A3a–c)

The inviscid azimuthal momentum equation of the Crocco–Vazsonyi equation reads as

∂v

∂t
+ (uωz − wωr) = −1

r
∂H
∂θ
, (A4)

where H = p + 1
2 u2. The corresponding inviscid azimuthal vorticity equation reads as

Dωθ
Dt

+ vωr

r
= ω · ∇v + ωθu

r
. (A5)

Here,
D
Dt

= ∂

∂t
+ u

∂

∂r
+ v

r
∂

∂θ
+ w

∂

∂z
. (A6)

According to the definition of the scalar function Γ = rv, we can obtain its governing
equation as

DΓ
Dt

= ν

[
r
∂

∂r

(
1
r
∂Γ

∂r

)
+ ∂2Γ

∂z2

]
. (A7)
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The inviscid azimuthal vorticity equation can be rewritten as

D
Dt

(ωθ
r

)
= ν

(
∇2 + 2

r
∂

∂r

)(ωθ
r

)
+ 1

r4
∂Γ 2

∂z
. (A8)

If we suppose that the fluid is incompressible and inviscid, then the steady flow must be
generalized to the Beltramian. The above equations can be reduced to

u · ∇Γ = 0, (A9)

u ·
(ωθ

r

)
= 1

r4
∂Γ 2

∂z
. (A10)

This indicates that the circulation along any circle around the vortex axis is conserved, and
that Γ = C(ψ). The vorticity can be expressed as

ωr = −1
r

dC
dψ

∂ψ

∂z
= u

dC
dψ
, ωz = 1

r
dC
dψ

∂ψ

∂r
= w

dC
dψ
,

ωθ

r
= C

r2
dC
dψ

− dH
dψ
.

(A11a–c)

Therefore, the following differential equation can be obtained for steady inviscid flows:

r
∂

∂r

(
1
r
∂ψ

∂r

)
+ ∂2ψ

∂z2 = r2 dH
dψ

− C
dC
dψ
. (A12)

This equation is called the Bragg–Hawthorne equation (Bragg & Hawthorne 1950;
Saffman 1995; Wu et al. 2007). The Euler solution of the Hill spherical vortex
can be extended to apply to the Bragg–Hawthorne equation. In spherical coordinates
(r, θ, φ) with r < a, a closed-form solution exists with C(ψ) = ±αψ and H = H0 + λψ .
An alternative solution of the stream function is

ψ = −1
2

U
(

r2 − a3

r

)
sin θ, (A13)

where U is the speed at which the vortex propagates relative to the fluid at infinity (Moffatt
1969).

Appendix B. The swirling effect on the translation velocity and kinetic energy of a
vortex ring

From (A11a–c), the stream function can be obtained as

ψ(r, z) = 1
4π

∫
rω′
θe′
θ · eθ
R

dV ′, R = |x − x′|. (B1)

It can also be rewritten as

ψ(r, z) =
∫
ωθ G

(
r, r′, z − z′) dr′ dz′, (B2)

where

G(r, r′, z − z′) = rr′

4π

∫ 2π

0

cosβ
R

dβ,

β = θ − θ ′, R =
√
(z − z′)2 + r2 + r′2 − 2rr′ cosβ. (B3)
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The kinetic energy can be expressed as

K = 2UIz + 2π

∫ [
ωθ(rw − zu)+ v(zωr − rωz)

]
r dr dz. (B4)

By introducing the vorticity-induced kinetic energy and Lamb’s first formula, we can
obtain the following exact relations:

π

∫
ωθψr dr dz = 2UIz + 2π

∫
ωθ(rw − zu)r dr dz,

Iz = 1
2

∫
ωθ r2 dr dz dθ,

2π

∫
ωθ(rw − zu)r dr dz = 2π

∫
(rv2 − 3rzuωθ) dr dz.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
(B5)

The following notations are introduced to use the energy method for computing the
thin-cored swirling vortex ring:

Γσ (σ ) = 2π

∫ σ

0
ωθ(σ

′) σ ′ dσ ′, ωθ (σ ) σ dσ = 1
2π

dΓσ ,

Γσ (a) ≡ Γ, u = Γσ

2πσ
cosα, v = v(σ ) ≡ Cσ (σ )

2πσ
.

⎫⎪⎪⎬⎪⎪⎭ (B6)

Therefore, the above exact relations can be expressed as

Iz = π

∫
(r0 + σ sinα)2 ωθ(σ ) σ dσ dα ≈ πΓ r2

0,

ψ(σ ) = r0Γ

2π

(
ln

8r0

a
− 2

)
+ r0

2π

∫ a

σ

Γs

s
ds,

π

∫
ωθψσ dσ dα ≈ 1

2
r0Γ

2
(

ln
8r0

a
− 2

)
+ r0

2

∫ a

0

Γ 2
σ

σ
dσ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(B7)

To leading order,

2π

∫
rv2 dr dz = r0

∫ a

0

C2
σ

σ
dσ, 6π

∫
rzuωθ dr dz = 3

4
r0Γ

2. (B8a,b)

Finally, we obtain the translation velocity and kinetic energy of a vortex ring as follows:

U = Γ

4πr0

(
ln

8r0

a
− 1

2
+ 1
Γ 2

∫ a

0

Γ 2
σ − 2C2

σ

σ
dσ

)
, (B9)

K = 1
2

r0Γ
2
(

ln
8r0

a
− 2 + 1

Γ 2

∫ a

0

Γ 2
σ + C2

σ

σ
dσ

)
, (B10)

where C2
σ reflects the swirling contribution. These findings indicate that the swirling

direction is associated with the translation direction of the vortex rings, and the appearance
of the swirling motion would cause the vortex ring to slow and increase the kinetic energy
(Grauer & Sideris 1991; Cheng, Lou & Lim 2010; Naitoh et al. 2014).
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