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Abstract. We prove ×a × b measure rigidity for multiplicatively independent pairs when
a ∈ N and b > 1 is a ‘specified’ real number (the b-expansion of 1 has a tail or bounded
runs of 0s) under a positive entropy condition. This is done by proving a mean decay of
the Fourier series of the point masses average along ×b orbits. We also prove a quantitative
version of this decay under stronger conditions on the ×a invariant measure. The
quantitative version together with the ×b invariance of the limit measure is a step toward
a general Host-type pointwise equidistribution theorem in which the equidistribution is for
Parry measure instead of Lebesgue. We show that finite memory length measures on the
a-shift meet the mentioned conditions for mean convergence. Our main proof relies on
techniques of Hochman.
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1. Introduction
1.1. Definitions and notation. First, we introduce a couple of frequently used definitions.
Given a positive real number b, we define the b-fold map Tb : [0, 1) → [0, 1) by Tb(x) =
b · x mod 1. We identify [0, 1) with R/Z so that Tb is referred interchangeably as a toral
map that has at most one discontinuity at 0. For a real pair (s, t) ∈ (1, ∞) × (1, ∞), we
say that they are multiplicatively independent and write s � t if (log s/log t) /∈ Q. As
is customary, we write [·], �·� for the floor and the ceiling functions, respectively, and
{x} = x − [x] for the fractional part of a non-negative real number x.

For a Polish space X, denote by (X, �) the Borel space that is associated to it. Let
μ be some probability measure on (X, �). A sequence of points {xn}∞n=1 in (X, E) is
said to be equidistribute for μ if the mean of their point masses weakly-* converges to
μ: (1/N)

∑N
n=1 δxn

w−∗−−→ μ. Let T : X → X be a function. If for some x ∈ X we have

(1/N)
∑N

n=1 δT nx
w−∗−−→ μ, then we say that x equidistributes for μ under T.
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For every m ∈ Z and x ∈ R/Z, we write em(x) = e(mx) = exp(2πimx). Let μ be a
finite Borel measure on R/Z and M(R/Z) be the set of all such measures. The mth Fourier
coefficient of μ is defined to be μ̂(m) = ∫

em(x) dμ(x), the Fourier transform of μ is the
sequence μ̂ = (μ̂(n))n∈Z and the map F : M(R/Z) → �∞(Z) defined by F(μ) = μ̂ is
the Fourier transform.

We denote the Lebesgue measure on R/Z by m and the integration with respect to
Lebesgue measure by dz. In our context, all the absolutely continuous measures are with
respect to Lebesgue.

1.2. Background. Furstenberg’s Diophantine theorems [3] formed the background to
Furstenberg’s pioneering ×2 × 3 conjecture about the measure rigidity of T2, T3. This
conjecture suggests that the only non-atomic and ergodic Borel probability measure on the
circle which is also T2 and T3 invariant is Lebesgue measure.

The best result so far on this problem was proved by Rudolph and later strengthened
further by Johnson, now known as Rudolph–Johnson theorem [7, 10]. It establishes the
conjecture for every multiplicatively independent pair of integers m, n ≥ 2 under the
additional assumption of positive entropy.

Later, the following pointwise ‘equidistributional’ version was proved by Host [6] when
gcd(a, b) = 1 and improved to the case a � b by Hochman and Shmerkin [5]. Let μ be
a probability measure on R/Z which is invariant, ergodic, and has positive entropy with
respect to an endomorphism Ta . Then μ-almost every (a.e.) x equidistributes for Lebesgue
measure under every endomorphism Tb with a � b. We write HET (Host’s equidistribution
theorem) for short when referring to this theorem.

In another direction, the next result is due to Parry [9]. Given a real b > 1, there exists a
unique Tb-invariant Borel probability measure that is equivalent to Lebesgue measure. Its
Radon–Nikodym derivative can be written explicitly as

f (x) =
∑

x<T n
b (1)

1
bn

and 1 − 1
b

≤ f ≤ 1
1 − 1/b

.

Therefore, for an integer a ≥ 2 and a non-integer b > 1, there does not exist a joint Ta

and Tb invariant and absolutely continuous probability measure.
This suggests the following problem.

Problem 1.1. Let a ≥ 2 be an integer and let b > 1 be a non-integer such that a � b. Is
it true that there are no non-atomic and ergodic Borel probability measures on the circle
which are both Ta and Tb invariant?

The HET and the Parry measure may also be related to each other via the next possible
generalization of HET.

Problem 1.2. (Generalized HET) Let μ be a probability measure on R/Z which is
invariant, ergodic, and has positive entropy with respect to an endomorphism Ta . Let
1 < b ∈ R with a � b. Is it true that μ-a.e. x equidistributes for Parry measure under Tb?

These two problems are the main concern of this paper.
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1.3. Results. We begin by outlining our strategy for tackling Problems 1.1 and 1.2 from a
harmonic analysis perspective. We denote the space of bi-infinite sequences both of whose
limits are zero by c0(Z).

In the case of Problem 1.1, a possible strategy is the following.
(1) To show that for every probability measure μ on R/Z which is invariant, ergodic,

and has positive entropy with respect to an endomorphism Ta , it holds that μ-a.e. x,{∫
lim sup
N→∞

∣∣∣∣ 1
N

N−1∑
i=0

em(T i
b (x))

∣∣∣∣ dμ

}∞

m=−∞
∈ c0(Z).

(2) Assume by contradiction that μ is a non-atomic and ergodic Borel probability
measure on the circle which is Ta- and Tb-invariant as in Problem 1.1. Notice that

|μ̂(m)| ≤
∫

lim sup
N→∞

∣∣∣∣ 1
N

N−1∑
i=0

em(T i
b (x))

∣∣∣∣ dμ

and therefore by the first step,

{|μ̂(m)|}∞m=−∞ ∈ c0(Z).

However, the Ta invariance implies that for every m ∈ Z, we have μ̂(m) = μ̂(a · m)

and the limit above is possible only when

μ̂(m) =
{

1 for m = 0,

0 for m 
= 0,

that is, when μ is Lebesgue measure. This contradicts the assumption that μ is
Tb-invariant because Lebesgue measure is not Tb-invariant.

For the case of Problem 1.2, we will need another definition. Let a, b and μ be as in
Problem 1.2. Given some x ∈ [0, 1) and some subsequence {Nk} of N, we denote λx,{Nk} =
limk→∞(1/Nk)

∑Nk−1
i=0 δT i

b (x), if it exists. It is not hard to show that the only Tb-invariant

measure with �2(Z) Fourier transform is the Parry measure. Therefore, a possible strategy
to solve Problem 1.2 is the following.
(1) To show that μ-a.e. x,{

lim sup
N→∞

∣∣∣∣ 1
N

N−1∑
i=0

em(T i
b (x))

∣∣∣∣}∞

m=−∞
∈ �2(Z).

(2) To show that for every μ-typical x, λx,{Nk} is necessarily Tb-invariant (for every {Nk}
such that the limit exists).

(3) By the uniqueness of Parry measure, we conclude that it is the limit of every proper
convergent subsequence of the sequence{

1
N

N−1∑
i=0

δT i
b (x)

}∞

N=1

and we know that such a convergent subsequence does exist. Thus, the whole
sequence also converges to Parry measure.
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Before stating our first result, we give another definition. Given 1 < b ∈ R, there is a
non-surjective measurable embedding of [0, 1) in �N

b = {0, 1, . . . , [b] − 1}N which is
given by the b-expansion,

r �→ ([b · r], [b · Tbr], [b · T 2
b r] . . .).

That is, a subset of �N

b can represent [0, 1). We say that a real positive b is a specified
number or with the specification property if the b-expansion of 1 has bounded runs of 0s
or has a tail of 0s. The set of specified numbers is uncountable and dense in (1, ∞) (see
§2.1). In §3, we prove the following theorem.

THEOREM 1.3. Let μ be a probability measure on R/Z which is invariant, ergodic, and
has positive entropy with respect to an endomorphism Ta for some positive integer a ≥ 2
and let b > 1 be a real specified number such that a � b. Then,{∫

lim sup
N→∞

∣∣∣∣ 1
N

N−1∑
i=0

em(T i
b (x))

∣∣∣∣ dμ

}∞

m=−∞
∈ c0(Z).

According to our strategy, Theorem 1.3 yields a Furstenberg-type measure rigidity for
the class of specified b values.

COROLLARY 1.4. Let a ≥ 2 be an integer and b > 1 be a specified non integer such
that a � b. Then there are no jointly Ta and Tb invariant non-atomic and ergodic Borel
probability measures with positive entropy under Ta .

This is an answer to Problem 1.1 for the class of specified b values under an entropy
assumption (the same assumption currently needed when b ∈ N).

To explain our next result, we need a few more definitions. For convenience, we
denote �−N

a = 	−. For an integer a ≥ 2, let A denote the a-adic partition of [0, 1):
{[k/a, (k + 1)/a)}a−1

k=0 and A(x) ∈ A denote the element which contains x ∈ X. Let
	̃ = 	− × [0, 1) be the natural extension of (R/Z, μ, Ta) together with the map
T̃a(ω, x) = (ωA(x), Tax) and write μ̃ for the unique extension of μ to a T̃a-invariant
measure on 	̃. Let C = ∨0

i=−∞ T̃ i
aA denote the σ -algebra in 	̃ generated by projection to

the past: ω̃ = (ω, x) �→ ω and let {μ̃C
ω}ω be the corresponding disintegration. Notice that

the members of {μ̃C
ω}ω depend only on the 	−-component and that we can identify them

as measures on [0, 1) such that μ = ∫
μω dμ̃(ω).

In §4, under stronger assumptions, we prove a quantitative mean version of Theorem 1.3.

THEOREM 1.5. Let a, b, μ be as in Theorem 1.3 and let {In
j }nj=1 be the uniform partition

of the unit interval into n sub-intervals. Assume that there exists some positive α, such that
for every n, the following holds:

ess sup
η,j

μη(Ij ) ≤ O(n−α)

and such that for some positive β, for every positive integer n, we have

ess sup
η

∫ ∫
χ{x:|x−y|<n−1} dμη(x) dμη(y) ≤ O(n−β).
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Then for every integer m,

Eμ

(
lim sup

N

∣∣∣∣ 1
N

N−1∑
i=0

em(T i
b x)

∣∣∣∣) < O(|m|minγ ,δ>0 max{−δα,(−1−δ(α−1)+γ δ)/2,δ(1−γβ)/2}).

We remark that one can always assume α ≤ β (see §4).
In §6.4, we show that the conditions on μ in Theorem 1.5 are flexible enough to work for

every process with memory of finite length such as variable length mixing Markov chains.
Nonetheless, it certainly does not always work as we show in §6.3.

Our secondary result from §5 provides the following theorem.

THEOREM 1.6. For every real b > 1 and a μ-typical x, if {0} is not an atom of a partial
limit λx,{Nk} = limk→∞(1/Nk)

∑Nk−1
i=0 δT i

b
(x), then λx,{Nk} must be Tb-invariant.

In particular, Theorem 1.3 together with Wiener’s lemma [2] imply that {0} is not an
atom of λx,{Nk}, so Theorem 1.6 proves Step 2 in the second strategy under the assumptions
of Theorem 1.3.

Notice that since

−0.5 < min
γ ,δ>0

max
{

−δα,
−1 − δ(α − 1) + γ δ

2
,
δ(1 − γβ)

2

}
< 0,

our strategy fails to solve Problem 1.2. Let us briefly examine some other alternatives. We
focused on trying to relax the �2(Z) condition as follows.

Let L1(m) be the set of absolutely continuous measures and let Mc(R/Z) be the set of
continuous measures. We say that a measure μ on R/Z is Rajchman if lim|n|→∞ μ̂(n) = 0
and denote the set of Rajchman measures by R. The Riemman–Lebesgue lemma implies
that every absolutely continuous measure is Rajchman. Works by several mathematicians
at the beginning of the 20th century (see [8]) established the more extensive result that
L1(m) � R � Mc(R/Z). We can naturally ask the following questions. Is it true that
Rajchman Tb-invariant measure must be absolutely continuous? Equivalently, is it true
that L1(m) ∩ {Tb-invariant} = R ∩ {Tb-invariant}? Some evidence for a positive answer
comes from the special case of an integer b. In this case, the Parry measure is just the
Lebesgue measure and if μ is Tb-invariant and Rajchman, then, as we already observed
for every n ∈ Z, μ̂(Tbn) = μ̂(b · n). Thus, in addition to μ̂(0), all the other Fourier
coefficients must vanish and μ is indeed Lebesgue. However, in §7, we show the following
proposition.

PROPOSITION 1.7. There exists a Tb-invariant Rajchman measure that is not absolutely
continuous.

2. Preliminaries
2.1. β-shifts. Recall our notation �b = {0, 1, . . . , [b] − 1}. With respect to the product
σ -algebra on �N

b , the shift transformation σ : �N

b → �N

b which is defined by σ((λi)) =
(λi+1) turns �N

b into a dynamical system that we call the full [b] shift. The restriction of
the full shift to the closure of the subset of sequences which encodes b-expansions is a
subshift that we call the b-shift and denote by Xb ⊂ �N

b .
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One says that a real positive b is the following.
• A simple number if the b-expansion of 1 has a 0s tail.
• A simple Parry number if the b-expansion of 1 is a periodic sequence. In some sources,

it is also called a (purely) periodic number.
• A Parry number if the b-expansion of 1 has a periodic tail. In some sources, it is also

called an eventually periodic number.
It is immediate to conclude that

{simple #s} ⊂ {simple Parry #s} ⊂ {Parry #s} ⊂ {specified #s}.
Parry showed [9] that the simple numbers are everywhere dense in (1, ∞), and so is the
set of specified numbers. Schmeling [11] showed that the set of specified numbers also has
Hausdorff dimension 1, but it is meager and has Lebesgue measure 0. In particular, it has
the cardinality of the continuum.

An important property of specified numbers is the following proposition.

PROPOSITION 2.1. When b has the specification property, the orbit of 1 under Tb

(in [0, 1)) remains bounded away from 0 unless it hits it.

Proof. Let 1 < b ∈ R be a specified number. We write b0 = [b], b1 = [b{b}], . . . and
similarly we write r0 = T 1

b (1) = {b}, r1 = T 2
b (1) = {b{b}}, . . . . We need to prove that

0 < infn{rn : rn > 0}. The special case of simple b is trivial. If we assume by contradiction
that 0 = infn{rn : rn > 0}, then b cannot be simple and there is an upper bound k ∈ N on
the length of runs of 0s. However, for every k, there exists an n0 ∈ N with rn0 < b−(k+1)

and therefore bn0+i = 0 for 1 ≤ i ≤ k + 1 in contradiction.

Finally, we present a result by Parry [9] that gives a criterion to determine whether a
given sequence (bn) ∈ {0, . . . [b]}N is a b-expansion of some x ∈ [0, 1), x = b0 + b1/β +
· · · . We emphasize that there might be many representations of x in this form but only one
of them corresponds to the b-expansion that we described earlier. This will be useful for
constructing the counterexample in §7.

If (a0, a1, . . .), (b0, b1, . . .) are sequences of the same length (finite or infinite) of
non-negative integers less than b, we write (a0, a1, . . .) < (b0, b1, . . .) when an < bn for
the first an 
= bn.

THEOREM 2.2. (Parry’s criterion) Let b > 1 be a non-simple number. If the b-expansion of
b is b = a0 + a1/b + · · · and (b0, b1, . . .) is a sequence of non-negative integers, a nec-
essary and sufficient condition for the existence of x with b-expansion, x = b0 + b1/b +
· · · , is that (bn, bn+1, . . .) < (a0, a1, . . .) for all n ≥ 1. In particular, (an, an+1, . . .) <

(a0, a1, . . .) for all n ≥ 1.

2.2. Entropy theory. Let (X, B) be a standard Borel space and D ⊂ B be a measurable
partition. We write D(x) ∈ D for the element which contains x ∈ X. This is also well
defined when D is countably generated σ -algebra. In addition, we denote the joining of two
finite partitions A, B by A ∨ B = {A ∩ B : A ∈ A, B ∈ B}. Let (X, B, μ) be a probability
space then the Shannon entropy of μ with respect to a partition A of X is the non-negative
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number Hμ(A) = − ∑
A∈A μ(A) log μ(A). The entropy hμ(T , A) of a partition A of a

measure-preserving system (X, F , μ, T ) is the limit hμ(T , A) = limn→∞(1/n)Hμ(An),
where An = ∨n−1

i=0 T −iA. The Kolmagorov–Sinai entropy (or just the entropy) of the m.p.t.
(X, F , μ, T ) is hμ(T ) = supA hμ(T , A) where the supremum is taken over all the finite
partitions A. Equality is achieved if A is a generating partition, F = ∨∞

n=1An mod μ.
A landmark result in ergodic theory is the Shannon–McMillan–Breiman theorem [14].

Let (X, F , μ, T ) be an ergodic measure-preserving system and A a finite partition. Then
μ-a.e. x limn→∞(1/n) log μ(An(x)) = hμ(T , A). It is not hard to deduce from it that an
ergodic and Ta-invariant Borel probability measure μ with positive entropy is non-atomic
(this also can be proved directly). We will use this corollary in occasional places.

2.3. General results on equidistribution (due to Hochman). This subsection covers three
results that we adopt from Hochman [4]. Two of them are presented with a very superficial
description of their proofs to help the reader gain some intuition. A more thorough
treatment can be found in the original paper.

We denote the real line translation and scaling maps by

Rθx = x + θ ,

Stx = t · x,

respectively. Here Rθ is taken mod 1 when acting on [0, 1) ∼= R/Z

Let μ be a probability measure on R/Z and E ∈ B such that μ(E) > 0. We write
μE = (1/μ(E)) · μ|E for the normalized restriction of μ to E.

The next technique relates orbits to the local structure of μ.

THEOREM 2.3. [4] Let T : X → X be a continuous map of compact metric space. Let
D1, D2, . . . be a refining sequence of finite Borel partitions. Let μ be a Borel proba-
bility measure on X and assume that supn∈N{diamT n

a D : D ∈ Dn+k , μ(D) > 0} → 0 as
k → ∞. Then for μ-a.e. x,(

1
N

N∑
n=1

δT nx − 1
N

N∑
n=1

T nμDn(x)

)
N→∞−−−−→
w−∗ 0.

The idea of the proof is to take a countable dense set in C(X) and prove the weak-*
convergence with respect to its members. The left average can be replaced with the
Dn+k-conditional mean by the assumption. The right average is just the Dn(x)-conditional
mean. A variant of the ergodic theorem for martingale differences implies that their limits
are equal.

The second theorem is about equidistribution along orbits of the form (nθ , T [βn]x),
where x is a typical point for μ.

THEOREM 2.4. [4] Let (X, μ, T ) be an ergodic m.p.s. on a compact metric space. Let
β > 0 and θ 
= 0. Then for μ-a.e. x, the sequence (nθ , T [βn]x) equidistributes for a
measure νx on [0, 1) × X that satisfies

∫
νx dμ(x) = τ × μ, where τ is the invariant

measure on ([0, 1), Rθ) supported on the orbit closure of 0.
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The proof uses an intermediate result which says that for τ × μ-a.e. (u, x), the orbit
(nθ + u, T [βn]x) equidistributes for a measure νu,x on [0, 1) × X satisfying∫

νu,x dz × dμ(u, x) = τ × μ.

We will not go into its detail besides mentioning that a suspension of height 1 is used
to overcome the integer part issue. Back to the proof of Theorem 2.4, it implies that
Lebesgue-a.e. u ∈ [0, 1) and μ-a.e. x, δnθ+u × δT [nβ]x

w−∗−−→ νu,x and also that
∫
νu,x dz ×

μ(u, x) = m × μ. By translation of the first coordinate, we get that (nθ , T [βn]x) equidis-
tributes for a measure νx on [0, 1) × X, where νx = νx,0, and with Lemma 2.3 from the
original paper, we find that

∫
νx dμ(x) = τ × μ.

Lastly, we give a slightly modified version for Hochman’s evaluation of the Fourier
transform of scaled measures.

LEMMA 2.5. Let μ be a non-atomic probability measure on R. Then for every (c, d) ⊂ R

and for every r > 0 and m 
= 0,

∫ 1

0
|F((Sbzμ)|[c,d])(m)|2 dz ≤ 2μ([c, d])2

r · |m| +
∫ d

c

∫ d

c

χBr (y′)(y) dμ(y) dμ(y′),

where Br(x) = {y : |x − y| < r}.

Proof. (Based on Hochman’s proof [4]) Using Fubini,

∫ 1

0
|F((Sbzμ)|[c,d])(m)|2 dz =

∫ 1

0

∣∣∣∣ ∫ d

c

e(mbzy) dμ(y)

∣∣∣∣2

dz

=
∫ 1

0

∫ d

c

∫ d

c

e(mbzy)e(mbzy′) dμ(y) dμ(y′) dz

=
∫ 1

0

∫ d

c

∫ d

c

e(mbz(y − y′)) dμ(y) dμ(y′) dz

=
∫ d

c

∫ d

c

∫ 1

0
e(mbz(y − y′)) dz dμ(y) dμ(y′)

and then changing of variables t = bz,

≤
∫ d

c

(∫
[c,d]\Br(y′)

∣∣∣∣ ∫ b

1

1
log(b)t

e(m(y − y′)t) dt

∣∣∣∣ dμ(y) +
∫

Br(y′)∩[c,d]
1 dμ(y)

)
dμ(y′).

Finally, using integration by parts for the inner integral in the left summand,

≤ 2μ([c, d])2

r · |m| +
∫ d

c

∫ d

c

χBr (y′)(y) dμ(y) dμ(y′).
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3. Proof of Theorem 1.3
Let a, b, μ be as in Theorem 1.3 and denote α = log b/log a. Given a positive integer n,
denote n′ = [αn] and zn = {αn} = αnmod 1. That is, {zn}n∈N is the orbit of 0 ∈ R/Z

under the irrational rotation by α. Recall that (	̃, μ̃, T̃a) is the natural extension of
(R/Z, μ, Ta) and μ = ∫

μω dμ̃(ω) is the disintegration of μ given the past.
Recall that A denotes the a-adic partition of [0, 1): {[k/a, (k + 1)/a)}a−1

k=0 and
correspondingly An = ∨n−1

i=0 T −i
a A is the a-adic partition of generation-n: {[k/an,

(k + 1)/an)}an−1
k=0 . This simple partition is convenient to work with and it can easily

be shown that it is a generator for Ta . Naturally, An(x) stands for the nth-generation atom
which contains x.

Let f be a non-negative piecewise linear function on [0, 1). We denote the set of its
discontinuities. The minimal jumps oscillation of f is defined by

mjo(f ) = min
x∈J

{
lim

x′∈x+ f (x′) − lim
x′∈x− f (x′)

}
.

Recall the notation r0 = T 1
b (1) = {b}, r1 = T 2

b (1) = {b{b}}, . . . . Denote mb = infn{rn :
rn > 0}. Since b is specified, we have 0 < mb ≤ 1, as shown in Proposition 2.1.
Specifically, infn mjo({T n

b }) = mb.
Notice that for every 0 < θ < 1 − a−n′

, the function T n
b ◦ Rθ ◦ S

a−n′ is T n
b composed

on the affine map Rθ ◦ S
a−n′ (x) = a−n′

x + θ of the real line. That is, this composition is
T n

b stretched horizontally by an′
and translated by θ . Hence it is a well-defined piecewise

linear map with minimal jumps oscillation which is greater or equal to mjo(T n
b ). In

our notation, it means that mjo (T n
b ◦ Rθ ◦ S

a−n′ ) ≥ mb. Notice that 0 < a−n′ · bn¡a, so
T n

b ◦ Rθ ◦ S
a−n′ also has a uniform slope bounded from above by 0 < a. These last two

properties imply that T n
b ◦ Rθ ◦ S

a−n′ has at most �a/mb� discontinuities with a minimal
gap of mb/a between them. Thus, for a sufficiently refined uniform partition of the unit
interval, each member of the partition contains at most one discontinuity.

Now we turn to prove Theorem 1.3. Fix a μ̃-typical ω ∈ 	− and a μω-typical x ∈ [0, 1).
Thus, we want to show asymptotic decay of the μ̃-expectation of

lim sup
N

∣∣∣∣ 1
N

N∑
n=1

em(T n
b x)

∣∣∣∣. (3.1)

It holds that T n
b An′+l(x) has diameter O(a−l) under the metric on [0, 1) ∼= R/Z and

by Theorem 2.3, we have

= lim sup
N

∣∣∣∣ 1
N

N∑
n=1

∫
em d(T n

b (μω)An′ (x))

∣∣∣∣.
Recall that C = ∨0

i=−∞ T̃ i
aA denotes the σ -algebra in 	̃ generated by projection to the

past. Since C ∨ An = T̃ n
a C, we have the equivariance relation T n

a ((μω)An(x)) = μT̃ n
a (ω,x)

and also (μω)An(x) = Rθω,x,n(Sa−nμT̃ n
a (ω,x)) for some phase θω,x,n. This allows us to write
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= lim sup
N→∞

∣∣∣∣ 1
N

N∑
n=1

∫
em(T n

b Rθω,x,nSa−n′ (y)) dμ
T̃ n′

a (ω,x)

∣∣∣∣
≤ lim sup

N→∞
1
N

N∑
n=1

∣∣∣∣ ∫
em(T n

b Rθω,x,nSa−n′ (y)) dμ
T̃ n′

a (ω,x)

∣∣∣∣. (3.2)

If we split the integral above into the sum of integrals on the elements of the uniform
partition {I k

j }kj=1 such that |I k
j | = 1/k, we get that for every interval I k

j0
that does not

contain a discontinuity, we have∫
I k
j0

em(T n
b Rθω,x,nSa−n′ (y)) dμ

T̃ n′
a (ω,x)

=
∫

I k
j0

em(azny + θj0,ω,x,n) dμ
T̃ n′

a (ω,x)
,

where θj0,ω,x,n is some phase that can be omitted under absolute value. Otherwise, I k
j0

contains a discontinuity and its measure is less than supj μω(I k
j ). We take it into account

in equation (3.2), denoting cω,k = �a/mb� supj μω(I k
j ) and write

≤ cω,k + lim sup
N→∞

1
N

N∑
n=1

k∑
j=1

∣∣∣∣ ∫
I k
j

em(azny + θj ,ω,x,n) dμ
T̃ n′

a (ω,x)

∣∣∣∣.
Now apply Theorem 2.4, after omitting the phases because of the absolute value, to

obtain

≤ cω,k +
k∑

j=1

∫ ∣∣∣∣ ∫
I k
j

em(azy) dμη

∣∣∣∣ dνω,x(z, η). (3.3)

If we integrate both sides of the inequality in equations (3.1) and (3.3) with respect to
μ̃, then by Corollary 2.4, it becomes∫

lim sup
N→∞

∣∣∣∣ 1
N

m∑
n=1

em(T n
b x)

∣∣∣∣ dμ̃(ω, x)

≤
∫ (

cω,k +
k∑

j=1

∫ ∣∣∣∣ ∫
I k
j

em(azy) dμω

∣∣∣∣) dz dμ̃(ω, x).

Next, we apply the Cauchy–Schwartz inequality to get

≤
∫ (

cω,k +

√√√√√k

k∑
j=1

∫ ∣∣∣∣ ∫
I k
j

em(azy) dμη

∣∣∣∣2

dz

)
dμ̃(ω, x),

where Lemma 2.5 can provide the following evaluation. For any r > 0,

≤
∫ (

cω,k +
√

k
∑k

j=1 μη(I
k
j )2

r|m| + k

∫ ∫
χBr(y) dμω(y′) dμω(y)

)
dμ̃(ω, x).
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Notice that the conditional measures μω are continuous because μ was assumed to have
positive entropy so by the dominated convergence theorem,∫

cω,k dμ̃(ω, x) =
⌈

a

mb

⌉ ∫
sup
j

μω(I k
j ) dμ̃(ω, x)

k→∞−−−→ 0

and similarly,

Eμω(μω(Br(y))) =
∫ ∫

χBr(y)(y
′) dμω(y′) dμω(y)

r→0−−→ 0.

Finally, we can choose r = |m|−1+ε and k = min{|m|0.5ε , Eμω(μω(Br(y)))−1+ε} for a
small ε > 0 in a way that

∫
cω,k +

√
k

∑k
j=1 μη(I

k
j )2

r|m| + kEμω(μω(Br(y))) dμ̃(ω, x)
m→∞−−−−→ 0. �

4. Proof of Theorem 1.5
The main difference between the previous proof and the quantitative one here is that we
assume explicit bounds on

∫
cω,k dμ̃(ω, x) and Eμω(μω(Br(y))). In addition, we aim for

a pointwise decay instead of mean decay. This may be achieved by relating the decay of a
stochastic process to the decay of its mean (as in §4.1).

We begin by repeating our assumptions. Let a, b, μ be as in Theorem 1.3. Denote the
uniform partition of the interval R/Z into k pieces by {I k

j }kj=1 such that |I k
j | = 1/k and

assume that for some 0 < α and for every k ∈ N,

ess sup
j ,ω

μω(I k
j ) ≤ O(k−α). (4.1)

When this holds, it also imposes a secondary property which is important for us,

ess sup
η∈	−

∫ ∫
χB

k−1 (y)(x) dμη(x) dμη(y) ≤ O(k−α),

but it is useful to have here a distinct parameter β ≥ α such that

ess sup
η∈	−

∫ ∫
χB

k−1 (y)(x) dμη(x) dμη(y) ≤ O(k−β). (4.2)

The first part of the proof is identical to the previous one but now we think of the limit

lim sup
N

∣∣∣∣ 1
N

N∑
n=1

em(T n
b x)

∣∣∣∣
as a random variable from R/Z to R. Again, we fix a μ̃-typical ω ∈ 	− and a μω-typical
x ∈ [0, 1), and consider

lim sup
N

∣∣∣∣ 1
N

N∑
n=1

em(T n
b x)

∣∣∣∣.

https://doi.org/10.1017/etds.2023.75 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2023.75


2592 N. Fishbein

We repeat the steps in equations (3.1) to (3.3) from the previous proof up to replace cω,k

with O(k−α) according to the condition in equation (4.1). That is,∫
lim sup

N

∣∣∣∣ 1
N

N∑
n=1

em(T n
b x)

∣∣∣∣ dμ̃(ω, x)

≤
∫

O(k−α) +

√√√√√k

k∑
j=1

∫ ∣∣∣∣ ∫
I k
j

em(azy) dμη

∣∣∣∣2

dz dμ̃(ω, x).

In this case, Lemma 2.5 can provide the following evaluation. For any r > 0, using
|I k

j | = 1/k and μη(I
k
j ) ≤ O(k−α),

≤
∫

O(k−α) +
√

O(k1−α)

r|m| + k

∫
χBr (y) dμω(y′) dμω(y) dμ̃(ω, x).

Finally, denote r = k−γ and choose k = [|m|δ] for some 0 < δ. Then with the condition
in equation (4.2),

≤
∫

O(|m|−δα) +
√

O(|m|−1−δ(α−1)+γ δ) + O(|m|δ(1−γβ)) dμ̃(ω, x)

≤ O(|m|minγ ,δ>0 max{−δα,(−1−δ(α−1)+γ δ)/2,δ(1−γβ)/2}).

Notice that (−1 − δ(α − 1) + γ δ)/2 ≥ −0.5, which means that the referred expression
in the exponent is bounded from below by −0.5. An upper bound is achieved under
the equality 2δα = 1 + δ(α − 1) − γ δ = γ δβ − δ that leads to γ = (2α + 1)/β and
δ = β/(β(1 + α) + 2α + 1). Therefore,

≤ O(|m|−(αβ/(β(1+α)+2α+1)))

and the conclusion is that the exponent is strictly bounded between −0.5 and 0. As
already mentioned, this decay rate is too slow for applying our second strategy from the
introduction.

We remark that both the conditions in equations (4.1) and (4.2) can be relaxed in several
ways and mention here one of them as an example. If the conditions in equations (4.1) and
(4.2) hold outside a sequence of measurable sets whose measure decays at some known
rate, we still promise the mean decay of the Fourier transform at a rate that we are able to
bound.

Lastly, although we did not achieve the desired result, we want to make a suggestion
of how to progress further in that direction. This will be relevant if someone manages to
improve the evaluation of the decay rate from above.

4.1. Relating the decay rate of a stochastic process to the decay rate of its mean. Let
(X, B, μ) be a probability space and {Am}∞m=1 be a stochastic process. A conventional
application of Markov’s inequality and the first Borel–Cantelli lemma implies that the
decay rate in m of {|Am|}∞m=1 relates to the decay rate in m of its means {Eμ(|Am|)}∞m=1 in
the following way.
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PROPOSITION 4.1. If there exists a real 0 < α such that Eμ|Am| < O(m−1−α), then for
every 0 < ε < α, almost surely |Am| ≤ o(m−α+ε).

Proof. Fix c > 1. By Markov’s inequality Pμ{|Am| > (1/c)m−α+ε} < cEμ|Am|/m−α+ε

and from the hypothesis above, there exists some s > 0 such that Pμ{|Am| >

(1/c)m−α+ε} < (c · s · m−1−α)/m−α+ε . Thus,

Pμ

{
|Am| >

1
c
m−α+ε

}
<

c · s · m−1−α

m−α+ε
= c · s · m−1−ε

�⇒
∑
m

Pμ

{
|Am| >

1
c
m−α+ε

}
< ∞.

Finally, by the first Borel–Cantelli lemma, Pμ(lim supm{|Am| > (1/c)m−α+ε}) = 0,
which implies that {|Am| > (1/c)m−α+ε} occur finitely often with probability 1.

5. Proof of Theorem 1.6
We begin with providing an equivalent definition of weak-* convergence that will be
needed in that section, via the next continuous mapping theorem (see [1, Theorem 2.57]).

THEOREM 5.1. μn
w−∗−−→ μ if and only if

∫
f dμn

n→∞−−−→ ∫
f dμ for every bounded

function f : X → R with μ({x : f has a discontinuity at x}) = 0.

Let x be a μ-typical point. In this part, we assume that x equidistributes along a subse-
quence {Nk} under Tb for some measure where all the hypotheses are as in Problem 1.2
and also that {0} is not an atom of this measure. Recall that in our notation, it means
that the limit λx,{Nk} = limk→∞(1/Nk)

∑Nk−1
i=0 δT i

b (x) is well defined. Then we show that
λx,{Nk} must be Tb-invariant. For convenience, our proof is given as if the equidistribution
is along the whole sequence since for equidistribution along a subsequence, the argument
is identical. Here we denote the limit measure by λ∞ for short.

Fix 1 < b ∈ R and let x ∈ R/Z be a μ-typical point and denote

λN = 1
N

N−1∑
i=0

δT i
b x

w−∗−−→ lim
N→∞

1
N

N−1∑
i=0

δT i
b x = λ∞.

We need to show that ∫
f dλ∞ =

∫
f dTb∗λ∞

for all f ∈ C(R/Z).
We have

λN − Tb∗λN = 1
N

N−1∑
i=0

δT i
b (x) − 1

N

N−1∑
i=0

δ
T i+1

b (x)
=

δx − δT N
b (x)

N

N→∞−−−−→ 0,

so limN→∞(λN − Tb∗λN) = 0.
Additionally, for every f ∈ C(R/Z), f ◦ Tb has at most one discontinuity which is

located at 0 and by assumption, λ∞({0}) = 0. Since λN
w−∗−−→ λ∞ for any f ∈ C(R/Z),

then by Theorem 5.1,
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ETb∗λN
(f ) = EλN

(f ◦ Tb)
N→∞−−−−→ Eλ∞(f ◦ Tb) = ETb∗λ∞(f ).

Now we can stitch it all together and get for every f ∈ C(R/Z) that

|Eλ∞(f ) − ETb∗λ∞(f )| ≤|Eλ∞(f ) − EλN
(f )|

+ |EλN
(f ) − ETb∗λN

(f )|
+ |ETb∗λN

(f ) − ETb∗λ∞(f )| → 0

as N tends to infinity which implies the desired result.

6. Exploring conditions in equations (4.1) and (4.2)
In this section, we inquire the validity range of conditions in equations (4.1) and (4.2). We
added some brief theoretical background that will be used for that subjective.

6.1. Stationary coding. The content of this subsection is taken from the book of P.
Shields on ergodic theory [12].

Let A and B be finite sets. A Borel measurable map F : AZ → BZ is a stationary
coder if F(TAx) = TBF(x) for every x ∈ AZ, where TA and TB denote the shifts on
the respective two-sided sequence spaces AZ and BZ. Stationary coding carries a Borel
measure μ on AZ into the measure ν = μ ◦ F−1 defined for Borel subsets C of BZ by
ν(C) = μ(F−1(C)). The encoded process ν is said to be a stationary coding of μ, with
coder F. It is immediate to conclude that a stationary coding of a stationary process is itself
a stationary process.

The map f : AZ → B defined by the formula f (x) = F(x)0 is the time-zero coder
associated with F. Notice that stationary coding preserves ergodicity.

Let T be an invertible, ergodic transformation of the probability space (X, �, μ). Let S
be a set of positive measure. Denote by {Rn} the (T , AS)-process defined by the partition
AS = {S, X \ S} with X \ S labeled by 0 and S labeled by 1. That is, Rn(x) = χS(T nx)

for every integer n ∈ Z. Notice that {Rn} is a stationary coding of the (T , AS)-process
with time zero coder χS and therefore it is ergodic.

Notice that such a non-trivial {Rn} process (i.e 0 < μ(S) < 1) has positive
entropy where (X, �, μ) is a product measure on AZ

S . This is because a non-trivial
(T , {S, X \ S})-process is a factor of Bernoulli measure which has completely positive
entropy.

6.2. Reverse Markov’s inequality. The next reverse version of Markov’s inequality is
famous and easy to prove. We present it here with a proof for completeness.

THEOREM 6.1. (Reverse Markov’s inequality) Let X be a random variable on a probability
space (	, P) that satisfies P(X ≤ a) = 1 for some constant a. Then, for d < E(X),

P(X > d) ≥ E(X) − d

a − d
.
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Proof. Define the random variable V = a − X which is almost surely non-negative
by assumption. The event {X ≤ d} is equivalent to the event {V ≥ a − d}. Now with
Markov’s inequality,

P({X ≤ d}) = P({V ≥ a − d}) ≤ E(V )

a − d
= a − E(X)

a − d
,

where the right-hand side numerator and denominator are strictly positive since
d < E(X) ≤ a. Finally,

P({X > d}) = 1 − P({X ≤ d}) >
E(X) − d

a − d
.

6.3. Not all the μ values meet the condition in equation (4.2). Here we construct a
counterexample which violates the weaker condition in equation (4.2). We anticipate that
the condition in equation (4.1) can be violated by simpler examples.

We use the formalism from §§2.2 and 6.1. Let (Xl , �, ν, σ) be a uniformly distributed
full Bernoulli shift in 2 < l symbols. We define a measurable set Y ∈ � recursively.

Fix 0 < ε < 0.5. For k = 1, fix 2 ≤ n1 ∈ N such that log(n1)
−1 < 1 − ε and let Y1 be

a set such that 0.5 log(n1)
−2 < ν(Y1) < log(n1)

−2. Define Y1 = ⋃[log n1]
m=0 σ−mY1 so that

0 < ν(Y1) ≤ log(n1)
−1 and also ν(Y1) < 1 − ε.

For 1 < k ∈ N, choose nk−1 < nk ∈ N such that log(nk)
−1 < 1 − ε − ∑k−1

i=1 ν(Yi )

and let Yk be a set such that 0.5 · log(nk)
−2 < ν(Yk) < log(nk)

−2. Define Yk =⋃[log nk]
m=0 σ−mYk so that 0 < ν(Yk) ≤ 1/log nk ≤ 1 − ε − ∑k−1

i=1 ν(Yi ) and therefore
0 <

∑k
i=1 ν(Yi ) < 1 − ε.

Finally, define Y = ⋃∞
i=1 Yi and define a process on {0, 1}Z by Rn(x) = χY (σn−1x)

with the induced measure μ̃ = ν ◦ R−1 as in §6.1. By our construction, 0 < ν(Y) < 1 − ε

and {nk} is strictly increasing. Since (Xl , �, ν) is ergodic, so is {Rn} as a stationary coding
with time zero coder (which trivially also preserves the measure). That is, we can interpret
μ̃ as a probability measure which is ergodic and shift invariant on the binary full shift.
It also has positive entropy by §6.1.

In another direction, notice that [0, 1) is the image of the infinite binary sequences
{0, 1}N under the natural map (xi)

∞
i=1 �→ ∑∞

i=1(xi/2i ) which is also a bijection on the
complement of a countable set, that is, a bijection on the complement of a null set for
every continuous measure. Thus, if we denote X2 = {0, 1}Z (the 2-shift), then we can
define up to a null set the bijection ι : X2 → {0, 1}−N0 × [0, 1). We can also define the
pushforward ρ̃ = μ̃ ◦ ι−1 (that is, a measure on {0, 1}−N0 × [0, 1)) which preserves all the
relevant properties of μ̃ (ergodicity is trivial and positive entropy by being a non-trivial
factor of the system with completely positive entropy). Now, ρ̃ = ∫

ρη dρ̃(η), where it
is disintegrated with respect to the σ -algebra that is generated by projection to the past
(like in §1.3) and the conditional measures ρη identified as measures on [0, 1). Similarly,
μ̃ = ∫

dμη dμ̃(η), where η ∈ {0, 1}−N0 .
For every k ∈ N, denote the event

⋂[log nk]
i=0 {Ri = 1} by Ek . We begin with∫ ∫ ∫

χB
n
−1
k

(y)(x) dρη(x) dρη(y) dρ̃(η),
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where B
n−1

k
(y) = {x ∈ [0, 1) : |x − y| < n−1

k }. We need to show that this integral decays
in nk with sub polynomial rate. We can pullback this integration to the space X2 and
restrict it to the event Ek × Ek since every pair (x′, y′) ∈ Ek × Ek corresponds to a pair
(x, y) ∈ [0, 1)2 with |x − y| < 1/nk . Thus,

≥
∫ ∫∫

χEk×Ek
(x, y) dμη × μη(x, y) dμ̃(η)

=
∫ ∫

χEk
(x) dμη(x)

∫
χEk

(y) dμη(y) dμ̃(η)

=
∫ (∫

χEk
(x) dμη(x)

)2

dμ̃(η)

≥
(∫ ∫

χEk
(x) dμη(x) dμ̃(η)

)2

=
(∫

χEk
(x) dμ̃(x)

)2

,

where in the first equality, we used Fubini and then split the integral into two separate
integrals, and the second inequality is Jensen. We can pullback the integration once again
to the full shift Xl and restrict it to the event Yk which included in the preimage of Ek ,

≥
(∫

χYk
(x) dν(x)

)2

= 0.25 · log(nk)
−4.

Now, for every k ∈ N, we can use the reverse Markov inequality (Theorem 6.1) with a = 2
and d = 1/8 log(nk)

4 to get

Pμ̃

({ ∫
μη(Bn−1

k
(y)) dμη(y) ≥ 1

8 log(nk)4

})
≥ 1

16 log(nk)4 .

This violates the condition in equation (4.2).

6.4. Processes with memory of finite length meet the condition in equation (4.1). In this
special case, it will be enough to use the total probability formula to reach the condition in
equation (4.1) which also implies that the condition in equation (4.2) holds.

Let A be a finite alphabet |A| = l for some integer l ≥ 2 and let (AZ, μ, T ) be a
finite memory length symbolic process which is ergodic, invariant, and with positive
entropy with respect to T. That is, the prediction of A0 depends only on a finite portion
of the past A−n, . . . , A−1 for some n < ∞ or explicitly for every m ∈ Z and x ∈ AZ,
μ([x∞

m+n]|[xm−∞]) = μ([x∞
m+n]). Denote s = maxa∈A μ([a]) < 1. Assume that n < m,

then with direct computation,

μ[x0−∞]([x
m
0 ]) ≤ μ([xm

n ])

= μ([xn])μ([xm
n+1]|[xn])
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≤ μ([xn])μ([xm
2n])

...

=
[m/n]∏
i=1

μ([xn·i])

≤ sm/n+1.

If we consider a uniform partition of the unit interval {I k
j }kj=1 such that |I k

j | = 1/k and
where k = lm, then the display above implies that ess supj ,ωμω(I k

j ) ≤ O(klog(s)/(n log(l))).

7. Rajchman and invariance does not force uniqueness
7.1. Self-similarity and classes of algebraic numbers. Here we set out some of the basic
definitions regarding self similarity. A set F = {f1, . . . fk} for k ≥ 2 of contractions on R,
fi(x) = rix + ai , with 0 < ri < 1 for each i ∈ {1, . . . , k}, is an iterated function system
or IFS for short. We also call the fi terms similarities.

A key fact in this topic is that there exists a unique non-empty compact set K ⊂ R such
that K = ⋃k

i=1 fi(K). We call it the attractor or the self-similar set of the IFS F .
Given a list of positive numbers p = (p1, . . . , pk) with

∑k
i=1 pi = 1, we call it a

positive probability vector and there is a unique probability measure μp with μp =∑k
i=1 pi · fiμp. This measure is supported on the attractor of F and called a self-similar

measure.
A Pisot number is a real algebraic integer greater than 1 all of whose Galois conjugates

are less than 1 in absolute value. A Salem number is a real algebraic integer greater than 1
whose all conjugate roots have absolute value no greater than 1, and at least one of them
has an absolute value which equals 1. There are countably many Pisot and Salem numbers.

We conclude this part with a recent theorem of Varjú and Yu [13] which plays a major
role in our proof that Tb-invariant Rajchman measure need not be Parry.

THEOREM 7.1. Let k ≥ 2 be an integer. Let r1 = rl1 , . . . , rk = rlk for some r ∈ (0, 1)

and l1, . . . , lk ∈ Z>0 with gcd(l1, . . . , lk) = 1. Assume that r−1 is not a Pisot or
Salem number. Let μ be a non-singleton self-similar measure associated to the IFS
F = {f1, . . . , fk} (fi(x) = rix + ai) and a positive probability measure. Then,

|μ̂(z)| = O(| log(z)−c|)
for some c > 0.

We use Theorem 7.1 to prove that a Rajchman Tb-invariant measure must not be unique.
Let b ≥ 2 be a specified non-simple number which is not Salem or Pisot. We can guarantee
the existence of such a number by cardinality considerations (recall that Pisot numbers as
well as Salem numbers and simple numbers are countable while specified numbers have
the cardinality of continuum).

Denote N0 = N ∪ {0} for short and denote the b-expansion of b by (ai). That is,
b = a0 + a1/b + · · · and in particular a0 = [b]. Every sequence (xi) ∈ {0, 1}N0 and
n ∈ N satisfies (xi+n) < (ai) since xn ∈ {0, 1} which is either way less than [b] = a0.
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Recall that Xb ⊂ �
N0
b is the subset of sequences that encodes b-expansions, so by Parry’s

criterion (Theorem 2.2), we get that {0, 1}N0 ⊂ Xb.
Define the set K = {∑∞

i=0(bi/b
i) : (bi) ∈ {0, 1}N0} which is the image of {0, 1}N under

the b-expansion and define the IFS F = {f0(x) = x/b, f1(x) = x/b + 1/b}. If we denote
concatenation of symbols by �, then clearly {0, 1}N0 = 0 � {0, 1}N0 ∪ 1 � {0, 1}N0 , which
means under the b-expansion, K = ⋃1

i=0 fi(K). Thus, K is the attractor of F and for
every positive probability vector p = (p0, p1), the self-similar measure that satisfies
μp = ∑1

i=0 pi · fiμp is well defined. Pulling it back again under the b-expansion,
it translated into a Bernoulli shift pN0 on Xb|{0,1}N0 = {0, 1}N0 , where the former is
Tb-invariant and correspondingly the latter is shift invariant.

If we consider Theorem 7.1 where both of the li terms are equal to 1 such that
gcd(l0, l1) = 1, then all the hypotheses hold with respect to b and F and any self-similar
measure μp provides the Rajchman property,

|μ̂p(z)| = O(| log(z)−c|).
Since there are infinitely many of them, the uniqueness is violated.
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