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Scaling of boundary-layer disturbances exposed
to free-stream turbulence
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We present theoretical results related to the experimental findings of Matsubara &
Alfredsson (J. Fluid Mech., vol. 430, 2001, pp. 149–168) on the scaling of the energy
spectra of the Klebanoff modes, i.e. streamwise-elongated vortical disturbances generated
by free-stream turbulence in a flat-plate transitional boundary layer. The scaling is
explained by a model that describes the streamwise evolution of the streamwise and
spanwise energy spectra. The theoretical framework is based on the quasi-steady
asymptotic solution of the boundary-region equations, on an axial-symmetric model of the
free-stream spectrum, and on the spectral response of the boundary layer to the external
perturbations.
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1. Introduction

The transition of a boundary layer from the laminar regime to fully developed turbulence
is a central problem in an immense range of technological applications because turbulent
wall friction can be several times larger than that exerted by a laminar boundary layer.
Frictional losses in the boundary layer are responsible for the performance degradation
of engineering flow systems, such as turbomachinery and jet engines, for the enhanced
aerodynamic drag of transport vehicles, and, in turn, for wasted fuel consumption,
unwanted noise production and environmental pollution. For design purposes, it is
therefore paramount to be able to predict under which conditions boundary-layer transition
occurs. Free-stream turbulence acts as a triggering factor for transition, and it has been
shown that the transition Reynolds number decreases as the free-stream turbulence level
increases (Mayle 1991).

Dryden (1936) and Taylor (1939) were probably the first to study the effects of
free-stream turbulence on a flat-plate boundary layer. They showed that the dominant
streamwise velocity fluctuations generated by free-stream turbulence in the boundary layer

† Email address for correspondence: p.ricco@sheffield.ac.uk

© The Author(s), 2023. Published by Cambridge University Press 972 A3-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:p.ricco@sheffield.ac.uk
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2023.676&domain=pdf
https://doi.org/10.1017/jfm.2023.676


P. Ricco

are of very low frequency and reach amplitudes that can be several times larger than those
in the free stream.

The Dryden–Taylor observations did not receive much attention until Klebanoff (1971)
carried out experiments in which he reproduced the earlier findings of Dryden and
Taylor. Klebanoff demonstrated that the disturbances grow more or less linearly with the
boundary-layer thickness, and they are quite narrow in the spanwise direction. Klebanoff
referred to these disturbances as ‘breathing modes’ because, as noted earlier by Taylor
(1939), they appeared to correspond to a thickening and thinning of the boundary layer.
Kendall (1991) renamed them Klebanoff modes, and that name has taken hold even
though these disturbances are not modes in the strict mathematical sense, i.e. they are
not homogeneous solutions of differential equations.

The early transition experiments were conducted at very low free-stream turbulence
levels (Tu < 0.1 %), but more recent experiments, such as those by Westin et al. (1994),
Matsubara & Alfredsson (2001), Fransson, Matsubara & Alfredsson (2005), Fransson
& Shahinfar (2020) and Mamidala, Weingärtner & Fransson (2022) were carried out
at higher turbulence levels. However, the results are invariably the same. The dominant
streamwise velocity fluctuations are always of the Klebanoff type, i.e. the boundary
layer acts as a low-frequency-pass filter on the free-stream perturbation spectrum, and
amplifies streamwise stretched streaky vortical structures. The spanwise wavelength of
the Klebanoff modes is constant along the streamwise direction, and the peak amplitude
occurs at the same Blasius-similarity wall-normal location. Direct numerical simulations
have also been employed to study the development of low-frequency streaks and the
induced bypass transition (Jacobs & Durbin 2001; Ovchinnikov, Choudhari & Piomelli
2008; Yao, Mollicone & Papadakis 2022).

The mathematical framework describing the incompressible Klebanoff modes was
developed by Leib, Wundrow & Goldstein (1999) (LWG99). They proved that these
disturbances, near the leading edge, are well represented by forced solutions of the
linearized unsteady boundary-layer equations for which the spanwise viscous effects are
negligible. As the mean boundary layer grows downstream, these equations lose their
validity because the spanwise length scale of the Klebanoff modes becomes comparable
with the boundary-layer thickness. Their dynamics is then ruled by the unsteady
boundary-region equations, i.e. the Navier–Stokes equations where the spanwise viscous
terms are retained, while the streamwise pressure gradient and the viscous effects can be
neglected because the perturbations are of low frequency and streamwise elongated. The
boundary-region equations, and their terminology, were first used by Kemp (1951) to study
the corner boundary-layer problem. A crucial ingredient in the LWG99 formulation is the
continuous action of the free-stream perturbations that are responsible for the generation
and evolution of the Klebanoff modes. LWG99 utilized matched asymptotic expansions
to obtain the initial and outer boundary conditions that synthesize the interaction between
the free-stream flow and the boundary-layer flow. Wundrow & Goldstein (2001) and Ricco,
Luo & Wu (2011) extended the linearized study of LWG99 to include nonlinear effects,
focusing on the steady and unsteady cases, respectively. Ricco et al. (2011) also explained
the occurrence of nonlinear effects in the results by Matsubara & Alfredsson (2001), and
studied the secondary instability of the saturated Klebanoff modes, thereby describing the
mechanism at the heart of bypass transition induced by free-stream turbulence. Extensions
to the compressible regime include the investigations by Ricco & Wu (2007), Ricco, Tran
& Ye (2009), Ricco, Shah & Hicks (2013) and Marensi, Ricco & Wu (2017).

Other theories describing the Klebanoff modes have been proposed. The non-modal
growth theory (Schmid & Henningson 2001) and the optimal growth theory (Andersson,
Berggren & Henningson 1999; Luchini 2000) model the growth of streaky disturbances
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Scaling of boundary-layer disturbances

already present in the boundary layer, while allowing the disturbances to vanish in the free
stream. Continuous Orr–Sommerfeld modes have also been used extensively since Jacobs
& Durbin (2001) to synthesize the penetration of free-stream disturbances into a boundary
layer. Reviews of this approach are found in Dong & Wu (2013), Ricco et al. (2016) and
Durbin (2017).

In the present study, we develop the theoretical background of previously unexplained
experimental results of a transitional boundary layer exposed to free-stream turbulence,
reported by Matsubara & Alfredsson (2001) (MA01). These findings are remarkable
because the energy spectra at different streamwise locations were found to collapse on
one another when scaled properly. MA01 described their discovery as ‘an unexpected new
finding’ and their energy spectra showing ‘an astonishing similarity’ for which ‘there is
no theoretical explanation’.

In § 2, the experimental findings of MA01 on the scaling of the Klebanoff modes are
discussed. In § 3, we present the key features of the mathematical framework describing
the Klebanoff modes, while the theoretical results behind the experimental findings of
MA01 are found in § 4. Section 5 contains the conclusions.

2. Discussion of the experimental results of Matsubara & Alfredsson

MA01studied experimentally an incompressible flow of uniform velocity U∗∞ past a thin
flat plate located in a low-speed wind tunnel. Rigid grids were placed upstream of the
leading edge of the plate to generate free-stream vortical disturbances. A thin laminar
boundary layer developed over the flat plate and transitioned to a fully-developed turbulent
boundary layer because of the perturbative action of the free-stream disturbances. The
objective of the MA01 study was to fully characterize the transitional boundary layer. In
our discussion of the MA01 results and in the theoretical analysis, the flow is described
through a Cartesian coordinate system, i.e. x∗ = x∗ î + y∗ ĵ + z∗k̂, where x∗, y∗, z∗ define
the streamwise, wall-normal and spanwise directions, respectively, and the superscript ∗
indicates a dimensional quantity. The flat plate is located at y∗ = 0, and its leading edge is
at x∗ = 0. Lengths are scaled by Λ∗

z , the integral spanwise length scale of the free-stream
vortical disturbances, velocities are scaled by U∗∞, pressure is scaled by ρ∗U∗2∞ , where ρ∗
is the density, and time is scaled by Λ∗

z /U∗∞. The kinematic viscosity is denoted by ν∗.
Non-dimensional quantities are not marked by any symbol.

2.1. Validity of linearized dynamics
As our theoretical framework hinges on the assumption that the boundary-layer
disturbances are described by a linearized dynamics, we first examine the MA01 findings
to support our hypothesis. Figure 1 shows the mean boundary-layer streamwise velocity
profiles measured by MA01 at different streamwise locations. The data displayed by the
black circles correspond to the three streamwise stations that are closest to the leading
edge, i.e. x∗ = 100, 300, 500 mm. The data represented by the thin lines were acquired
at x∗ > 500 mm. The black-circle data show excellent agreement with the numerical
solution of the Blasius laminar boundary-layer flow, represented by the thick red line,
while the thin-line data deviate progressively more and more from the laminar solution as
x∗ increases. For x∗ > 500 mm, nonlinear effects become important as the boundary-layer
perturbations grow in amplitude, and the wall-shear stress is enhanced as fully-developed
turbulence ensues. These results are evidence of the perturbed flow obeying a linearized
dynamics at the locations closest to the leading edge because the mean-flow profiles follow
the laminar solution. Figure 3 in MA01 further reveals that the boundary-layer thickness
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Figure 1. Mean boundary-layer streamwise velocity profiles reported by MA01 for x∗ ≤ 500 mm (black
circles) and 700 mm ≤ x∗ ≤ 1900 mm (thin lines). The red thick line denotes the numerical solution of the
Blasius laminar boundary-layer flow, and δ∗

d indicates the displacement thickness.

and the shape factor match the laminar values for x∗ ≤ 700 mm. Additional support for
these results is given by profiles of the root-mean-square (r.m.s.) of the streamwise velocity
fluctuations, shown in figure 2(c) of MA01, which denote clear signs of nonlinear effects
for x∗ ≥ 1100 mm, such as the disturbances growing in the outer part of the boundary
layer, and the perturbation peak moving closer to the wall. The theoretical and numerical
results that match quantitatively the nonlinear MA01 data are discussed in Ricco et al.
(2011). We conclude that a linearized dynamics can be utilized to study the perturbed flow
for x∗ ≤ 500 mm, despite the free-stream turbulence intensity not being vanishingly small
for these experiments, i.e. Tu = 2.2 % (refer to grid A in table 1 in MA01).

2.2. Scaling of experimental turbulence spectra
Figures 2(a,b), a reproduction of figure 13 in MA01, depict streamwise velocity energy
spectra at y∗/δ∗

d = 1.2, where δ∗
d is the displacement thickness. For this experimental

dataset, U∗∞ = 5 m s−1 and Λ∗
z = 7 mm, computed from the autocorrelation of the

streamwise velocity shown in figure 7 on p. 161 of MA01. The Reynolds number based on
Λ∗

z is Rλ = U∗∞Λ∗
z /ν

∗ = 2232. The spectrum Eα is shown as a function of the streamwise
wavenumber k∗

x = 2πf ∗/U∗∞, where f ∗ is the frequency (figure 2a), and the spectrum Eβ

is shown as a function of the spanwise wavenumber k∗
z = 2π/λ∗z , where λ∗z is the spanwise

wavelength (figure 2b).
The wavenumbers in figures 2(a,b) are dimensional, while in our theoretical analysis

they are scaled by Λ∗
z , that is, kx = k∗

xΛ
∗
z and kz = k∗

z Λ
∗
z . The spectra Eα and Eβ are

linked to the variance of the streamwise velocity fluctuations,

ε2〈u′2〉zt(x, y) = Cα

∫ ∞

0
Eα(kx) dkx = Cβ

∫ ∞

0
Eβ(kz) dkz, (2.1)

where Cα and Cβ are constants, computed in § 2.3, and 〈·〉zt indicates averaging along z
and over t. In figure 2, the dash-dotted lines refer to locations upstream of the solid lines,
while the dashed lines correspond to locations downstream of the solid lines.
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Figure 2. (a,b) Reproduction of figure 13 in MA01. Energy spectra as functions of (a) the streamwise
wavenumber and (b) the spanwise wavenumber. (c,d) Reproduction of figure 14 in MA01. Rescaled energy
spectra as functions of (c) the scaled streamwise wavenumber and (d) the dimensional spanwise wavenumber.
Data were acquired at y∗/δ∗

d = 1.2. The solid lines are for x∗ = 120, 150, 200, 250, 300, 400, 500 mm. Labels
in the original graphs have been changed to conform to the present notation.

In figure 2(a), for x∗ ≤ 500 mm, the dash-dotted and solid lines show that the
low-wavenumber portion of the spectrum grows downstream, while the high-wavenumber
portion is unchanged. This behaviour confirms that the boundary layer acts as a
low-frequency-pass filter (Durbin 2017), consistently with the algebraic growth of the
streamwise-elongated, low-frequency Klebanoff modes. The high-frequency free-stream
disturbances do not penetrate sufficiently into the boundary layer to reach these
wall-normal locations. Nonlinear effects becomes predominant further downstream, where
the high-wavenumber fluctuations grow more significantly than the low-wavenumber ones
(dashed lines). Figure 2(b) shows that the spanwise energy spectrum grows uniformly for
all the spanwise wavenumbers.

Figures 2(c,d) are a reproduction of figure 14 in MA01. The spectra Eα and Eβ , shown
in figures 2(a,b), are scaled as (the symbol ·̂ is used here in lieu of ∗ in MA01)

Êα = Eα

Ce Re3/2
x

, Êβ = Eβ

Ce Rex
, (2.2a,b)

where Rex = U∗∞x∗/ν∗, and the constant Ce = 16 is the same for the two spectra. The
scaling of Eβ with Rex is expected because the integral of Eβ along kz, given by the
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last equation of (2.1), is equal to the variance of the streamwise velocity fluctuations,
which grows linearly with Rex, as shown by the experimental results in figure 2(d) of
MA01. On the abscissas of figures 2(c,d), the streamwise wavenumber is scaled by the
displacement thickness δ∗

d , while the spanwise wavenumber is dimensional. Both sets of
profiles represented by the solid lines show excellent collapse when rescaled. The objective
of our study is explain the scaling of those solid lines in figures 2(c,d).

This scaling demonstrates that the streamwise spectrum Eα grows downstream at a faster
rate (proportional to Re3/2

x ) than its integral across the streamwise wavenumbers ε2〈u′2〉zt,
which grows linearly with Rex, as shown in figure 2(d) of MA01. The different growth
rates are caused by the low-frequency fluctuations becoming larger more rapidly than the
high-frequency ones, as shown in figure 2(a).

It is worth mentioning that Zhigulev, Uspenskii & Ustinov (2009), in their figures 7
and 8, reported similar scaling of streamwise spectra, in their case by Re2

x and Re3/2
x , for

different boundary-layer datasets collected in their low-turbulence wind tunnel (Re2
x and

Re3/2
x were written as ε2〈u∗′2〉zt and ε2〈u∗′2〉ztδ

∗
d , respectively, in their formulas (2.8) and

(2.9)). They attributed the scaling by Re3/2
x to nonlinear effects. We show in the following

that the scaling of the MA01 spectra can be explained by asymptotic results emerging from
the linearized theory of LWG99, although our form of free-stream spectrum does model
nonlinear effects through its streamwise dependency.

2.3. Computation of Cα and Cβ

The constants Cα and Cβ in (2.1) are found as follows. The integrals in (2.1) are first
computed by using the spectral data in figures 2(a,b) at different streamwise locations
Rex. For the experimental data of figure 2, MA01 do not report the values of ε2〈u′2〉zt
at different Rex. The data shown in figure 2(d) on p. 156 of MA01 for a similar set of
flow conditions can, however, be used for our purpose because that graph shows that
the r.m.s. of the streamwise velocity starts to deviate from the linear behaviour when
it reaches a value of about 9 × 10−3. The constants Cα and Cβ can thus be found by
linear fitting of the integrated experimental data in order to obtain ε2〈u′2〉zt = 9 × 10−3

at Rex = 159 438, which is the most downstream location where the data of figure 2 obey
the scaling discussed in § 2.2 (denoted by solid lines). Data downstream of this location,
displayed by dashed lines in figures 2(a,b), are affected by nonlinear effects, similarly
to the r.m.s. data larger than 9 × 10−3 in figure 2(d) on p. 156 of MA01. The computed
values are Cα = 1.62 × 10−10 and Cβ = 4 × 10−12. Figure 3 shows that the r.m.s. values,
obtained by integrating Eα and Eβ , agree well with each other and grow linearly with
Rex as expected. MA01 give the free-stream turbulence level for this experimental dataset,
Tu(%) = 0.022, and we thus take ε = 0.022.

2.4. Power-law dependence of scaled turbulence spectra
The data in figures 2(c,d) are replotted in figure 4, which reveals that the experimental data
of the energy spectra by MA01 are well approximated by the power laws

Êα = 1.91 × 10−5

(kxδd)α̃
, where α̃ = 2.82, (2.3)

972 A3-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.676


Scaling of boundary-layer disturbances

0 0.4 0.8 1.2 1.6

(×105)

0.002

0.004

0.006

0.008

0.010

Rex

ε2
〈u

′2 〉
zt

Figure 3. Growth of r.m.s. of streamwise velocity fluctuations as a function of Rex, computed by integrating
the spectra Eα (red circles) and Eβ (blue squares) shown by solid lines in figures 2(a,b).
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Figure 4. (a) Scaled energy spectrum Êα as a function of the streamwise wavenumber kxδd , and (b) scaled
energy spectrum Êβ as a function of the spanwise wavenumber kz. The experimental data by MA01, also
shown in figures 2(c,d), are represented by the red circles, and the algebraic best fitting lines in solid blue
represent relations (a) (2.3) and (b) (2.4).

Êβ = 8.3 × 102

kβ̃
z

, where β̃ = 1.55. (2.4)

The power laws (2.3) and (2.4) are useful in our theoretical analysis of § 4.

3. Theoretical framework for the Klebanoff modes

The theory of the Klebanoff modes is found in LWG99. Here, we report the main points
that are useful for our analysis of the wind-tunnel flow studied by MA01.

3.1. The free-stream disturbance flow at short streamwise distances
A uniform flow of velocity U∗∞ past an infinitely thin flat plate transports homogeneous,
statistically stationary vortical fluctuations of the gust type, i.e. disturbances that are
convected passively by the mean flow. These free-stream perturbations are assumed to

972 A3-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

67
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.676


P. Ricco

be of small amplitude with respect to U∗∞, so that the free-stream flow is represented as
the sum of the mean uniform flow and the free-stream vortical disturbances, as

u∞ = î + ε u′
∞(x − t, y, z) = î + ε

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
û′

∞(kx, ky, kz)

× exp(i(k · x − kxt)) dkx dky dkz, (3.1)

where ε 	 1, û′∞ = {û∞, v̂∞, ŵ∞} = O(1), k = {kx, ky, kz}, and the streamwise
wavenumber kx and the frequency −kx are related because of Taylor’s hypothesis (Taylor
1938; Hunt 1973). In the experiments of MA01, the turbulence is generated by a grid
located upstream of the leading edge of the plate, but we consider x = 0 as the streamwise
location where the free-stream turbulence starts influencing the system because that
is where the turbulence intensity was measured by MA01, as explained in the second
paragraph of p. 154 in MA01. The representation (3.1) is valid at wall-normal distances
that are sufficiently large for the flow not to be influenced by the presence of the boundary
layer and the flat plate. The free-stream perturbation (3.1) is not influenced by viscous
dissipation while being transported downstream by the free-stream potential flow because
it is valid only at sufficiently small x location. The streamwise evolution of the free-stream
flow is nevertheless taken into account at larger streamwise locations by the model of
the free-stream spectrum studied in §§ 4.1 and 4.2, and by the numerical solution of
the free-stream disturbance flow that includes the viscous dissipation and the inviscid
displacement of the mean-flow streamlines due to the boundary layer, as discussed in
§ 3.2. Furthermore, expansion (3.1) is not valid for amplitudes of free-stream disturbances
comparable with that of the mean flow and for a non-uniform free-stream mean flow
because Taylor’s hypothesis does not apply in those cases (Lundell & Alfredsson 2004).

3.2. The Klebanoff modes
In the limit of large Reynolds number, Rλ 
 1, the mean laminar boundary layer
that develops over the flat plate is described by the steady boundary-layer equations
(Schlichting & Gersten 2000). The mean-flow streamwise and wall-normal velocity
components are U(x, y) and V(x, y), and the wall-normal similarity coordinate is η =
y/δ = y

√
Rλ/2x, where δ = √

2x/Rλ = √
2 δd/1.72 is the boundary-layer thickness used

in LWG99.
The free-stream vortical flow encounters the boundary layer and generates the Klebanoff

modes, as documented by the experimental data of MA01 discussed in § 2. We consider
the limit kx = O(R−1

λ ) 	 ky, kz because the Klebanoff modes are of low frequency. The
boundary layer indeed acts as a low-frequency-pass filter, thus only the low-frequency
disturbances penetrate into the boundary layer, as evidenced in figure 9(b) on p. 162
of MA01. We study the flow at downstream locations where δ∗ = O(Λ∗

z ), and we scale
the streamwise coordinate as x̄ = kxx = O(1). As explained in LWG99, the condition for
linearization in the boundary layer is ε/kx 	 1. The boundary-layer flow is expressed
as the sum of the mean boundary-layer flow U and the disturbance flow εu′, as follows
(LWG99; Hunt 1973; Hunt & Carruthers 1990):

u = U(x, y) + ε u′(x, y, z, t) = U(x, y) + ε

∫ ∞

−∞

∫ ∞

−∞
û′(x, y, kx, kz)

× exp(i(kzz − kxt)) dkx dkz
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= {U, V, 0} + ε

∫ ∞

−∞

∫ ∞

−∞

{
ū0(x̄, η),

(
2x̄kx

Rλ

)1/2

v̄0(x̄, η), w̄0(x̄, η)

}

× exp(i(kzz − kxt)) dkx dkz + O(ε2), (3.2)

where the leading-order velocity components with respect to kx 	 1 are retained,
i.e. {ū0, v̄0, w̄0} = [ŵ∞ + ikzv̂

∞/(k2
x + k2

z )
1/2] {(ikz/kx)ū, (ikz/kx)v̄, w̄}. The components

{ū, v̄, w̄} satisfy the linearized unsteady boundary-region equations, complemented by
initial and boundary conditions, all found in LWG99. Homogeneous boundary conditions
at the wall represent the no-slip condition, while mixed boundary conditions in the free
stream account for the boundary-layer inviscid displacement and the perturbation decay
due to viscous dissipation. The system is solved by a second-order implicit finite-difference
scheme and a standard block-elimination algorithm (Ricco & Wu 2007), described in
Appendix A.

The scaled wavenumber κz = kz/(kxRλ)1/2 = O(1) represents the relative importance
between spanwise and wall-normal viscous effects at x̄ = O(1). In the limit κz 	 1,
the spanwise viscous diffusivity becomes negligible and the dynamics is ruled by the
boundary-layer equations.

We now discuss an asymptotic result, based on the parameter κz, which is central
in the analysis developed in § 4. LWG99 showed that an asymptotic solution exists in
the low-frequency, large-spanwise-wavenumber limit κz 
 1 with κ̃ = κy/ |κz| = O(1),
where κy = ky/(kxRλ)1/2. In this limit, the leading-order velocity components {ū, v̄, w̄} are
rescaled and expressed as a function of the new streamwise coordinate x̃ = κ2

z x̄ = O(1),
i.e. ũ(x̃, η, κ̃) = κ2

z ū = O(1), {ṽ, w̃}(x̃, η, κ̃) = {v̄, w̄} = O(1). The rescaled velocity
components {ũ, ṽ, w̃} are quasi-steady and depend only on the ratio of wavenumbers κ̃ and
not explicitly on the scaled spanwise wavenumber κz. Although the asymptotic solution is
valid for κz 
 1, the numerical calculations reveal the remarkable result that the algebraic
growth of the quasi-steady asymptotic solution {ũ, ṽ, w̃} is indistinguishable from the full
boundary-region solution even for κz as low as 1. Figure 5 indeed shows that the trends
of |ũ| for different κz ≥ 1 and the same κ̃ collapse onto one another when plotted as a
function of x̃. It also means that the asymptotic solution describes the Klebanoff modes
well even when the spanwise wavelength is comparable with the boundary-layer thickness,
which is precisely the flow condition of interest in the experiments of MA01. Therefore, the
asymptotic solution {ũ, ṽ, w̃} is utilized in the scaling analysis of § 4, where the collapse of
the spectral distributions shown in figure 4 is obtained. Figure 5 also reveals that the initial
growth of the disturbance is linear when κz ≥ 1, that is, |ũ| = G(κ̃) |κz|

√
x̄. The inset

of figure 5 shows the slope G(κ̃). The decay of ũ as κ̃ → ∞, and therefore of G(κ̃), is
predicted by the asymptotic analysis because, in the limits κz 
 1 and κ̃ 
 1, the solution
can be written as ŭ(x̆, η) = κ̃2ũ = κ2

y ū = O(1), where x̆ = κ̃2x̃ = κ2
y x̄.

4. Scaling of the Klebanoff modes

4.1. Variance of the boundary-layer streamwise velocity
The boundary-layer perturbations and the free-stream modes are related as (Hunt 1973;
Hunt & Carruthers 1990)

û′
i(x, y, kx, kz) =

∫ ∞

−∞
Mij(x, y; kx, ky, kz) û′

∞j(kx, ky, kz) dky, (4.1)
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Figure 5. Growth and decay of the scaled streamwise velocity component of the Klebanoff modes |ũ| = κ2
z |ū|

at η = 1.46 as a function of the scaled streamwise coordinate x̃ = |κz|
√

x̄ for different κ̃ values. The velocity
is computed by solving numerically the boundary-region equations, found in LWG99. The straight solid lines
denote the linear growth. The inset shows the slope of the linear growth, G(κ̃).

where Mij is a tensor acting as a transfer function between the free-stream flow and
the boundary-layer flow. The interest is in the correlation of the boundary-layer velocity
components, delayed in time and z (Batchelor 1953),

Rij(x, y, rz, τ ) = ε2
〈
u′

i(x, y, z + rz, t + τ) u′
j(x, y, z, t)

〉
zt

, (4.2)

which can be expressed as (refer to pp. 638–640 in Hunt 1973)

Rij(x, y, rz, τ ) = ε2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

3∑
l=1

3∑
m=1

M†
ilMjm Φ∞lm(k)

× exp[i(kzrz − kxτ)] dkx dky dkz, (4.3)

where Φ∞lm is the spectral tensor of the turbulence upstream of the flat plate, and the
symbol † indicates the complex conjugate. The focus is on the spectral properties of the
mean-square streamwise velocity fluctuations, i.e. i = j = 1, rz = τ = 0 (LWG99),

ε2〈u′2〉zt = R11(x, y, 0, 0) = ε2
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

3∑
l=1

3∑
m=1

M†
1lM1m Φ∞lm(k) dkx dky dkz.

(4.4)
The relevant components of the transfer-function tensor Mij are

M11 = ū(0), M12 = ikx√
k2

x + k2
z

ū(0) − k2
z

kx

√
k2

x + k2
z

ū, M13 = ikz

kx
ū, (4.5a–c)

where ū(0) is the next-order term of the expansion of ū0 in (3.2) with respect to kx 	 1
(LWG99). By substituting (4.5a–c) into (4.4) and collecting the dominant terms O(k−2

x ),
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the integrand in (4.4) becomes

3∑
l=1

3∑
m=1

M†
1lM1m Φ∞lm(k) = k2

z |ū|2
k2

x

⎛
⎝ k2

z√
k2

x + k2
z

Φ∞22 + Φ∞33

⎞
⎠+ O(k−1

x ). (4.6)

As suggested by LWG99 on p. 187, an axial-symmetric turbulence model that describes
free-stream turbulence is (Batchelor 1953; Chandrasekhar 1950)

Φ∞ij =
k2
⊥δ⊥

ij −k⊥ik⊥j

k2
⊥

(
Φt − 2k2

x

k2
⊥

Φx

)
+ Φx

k2
⊥

(
k2

xδ
⊥
ij −kxk⊥iδi1 + k2

⊥δi1δj1

)
, (4.7)

where k⊥i = ki − δi1kx, δi1 is the Kronecker delta, δ⊥
ij = δij − δi1δj1 is the cross-stream

Kronecker delta, and k⊥ =
√

k2
y + k2

z . The functions Φx = Φx(kx, k⊥) and Φt =
Φt(kx, k⊥) are the longitudinal and transverse spectra. In the limit kx → 0,

Φ∞22 = k2
z

k2
x + k2

z
Φt, Φ∞33 = k2

x

k2
x + k2

z
Φt. (4.8a,b)

Substitution of (4.8a,b) into (4.6) and then into (4.4) leads to the variance of
boundary-layer streamwise velocity,

〈u′2〉zt(x, y) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
kz

kx

)2
|ū|2 (x, y)Φt(kx, k⊥) dkx dky dkz. (4.9)

As discussed by LWG99, these results demonstrate that, at leading order, the growth
and development of the Klebanoff modes is dictated by the transverse spectral function
Φt obtained by correlations of the velocity components perpendicular to the streamwise
direction (refer to LWG99 on p. 188), and not by the longitudinal spectral function
Φx, which is typically the object of experimental investigations of freely decaying
grid-generated turbulence.

4.2. Free-stream turbulence spectrum
The axial-symmetric transverse turbulence spectrum Φt(kx, k⊥) in § 4.1 is assumed to
pertain to homogeneous turbulence and it is therefore independent of the streamwise
direction (Hunt 1973; Hunt & Carruthers 1990). However, in a more general
non-homogeneous case, the turbulence spectrum also depends on the position vector,
Φt(x, kx, k⊥), as for example discussed in Townsend (1980). To the best of our knowledge,
no detailed measurements of Φt have been made, so our objective is to suggest a functional
form for Φt that is a satisfactory model for our problem.

Our choice of spectrum takes inspiration from the theory of temporally decaying
turbulence discussed in Townsend (1980) on p. 61. The results in the streamwise decaying
case can be assumed to be qualitatively analogous to the temporally decaying case if
the streamwise direction is considered in lieu of time for flows where the turbulence
intensity is much smaller than the free-stream mean velocity, i.e. when Taylor’s hypothesis
is valid, as explained in Townsend (1980) on p. 65. In the idealized limit of vanishingly
small amplitude of free-stream turbulence generated by a grid swept through a still fluid,
Batchelor (1953), on p. 93, shows that the time dependency is due solely to the viscous
dissipation, and the temporal decay is exponential. However, Batchelor (1953) warns that
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this behaviour would occur only after a long time, and it would not apply to a real turbulent
flow generated by a grid in a wind tunnel. The exponential decay would thus not pertain to
locations relatively close to the turbulence-generating grid, which are certainly of interest
in the study of the MA01 experimental results. Furthermore, if the turbulence spectrum Φt
were assumed to be independent of the streamwise direction, as in § 4.1, the streamwise
evolution of the free-stream disturbance would affect the variance

〈
u′2〉

zt in the boundary
layer only indirectly through the decaying free-stream wall-normal and spanwise velocity
components because |ū|, the leading-order component in (4.9), vanishes as y → ∞ (refer
to (5.11) and (5.20)–(5.22) in LWG99). Neglecting the streamwise dependency of the
free-stream spectrum would mean that the free-stream decay would be purely exponential
because it is dictated by a linearized dynamics. Including the streamwise dependence in Φt
is therefore deemed to be more realistic, and it also serves the purpose of modelling mild
effects of nonlinearity. Similar modelling of mild nonlinearity in a free-stream spectrum
pertaining to realistic grid-generating turbulence has been proposed by LWG99 in their
§ 7.2.

Townsend (1980) on p. 61 shows that the spectral function for decaying turbulence has
the form

E(k, t) = 〈u′(t)2〉L(t)F(kL(t)), (4.10)

where L(t) is an integral scale representing the free-stream isotropic turbulence, 〈·〉
indicates spatial averaging, and k is the wavenumber. The spectral function (4.10) is found
by appropriate scaling of experimental data (Stewart & Townsend 1996), as also discussed
in Hinze (1975) on p. 263. By substitution of (4.10) into the equation governing the rate of
change of the turbulence spectrum, Townsend (1980) finds

d
〈
u′(t)2〉
dt

∝
〈
u′(t)2〉3/2

L(t)
,

dL(t)
dt

∝ 〈u′(t)2〉1/2, (4.11a,b)

as further explained in Batchelor (1953) on p. 103. The temporal decay of
〈
u′(t)2〉 that

satisfies (4.11a,b) is
〈u′(t)2〉 ∝ t−γ , (4.12)

which is consistent with numerous experimental data, for which 1.15 < γ < 1.45 (refer to
p. 160 of Pope 2000), and with theoretical studies, which suggest γ = 1 (refer to Tennekes
& Lumley 1972) or γ = 3/2 (refer to Davidson (2004) on p. 407, where the Saffman
spectrum is discussed). The decay constant γ can then be assumed to be

1 ≤ γ ≤ 3/2. (4.13)

The integral spatial scale L is predicted to grow as

L ∝ tζ , 1/4 ≤ ζ ≤ 1/2. (4.14)

Substitution of (4.12) and (4.14) into (4.10), and use of (4.13), lead to a simplified form of
the spectrum

E(k, t) ∝ F (
ktd/2)
tc/2 , (4.15)

for which the inequalities

1 ≤ c ≤ 5/2 and 1/2 ≤ d ≤ 1 (4.16a,b)
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apply. Also, c = 3γ − 2 and d = 2 − γ , from which

c = 4 − 3d. (4.17)

The time-decaying isotropic spectrum (4.15) can now be used to obtain a spectrum that
pertains to the grid-generated turbulence of interest in our problem. As the spectrum has
to account for the streamwise decay of turbulence, the temporal dependence in (4.15)
is converted to the streamwise dependence. The axial symmetry of the turbulence has
to be modelled by including the effect of the cross-flow wavenumber k⊥ because, as
explained by Batchelor (1953), purely isotropic turbulence is extremely hard to obtain
in the laboratory. Our axial-symmetric transverse spectrum therefore reads

Φt(x, kx, k⊥; Rλ) = 1
kb
⊥(kxRλ)2δc

F
(

kxRλδd

kn
⊥

)
, (4.18)

where, in lieu of t in (4.15), we have introduced the streamwise coordinate x and expressed
this dependence through the boundary-layer thickness δ because δ ∝ √

x. The dependence
of the spectrum on k⊥ is introduced inside and outside the function F to allow maximum
generality. The spatial dependence of the spectrum (4.18) is mild compared with the
long streamwise length scale of the Klebanoff modes because (4.18) is expressed as a
function of δ = δ∗/Λ∗

z , where δ∗ and Λ∗
z are comparable. Consistently with the theoretical

framework of § 3, the low-frequency assumption is adopted as the boundary layer acts as a
low-frequency-pass filter. It is thus reasonable to consider a free-stream spectrum such as
(4.18), dominated by low-frequency disturbances (kx 	 1 with kxRλ = O(1) or smaller).

The parameters n, b, c, d in (4.18) are found by asymptotic analysis and by fitting the
experimental data. The parameters c and d play analogous roles in (4.15) and (4.18).

4.3. Scaling of boundary-layer streamwise velocity spectra
By substituting the spectrum (4.18) into (4.9), the variance of the boundary-layer
streamwise velocity becomes

〈u′2〉zt =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

(
kz

kx

)2 |ū|2
kb
⊥(kxRλ)2δc

F
(

kxRλδd

kn
⊥

)
dkx dky dkz. (4.19)

Expression (4.19) is used with (2.1) and (2.2a,b) to explain the scaling of the
experimental results, shown in figures 2(c,d). The four parameters n, b, c, d in (4.19) are
found by using the following four conditions.

(i) In figure 2(c), the spectrum Êα depends only on the scaled streamwise wavenumber
kxδd.

(ii) In figure 2(d), the spectrum Êβ depends only on the spanwise wavenumber kz and is
independent of the streamwise location.

(iii) In figure 4(a), the best fitting of the experimental data leads to the power-law
dependency (2.3) for Êα(kxδd).

(iv) In figure 4(b), the best fitting of the experimental data leads to the power-law
dependency (2.4) for Êβ(kz).
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4.3.1. Spectrum versus spanwise wavenumber
Motivated by the scaling of the spectrum Eβ by Rex, given in the second expression in
(2.2a,b), the variance (4.19) is rescaled by Rex as〈

u′2〉
zt

Ce Rex
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
k2

z |ū|2
Cekb

⊥(kxRλ)3x̄δc
F
(

kxRλδd

kn
⊥

)
dkx dky dkz. (4.20)

The streamwise velocity |ū| is changed to |ū|2 = |ũ|2 k2
xR2
λ/k4

z , and the streamwise
coordinate is eliminated by using x̄ = δ2kxRλ/2, to obtain〈

u′2〉
zt

Ce Rex
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
2 |ũ|2

Cek2
z kb

⊥(kxRλ)2δc+2
F
(

kxRλδd

kn
⊥

)
dkx dky dkz. (4.21)

The asymptotic solution for κz 
 1, i.e. |ũ|2 = (kzδ)
2 |G(κ̃)|2 /2, shown in figure 5 and

discussed at the end of § 3.2, is substituted into (4.21) to arrive at〈
u′2〉

zt

Ce Rex
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|G(κ̃)|2

Cekb
⊥(kxRλ)2δc

F
(

kxRλδd

kn
⊥

)
dkx dky dkz. (4.22)

The wavenumbers k⊥ and ky are eliminated by using k⊥ = |kz| (1 + κ̃2)1/2 = |kz| K(κ̃)

and ky = kzκ̃ , and the integration limits are changed to [0, ∞):〈
u′2〉

zt

Ce Rex
=
∫ ∞

0

∫ ∞

0

∫ ∞

0

23 |G(κ̃)|2
Cekb−1

z (kxRλ)2K(κ̃)bδc
F
(

kxRλδd

(kzK(κ̃))n

)
dkx dκ̃ dkz. (4.23)

By using the rescaled (2.1), 〈
u′2〉

zt

Ce Rex
= Cβ

ε2

∫ ∞

0
Êβ(kz) dkz, (4.24)

we find

Êβ(kz) = 23ε2

CeCβR2
λk

b−1
z δc

∫ ∞

0

|G(κ̃)|2
K(κ̃)b

∫ ∞

0

1
k2

x
F
(

kxRλδd

(kz K(κ̃))n

)
dkx︸ ︷︷ ︸

Iβ

dκ̃. (4.25)

By defining the integration variable σ = kxRλδd/[kz K(κ̃)]n, the integral Iβ in (4.25)
becomes

Iβ = Rλδd

[kz K(κ̃)]n

∫ ∞

0

F(σ )

σ 2 dσ. (4.26)

Upon substitution of (4.26) into (4.25), we obtain

Êβ(kz) = 23ε2δd−c

CeCβRλkb−1+n
z

∫ ∞

0

|G(κ̃)|2
[K(κ̃)]n+b dκ̃

∫ ∞

0

F(σ )

σ 2 dσ. (4.27)

The key point here is that, as the function Êβ must not depend on the streamwise direction,
the dependence on δ must be eliminated. It follows that c = d.
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The spectrum (4.27) becomes

Êβ(kz) = BβGβΣβ

kz
β̃

, (4.28)

where β̃ = b − 1 + n, and

Bβ = 23ε2

RλCeCβ

, Gβ =
∫ ∞

0

|G(κ̃)|2(
1 + κ̃2

)(n+b)/2 dκ̃, Σβ =
∫ ∞

0

F(σ )

σ 2 dσ. (4.29a–c)

The algebraic decay emerging in (4.28) matches the behaviour of the experimental data
in figure 4(b). At small kz, the theoretical framework does not predict the trend of
the data in figure 4(b), which is almost independent of kz. At small kz, the spanwise
wavelength is larger than the boundary-layer thickness, the spanwise viscous effects are
negligible, and the flow is ruled by the boundary-layer equations, as discussed in § 3.1.
Our analysis instead hinges on the asymptotic solution of the boundary-region equations
for which the spanwise wavelength and the boundary-layer thickness are comparable, i.e.
the wall-normal and spanwise diffusion effects are both important (κz = O(1) or larger).
The same reasoning applies to the dash-dotted lines in figure 2(d), which do not collapse
onto one another as they correspond to streamwise locations close to the leading edge,
where spanwise-diffusion effects are negligible.

4.3.2. Spectrum versus streamwise wavenumber
Motivated by the scaling of the spectrum Eα by Re3/2

x , given in the first expression in
(2.2a,b), the variance (4.19) is rescaled by Re3/2

x . By using c = d, found in § 4.3.1, we find〈
u′2〉

zt

Ce Re3/2
x

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
k2

z |ū|2
Cek5/2

x kb
⊥R7/2
λ δcx̄3/2

F
(

kxRλδc

kn
⊥

)
dkx dky dkz. (4.30)

The streamwise velocity |ū| is changed to |ū|2 = |ũ|2 k2
xR2
λ/k4

z , and the streamwise
coordinate is eliminated by using x̄ = δ2kxRλ/2, to find〈

u′2〉
zt

Ce Re3/2
x

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
23/2 |ũ|2

Cek2
z k2

xkb
⊥R3
λδ

c+3
F
(

kxRλδc

kn
⊥

)
dkx dky dkz. (4.31)

The changes of variable kz = k⊥ sin θ , ky = k⊥ cos θ , k⊥ = ko/δ are used in (4.31) to find〈
u′2〉

zt

Ce Re3/2
x

=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

23/2 |ũ|2
Ceδc+3−bkb+1

o (sin θ)2k2
xR3
λ

F
(

kxRλδn+c

kn
o

)
dθ dko dkx.

(4.32)
We substitute the asymptotic result

|ũ|2 = k2
z δ

2

2
|G(κ̃)|2 = k2

o(sin θ)2

2
|G(cot θ)|2 (4.33)

into (4.32) to obtain〈
u′2〉

zt

Ce Re3/2
x

=
∫ ∞

−∞

∫ ∞

0

∫ 2π

0

√
2 |G(cot θ)|2

Ceδc+4−bkb−1
o k2

xR3
λ

F
(

kxRλδn+c

kn
o

)
dθ dko dkx. (4.34)
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By using the rescaled (2.1), 〈
u′2〉

zt

Ce Re3/2
x

= Cα

ε2

∫ ∞

0

Êα(kxδ)

δ
d(kxδ), (4.35)

changing the limits of the integration along kx to [0, ∞), and equating (4.34) and (4.35),
we find

Êα(kxδ) = 23/2ε2Gα

CeCαR3
λ

∫ ∞

0
F
(

kxRλδn+c

kn
o

)
dko

k2
xδ

c+3−bkb−1
o

, (4.36)

where

Gα =
∫ 2π

0
|G(cot θ)|2 dθ. (4.37)

We define the integration variable ω = kxRλδn+c/kn
o (n > 0) in (4.36) to obtain

Êα(kxδ) = 23/2ε2Gα

nCeCαR3+(b−2)/n
λ

∫ ∞

0

F(ω) dω

ω1+(2−b)/nδc+1+c(b−2)/nk2+(b−2)/n
x

. (4.38)

By defining α̃ = 2 + (b − 2)/n and d̃ = c + 1 + c(b − 2)/n, the spectrum becomes

Êα(kxδ) = 23/2ε2Gα

nCeCαR3+(b−2)/n
λ

(
δd̃/α̃kx

)α̃

∫ ∞

0

F(ω) dω

ω1+(2−b)/n . (4.39)

For the spectrum Êα to depend only on kxδ, we set α̃ = d̃. It follows that c = 1. The values
c = 1 and d = 1 respect the inequalities (4.16a,b) and the relation (4.17) obtained in § 4.2
from Townsend’s spectrum. The decay constant becomes γ = 1, which also falls within
the inequality range predicted by Townsend’s theory and is consistent with theoretical and
experimental studies (Tennekes & Lumley 1972; Fransson et al. 2005).

By using the displacement thickness δd instead of δ, as in the MA01 experiments, the
spectrum (4.39) becomes

Êα(kxδd) = AαGαΩα

(kxδd)
α̃

, (4.40)

where

Aα = 23/2ε2

nCeCαR3+(b−2)/n
λ

(
1.72√

2

)α̃

, Ωα =
∫ ∞

0

F (ω)

ω1+(2−b)/n dω. (4.41a,b)

For kxδd < 0.04, the experimental data shown in figure 4(a) decay algebraically at a
smaller rate than at larger kxδd. For fixed kx and small δd, the spanwise wavelength is
larger than δd, the spanwise diffusivity is negligible, and the flow is described by the
boundary-layer equations. It is then expected that the spectrum behaves differently when
the boundary-region equations, used in our theoretical framework, instead describe the
flow.
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Êβ(kz) = BβGβΣβ

kz
β̃

Êα(kxδd) = AαGαΩα

(kxδd)
α̃

BβGβΣβ = 8.3 × 102 AαGαΩα = 1.91 × 10−5

Bβ = 23ε2

RλCeCβ

= 27 104 Aα = 23/2ε2

nCeCαR3+(b−2)/n
λ

(
1.72√

2

)α̃

= 4.86 × 10−7

GβΣβ = 0.0306 GαΩα = 39.32

Gβ =
∫ ∞

0

|G(κ̃)|2(
1 + κ̃2

)(n+b)/2 dκ̃ = 0.0627 Gα =
∫ 2π

0
|G(cot θ)|2 dθ = 0.314

Σβ =
∫ ∞

0

F(σ )

σ 2 dσ = 0.488 Ωα =
∫ ∞

0
ω(b−2)/n−1 F(ω) dω = 125.22

Table 1. Numerical values of quantities related to the energy spectra Êα and Êβ .

4.4. Parameters of the transverse spectrum Φt

We use the exponents α̃ = 2.82 and β̃ = 1.55 in (2.3), found from the best-fitting analysis
in § 2.4, to solve the algebraic expressions β̃ = b − 1 + n, found in § 4.3.1, and α̃ = 2 +
(b − 2)/n, found in § 4.3.2. The four coefficients of the transverse spectrum Φt are

c = d = 1, n = β̃ − 1
α̃ − 1

= 0.302, b = α̃β̃ + α̃ − 2β̃

α̃ − 1
= 2.248. (4.42a–c)

Table 1 presents the numerical values related to the energy spectra Êα and Êβ .

4.5. The spectral function F
A spectral function F that satisfies the two integrals Σβ and Ωα , given in table 1, is
now chosen. Inspired by Ishihara et al. (2005) and Sagaut & Cambon (2008), we select
F(ξ) = Af ξ

a1 exp(−a2ξ
a3), where the coefficients satisfy

Σβ =
∫ ∞

0

F(σ )

σ 2 dσ = Af

∫ ∞

0
σ a1−2 exp(−a2σ

a3)dσ =
Af Γ

(
a1 − 1

a3

)
a3a(a1−1)/a3

2

= 0.488,

(4.43)

Ωα =
∫ ∞

0
ωω̄ F(ω) dω = Af

∫ ∞

0
ωa1+ω̄ exp(−a2ω

a3)dω

=
Af Γ

(
a1 + ω̄ + 1

a3

)
a3a(a1+ω̄+1)/a3

2

= 125.22, (4.44)

with Γ the Gamma function, and ω̄ = (b − 2)/n − 1 = 0.179. We can find multiple
combinations of Af , a1, a2 and a3 that satisfy Σβ and Ωα . Figure 6 shows an example
of the spectral function F(ξ).
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Figure 6. Spectral function F(ξ) for Af = 0.03, a1 = 3, a2 = 0.3 and a3 = 0.9.

5. Conclusions and outlook

In this paper, we have continued our effort to obtain theoretical and numerical results
that explain the experimental findings reported by Matsubara & Alfredsson (2001), one
of the most important studies on the impact of free-stream turbulence on the growth and
evolution of velocity perturbations in a flat-plate transitional boundary layer. In Ricco
et al. (2011), our theoretical framework and calculations reproduced the main features
reported by Matsubara & Alfredsson (2001) on the initiation of nonlinear effects within
the boundary layer, such as the enhancement of the wall-shear stress with respect to
the laminar value, the growth of disturbances in the outer part of the boundary layer,
and the motion of the peak fluctuations towards the wall. In the present paper, we have
instead focused on the collapse of the energy spectral profiles, obtained by Matsubara &
Alfredsson (2001) when appropriate rescaling was adopted.

The spectral theory of homogeneous temporal-decaying turbulence developed
by Townsend (1980) has been utilized to obtain a model spectrum for the
streamwise-decaying axial-symmetric free-stream turbulence generated by Matsubara &
Alfredsson (2001) by use of a grid located in the upstream section of their wind tunnel.
Quasi-steady asymptotic solutions of the unsteady boundary-region equations, found by
Leib et al. (1999), have been used in the analysis of the experimental results of Matsubara
& Alfredsson (2001). The quasi-steady approximation was justified by the established
finding that the boundary layer acts as a low-frequency-pass filter on the free-stream
fluctuations, i.e. low-frequency disturbances are amplified in the boundary layer, while
high-frequency disturbances are less prone to reach the core of the boundary layer.

Further work should be directed at measurements of the cross-stream velocity
components in the free stream to arrive at a functional form for the transverse spectrum,
which is responsible for the generation of the low-frequency Klebanoff modes inside the
boundary layer (Leib et al. 1999). To the best of our knowledge, no experimental data of the
free-stream transverse spectrum exist. These data would allow for a better understanding
of the response of the boundary layer to the free-stream flow.

As our formulation considers quasi-steady components of the Klebanoff modes, more
accurate models that would allow for comparison at any wavenumber and frequency should
include perturbations at any value of the scaled wavenumber κz. The boundary-layer
equations, valid near the leading edge where spanwise diffusion is negligible, should
be solved for the cases with κz 	 1. An evident complication is that the receptivity
would then be dictated by the full free-stream spectrum (4.7), which is a combination
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of the streamwise and transverse spectra, and not only by the leading-order transverse
spectrum (4.18). It also follows that velocity components of higher order (with respect to
the frequency), such as those appearing in (4.5a–c) and the order-one components studied
by Wu & Dong (2016), would have to be taken into account. These improvements could
lead to better agreement between the theoretical results and the experimental data at small
kxδd and small kz in figure 4.

In our analysis, only a mild effect of free-stream nonlinearity has been included by
modelling the streamwise dependency of the free-stream spectrum, along similar lines
to the nonlinear model in § 7.2 of Leib et al. (1999). If the streamwise dependency of
the free-stream spectrum had not been accounted for, the free-stream decay would have
been exponential because dictated by a linearized dynamics and it would not have been
representative of realistic turbulence generated by a grid in a wind tunnel (Batchelor 1953).
Lifting the assumption of low-amplitude disturbances would lead to a better understanding
of the boundary-layer response to the free-stream perturbation flow during the nonlinear
stages of transition, which may involve secondary instability and the formation of turbulent
spots. An interesting line of research would be the quantitative comparison between
such nonlinear receptivity results and experimental data during transition, such as those
obtained, for example, by Verdoya et al. (2022).
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Appendix A. Numerical procedures

The boundary-region equations, given by (5.2)–(5.5) on p. 180 in LWG99 and
complemented by the free-stream and initial boundary conditions given by (5.28)–(5.31)
on p. 183 and (5.25)–(5.27) on p. 182 in LWG99, are solved numerically. As the equations
are parabolic along the streamwise direction, a streamwise marching scheme is employed.
As shown in figure 7, a second-order implicit finite-difference scheme, central in η and
backward in x̄, is adopted, where the derivatives of a velocity component are expressed as

∂q
∂η

= qj+1 − qj−1

2 Δη
,

∂2q
∂η2 = qj+1 − 2qj + qj−1

(Δη)2 ,
∂q
∂ x̄

=
3
2 qi,j − 2qi−1,j + 1

2 qi−2,j

Δx̄
.

(A1a–c)

If the pressure is computed on the same grid as the velocity components, a pressure
decoupling phenomenon occurs. Therefore, the pressure is computed on a grid staggered
in η:

p = pj+1 + pj

2
,

∂p
∂η

= pj+1 − pj

Δη
. (A2a,b)

The pressure at the wall does not have to be specified and is calculated a posteriori by
solving the z-momentum equation at η = 0. Due to the linearity of the equations, the
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Outer BC

Wall BC x̄

η

	x̄

	η

i – 1, j i,  ji – 2, j

i, j – 1

i,  j + 1

N – 1

0

i,  j + 1

i, j

Figure 7. Sketch of the regular grid (black circles) and staggered grid (grey circles) used for the numerical
scheme, adapted from Viaro & Ricco (2019). BC stands for ‘boundary conditions’.

system is in the form Ax = b. For a grid with N points along η, A is an (N − 2) × (N −
2) block-tridiagonal matrix where each block is a 4 × 4 matrix associated with the four
unknowns {ū, v̄, w̄, p̄}. Therefore, the wall-normal index j of the vectors and matrix runs
from 1 to N − 2. The numerical procedure used to solve the linear system is found in
Cebeci (2002) on pp. 260–264.
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