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A - INTRODUCTION 

Celestial Mechanics has undergone, in the past three years, a considerable de­
velopment that has been marked by a significant increase of published papers and by 
the recent organization of several specialized colloquia or symposia. The reasons 
of this increase of interest may be found among the following circumstances : 
- The discovery of new dynamical situations in the Solar system: ellipticity of ringlets, 

shepherd satellites. 
- The increase of interest in the problem of the dynamical evolution of the solar 

system or of its sub-systems. 
- The present necessity to include relativistic effects in the theory of motion of 

celestial bodies. 
- New promising results in the analysis of the properties of dynamical systems. 

Several books or monographs in Celestial Mechanics were published during these 
three years: 
- Akim, E.L., Bazhinov, I.K., Pavlov, V.P. and Pochukaev, V.N., (1904), "The gravi­

tational field of the Moon and the motion of its artificials satellites", in rus-
sian, Mashinostroenie, Moscow. 

- Bordovitzina, T.V. (1984), "Modern numerical methods in the problems of Celestial 
Mechanics", in russian, Nauka, Moscow. 

- Dragomir, V.C., Ghitan, D.N., Mihailescu, M.S. and Rotoru, M.G. (1984), "The theo­
ry of Earth's shape", Elsevier, Amsterdam. 

- Duboshin, G.N. (1983), "Celestial Mechanics: Methods of the theory of motion of 
artificial celestial bodies", in russian, Nauka, Moscow. 

- Emelyanov, N.V. (1983), "Methods for the construction of algorithms and programs 
in problems of Celestial Mechanics", in russian, Nauka, Moscow. 

- Ferraz-Mello, S. (1983), "Dynamics of the Galilean satellites", russian transla­
tion, Mir, Moscow. 

- Kane, T.R., Likins, P.W. and Levinson, D.A. (1982), "Spacecraft dynamics", Mc. 
Graw Hill, New York. 

- Kovalevsky, J. (1984), "Introduction to Celestial Mechanics", Chinese translation. 
- de Luca, N. (1982), "Mecanica Celeste", in Portuguese, Curitiba. 
- Nazarenko, A.I. and Skrebushevsky, B.S. (1981), "Evolution and stability of sa­

tellite systems", in russian, Mashinostroenie, Moscow. 
- Roy, A.E. (1982), "Orbital motion", 2nd edition, Heyden and Sons, Philadelphia; 

russian translation of the first edition (1981), Mir, Moscow. 
- Szebehely, V. (1982), "Theory of orbits: the restricted problem of three bodies", 

russian translation, Nauka, Moscow. 
- Timoshkova, E.I. and Kholshevnikov, K.V. (1982), "Asymptotic methods in Celestial 
Mechanics", in russian, Itogui Nauki i techniki, ser.astron., vol.20, VINITI, 
Moscow. 

The great diversity of research under way in the various fields of Celestial 
Mechanics does not permit to draw a complete picture of its development in the few 
pages that have been allocated to the commission report. So, following the example 
of the 1982 report by Y. Kozai, and in harmony with the wishes of the organizing 
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committee, no attempt was made to give a quasi-exhaustive bibliography. We chose 
to critically describe in more details the achievements in some specific domains 
of Celestial Mechanics, leaving aside large fields of interest in which quite im­
portant contributions have been made. Hopefully, they will be included in the next 
report as a part of a six year development description. In the present report, we 
put the emphasis on two domains: the dynamics and the evolution of the solar sys­
tem and the structure of the solutions of dynamical systems in Celestial Mechanics 
and particularly in the 3 or n-body problem. In doing so, no mention is made of the 
achievements in relativistic Celestial Mechanics (this will be done in the incomming 
IAU symposium N° 114), resonance theory, systems involving finite bodies (including 
artificial satellite motion, structure or rotation of celestial bodies), methods 
for solving the equations (asymptotic methods, various developments, Hamiltonian 
mechanics, perturbations theory, etc...), variable masses, etc... 

In particularly thank J. Chapront, J. Hadjidemetriou and C. Marchal who have 
accepted to review the achievements in their respective fields and have greatly 
contributed to this report, and also all the colleagues who sent their reports. 

N.B. In the course of the report, A and A. Abstracts numbers are used except for 
the most usual titles for which an abreviated designation followed by the 
volume number (Colloquium or Symposium number for IAU Coll. or Symp.) and the 
page number is used. In addition, results presented in three recent non IAU 
colloquia are indicated as follows : 
BER : "The Big Bang and Georges Lemaitre" 

A. Berger ed. (Louvain, Oct. 1983), Reidel Publ.Co. 
SZB : "The stability of the Solar System" 

V. Szebehely ed. (Cortina d'Ampezzo, Aug. 1984), in press. 
FME : Resonances in the motion of planets, satellites and asteroids" 

S. Ferrza-Mello and W. Sessin eds. (Sao Paulo, Nov. 1984), in press. 

B - PLANETARY AND LUNAR THEORIES 

(Main contributor : J. Chapront) 

The last three years have been characterized, in these fields, by the intro­
duction in the "Connaissance des Temps" of the planetary and lunar theories recen­
tly constructed in the Bureau des Longitudes and a series of improvements and accu­
racy analyses of these theories. 

I. SECULAR VARIATION PLANETARY THEORIES 

These theories are characterized by the presence of time in the coefficients 
of the periodic terms. They are valid for an interval of time of the order of one 
thousand years. The planetary theories constructed at Bureau des Longitudes have 
resulted in the solutions T0P82 for giant planets (Simon, AA 120.197) and VSOP82 
for telluric and giant planets (Bretagnon, AA 114.278). Since the 1984 edition of 
the Connaissance des Temps, the solutions TOP82 and VS0P82 replace the theories by 
Le Verrier and Gaillot in the computation of the ephemerides of the Sun and major 
planets. The solution VS0P82 was compared to planetary observations (transits of 
Mercury and Venus, occultations of Venus and Mars) over the interval 1717-1973 by 
Krassinky et al (submitted to AA). The relativistic drifts that have been introdu­
ced for the perihelion of Mercury have been verified to an accuracy of a second of 
arc. The ephemerides of Mars constructed from an earlier solution (VSOP80) have 
been compared to 1622 observations performed between 1935 and 1976 by Niimi 
(33.042.090). A set of constants of integration was determined for the Earth and 
Mars. A particular attention was directed towards the modelling of the phase effect. 

Presently, the improvement of these new theories is undertaken either in trying 
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to improve the precision or in extending the interval of validity. The effects of 
lunar perturbations on the barycenter of the Earth-Moon system and on all major pla­
nets have been recomputed with a better precision. Perturbations due to Ceres, Pal­
las and Vesta on the major planets have been determined up to the second order of 
masses (Bretagnon, CM in press). On an interval of 1000 years around J2000, the ac­
curacies range between 0V001 and 071 according to the planet. The interval of vali­
dity of the theories of Jupiter and Saturn has been extended to 6000 years around 
J2000 using methods that have been developed during the construction of T0P82 
(Simon and Bretagnon, AA 138.169). The accuracy of the theory of Jupiter is better 
than 8" in the interval - 4000 to +8000. For Saturn, it is better than 23". The in­
terval of validity of the theories of the Sun, Mercury, Venus and Mars has also been 
extended to 6000 years using, in particular, secular developments deduced from the 
general theory of Laskar (AA in press). For the Sun and these planets, the accura­
cy ranges between 1" and 5" over all the interval -4000 to +8000 years. 

J. Chapront (CM in press) has proposed a new method of solving the problem of 
the motion of the Neptune-Pluto. He renounced the successive approximation method 
using Fourier series developments in mean longitudes which diverges. If one accepts 
to limit the validity of the solution to a thousand years - and this eliminates the 
3.2 resonance problem -, the solution may be represented in terms of mixed series 
called Fourier-Chebyshev series (Chapront, CM 28.415). 

II. GENERAL PLANETARY THEORIES 

These theories provide long periodic variations of orbital elements of planets 
and their validity covers a time interval of the order of one million years. They ha­
ve been developed in different directions. Bretagnon (CM in press) has refined his 
1974 previous solution, introducing relativistic and lunar perturbations. Duriez 
(25.42.100) has constructed an autonomous system limited to the four giant planets. 
Laskar has continued this work (AA in press) and has included all the eight planets. 
He performed a numerical integration of the autonomous system over one million years 
instead of looking for a solution in quasi-periodic functions of time that have a 
poor convergence. The relativistic and lunar perturbations were included. The accu­
racy obtained allows a development of the solution in powers of time around the ori­
gin which has permitted to obtain the secular variations of the elements that were 
used to extend VS0P82 over 6000 years. 

An important effort was initiated by Kamel in order to compute litteral expres­
sions for a general theory of the motion of giant planets. It was prepared by the 
development of powers of the inverse distance between two planets (Kamel MP 26.339) 
and by the elimination of the critical terms in Jupiter-Saturn and Uranus-Neptune, 
theories (Kamel MP 24.137, 27.407, 28.221 and Kamel and Bakry MP 24.261). A theory 
to the second order of masses of the Jupiter-Saturn system was computed using Poincare 
variables and the Von-Zeipel method up to the fourth order in the eccentricities and 
inclinations (Kamel and Bakry MP 27.417 and 28.113). 

III. NUMERICAL THEORIES AND METHODS 

Most of the international planetary ephemerides are now based upon the numeri­
cal integration on the solar system performed in JPL (see Standish CM 26.181) and 
called DE200/LE200. In USSR, work is progressing in improving high accuracy numeri­
cal theories of the motion of inner planets and the Moon (Krassinsky and Sveshnikov 
CM 26.171; Krassinsky et al. AA in press; Sveshnikov 32.041.001, Trudy ITA 19). They 
are based upon soviet radar observations (1961-80), Washington meridian observations 
of the Sun (1961-70), passages of Mercury on the Sun (1717-1913), occultations of 
stars and inner planets by the Moon (1713-1980), laser observations of the Moon in 
McDonald (1970-1973). Among the results already obtained a number of parameters ha­
ve been improved such as the motion of the equinox, the tidal acceleration of the 
mean motion of the Moon, Universal time scale during the XVII-XIXth centuries, the 
relativistic motion of the perihelion of Mercury, the secular variation of the so-
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lar radius, etc... During this work, rare but very valuable modern photoelectric 
observations of occultations of stars by planets were used. A simple such observa­
tion has an efficiency that is equivalent to a long series of classical astrometric 
observations. Planning of such observations in the future, might be very useful for 
improving the theories in Celestial Mechanics. In parallel, in the Institute for 
Theoretical Astronomy of Leningrad,a general information center on the motion of 
bodies of the solar system is being set up. 

Kinoshita and Nakai (CM in press) have integrated the motion of the outer pla­
nets for five million years. The libration of Pluto s perihelion about 90° with a 
period of 4 million of years was assessed. It avoids close approaches to Neptune. 
This integration was used by Milani (CM in press) who traced the time variations of 
c2h (angular momentum squared times energy) for various sub-systems and discovered 
a secular resonance locking between the perihelion of Uranus and the aphelion of 
Jupiter with a 1.100.000 years period. This locking is controlled by a complex 4 
planets interaction. 

Much work was done in the domaine of improving the method of numerical integra­
tion of the equations of Celestial Mechanics. They are developed by Bordovitsina in 
30.021.22 and in a monograph (see Section A) . Many experiments are described in this 
book. Most of the participants to these experiments showed their preference to the method 
of Everhart. The representation of the motion of planets or of the Moon by series of 
finite functions such as Chebyshev polynomials was studied in several places. The 
Bureau des Longitudes algorithm has been improved and a single formula may repre­
sent one year of the motion of the Earth with the desired accuracy. Batrakov and 
Fursenko (31.042.32) have developed a theory of Chebyshev slipnes to represent such 
motions; Schwartz and Walker have continued their studies of the applications of re­
currence methods (CM 27.191) and Dvorak and Hanslmeier used Lie series method for 
numerical integration (AA 132.203 and 34.042.122), and found that this method is 
very advantageous. 

IV. LUNAR THEORY 

The semi-analytical theory of the motion of the Moon ELP2000-82 constructed by Cha— 
pront-Touze and Chapront (CM 26.082 and AA 124.50) was adjusted to the JPL.LE 200 
numerical integration. The angular and radius vector residuals do not exceed respec­
tively 0.01 and 15 meters in a century. This solution was introduced in Connaissance 
des Temps starting 1984 in replacement of the Brown-Eckert theory. Recently, impro­
vements were brought by the computation of perturbations due to the shape of the 
Moon and the effects induced by the libration (Chapront-Touze AA 119.256). It is 
shown that, if third or higher order harmonics of the potential are taken into ac­
count, physical libration has to be introduced, otherwise secular drift appears. 
Kubo (Report of Hydrographic Res., Japan, 18) also computed perturbations due to the 
shape of the Moon and compared his results with ELP and Henrard's series. They agree 
better with EPL. Relativistic perturbations were evaluated by Lestrade and Chapront-
Touze (AA 116.75) and by Brumberg and Ivanova (Trudy ITA, 19). Both solutions agree. 
Comparisons of ELP with occultations of stars by the Moon have been made by Krassinsky 
et al (AA in press) and by Soma (submitted to CM). The first authors discuss the va­
lue of the secular acceleration which is in good agreement with lunar laser data. 
The second author discusses the values of the lunar and solar parameters. The tidal 
term obtained is not inconsistent with the modern occultation observations and 
the motions of the perigee and the nodes coincide with the theoretical values. 

Analytical theories of the libration of the Moon have been recently improved. 
Eckhard (29.094.023 and IAU 63.193) has developed a theory that includes planetary 
perturbations, Earth's flattening and the effect of the Earth on the fourth order 
harmonics of the lunar potential. Moons (CM 26.131 and 33.094.23) has developed a 
more general theory, retaining more physical parameters in a litteral form and her 
expressions are more precise. However, it is not yet completed and some perturba-
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tions are still missing. The difference between the common parts of both theories 
is of the order of 2 meters on the surface of the Moon and are mainly due to two 
resonant terms of the perturbation in parallax. 

C - SMALL BODIES IN THE SOLAR SYSTEM 

(main contributor : J. Kovalevsky) 

The detection of many new satellites in the Jupiter and Saturn systems and the 
analysis of the detailed structure of the ring systems have given rise to a number of 
theories to explain the new dynamical features so discovered. In parallel many ef­
forts have been devoted to the understanding of some features of the solar system 
from the dynamical evolution point of view. 

I. MOTION OF NATURAL SATELLITES 

The dynamical characteristics of natural satellites and their consequences on 
the theory of their motion have been described by Kozai (CM 23.265). Many new orbits 
of satellites have since been completed. However, the results will not be reviewed 
here and we shall consider here only general problems or methods. 

Galilean satellites. The work on the theory of the motion continues in several di­
rections. Arlot (AA 107.305) has obtained new integration constants for the Sampson-
Lieske theory. The possibility to extend a general planetary theory to a resonant 
case and particularly to the Galilean satellites was shown by Duriez (CM 26.231) 
and the results agree in a first approximation with known results. After the elimi­
nation of all periodic terms to the third order, Brown (CM 23.203) obtained and sol­
ved the equations for the secular effects on the elements. New values of the semi-
major axes were obtained by Vu (CM 26.265), while a complete second order theory, 
based on Sagnier approach has been constructed by Thuillot and Vu (34.099.112). In 
particular, the influence of dynamical parameters on the secular terms was computed 
by Thuillot (CM in press). 

Saturn satellites. The dynamics of the newly discovered satellites have been sub­
ject to numerous studies in the frame of the discussion of horse-shoe librating or­
bits (Dermott and Murray, IC 48.12; Yoder et al. IC 53.431). Harrington and Seidel-
mann (IC 47.97) showed numerically that the system is stable and that the satelli­
tes never approach one to another by more than 6° during the 3000 days libration of 
S3 around SI. The dynamics of the co-orbiting satellites was studied by Spiris and 
Waldfogel (SZB in press) who showed that the problem reduces to the Hill's problem 
with appropriate boundary conditions at infinity. They predicted that S1 and D3 ex­
change orbits at close encounters, while S26 and S27 do not. I. Stellmacher (CM 28. 
381) applied her algorithm for the construction of periodic orbits in the Mimas-Te-
thys case, the satellites being considered as two oscillators coupled by gravita­
tional interaction. Bec-Borsenberger derived a litteral theory of the motion of 
Phoebe (CM 26.271). 

II. RING DYNAMICS 

The fine structure of Saturn rings found by Voyager spacrafts as well as the 
ellipticity of some Saturn and Uranus rings has brought to Celestial Mechanics a 
number of new problems which have now found satisfactory answers (Aknes 31.100.058 
and SZB in press; Goldreich and Tremaine 32.091.025). The dynamics of elliptical 
rings for which a non zero inclination was found, have been discussed by Borderies, 
Goldreich and Tremaine (AJ 88.226). They show that by self-gravity, the ring may 
maintain by external forces (planetary oblatenes or satellite action). The remarka­
ble satellite-ring interaction known as "shepherd satellites" by Goldreich and 
Tremaine in 1979 has been analysed and the role of dissipation was clarified by 
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Greenberg (IC 53.207). Borderies et al. discussed globally the dynamics of ellipti­
cal rings taking into account external forces due to the oblateness of the planet 
and the sphepherd satellites, self-gravity and viscous forces due to interparticle 
collisions (AJ 88.1560). The picture is as follows: the mean eccentricity grows un­
der the action of corotation resonances with the sphepherd satellites and is damped 
by viscosity so that an equilibrium is established. The uniform precession is indu­
ced by self-gravity. 

The general ring picture has been also refined by Borderies et al. (IC 55.124) 
who computed the stress tensor due to particle collisions and explained sharp edges 
of rings and the decay of density waves. Other tentative explanations exist also for 
the radial diffusion or density and bending waves (Borderies, CM in press) and fine 
ring structure enhanced by viscosity (Michel 31.100.43). Salo (37.100.63) has applied 
the Hameen-Anttila's theory of bimodal gravitating systems to obtain steady state 
solutions for the optical thikness of Saturn's rings. The elliptic properties of 
particles determine the behaviour of gaps while the existence of ringlets would de­
pend on the size and density of the particles. 

The accretion of centimeter sized particles into large aggregates has been pro­
ved to be possible in Saturn's rings on a time scale of weeks by Davis, Weidenschilling 
et al. (37.100.44). These aggregates are later disrupted by tidal stresses, so that 
the mass of the ring system is processed through a population of large "dynamic ep­
hemeral bodies" which are continously forming and desintegrating. Seidelmann, 
Harrington and Szebehely (IC 58.169) have studied analytically and numerically the 
dynamical behaviour of the E ring which extends from the orbit of Mimas to the orbit 
of Rhea and consequently interacts with Tethys, Dione and their Trojan companions. 
These detailed studies do not superseed the classical interpretation of ring densi­
ty distribution by resonance with satellites. For instance, Wiesel (IC 51.149), in­
cluding also Saturn oblateness, has explained in detail the structure of Cassini 
division. Other investigation in this direction have been made by Lissaper and Cuzzi 
(AJ 87.1051) who tabulated all the resonance locations and strengths from the most 
recent and reliable values of the masses and orbital parameters. These theories have 
also their equivalent in the studies of the structure of Uranus rings (Aksnes,IAU 
75 in press). 

III. TROJAN PLANETS AND ASSOCIATED PROBLEMS 

Garfinkel (31.098.038; CM 30.373) is constructing a general analytical theory 
of the motion of Trojan planets. Formal long periodic orbits have been obtained and 
their periods expressed in terms of a mass parameter and of the normalised Jacobian 
constant. The motion of perihelion of Trojan orbits was investigated by Erdi (CM 24. 
377; IAU 47.165) and Erdi and Varadi (34.098.059). Several studies of horseshoe pe­
riodic orbits have been made in connection with this problem (Dermott and Murray, IC 
48.1 and 12; Taylor, AA 103.288). 

IV. EVOLUTIONARY PROBLEMS 

Under the word evolution, are meant the dynamical processes that tend to modi­
fy the fundamental structure of planetary or satellite systems: secular drifts in 
semi-major axis, trapping into resonance, escapes from, or capture into a system, 
etc... Many investigations have been made in the recent years in an attempt to un­
derstand the present structure of the solar system (an introduction to the problem 
is found in Burns, 32.091.053). 

Asteroidal belt. Several different models have been proposed to explain the Kirk-
wood gaps in the distribution of Minor Planets as a result of gravitational or cos-
mological processes. Hadjidemetriou (CM 27.305 and 31.042.051) and the same author 
with Ichtiaroglou (IAU 74.141 and AA 131.20) have based their study on the behaviour 
of resonant solutions of the non-averaged plane restricted problem. Unstable regions 
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have been identified in the phase space. Wisdom (AJ 87.577) starts from the same 
model for the 3.1 resonance, then he models high frequency terms as Dirac impulsions 
and constructs a mapping of the phase space on itself. This permits him to study the 
behaviour of an asteroid over much longer times. He finds that the eccentricity os­
cillates and its maximum value increases so that the planet reaches the orbit of 
Mars and leaves the resonant region. In a second paper (IC 56.51) he traces the 
chaotic region in the elliptic restricted region: it outer boundary coincides with 
the boundary of the 3/1 Kirkwood gap in the actual distribution of asteroids. The 
extension to other gaps is not straght forward because of the specific role played 
by Mars. Other attempts have been to explain the gaps in introducing non conserva­
tive effects. Torbett and Smoluchowski (IC 44.722, AA 110.43 and 127.345) and 
Gonczi et al. (IC 51.639) have investigated the effect of resonance sweeping due 
to a proto-solar accretion disk or Pointing-Robertson effect, by numerical integra­
tion. Henrard and Lemaitre (IC 55.482 and BER 217) and Lemaitre (IAU 74.189 and 
CM in press) developed an analytical model that they applied to the gravitational 
effects of the proto-solar nebula. The adiabatic invariant theory and the introduc­
tion of an area index (the algebraic area enclosed by the trajectory) are used to 
monitor the evolution of the orbit in time. Comparing the statistical results of the 
evolution of a number of asteroids initially resonant with the actual distribution 
has shown a satisfactory agreement. 

Satellites. Several papers were devoted to the time evolution of satellite systems. 
Sinclair (IAU 74.19) has reexamined the tidal hypothesis for Saturn resonant satel­
lites. For Mimas-Tethys, this assumption is consistent with their anomalously high 
inclinations. It is not sufficient for the Enceladus-Dione system, where one should 
in addition consider tidal dissipation within Enceladus. Henrard has developed the 
theory of capture in a general one degree of freedom Hamiltonian system and connec­
ted it to the adiabatic invariant theory (CM 27.3 and 31.042.054). He applied it to 
the orbital evolution of the Galilean satellites (IC 53.55), while the same theory 
was applied by Borderies and Goldreich to capture probabilities for the j+1:j and 
j+2:j orbit-orbit resonance problem (CM 32.127). 

For the non-resonant evolution of satellites, Mignard has completed his study 
of the past secular evolution of the Earth-Moon system (MP 24.189) and of the Martian 
satellites (MN 194.365). In both cases, the dissipation in the satellite is a cri­
tical parameter in distinguishing various evolutionaly paths. He shows that, in any 
case, Deimos has not undergone a significant tidal evolution, while Phobos may have 
evolved from a high eccentricity orbit. Kovalevsky (SZB and FME in press) has shown 
that planetary terms of the lunar theory may undergo a passage through resonance 
while the tidal friction makes the lunar semi-major axis to evolve. If its coeffi­
cient is sufficiently large such a term may become resonant and stop the evolution 
of the semi-major axis during several libration periods, then an escape from the 
resonant region occurs. For a given term the same situation may repeat a great num­
ber of time while the Earth's eccentricity undergoes long periodic variations. A 
model of capture into and escape from resonance is being studied by Sidlichovsky. 

Comets. The evolution of cometary orbits at close approaches with planets has been 
studied by several authors. Alekseev and Osipov (Ergod.Th. and Dyn.Sys.2,263) have 
estimated rigorously the variation of parameters during a close approach to Jupiter. 
Nakamura (IC 45.529 and IAU 74.97) has estimated, by numerical methods, the final 
orbital distribution of extinct comets. The depletion of the Oort cloud by a dynami­
cal process has been studied by several authors. Fernandez (IC 42.406 and 47.470) 
has studied numerically the perturbations of cometary orbits by stars and outer pla­
nets. Weissman (33.102.034 and IAU 61.637) developed a model of stellar perturba­
tion in terms of a velocity impulse and obtained rates of depletion and of forma­
tion of comets entering the planetary system. Remy (IAU 83 in press) has removed 
two assumptions from the Weissman model: the original eccentricities are assumed to 
hase a wide distribution between 0 and 1 and not only close approaches are conside­
red. She estimated analytically the main depletion of long periodic comets. 
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D - PERIODIC ORBITS AND STABILITY 

(Main contributor : J.D. Hadjidemetriou) 

Research in periodic orbits and stability has been influenced by recent deve­
lopments in non-linear dynamics and this interaction has been proven very fruitful. 
Integrability, chaotic motion, infinite bifurcation, Lyapounov characteristic expo­
nents have been successfully used in the study of old problems of Celestial Mecha­
nics. Resonance phenomena and their relation to the stability of planetary systems 
were widely studied in connection with a variety of problems (see also the section 
on the small bodies in the solar system). The study of dynamical systems with three 
degrees of freedom attracted the attention of many investigators. Finally, the sta­
bility of planetary or stellar systems was also widely studied by a variety of me­
thods and definitions of stability. The method of work varies from abstract mathema­
tical proofs to numerical computations. 

I. METHODS OF NON-LINEAR DYNAMICS 

Bifurcation theory. Bifurcations of families of periodic orbits in a dynamical non 
integrable system are now studied in connection with the understanding of the onset 
of chaotic motion. This work started after a paper by Feigenbaum (J.Stat.Phys.19,25) 
who found that dissipative systems have infinite period doubling bifurcations and 
that this leads to chaotic motion. This result was extended to Hamiltonian systems, 
which mostly interest Celestial Mechanics, and also to area preserving mappings. It 
was found that, in this latter case, there exists a universal ratio of the succes­
sive intervals between the (infinite) bifurcations, equal to 8.72 (Benettin et al., 
lett.Nuovo Cim., 28,1 and Bountis, Physica 3D,577 for area preserving mappings). 
Such a sequence of infinite period doubloing patchwork bifurcations has been found 
by Contopoulos and Pinotsis (AA 133.49) for two simple families of periodic orbits 
of the restricted circular three body problem, and the same universal ratio was 
found. Successive bifurcations in Hamiltonian systems have been also studied by 
Contopoulos in letters to Nuovo Cimento (30.498; 37.149 and 38.257). Infinite period 
doubling bifurcations have also been studied by Heggie (CM 29.207) for a family of 
periodic orbits of a dynamical system with two degrees of freedom, representating 
two coupled oscillators. These bifurcations were of different nature than those 
mentionned above, and it was proved that no quantitative universality exists in this 
case. The bifurcations occur when the stability changes along a family of periodic 
orbits, for a system with two degrees of freefom. In a system with three degrees 
of freedom, the periodic orbits along a family may loose stability through complex 
instability. Contopoulos (let.Nuovo.Cim.38.257) showed that, at this point, when 
the bifurcation sequence terminates, a complex instability appears. Heggie (CM in 
press) studied the bifurcations at this transition point to complex instability and 
showed that what bifurcates is not a new family of periodic orbit, but a family of 
invariant tori. This was detected in the general planar three body problem. Contopoulos 
also showed that in a systems with three degrees of freedom, the bifurcation se­
quence terminates at an inverse bifurcation. 

Integrability. The problem of integrability is important in the study of chaotic and 
ordered motion. Necessary conditions for the existence of algebraic first integrals in a 
Hamiltonian system with two degrees of freedom have been studied by Yoshida (CM 31. 
363 and 381). He showed that the existence of an algebraic first integral controls 
the Kovalevskaya exponent characterizing a singularity of the solution and that the 
appearance of irrational or imaginary exponents proves the non-existence of a suf­
ficient number of first integrals. In this way, the three body problem and the 
Henon-Heiles system are proved to be non-integrable. The integrability of a Hamil­
tonian system with three degrees of freedom at a resonance 1:2:u with w: 1,2,3,4 was 
studied by Van der Aa (CM 31.163) by making use of the Birkhoff normal form.He found 
that, in general, no quadratic or cubic integral exists, but asymptotic integra­
bility occurs for special values of the parameter. A new integrable system was 
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found by Mignard and Henon (CM 33.239) in their study of the motions of a particle 
around a planet taking into account the solar radiation pressure. 

Chaotic motion. Generation of chaotic motion and its relation to be interaction of 
resonances is one of the problems of non-linear dynamics. Yokoyama (CM 33.99) stu­
died a non-linear Hamiltonian system where ordered motion reappears as the energy 
increases and this was explained by the criterion of the interaction of resonan­
ces. Yi-Sui Sun (CM 30.7 and 30.111) studied the appearance of ordered or chaotic 
motion in a three dimensional area conserving mapping. Chaotic motion in the res­
tricted three body problem was found by Hadjidemetriou and Ichtiaroglou (IAU 74.141 
and AA 131.20) for the circular case by considering a mapping on a surface of sec­
tion. Milani and Nobili (AA in press) found that the chaotic regions are more im­
portant and escape orbits exist in the elliptic case. 

Another method to detect chaotic motion is by the use of the Lyapounov charac­
teristic exponents which allow a precise quantitative definition of the stochasti-
city of the orbit. Gonczi and Froeschle (CM 25.271) applied this method to the res­
tricted three-dimensional three body problem, while Huang and Innanen (33.42.001 
and 37) discussed the stability of the general planar three body problem, arguing 
that there exist local additional integrals when the initial elements are situated 
inside the stable region. 

II. DYNAMICAL SYSTEMS WITH THREE OR MORE DEGREES OF FREEDOM 

The general behaviour of dynamical systems with three or more degrees of free­
dom presents properties that do not appear in systems with two degrees of freedom. 
However, due to the complexity of the problem, papers deal with non-linear systems 
which are simpler than those which appear in actual problems of Celestial Mechanics, 
but which show typical features present in the systems with three degrees of free­
dom in general. For instance, systems of three coupled oscillators near various 
resonances were studied by Martinet et al (CM 25.93) and Magnenet (CM 28.319). Other 
types of dynamical systems with three degrees of freedom were studied by Contopoulos 
and his colleagues (32.151.087 and CM in press). 

Very few things have been done for systems with.more than three degrees of free­
dom. Stellmacher (CM 32.23 and 247) studied analytically the existence and the sta­
bility of families of periodic orbits in a Hamiltonian system with N degrees of free­
dom, applying her results to 3 degrees of freedom. Hadjidemetriou and Michalodimitrakis 
(AA 93.204) have studied the general planar 4 body problem. Several families of 
periodic orbits and their stability were computed for the actual masses of Jupiter 
and three Galilean satellites: one periodic orbit, at resonance 1:2:4 is very close 
to the actual motion and is found to be stable. Grigorelis is presently computing 
families of periodic orbits of the general 4 body problem with equal masses. 

III. PERIODIC ORBITS 

In the last three years, new existence proofs for particular types of periodic 
orbits were given and generalizations of existing proofs were made. Much numerical 
computations of periodic orbits were also made recently, though the computations of 
families of periodic orbits of the general three body problem was not as popular as 
some years ago. In addition, analytic expansions using computerized litteral alge­
bra were obtained. A review on periodic orbits by J. Hadjidemetriou has been pre­
pared (FME in press). 

Proofs of existence. Meyer (J.Diff.eq. 39.2 and CM 23.69) proved the existence of 
periodic orbits of the general n-body problem, starting from a periodic solution of 
a restricted (n-l)-body problem, generalizing older results on the three body pro­
blem. Message (CM 28.107) proved the existence of periodic orbits of the third sort 
in the general problem of three bodies. Kammeyer (CM 30.329) proved the existence 

https://doi.org/10.1017/S0251107X00006076 Published online by Cambridge University Press

https://doi.org/10.1017/S0251107X00006076


24 COMMISSION 7 

of symmetric periodic orbits in the rectilinear three body problem with the middle 
mass larger than the others. Belburno (CM 25.195 and 397) proved the existence of 
periodic orbits in the restricted three-dimensional 3-body problem by continuation 
of collision orbits. 

Analytical methods. Several investigators developed methods to construct analytica­
lly a periodic orbit. Presler and Broucke (Comp.M.Apl. 7.451 and 473) and Davoust 
(CM 31.241 and 293) used the Linstedt method. Wiesel (CM 23.231) gave a formal so­
lution for the motion near a periodic solution, extending Floquet's theory. Stellmacher 
(CM 28.351) gave an algorithm to construct a nearly circular periodic orbit for the 
motion of a satellite around an oblate planet. Ding and Tong (37.042.100) generali­
zed the Poincare theorem of analytic continuation of periodic orbits to the case of 
multiple parameters and showed that the importance of the oblateness of the prima­
ry cannot be neglected in the restricted three body problem. 

Numerical methods. Many families of periodic orbits in the general three body pro­
blem were computed by Broucke et al (CM 24.63), Markellos (CM 25.3) and Delibaltas 
(CM 29.191) or in the restricted 3 dimensional problem by Robin (CM 23.97) and 
Taylor (CM 29.51 and 75). Brown's conjecture concerning the termination of the long 
period family around Lit was disproved numirically by Henrard (CM 31.115) and analy­
tically by Garfinkel (SZB in press). Other studies around Lagrangian points were 
made by Doubochine (CM 33.21) and Gomez and Noguera (CM in press). In addition, pe­
riodic orbits of particular interest to space flight were computed by several in­
vestigators. 

IV. STABILITY 

Various concepts and definitions of stability have been proposed, ranging from 
the stability in the neighborhood of a periodic orbit or an equilibrium position to 
a global view. Both empirical and rigorous approaches were used. A review of the sta­
bility concepts was given by Szebehely (SZB in press). 

Stability near a periodic solution. Yoshida (CM 32.73) showed that, in certain ca­
ses, the characteristic exponents can be found, and thus the linear stability can 
be established. Sknol (CM 33.159) studied the motion around an equilibrium point in 
an autonomous Hamiltonian system with two degrees of freedom near the main resonan­
ces. The regions of non-linear stability around the equilibrium points Li» and L5 in 
the restricted three body problem were studied by Szebehely and McKenzie (CM 23.131). 
The relation between resonance and instability in a planetary system with two or 
more planets has been studied by Hadjidemetriou (CM 27.305) and the mechanism by 
which the instability is generated was founds 

Global stability. The classical Hill stability appears in the circular restricted 
three body problem for large values of the Jacobi constant. The Hill type stabili­
ty is an extension of this kind of stability to the general three body problem. If 
the product of the energy by the square of the angular momentum C is below some ne­
gative function of the masses, the possible domain of evolution in the phase space 
is divided into three disconnected parts and the motion remains for ever in one of 
them. There exists then a binary that the third body can neither approach nor dis­
rupt (however, this kind of stability does not prevent the escape of the third mass, 
but motions of exchange type cannot exist). Many studies have been done in the last 
ten years on this problem. After the last of a series of papers by Szebehely (CM 
22.7) more precise results have been obtained by Markellos and Roy (CM 23.269) who 
showed that Hill's stability in the circular case is valid for direct satellites 
but underestimates the actual possible maximum distances from the planet by at le­
ast a factor 2. Valsecchi et al (CM 32.217) extended this numerically to elliptic 
orbits and foundsignificant differences with the circular case. C. Huang extented 
the notion to non spherical bodies (33.042.070), while Marchal and Bozis (CM 26.311) 
have generalized the criterion to zero and positive energy. They found the forbidden 
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zones and also that stable systems with negative energy exist. They form a hierar­
chical configuration (close binary and a distant body) that is not disrupted. It 
appears thenthat most of the triple stellar systems are Hill stable. On the contra­
ry, Ding and Huang (31.042.120), studying the general three-body, showed that most 
natural satellites are Hill unstable. Nugeyre and Bouvier (CM 25.51) have also stu­
died hierarchical structures in stellar systems and showed that the choice of sui­
table coordinates results in simpler formalism for stability. 

Much work has recently been done by Roy and his collaborators on the stability 
of hierarchical systems. Roy (31.042.053, IAU 74.277 and SZB in press), Walker and 
Roy (CM 24.195, 29.117 and 29.267), Walker (CM 20.149 and 215) and Milani and Nobili 
(CM 31.213 and 241; BER 219) have applied the empirical parameter method to the pro­
blem of the stability of N body hierarchical dynamical systems and are using it to 
approach the stability of the solar system. Szebehely and Whipple (CM 32.137 and 
BER 195) studied the stability of the restricted problem of n massive primaries and 
v small bodies, by making use of the integrals of motion. A similar method is also 
used by Szebehely to study the stability of binary asteroids. 

V. THE INVERSE PROBLEM 

This problem arises when a set of orbits is given and one wants to determine 
a force field or the potential. The problem was proposed by Szebehely in 1974 who 
reduced it to be solution of partial differential equations that he established. 
Several people have worked recently on various aspects of this problem using Carte­
sian coordinates with two or three degrees of freedom in an inertial or a rotating 
frame or using generalized coordinates. Szebehely and Broucke (CM 24.23) studied 
the determination of the potential field from a given family of periodic orbits in 
a rotating frame. Bozis, in a series of papers (CM 28.367, 29.329, 31.43 and 129, AA 
134.360) and Xanthopoulos and Bozis (AA 122.251, IAU 74.253) studied the problem 
of determining the potential (or force field if the system is not conservative) 
from a given mono-parametric or two parametric family of orbits in the plane or in 
three dimensions. Erdi (CM 2G.209) generalized Szebehely's equations to three di­
mensional orbits. Varadi and Erdi (CM 39.395) considered a two parametric family in 
three dimensions and the corresponding system of partial differential equations for 
the determination of the potential was studied by methods of differential geometry. 
Melis and Piras (CM 32.07) studied the determination of the potential generating a 
given family of orbits in the N dimensional configuration space of a holonomic sys­
tem. Puel (CM 32.319) showed that Szebehely1s equation of the inverse problem is 
equivalent to a multiple variational problem deduced from Maupertuis' principle. 
Similarly, Gonzalez-Gascon et al. (CM 33.05) studied the connection of this equa­
tion with the equations of Dainelly and Whittaker on similar problems. 

E - QUALITATIVE ANALYSIS IN CELESTIAL MECHANICS 

(Main contributor : C. Marchal) 

In Celestial Mechanics, as in many other domains, the quantitative and the 
qualitative analyses are complementary. The quantitative analysis gives excellent 
informations of the future or the past of some particular solutions of interest but 
is usually unable to give general informations and its accuracy generally decreases 
and becomes null for large times. On the contrary, the qualitative analysis gives 
partial, but rigorously demonstrated properties, that are valid for very long pe­
riods of time, and even often for infinite time. 

The qualitative analysis especially deals with the problems of integrals of 
motion, symmetries, periodic orbits, final evolutions, structure of a set of solu­
tions, analysis and regularization of singularities, escaping motions, bounded mo­
tions, oscillotary motions, asymptotic motions, etc... It has been initiated by 
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Poincare, Sundman, Chazy, Khilmi, Sitnikov, Merman, Alekseev, etc... The Kolmogo-
rov-Arnold-Moser theorem can be considered as the result of a qualitative analysis. 

The fantastic progress of computers has led to many improvements in the quanti­
tative analysis of the n-body problem. These improvements have disclosed the extre­
me complexity of the set of different solutions and have given new orientations and 
a new impetus to the qualitative analysis, especially in the domains of final evo­
lutions and tests of escape. Let us consider the different questions successively. 

I. FINAL EVOLUTIONS IN THE N-BODY PROBLEM 

The existence of five main types of final evolution are now well established 
(see Alekseev 30.042.079, Marchal and Saari, J. of diff.eq. 20, p 150). 

1. The triple or multiple collision at some time t0. Uhen t goes to t0) all n bo­
dies go to a definite final position at a bounded distance, and the bodies going 
to the collision approach a "central configuration" (Marchal31 .042.056). This ty­
pe of final evolution is exceptional and has a measure zero in the phase space. 
Several studies of particular cases of multiple collisions have recently been 
published. Eschbach (CM 27.157) has analysed the n-tuple collisions in the n-
body problem and discussed various cases in function of the energy h of the sys­
tem. Lacomba and Sim6 have constructed the linear and rectangular degenerate ca­
ses of the four body problem leading to quadruple collisions (CM 28.49). 

2. The infinite expansion in a bounded interval of time. This type of final evolu­
tion requires n i 4 and very strong oscillations. An example was given by Mather 
and McGehee in 1974. It is conjectured that this type of expansion is infinitely 
rare. 

3. The super-hyperbolic expansion. It is analogous to the previous type of motion 
and is problably also infinitely rare. 

4. The hyperbolic expansion. It is very usual type and corresponds to most of the 
phase space. The limit of the ratio of the largest mutual distance R to the time 
t is bounded and non-zero. Masses may cluster in sub-systems in which the ener­
gy and the angular momentum have bounded limits. 

5. The parabolic or sub-parabolic expansion. All mutual distances remain of the or-
der of t V J a t most and the energy integral h in the axes of the center of mas­
ses is negative or zero. If h=0, the expansion is parabolic and non-infinitesi­
mal masses approach a central configuration. If h<0, many possibilities exist: 
parabolic expansion, sub-parabolic expansion, bounded motions, formation of sub­
system (clusters), periodic, asymptotic, oscillating, quasi-periodic, chaotic 
motions, etc... It is known that this type corresponds to a set of positive mea­
sure, but a complete analysis of these cases still remains to be done. Some 
partial studies were recently done by Lacomba and Sim6 (CM 28.37) who assigned 
a boundary (total collision) manifold to each energy surface. In the case h<0, 
there exists an infinity manifold components which reflect the complexity of the 
situation encountered when the total energy is negative. 

II. REGULARIZATION OF THE SINGULARITIES OF THE N-BODY PROBLEM 

The n-body problem has two types of singularities: the collision of two or seve­
ral bodies and the infinite expansion in a bounded interval of time (see case 1.2 
above). The regularization of singularities answers to the question: "How to ex­
tend naturally a solution after a singularity?". It has a theoretical interest and 
is also useful for numerical integrations of nearly singular solutions. Two types 
of regularization exist (McGehee, in Dynamical Systems, theory and Applications, 
J. Moser ed., p 550, 1975), the analytical (or Siegel's) and the topological or by 
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continuity (Easton's regularization). They are independent and may be different as 
shown by McGehee in 1975. It is well known that the collision of two bodies is al­
ways regularizable in both senses. The infinite expansion is an essential singula­
rity and is never regularizable. It has been found that the possible cases of regu­
larization (Marchal 31.042.056 and Richa, These de 3e cycle, Univ. de Paris 6, "Cas 
de regularisation des singularites du probleme des n corps") are very rare: they 
may appear only in the analysis of rectilinear motions. In addition, all but perhaps 
one masses are infinitesimal masses and the latter have particular mass ratio (Sim6 
CM 21.25). However, in other cases of triple collisions, regularized coordinates on 
plane collision manifold may be found (Waldogel, CM 23.69) and permit numerical 
studies of the collision. 

III. FINAL EVOLUTIONS IN THE THREE BODY PROBLEMS 

Ten final evolutions of three non-infinitesimal masses have been identified: 

1. The triple collision requiring a zero angular momentum. 

2.3.4. The hyperbolic, the hyperbolic-parabolic types that require a positive ener­
gy h and the hyperbolic elliptic type for which h may be zero or negative. They 
present all an hyperbolic expansion. 

5. The tri-parabolic expansion with h=0. 

6. The parabolic elliptic expansion with h<0. 

7. The bounded type: all distances and velocities remain finite and h<0. 

0. The Khilmi and Sitnikov oscillating type: h<0 and the velocities remain bounded 
while the largest mutual distance is such that lim sup R=+°° and lim inf R=<+°°. 

9. The second oscillating type: h<0. The mutual distances remain bounded, but the 
largest velocity is not bounded. An infinite number of arbitrarily close appro­
aches occurs. 

10. The third oscillating type: it is a combination of types 8 and 9. 

Several sub-types cal also be identified. 

Presently, it is known that cases 1,3,5 and 6 are infinitely rare. It is con­
jectured that this is true for cases 8 and 10. The others correspond to sets of po­
sitive measure in the phase space. An important consequence of the positive measure 
of type 9 which presents an infinite number of arbitrarily close passages is that 
many more collisions can happen in this indirect way than in the direct mode (Marchal 
25.151.093). This type of motion could be found in new born triple stellar systems, 
but not in old triple systems: the latter would already have undergone a collision. 

For any non-zero values of the mass ratios, all combinations of original (de­
creasing time) evolution and final (increasing time) evolution are possible, provi­
ded that they correspond to the same sign of energy integral and that some evolutions 
beginning and/or ending by the type 1 be excluded. The cases corresponding to sets 
of positive measure in phase space are any combination of types 2 and 4 (with or 
without exchange) and also the evolutions 7-»7, 9-*9 and perhaps 8-*-8, 10-M0. New cri­
teria for hyperbolic and hyperbolic-elliptic motions were proposed by Merman (31. 
042.029) and considerable successive progresses have appeared recently in the do­
main of the tests of escape (Zare, 1981 (CM 24.345), Laskar, 1982 (unpublished), 
Laskar and Marchal, 1984 (CM 32.15), Marchal, Yoshida and Sun-Yi-Sui, 1984 (CM 33.193). 
It is to be noted that the smallest mass is the most unstable and the most subject 
to be ejected and the present tests seen to approach very near to true limit of es-
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cape. However, no general test of bounded motion is known and seems to be difficult 
to obtain: because of the conservation of measure in phase space, their limit would 
be a set of solutions. In any case, it appears, from the above mentionned results, 
that the bounded solutions are much more rare than it was generally expected. 

IV. STRUCTURE OF A SET OF SOLUTIONS IN THE THREE BODY PROBLEM - CONJECTURES 

The numerous studies made on the general structure of a set of solutions have 
led to distingich three types or orbits: 

A. Periodic and quasi-periodic orbits, 
B. Semi-ergodic or chaotic orbits, 
C. Open orbits leading to an escape or a collision (evolution 1 to 6 of section III). 

There are also some exceptional orbits such as asymptotic orbits. The structu­
re of the phase space is usually presented through some simple area preserving map­
pings (see also the section on periodic orbits and stability) where similar beha­
viour exists (Easton 31.021.020). The ergodic throrem being extended to open systems, 
it can be shown that almost all orbits remain in the same class during the evolution 
for increasing and decreasing time (Marchal, J. ofDiff.Eq. 23, p 387) . However, only 
the orbits of class A and B have the usual strong stability properties. It seems 
that, as in most time independent Hamiltonian problems, orbits of class A are the 
backbone of the set of solutions: the chaotic orbits fill densely the bounded holes 
left by the periodic and quasi-periodic orbits, while the open orbits are found in 
the unbounded holes. However, it seems that bounded holes of chaotic motions are excep­
tional and correspond to exceptional cases like the restricted problem. Generally, 
holes appear to be unbounded and almost all apparently chaotic orbits end by an 
escape. This "Arnold diffusion conjecture" would mean that the escape orbits of 
type C are dense everywhere in phase space. This conjecture is to be put together 
with the still not demonstrated Poincare conjecture that the periodic orbits are 
dense in the set of bounded orbits and also the conjecture on the structure of so­
lutions (for non infinitesimal masses, apart from a set of measure zero in phase 
space, all bounded and oscillating orbits belong to the Arnold torus and are either 
periodic or quasi-periodic: other orbits have least one escape for both t •* + °°>. These 
three conjectures are in the center of the progress in the analysis of the three 
body problem. The last conjecture is not true in the restricted three body problem: 
this can be interpreted as the situation in which one of the masses is infinitesimal 
may not be representative of the complete problem. Recently, a weakened version of 
Poincare's conjecture was proved by Gomez and Llibre (CM 24.325). 

J. Kovalevsky 
President of the Commission. 
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