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Kinks commonly appear on the convergent shock surface when an internal conical flow
deviates from the axisymmetric state. In this paper, the formation mechanisms of kinks on
internal conical shocks (ICSs) generated by elliptical ring wedges with typical entry aspect
ratios (ARs) in a Mach 6 flow are revealed using a theoretical method, in which the spatial
evolution of the three-dimensional elliptical ICS is converted into a temporal evolution
of a two-dimensional elliptical moving shock (EMS) using the hypersonic equivalence
principle. To simultaneously track the shock front of the EMS and the disturbances
propagating along it, a front-disturbance tracking method (FDTM) based on geometrical
shock dynamics is proposed. It is found that the shock–compression disturbances from
the same family initially near the major axis catch up with the disturbance initially
emitted from the major axis to form kinks on the EMS. The equivalent kink formation
positions predicted by the FDTM always lag behind the real kink formation positions on
the elliptical ICS because the applicability of the hypersonic equivalence principle decays
as the shock strengthens along the incoming flow direction. The accuracy of the equivalent
kink formation positions predicted by the FDTM gradually declines with the reduction in
AR, but it can be significantly improved for all ARs after a modification of the equivalent
relationship using the shock angle in the major plane of the elliptical ICS, which provides
a new way to solve the kinks on the elliptical ICS.

Key words: hypersonic flow, shock waves

1. Introduction

Hypersonic axisymmetric internal conical flow (ICF) usually serves as a basic model for
internal compression systems including the inward-turning inlet (You, Zhu & Guo 2009;
You 2011; Zuo & Mölder 2019), in which the inherent convergent effects of the shock
wave have received extensive attention. It has been well documented that the internal
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Figure 1. (a) Schematic of the elliptical ring wedge and the ICS. (b) Numerical contours of normalized
density on a typical cross-section of x/a = 2.0, where the free stream Mach number M∞ = 6, the entry
aspect ratio AR = 1.43, the leading-edge angle δ0 = 10◦ and the leading-edge radius along the major direction
a = 100 mm.

conical shock (ICS) generated by the axisymmetric ring wedge (Ferri 1946; Mölder 1967;
Mölder et al. 1997) will continuously strengthen until a Mach disk inevitably appears on
the centreline (Rylov 1990; Ben-Dor 2007; Isakova et al. 2012; Shoesmith et al. 2017),
causing serious total pressure loss and performance defects. From a practical point of
view, intake flow is commonly non-axisymmetric. When the supersonic or hypersonic ICF
deviates from the axisymmetric state either by the geometry (Mohan & Skews 2013; Zhang
et al. 2021) or by the incoming flow (Ji et al. 2022), the convergent behaviours of the ICS
fundamentally change and make the regular reflection possible on the centreline. Elliptical
ring wedges proposed by Zhang et al. (2021) are chosen as typical models in the hypersonic
flow, in which the level of the deviation from the axial symmetry is quantified by the aspect
ratio (AR) between the major and minor axes. As shown in figure 1, the initial continuous
and smooth ICS generated by the elliptical ring wedge gradually evolve into a complicated
three-dimensional (3-D) morphology with kinks (Zhang et al. 2021). The kink is a typical
singularity on the shock front, across which both the normal direction and the intensity
of the shock front suffer finite jumps (Prasad 1995; Ben-Dor 2007; Mostert et al. 2017).
It has been demonstrated that the emergence of kinks dampens the increment of the ICS
strength and thus makes the regular reflection possible in the ICF (Zhang et al. 2021; Ji
et al. 2022). The positions of kinks are of great importance in understanding the evolution
and reflection of the ICS when the ICF deviates from the axisymmetric state. However, to
the best of the authors’ knowledge, the theoretical prediction of kink formation in the ICF
thus far remains limited because the complicated 3-D morphology of the ICS evolves.

A low-cost and highly efficient way to analyse the evolution of the 3-D steady shock
wave is using the method of spatial dimension reduction (Yang et al. 2012; Xiang et al.
2016) because the theory of two-dimensional (2-D) shock waves is well developed. To
make the spatial dimension reduction available, the hypersonic equivalence principle
(Anderson 2019; Wang 2019) connecting the steady flow with the unsteady flow in one
fewer space dimension can be adopted to equivalently transform the 3-D steady ICS
into a 2-D moving shock with an initial elliptical shape. In other words, the evolution
of the 3-D steady ICS is converted to the evolution of an equivalent 2-D elliptical
moving shock (EMS). Since Whitham (1957) first demonstrated the existence of kinks, the
formation of kinks in various shock motions has been reported (Schwendeman 1988; Pullin
et al. 2014; Mostert et al. 2016). For instance, Takayama, Kleine & Grönig (1987) and
Watanabe & Takayama (1991) found that the disturbances generated by the experimental
supports were amplified in the convergence of a cylindrical moving shock (CMS), which
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causes the formation of kinks on the shock front and thus makes the original CMS into a
polygon. Apazidis (2003) theoretically and numerically illustrated the formation of kinks
during the focusing of a strong shock in an elliptic cavity. When a planar shock was
reflected on a wavy wall, the formation of kinks or triple points on the reflected shock was
confirmed by both the experiments of Denet et al. (2015) and the numerical simulations
of Lodato, Vervisch & Clavin (2016, 2017). The kinks indicate the distortion of the shock
shape, which makes it difficult to theoretically analyse the shock evolution. Geometrical
shock dynamics (GSD) (Han & Yin 1993; Whitham 2011) is a commonly used theory
to examine the evolution of shock motions, in which the kink on the shock front is
known as the ‘shock–shock’ (Prasad 1995; Mostert et al. 2017). It is a high efficiency
theory because it does not need to calculate the global downstream flow behind the shock
(Whitham 2011). Therefore, the evolution of strong shocks such as converging shocks
can be well predicted by GSD (Apazidis 2003). With the help of GSD, Schwendeman
(1999) confirmed the formation of kinks during the collapse of a CMS when its initial
Mach number is perturbed by a certain value, which ultimately makes the shock shape
into straight segments (Schwendeman & Whitham 1987). Subsequently, Mostert et al.
(2018a,b) found that the kink formation time is inversely proportional to the initial
amplitude of the perturbation when assuming a sinusoidal distribution of the shock Mach
numbers for an initially planar shock or CMS. As GSD is not formally derived from the
Euler equations (Mostert et al. 2018a) and neglects the non-uniform flow effects behind
the shock (Han & Yin 1993; Shen et al. 2021), Best (1991) pointed out that the accuracy
of GSD is insufficient for weak shocks, in particular for blast shocks (Katko et al. 2020) or
diverging shocks (Ridoux et al. 2018). For this scenario, a generalized GSD incorporating
the non-uniformity of the flow immediately behind the shock was developed by Best (1991,
1993), which can successfully yield a better solution compared with GSD (Katko et al.
2020). Recently, Shen et al. (2021) used generalized GSD to analyse the evolution of a
shock generated by an impulsively accelerated piston with a sinusoidal perturbation. They
found that the kink formation time follows a scaling inversely proportional to the small
perturbation amplitude, which is similar to the results reported by Mostert et al. (2018a).
Compared with the generalized GSD, GSD reduce the calculation complexity and improve
the computational efficiency although the accuracy of GSD is sacrificed to some extent for
specific problems such as diverging shocks (Ridoux et al. 2018; Katko et al. 2020). Keep
in mind that the present work focuses on the formation of kinks during the converging
of an equivalent EMS, which can be solved by GSD with sufficient accuracy (Best 1991;
Courant & Friedrichs 1999).

From the view of GSD, the deformation of the 2-D moving shock is generally
accompanied by two families of characteristics that represent disturbances on the shock
(Han & Yin 1993). It seems that the evolution of the 2-D moving shock with kinks can be
solved by calculating the characteristics only. In practice, it is difficult to obtain the shock
front because the time information is not involved in the characteristic relations (Akbar
et al. 1995). To track the positions and shapes of the 2-D moving shock with time, the front
tracking method (Henshaw, Smyth & Schwendeman 1986; Schwendeman 1988) based
on the kinematic equations of GSD was developed and applied to a variety of problems
(Noumir et al. 2015; Qiu, Liu & Eliasson 2016; Ndebele, Skews & Paton 2017; Ridoux
et al. 2019). Unfortunately, the front tracking method does not take the characteristics (i.e.
the propagation trajectories of the disturbances) into consideration, which is not conducive
to revealing the mechanism of shock deformation. Therefore, simultaneously tracking the
shape of the 2-D moving shock and the disturbances on the shock are of prime importance
to understanding the evolution of the 3-D steady ICS from a 2-D unsteady perspective.
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In this paper, a front-disturbance tracking method (FDTM) based on GSD is developed
to simultaneously predict the evolution of a 2-D moving shock and reveal its deformation
mechanisms. Combining the FDTM with the hypersonic equivalent principle, the
convergent behaviours of the ICS generated by the elliptical ring wedges and the formation
position and mechanism of kinks are investigated from the perspective of the equivalent
2-D moving shock. The remainder of this paper is organized as follows: the equivalent
transformation of the 3-D steady ICS generated by the elliptical ring wedge into a 2-D
moving shock is presented in § 2; the FDTM is developed in § 3; with the help of the
FDTM, the convergent behaviours of the equivalent 2-D moving shock, the formation
mechanism of the kinks and the effects of geometric parameters of the elliptical ring wedge
on the position of kinks are discussed in § 4; and finally, conclusions are summarized in
§ 5.

2. Model and space dimensionality reduction

2.1. Description of the model
The schematic of the elliptical ring wedge in hypersonic flow with a free stream Mach
number M∞ is displayed in figure 1(a), where the leading-edge radii along the major and
minor directions are denoted as a and b, respectively. The leading-edge angle δ0 keeps the
same value in the circumferential direction ϕ to generate a convergent incident shock with
a uniform strength on the leading-edge plane, where the circumferential angle ϕ is defined
as the angle from the z-axis to the polar line. The length of the elliptical ring wedge is L,
which avoids the expansion waves generated from the trailing-edge of the wall affecting
the elliptical ICS (Zhang et al. 2021). The origin O of the coordinates is situated at the
centre of the leading-edge plane, and the x, y and z axes denote the directions along the
free stream, major and minor directions, respectively. Consequently, the inner wall profile
of the elliptical ring wedge can be expressed as

y2

(a − x tan δ0)2 + z2

(b − x tan δ0)2 = 1, 0 ≤ x ≤ L. (2.1)

The independent dimensionless flow parameters are the free stream Mach number (M∞)
and specific heat ratio of the gas (γ ), which are fixed at 6 and 1.4 in the 3-D steady ICF,
respectively. The independent dimensionless geometric parameters are δ0, the entry aspect
ratio AR = a/b and the length L/a = 1, where δ0 and a are fixed at 10◦ and 100 mm,
respectively. It has been demonstrated that the kink formation positions and the reflection
type of the ICSs are sensitive to AR (Zhang et al. 2021). Therefore, b varies to obtain
different values of AR on the leading-edge plane. Several typical elliptical ring wedges
are listed in table 1. The effects of different ARs on the kink formation positions of the
elliptical ICS are examined in § 4.3.

2.2. Equivalent transformation of the ICS
The hypersonic equivalence principle (Anderson 2019) is a powerful theory built on the
hypersonic small-disturbance equations for a calorically perfect gas in inviscid flow, which
enables the 3-D steady flow to transform into a 2-D unsteady flow. As the free stream speed
V∞ is along the positive x direction in the Cartesian coordinate system, the relationship
between the coordinate x in the 3-D steady flow and the time t in the 2-D unsteady flow is
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M∞ δ0/deg. a/mm b/mm AR = a/b

6 10 100 100 1.00
6 10 100 85 1.18
6 10 100 80 1.25
6 10 100 70 1.43
6 10 100 50 2.00
6 10 100 28.5 3.50
6 10 100 20 5.00

Table 1. Overview of several typical elliptical ring wedges.

connected by (Anderson 2019)

x = V∞t. (2.2)

In other words, the lateral structure of the ICS at the x cross-section in the 3-D steady
ICF is equivalent to the instantaneous structure of the moving shock at time t in the 2-D
unsteady flow.

As the shock strengthens along the x direction in the convergence process of the ICS,
the speed change in the x direction may no longer be a small amount compared with that
in the flow cross-section. It seems that the applicability of the hypersonic equivalence
principle decays along the x direction in the ICF, especially near the convergence centre.
Nevertheless, Zhang et al. (2021) have shown that the appearance of kinks is far away from
the convergence centre of the elliptical ring wedge to a certain extent. Thus, it is feasible
to examine the formation of kinks using the hypersonic equivalence principle for spatial
dimension reduction in this paper.

Figure 2 presents the equivalent schematic between the hypersonic 3-D steady ICF
generated by the elliptical ring wedge and the 2-D unsteady flow. The ICS with the
same shape as the entrance is generated at the leading-edge (x = 0) of the elliptical ring
wedge, which converges downstream and shows the complicated 3-D surface. In the y–z
plane, the evolution of the ICS can be equivalent to the convergence of a 2-D moving
shock (S0) generated by a sudden contraction of an elliptical piston (W0) at time (t = 0),
where the initial shapes of S0 and W0 are the same as the entrance of the elliptical ring
wedge. As the elliptical piston contracts with a constant speed of V∞ tan δ0, the shape of
the elliptical piston and the 2-D moving shock at time t are equivalent to the inner wall
profile of the elliptical ring wedge and the transverse structure of the 3-D ICS at x = V∞t,
respectively. When the elliptical piston contracts to the same shape as the trailing-edge of
the elliptical ring wedge (W1) at time t1 = L/V∞, the elliptical piston stops contracting,
whereas the equivalent 2-D moving shock continues to converge towards the centre to
yield the transverse structure of the 3-D ICS. In the above equivalence, obtaining the
initial shock Mach number Ms0 of the equivalent 2-D moving shock is important. Once
Ms0 is known, the equivalence can be performed.

The equivalent shock intensity is obtained as follows. As the leading-edge angle δ0 keeps
the same value in the circumferential direction of the elliptical ring wedge, the shock angle
λ0 of the 3-D elliptical ICS at the leading-edge can be calculated by the oblique shock
relationship as shown in (Zucrow & Hoffman 1997)

tan δ0 = 2 cot λ0
M2∞ sin2 λ0 − 1

M2∞[γ + cos(2λ0)] + 2
, (2.3)

977 A12-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

93
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.939


D. Si and Z. Li

Elliptical ring wedge

ICS

W0 and S0

S1

W1

a a

b
O O

y y

z

x = 0

x1 = L t1 = L/V∞

t = 0

z
x

O

y

z O

y

z
x

V∞

V∞

The central axis

The central axis

δ0

λ0

Figure 2. Equivalent schematic between the 3-D steady ICF generated by the elliptical ring wedge (left) and
the 2-D unsteady flow (right).

where γ = 1.4 is the specific heat ratio of the gas. According to the hypersonic equivalence
principle, the circumferential distribution of the equivalent 2-D moving shock intensity is
the same at time t = 0, and Ms0 is given by

Ms0 = M∞ tan λ0. (2.4)

Substituting δ0 = 10◦ and M∞ = 6 into (2.3) and (2.4) yields Ms0 = 1.9. Although Ms0
is the same in this paper, the initial shape of the equivalent 2-D moving shock varies
with the AR of the elliptical ring wedge, which presents different evolutions of the shock
structures with time.

In summary, the spatial evolution of the complicated 3-D ICS generated by the elliptical
ring wedges can be equivalent to the time evolution of the 2-D moving shock with an
initial elliptical shape. After this equivalence, the convergent behaviours of the ICS and
the formation of kinks can be analysed using GSD.

3. Front-disturbance tracking method

An FDTM based on GSD is developed to simultaneously track the equivalent 2-D moving
shock front and the disturbances on the shock, which can be used to reveal the deformation
mechanism of the shock and rapidly predict the evolution of the shock. The basic principles
of the FDTM are introduced, based on which the procedure of the FDTM is described in
detail. Finally, the FDTM is verified by the convergence of CMS with an initial uniform
and non-uniform intensity.

3.1. Basic principles of the FDTM
The governing equations for tracking both the shock front and the propagation trajectory of
the disturbances (i.e. the characteristics line) are the basic principles of the FDTM, which
are presented as follows.
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Figure 3. Shock positions at time t and t + Δt (solid lines) and rays (dashed lines) in Cartesian coordinate
system (y, z).

As shown in figure 3, the moving shock front is discretized by a series of points yi(t)
in the Cartesian coordinate system (y, z), where the subscript i is the serial number of the
discrete points. The perpendicular bisectors PQ and SR between adjacent discrete points
represent rays, and θ is the angle between the ray and the positive z direction. A small
shock segment SP between adjacent rays at time t moves and deforms to become segment
RQ at time t + Δt. The main assumption in GSD is that each shock segment propagates
down a tube whose boundaries are defined by the rays. In other words, the motion of the
shock only changes with the variation of the ray tube area. Thus, the motion of the shock
can be predicted by the relation between the moving shock Mach number (Ms) and the ray
tube area (A) (Chester 1954; Chisnell 1957; Whitham 1957, 1958), which can be expressed
as

2MsdMs

(M2
s − 1)K(Ms)

= −dA
A

, (3.1)

where

K(Ms) = 2
(

2μ + 1 + 1
M2

s

)−1 (
1 + 2

γ + 1
1 − μ2

μ

)−1

, (3.2)

μ =
[

(γ − 1)M2
s + 2

2γ M2
s − (γ − 1)

]−1

. (3.3)

Let yi(t), Msi(t) and ni(t) represent the position vector, the moving shock Mach number
and the unit normal vector at the small shock segment, respectively; then, the motion of
the shock in the ray tube satisfies

d
dt

yi(t) = c0Msi(t)ni(t), i = 1, 2, . . . , N, (3.4)

where N is the total number of discrete points at time t, and c0 is the speed of sound ahead
of the moving shock. The ray angle θi at the small shock segment is

tan θi = nyi

nzi
, i = 1, 2, . . . , N, (3.5)

where nyi and nzi are the components of the unit normal vector ni in the y and z directions,
respectively. Equations (3.1) and (3.4) are the kinematic equations governing the motion of
the shock in the FDTM, which can be used to quickly predict the evolution of the moving
shock.
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The shock deformation mechanism cannot be revealed by only solving (3.1) and
(3.4) because the disturbances propagating on the shock front that cause the shock
deformations are not considered. From the perspective of GSD, when the small shock
segment propagates in the ray tube, the shock segment sends out disturbance waves at the
foot where the shock wave contacts the ray. Since the normal vector at each discrete point
(i.e. the grey solid lines with arrows in figure 3) is also a ray, the disturbances propagating
on the shock front can be regarded as emanating from the discrete point, which changes
the strength and shape of the moving shock. The disturbances that intensify and weaken
the moving shock are the so-called shock–compression and shock–expansion in GSD,
respectively (Whitham 1957, 1958), while the disturbance that makes the shock front
discontinuous is the so-called shock–shock disturbance (Han & Yin 1993; Xie, Han &
Takayama 2005). The propagation trajectories of the disturbances are represented by two
families of characteristics in GSD. Therefore, it is necessary to solve the characteristics
while the shock front is advancing in the FDTM. The characteristic equations derived by
Whitham (1957, 1958) are provided in the Cartesian coordinate system as

dy
dz

= tan(θi + νi), (3.6)

dy
dz

= tan(θi − νi), (3.7)

where νi is the included angle between the characteristic and the ray, which can be written
as (Han & Yin 1993)

tan νi = 1
Msi

[
1
2
(M2

si − 1)K(Msi)

]1/2

. (3.8)

To distinguish the propagation directions of the disturbances, standing on the shock front
and facing the direction of the shock motion, the disturbances propagating to the left
and right are named characteristics C+ and C−, respectively (Han & Yin 1993). The
characteristic equations (3.6) and (3.7) are used to track the characteristics C+ and C−
in the FDTM, respectively.

Since Msi in (3.8) is the same as that in (3.4), the characteristic equations for tracking the
propagation trajectory of the disturbances are spontaneously integrated into the kinematic
governing equations for tracking the shock front. However, a close combination of the
shock front and the characteristics is still needed to simultaneously track the shock front
and the disturbances in the FDTM.

Figure 4 illustrates the schematic of the FDTM. The initial shape and intensity of the
shock front at time t0 are given in advance, which is discretized by a series of points. These
discrete points on the initial shock front are also the starting points of characteristics C+
and C−. In other words, these discrete points have dual identities on the initial shock front.
With time-marching, the moving shock front at any subsequent time t consists of a new
series of points, which come from two sources. One set of points comes from the shock
front itself that is advancing in each ray tube governed by (3.1) and (3.4). The others come
from the characteristics C+ and C− emanating from the discrete points on the initial shock
front that intersects with the shock front governed by the characteristic equations (3.6) or
(3.7). Harmonizing the discrete points on the shock front coming from the two sources is
of prime importance in the FDTM. To guarantee that the characteristics can be traced back
to the discrete points of the initial shock front, the intersections between the characteristics
and the shock front are retained for the next time step. In other words, these intersections
on the shock front have dual identities in the FDTM to simultaneously track the shock
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Figure 4. Schematic of a FDTM.

front and the disturbances at any subsequent time. The detailed procedure of the FDTM is
given in § 3.2.

3.2. Procedure of the FDTM
The time-marching procedure of the FDTM is described in detail between adjacent times
t and t + Δt here, where the time step, Δt, is restricted by the stability condition of the
algorithm (De Moura & Kubrusly 2013) and the non-cross-condition of rays (Henshaw
et al. 1986; Ridoux et al. 2019). As shown in figure 4, the shock front at time t is discretized
by points yi(t) with shock Mach numbers Msi(t), ray angles θi(t) and included angles νi(t).
The grey solid lines with arrows between the shock front at times t and t + Δt represent
the normal directions of the shock front at points yi(t), which can be expressed by the unit
normal vector ni(t). The perpendicular bisectors between adjacent discrete points at time t
represent rays (i.e. the grey dashed lines). At adjacent time steps, the FDTM can be mainly
divided into three procedures: the front tracking module; the disturbance tracking module;
and the redistribution module with a termination criterion.

The flowchart of the front tracking module is shown in the Appendix. As the discrete
points yi(t) on the shock front, the moving shock Mach numbers Msi(t) and the unit normal
vectors ni(t) are known at time t, and the shock front can be advanced along ni(t) using
a third-order Runge–Kutta scheme (Gottlieb & Shu 1998) to solve (3.4). As a result, the
front tracking points yi(t + Δt) on the shock front at time t + Δt are determined (see the
blue hollow points in figure 4). After this step, the ray tube areas Ai(t) and Ai(t + Δt) (i.e.
the length of each shock segment in the ray tube) can be calculated using the positions of
yi(t) and yi(t + Δt) (Henshaw et al. 1986; Ridoux et al. 2019), respectively. Integrating
(3.1) on each ray tube, the moving shock Mach number Msi(t + Δt) at the front tracking
points yi(t + Δt) can be obtained. In short, the procedure of the front tracking module in
the FDTM can calculate the shock shape and its intensity at time t + Δt by solving (3.1)
and (3.4).

When the shock front moves from time t to t + Δt, the disturbances synchronously
propagate along the shock front. The flowchart of the disturbances tracking module is
given in the Appendix. As the discrete points yi(t), the shock Mach number Msi(t), the
ray angle θi(t) and the included angle νi(t) are all known in the previous front tracking
module, the intersections between the characteristics and the shock front at the time t + Δt
are solved by combining the shock front at time t + Δt with (3.6) or (3.7). Thus, the
disturbance tracking points Y j(t + Δt) on the shock front yield at time t + Δt, where
the subscript j is the serial number of the characteristics. Note that all these disturbance
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Figure 5. Schematic of the numerical procedure for determining the kink formation on the shock front.

tracking points can be traced back to the discrete points on the initial shock front. The
moving shock Mach numbers Msj(t + Δt) on these disturbance tracking points Y j(t + Δt)
are determined by linear interpolation among the already known Msi(t + Δt). In short, the
procedure of the disturbance tracking module in the FDTM can track the characteristics
C+ and C− on the shock front at time t + Δt by solving (3.6) and (3.7).

After the above two modules in the FDTM are completed, the flowchart of the
redistribution module with a termination criterion can be performed, which is shown in
the Appendix. Since the disturbance tracking points Y j(t + Δt) inherit all information on
the moving shock front, they are retained as the new discrete points on the shock front at
time t + Δt, whereas the front tracking points yi(t + Δt) calculated by the previous front
tracking module are deleted. These new discrete points on the shock front are renumbered
yi(t + Δt) for the next time step, each of which has dual identities to simultaneously
track the shock front and the disturbances. In other words, the discrete points on the
shock front from two sources during each time step are harmonized in the FDTM,
which improves the calculation efficiency. Following the procedure used by Ridoux et al.
(2019), an interpolation of the shock front is performed using a monotone cubic method
(Huynh 1993) to determine the unit normal vectors ni(t + Δt) at the new discrete points
yi(t + Δt) at time t + Δt. Moreover, the angles θi(t + Δt) and νi(t + Δt) at the new
discrete points are calculated by (3.5) and (3.8) using the unit normal vectors ni(t + Δt)
and the shock Mach numbers Msi(t + Δt). Thus, all the information for shock advancing
in the next time step is known on the new discrete points on the shock front. Before the
shock advances, a termination criterion is examined. When the same family of adjacent
characteristics C+ or C− intersect, the shock–compression disturbances transform into a
shock–shock disturbance and thus, the kink forms. Taking the intersection of two adjacent
characteristics C− as an example, figure 5 gives the schematic of the numerical procedure
for determining the kink formation on the shock front. As shown in figure 5, the two
adjacent characteristics C− intersect at a point E between time t and t + Δt, which means
that the last time step should be shortened from Δt to Δt′ for the kink formation. To
quickly evaluate Δt′, one can find a point D on the shock front at time t, which yields the
shortest distance l between D and E. Then, Δt′ = l/(MsDc0), where MsD is the moving
shock Mach number at point D. Since MsD can be calculated by linear interpolation along
the shock front at time t, Δt′ is obtained. Thus, the shock front and characteristics at
time t + Δt′ can be calculated by the front tracking module and the disturbance tracking
module from time t, respectively. As the kink (i.e. E in figure 5) forms on the shock front
at time t + Δt′, the shock advancing is terminated in the FDTM. Otherwise, the discrete
points with dual identities on the shock front at time t + Δt continue to advance until the
termination criterion is satisfied. Note that the formation of the kink on the shock front
does not mean the end of the shock converging. The kink is not a stable shock anchoring,
but a triple point moving with the shock evolution.
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Kinks on elliptical convergent shock in hypersonic flow

From the above three modules, one can construct an entire flowchart of the FDTM in the
Appendix. Once the initial shape and intensity distribution of the moving shock are given,
the evolution of the moving shock and the disturbances causing the shock deformation can
be simultaneously tracked.

3.3. Verification of the FDTM

3.3.1. Convergence of a CMS with initial uniform intensity
The convergence of a CMS is selected as a typical case to validate the FDTM, which
can be equivalent to the axisymmetric ICS generated by a ring wedge (i.e. AR = 1.0) in
the present study. On the one hand, this typical case is a baseline that can be compared
with the EMSs in § 4. On the other hand, much theoretical and experimental research on
the convergence of the CMS has been performed (Guderley 1942; Takayama et al. 1987;
Hornung, Pullin & Ponchaut 2008); thus, the accuracy of the FDTM can be validated
by the theoretical evolution of the cylindrical shock front (Hornung et al. 2008) and the
theoretical characteristics in GSD (Han & Yin 1993). The initial radius of the CMS is
R0 = a, and the initial moving shock Mach number is Ms0 = 1.9, which is equivalent to
the axisymmetric ICS generated by a ring wedge with δ0 = 10◦ in M∞ = 6.

The initial shock front is discretized circumferentially with an equal length in the
FDTM. Three sets of initial lengths with Δs0/S0 = 5 × 10−3, Δs0/S0 = 2.5 × 10−3 and
Δs0/S0 = 1.25 × 10−3 are tested, corresponding to the initial discrete point numbers of
200, 400 and 800, where Δs0 and S0 are the length of the shock segment in the ray tube
and the circumference of the cylindrical shock itself at initial time t = 0, respectively.
Although the CMS can converge to the centre, the convergence of the axisymmetric ICS
is terminated early by the Mach disk before the converging centre (Zhang et al. 2021).
To keep the equivalence between the CMS and the axisymmetric ICS, the convergence
termination of the CMS in the FDTM is set as t/T = 2.62 with T = a/V∞, which
corresponds to the position of the Mach disk at x/a = 2.62 in the axisymmetric ICS
(Zhang et al. 2021; Ji et al. 2022).

As shown in figure 6(a), the variations in the shock front radius (R) with time t calculated
by the FDTM with three sets of discrete points are compared with the theoretical solution
reported by Hornung et al. (2008) who used the integral form of the relation (3.1) to obtain
the theoretical evolution of the CMS. The horizontal and vertical coordinates in figure 6(a)
maintain the scale of 1 : 1 to illustrate the real shape of the shock front. To highlight the
differences between the FDTM and the theoretical solution, figure 6(b) gives the relative
errors ΔR/RT , where ΔR = RT − RF, RT and RF are the shock radii calculated by the
theory and the FDTM, respectively. The shock front calculated by the FDTM essentially
agrees with the theoretical solution. When the initial discrete points on the shock front
with a spatial resolution of Δs0/S0 = 2.5 × 10−3, the evolution of the CMS can be
accurately calculated by the FDTM with a relative error less than 4 %. Therefore, the
initial length of Δs0/S0 = 2.5 × 10−3 is used for all cases in the present study. To examine
the characteristics calculated by the FDTM, any characteristic C+ or C− can be used
because the flow is axisymmetric. The characteristic C+ originating from the endpoint of
the initial shock front on the negative z-axis is shown in figure 6(c), which is compared
with the theoretical characteristic solution solved directly using the characteristic relations.
Similarly, figure 6(d) gives the relative errors Δy/yT between the characteristic C+
calculated by the FDTM and the theoretical solution, where Δy = yT − yF, yT and yF
are the ordinates calculated by the theory and the FDTM, respectively. Good agreement
with a relative error less than 3 % is achieved in the shape of the characteristic when
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Figure 6. (a) Theoretical solution of the shock front radius (R) varying with time t and the results calculated
by the FDTM with three sets of discrete points. (b) Relative errors ΔR/RT between the theoretical shock radii
and those calculated by the FDTM. (c) Characteristic C+ originating from the endpoint of the initial shock
front on the negative z-axis calculated by the FDTM and the theoretical solution. (d) Relative errors Δy/yT
between the characteristic C+ calculated by the FDTM and the theoretical solution for M∞ = 6, AR = 1.0 and
δ0 = 10◦.

Δs0/S0 = 2.5 × 10−3. However, the time information is not contained in the theoretical
characteristic solution, which cannot match the evolution of the shock front. Fortunately,
the FDTM in the present study break through this limitation, which combines the evolution
of the shock front with the disturbances on the shock front in real time. With the help of
the FDTM, the evolution of the CMS can be further analysed as follows.

Figure 7 shows the instantaneous shock fronts at typical times of t/T = 0, 1.31 and
2.62, on which a set of characteristics C+ and C− in every 20 points are superimposed.
All results are calculated by the FDTM with Δs0/S0 = 2.5 × 10−3. The initial CMS
accompanies bidirectional disturbances, which propagate along the shock front during
convergence to intensify the shock. Hence, those disturbances are shock–compression.
Note that the intervals between any adjacent disturbances from the same family are equal
in real time. In other words, those disturbances can be regarded as uniform disturbances,
which guarantee that the CMS always maintains a circular shape. In short, the evolution of
the CMS is equivalent to that of the axisymmetric ICS before the formation of the Mach
disk.

3.3.2. Convergence of the CMS with initial non-uniform intensity
As shown in § 3.3.1, when the initial shock Mach numbers along the CMS are the same,
the converging shock always maintains a circular shape. However, the CMS is unstable
to small disturbances (Whitham 1957). When the initial shock Mach number of the CMS
is perturbed by a small value, the disturbances increase with the converging shock and
thus, kinks appear and make the shock shape into straight segments (Schwendeman 1999).
Similar behaviours were also observed in experiments (Takayama et al. 1987; Watanabe &
Takayama 1991). To examine the accuracy of the FDTM in predicting the formation time
and position of kinks, the evolution of a converging CMS with an initial perturbation in its
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Figure 7. Shock front at the time t/T = 0, 1.31 and 2.62, characteristics C+ and C− calculated by the FDTM
with Δs0/S0 = 2.5 × 10−3 for M∞ = 6, AR = 1.0 and δ0 = 10◦.

intensity is adopted for validation. Since this specific case was numerically solved using
GSD by Schwendeman (1993, 1999), the same description of the problem is used here.

The initial shape of the CMS in the Cartesian coordinate system (x, y) is

x = e−r cos (2πs) , y = e−r sin (2πs) , (3.9a,b)

where the initial radial distance R0 = e−r with r = 0, and s ∈ [0, 1). The initial
distribution of the shock Mach number Ms0 along the CMS is

Ms0 = 2 + 0.2 sin(10πs). (3.10)

In the perspective of GSD, the disturbances induced by the initial non-uniformity in the
shock intensities gradually increase and aggregate during the CMS convergence, which
causes the shock shape to deviate from the circular shape and form kinks on the shock
front.

Figure 8(a) shows the shock fronts calculated by the FDTM at typical time Tn = 0, 0.32
and 1.05 with Δs0/S0 = 2.5 × 10−3, on which a set of characteristics C+ and C− in
every 20 points are superimposed and anticlockwise numbered as 1, 2, . . . , j. With the
help of FDTM, the evolution of the converging shock can be further analysed. The
bidirectional shock–compression disturbances caused by the initial non-uniformity of
the shock intensity unevenly propagate along the shock front (i.e. the characteristics),
which plays a prominent role for the deformation and non-uniform intensification of the
shock. As the shock converges, the interval between any adjacent shock–compression
disturbances from the same family continuously decreases (see figure 8a). When the
shock–compression disturbances from the same family intersect, the shock–compression
disturbances transit to the shock–shock disturbance (Han & Yin 1993), which indicates
the kink formation. Due to the five-fold circular symmetry of the initial perturbation in
(3.10), five pairs of left-running and right-running shock–shocks (i.e. 10 kinks) on the
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Figure 8. (a) Evolution of the shock front and characteristics. (b) Comparison of shock Mach numbers when
the shock passes the circle with a radius of e−r and r = 0.5.

converging shock front are formed simultaneously, which divides the converging shock
front into 10 shock segments at Tn = 1.05. Specifically, the intersection point between
the characteristics C−

1 and C−
2 in the enlarged view of figure 8(a) is (x/R0, y/R0) =

(0.2131, −0.2346), which is the formation position of the kink. The shock fronts calculated
by Schwendeman (1999) are also superimposed on figure 8(a), where the formation
position of the kink is (x/R0, y/R0) = (0.2130, −0.2345). Thus, the relative error of the
kink formation positions is less than 0.1 %. Furthermore, when the converging shock
front passes the circle with a radius of e−r and r = 0.5 (i.e. the grey dotted line in
figure 8a before the kink formation), Schwendeman (1999) provided the shock Mach
numbers. These shock Mach numbers are compared with those calculated by the FDTM
in figure 8(b), which yields a relative error less than 3 % at the peak and trough positions.
Thus, the FDTM can well predict the evolution of the converging CMS with an initial
non-uniformity in its intensity.

For the converging CMS with a large Ms0 and a sufficiently small perturbation, an
asymptotic solution for the kink formation time TK and the corresponding shock radius
RK was derived by Mostert et al. (2018b), which is adopted here to further illustrate the
performance of the FDTM. The initial shape of the CMS satisfies (3.9a,b), while the initial
distribution of the shock Mach numbers is consistent with that of Mostert et al. (2018b),
which can be expressed as

Ms0 = 20[1 + qε sin(2πqs)]−1/n, (3.11)

n = 1 + 2
γ

+
(

2γ

γ − 1

)1/2

, (3.12)

where 2π/q is periodic over CMS with a wavenumber q = 8, and ε is a perturbation
amplitude, and γ = 5/3. The cases with q2ε = 0.16, 0.32, 0.64, 0.96, 1.28 and 1.6 are
calculated by the FDTM, and the corresponding formation time of the kinks are extracted
for comparisons with the literature.

The kink formation time TK and the corresponding shock radius RK calculated by the
FDTM are shown in figures 9(a) and 9(b), respectively, where the abscissa and ordinate
are displayed in logarithms. The asymptotic solution reported by Mostert et al. (2018a,b)
using the nonlinear Fourier-based analysis method, and the numerical results obtained by
the method of Schwendeman (1993) using GSD are superimposed on figure 9. It is obvious
that TK and RK calculated by the FDTM agree well with the numerical results reported by
Schwendeman (1993). Both of them approach the asymptotic solution as q2ε decreases.
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Figure 9. (a) Comparisons of the kink formation time TK for Ms0 = 20, q = 8 and γ = 5/3.
(b) Comparisons of shock radius RK at the kink formation for Ms0 = 20, q = 8 and γ = 5/3.

In other words, the formation of a kink in the limit q2ε −→ 0 is suggested by the
asymptotic solution, which is in support of the results calculated by the FDTM.

In short, the collapse of a CMS with an initial non-uniformity in its intensity can be
solved by the FDTM with sufficient accuracy. Undoubtedly, once the converging CMS
deviates from the axisymmetric state to be an EMS that is equivalent to an elliptical ICS,
kinks also appear on the shock front. With the help of FDTM, it is valuable to address the
evolution mechanisms of the elliptical ICS, which is discussed in § 4.

4. Kinks on elliptical convergent shock waves in the ICFs

Combining the FDTM with the hypersonic equivalent principle, the convergent behaviours
of the 3-D elliptical ICS and the formation mechanism of kinks are investigated from the
perspective of the equivalent 2-D moving shock, in which the effects of different ARs on
the kinks are discussed.

4.1. Range of kink emergence prior to the Mach disk
The convergent behaviours of the elliptical ICS from the leading-edge of the elliptical
ring wedge to a location where the kink forms are considered in the present study. This
evolution stage is far from the convergence centre, and thus, the hypersonic equivalence
principle works. However, if the ICS slightly deviates from the axisymmetric state, the
elliptical ICS may form a Mach disk early to prevent the appearance of kinks (Zhang
et al. 2021). Due to the complicated 3-D flow, the exact position of the Mach disk in the
ICS is so far difficult to theoretically determine. To predict the formation of kinks on the
elliptical ICS using the FDTM, it is therefore of paramount importance to make sure that
kinks appear prior to the Mach disk.

In practice, the shock intensity is an important factor that affects the Mach disk (Tan,
Ren & Wu 2006; Guan et al. 2020). It is well known that the shock intensity in the major
plane of the elliptical ICS is always the largest during the convergence of an elliptical
ICS (Zhang et al. 2021). If the shock angle λM in the major plane of the elliptical ICS is
smaller than the shock angle λN specified by the von Neumann (1943) criterion, the Mach
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Figure 10. The von Neumann line (λM = λN ) of the elliptical ring wedges in the range of AR = 1.0 to 5.0

and δ0 = 6◦ to 14◦ in M∞ = 6.

disk does not appear in this flow cross-section. In other words, λM = λN can be used as
a conservative criterion to limit the position of the Mach disk. Thus, the FDTM can at
least be used to predict the formation of kinks on the elliptical ICS where λM < λN . This
criterion is performed as follows. When kinks appear on the equivalent 2-D EMS, the
shock Mach number MsM at the y-axis (i.e. the major axis) is already obtained using the
FDTM. Thus, the equivalent shock angle λM in the major plane of the 3-D elliptical ICS
can be calculated by the conversion relation

tan λM = MsM

M∞
. (4.1)

If λM < λN , kinks appear prior to the Mach disk, which can be equivalent to the evolution
of the elliptical ICS; otherwise, the appearance of kinks on the elliptical ICS cannot be
guaranteed.

Figure 10 shows the von Neumann line (λM = λN) of the elliptical ring wedges in the
range of AR = 1.0 to 5.0 and δ0 = 6◦ to 14◦ in M∞ = 6, which yields the conservative
area for kinks appearing prior to the Mach disk. When AR maintains the same value, the
shock angle λM can reach λN with increasing δ0. However, under the premise of constant
δ0, when AR is sufficiently large, λM cannot reach λN . The convergent behaviours of the
elliptical ICS and the formation mechanism of kinks are discussed within the conservative
area (λM < λN) shown in figure 10.

4.2. Convergent behaviours and the formation mechanism of kinks
Experimental and numerical studies on the 3-D elliptical ICS (Zhang et al. 2021)
demonstrated that the evolutions of different elliptical ICSs from an initially elliptical
shape to a complex morphology with kinks are similar in general convergent behaviours.
Taking AR = 1.43 and δ0 = 10◦ in M∞ = 6 as a typical example (see table 1)
demonstrates the convergent behaviours of the elliptical ICS, which has been well
documented by Zhang et al. (2021) using 3-D numerical simulation. Thus, the convergent
behaviours of the typical elliptical ICS can be compared with those calculated by the
present FDTM from the equivalent 2-D unsteady perspective, in which the formation
mechanism of kinks is also revealed using the FDTM.
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Figure 11. (a) Evolution of the shock front and characteristics, where dashed lines are the results of
Computational Fluid Dynamics (CFD). (b) Circumferential distribution of the pressure ratio in the evolution
of the shock for AR = 1.43 when δ0 = 10◦ and M∞ = 6, where solid points are the results of Computational
Fluid Dynamics (CFD).

4.2.1. Convergent behaviours of the equivalent EMS
The convergent behaviours of the equivalent EMS are calculated by the FDTM with
Δs0/S0 = 2.5 × 10−3, in which the propagation trajectories of the disturbances (i.e.
characteristics C+ and C−) emitted from the initial shock front are tracked in real time.
The instantaneous shock fronts at typical times of t/T = 0, 0.798 and 1.596 are shown in
figure 11(a), on which a set of characteristics C+ and C− in the upper half-plane every
20 points are superimposed and anticlockwise numbered as 0, 1, . . . , j from the positive
z-axis. When the shock converges to time t/T = 1.596, the termination criterion of the
calculation in the FDTM is met, which indicates that the characteristics in the same family
intersect to form kinks. Due to the geometric symmetry, four kinks concurrently appear on
the shock front at (y/a, z/a) = (±0.396, ±0.047), which divide the shock front into two
pairs of arch-shaped shock segments.

For comparison, a 3-D Euler solver based on the finite volume method was employed
to simulate the 3-D steady elliptical flow field, in which the effects of viscosity
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and the presence of a boundary layer on the shock front were deemed negligible
(Zhang et al. 2021). The computational domain, boundary conditions, numerical schemes,
etc., adopted for all 3-D validation cases in this paper are consistent with the numerical
simulations conducted by Zhang et al. (2021). In short, this solver has been demonstrated
reliable in our previous studies (Zhang et al. 2021; Ji et al. 2022), in which it captured
complex shock structures well. The equivalent shock fronts on x/a = 0, 0.798 and 1.596
are extracted from the 3-D numerical simulation (Zhang et al. 2021) and superimposed
on the lower half-plane in figure 11(a), where the formation positions of kinks are
(y/a, z/a) = (±0.387, ±0.050). As the relative difference in the kink positions between
the FDTM and the 3-D numerical simulation is less than 6 %, the evolution of the
shock fronts calculated by the FDTM essentially agrees with the previous 3-D numerical
simulation under the premise of equivalence. It must be emphasized that the FDTM can
rapidly and quantitatively determine the evolution of the shock fronts and the formation
positions of kinks with significantly lower cost than the 3-D numerical simulation.
Moreover, figure 11(b) compares the circumferential distributions of the pressure ratio
(p/p∞) across the shock (i.e. the shock intensity) calculated by the FDTM and the 3-D
numerical simulation, where the shock intensity distributions of the equivalent EMS are
calculated by the oblique shock relationship,

p
p∞

= 1 + 2γ

γ + 1

{
M2

∞ sin2
[

arctan
(

Ms

M∞

)]
− 1

}
, (4.2)

where p∞ is the pressure ahead of the shock. As shown in figure 11(b), the shock
intensities calculated by the FDTM are also in good agreement with those of the 3-D
numerical simulation. Although the initial elliptical shock has a circumferentially uniform
intensity, the shock intensities near the major axis (ϕ = 90◦, 270◦) significantly increase
with shock convergence. As a result, kinks are formed near the major axis, which not
only indicate the discontinuity of the shock front but also indicate a sharp change in the
shock intensity. With the help of the FDTM, the evolution of the EMS can be further
analysed. As shown in the upper half-plane in figure 11(a), the initial elliptical shock
front accompanies a series of bidirectional shock–compression disturbances (Whitham
1957, 1958), which unevenly propagate along the shock front and play a prominent role in
shock intensification. As tracked by the characteristics, the interval between any adjacent
disturbances from the same family continuously decreases. Particularly, the disturbances
near the major axis become denser (see figure 11a), indicating that the local shock
intensity enlarges significantly (see figure 11b). When the moving shock converges to
t/T = 1.596, the disturbances from the same family initially near the major axis (e.g.
the characteristic C−

4 in figure 11a) catch up with the disturbance emitted from the major
axis (i.e. the characteristic C−

5 in figure 11a). Thus, the disturbances transform from the
shock–compression into the shock–shock (Han & Yin 1993), which leads to the formation
of kinks (see the enlarged view in figure 11a). However, a puzzling phenomenon is that the
disturbances from the same family initially near the major axis determine the formation of
kinks rather than the rest of the disturbances, which is clarified as follows.

4.2.2. Propagation of the disturbances
The propagation of the disturbances can be quantitatively analysed using the FDTM
because the characteristics calculated by the FDTM are endowed with time information.
Considering the geometric symmetry of the EMS, the characteristics C− initially within
the circumferential angle ϕ = 0◦ to 90◦ numbered 0 to 5 (i.e. C−

0 to C−
5 ) in figure 11(a) are
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Figure 12. Variation of circumferential angle ϕ of characteristics C− with time t for AR = 1.43 when
δ0 = 10◦ and M∞ = 6.

selected to clarify the intersection of the disturbances from the same family, where ϕ is the
angle between the disturbance position and the positive z-axis, C−

0 is initially emitted from
the minor axis, and C−

5 is initially emitted from the major axis. As shown in figure 12, the
variation of ϕ on the characteristics C−

0 to C−
5 with time t are extracted from the FDTM.

For comparison, the characteristic C− of the CMS generated by the ring wedge with the
same δ0 (see figure 7) is superimposed on figure 12. Due to the circumferential symmetry
of the disturbance’s propagation on the CMS, only the characteristic C−

0 initially emitted
from the positive z-axis (i.e. ϕ = 0◦) is shown in figure 12.

As the shock converges to the centre, both the value and the growth rate of ϕ (i.e.
the slope of the ϕ − t curve) on the characteristic C− increase gradually on the CMS
(see figure 12). Note that the variation in ϕ remains the same for each disturbance on
the CMS, and thus, they cannot catch up with each other. However, the variations of
ϕ on the characteristics C− emitted from different initial positions on the EMS change
considerably. As shown in figure 12, the ϕ of the characteristics initially near the minor
axis (e.g. C−

0 and C−
1 ) increase significantly, whereas the ϕ of the characteristics initially

near the major axis (e.g. C−
4 and C−

5 ) increase slowly. Although the growth rates of ϕ

vary with the initial positions on the EMS, the ϕ of the characteristics C−
0 to C−

4 always
increase with time. It is evident that the variation tendency of ϕ on the characteristic
C−

5 reverses following the initial increase. In other words, the variation in ϕ on the
characteristic C−

5 is non-monotonic. The abnormal behaviour of the characteristic C−
5

enables the characteristics initially near the major axis to first catch up with it. When the ϕ

of the characteristics C− initially emitted from different positions reaches the same value
(see C−

4 and C−
5 in figure 12), the gathered shock–compression disturbances turn into a

shock–shock disturbance (Han & Yin 1993), which causes the formation of a kink on the
shock front within ϕ > 90◦. Note that the characteristics C+ and C− are strictly symmetric
about the major axis (i.e. ϕ = 90◦) rather than the C− themselves. Thus, another kink
forms simultaneously on the shock front within ϕ < 90◦ (see figure 11a).

To better understand the variations in ϕ on the characteristics, the propagation speed
of the disturbance is further calculated. Taking the characteristic C−

j as an example, the
decomposition schematic of the propagation speed of the disturbance is shown in figure 13,
where O is the geometric centre of the EMS and O′ is the position of the disturbance on
the shock front at time t. Both the propagation speed u of the disturbance along the shock
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Figure 13. Decomposition of the propagation speed of the disturbance on the shock.

front and the convergence speed w (along the ray) of the shock front cause the variation of
ϕ, where u and w are determined by the following, respectively (Han & Yin 1993):

u = c0

[
1
2
(M2

s − 1)K(Ms)

]1/2

, (4.3)

w = c0Ms. (4.4)

Obviously, u and w are positively correlated with the local shock Mach number Ms on
the shock front, in which u is always less than w (Han & Yin 1993). The angular speeds
induced by u and w in the polar coordinate system are ω1 and ω2, respectively:

ω1 = u cos(ξ)

r
; (4.5)

ω2 = w sin(ξ)

r
; (4.6)

where O is the pole, the positive z-axis is the polar axis, r is the polar radius of the
disturbance O′, and ξ is the angle between the ray and the polar radius OO′. Thus, the
circumferential angular speed of the disturbance on the characteristics ω is

ω = ω1 + ω2. (4.7)

Note that ω1 is always positive, whereas ω2 can be positive, zero, or negative depending
on ξ . It is evident that ξ always equals zero for the CMS, and thus, ω = ω1 on the CMS. In
other words, the convergence speed of the CMS does not change the value of ϕ. However,
the variations in ω on the characteristics C− on the EMS are complicated. When the
characteristic C− does not cross the major axis (i.e. ϕ < 90◦), ξ is positive, and thus,
ω1 and ω2 are in the same direction to increase ϕ. Once the characteristic C− crosses the
major axis (i.e. ϕ > 90◦), ξ is negative, and thus, ω1 and ω2 are in the opposite directions,
in which ω2 decreases ϕ. Note that the values of ξ , u and w are closely related to the
position of the disturbance on the shock front, which is responsible for the complicated
changes in ω.

As shown in figure 14, the variations in ω extracted from the FDTM are further
analysed with time t, which can explain the behaviours of ϕ in figure 12. For comparison,
the ω = ω1 of the characteristic C−

0 on the CMS is superimposed on figure 14.
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Figure 14. Variation of circumferential angular speed ω with time t for M∞ = 6, AR = 1.43 and δ0 = 10◦.

As the circumferentially uniform ω1 increases with the strength of the CMS, ϕ also
increases monotonically on the CMS (see figure 12). However, the variations in ω on the
characteristics C− initially emitted from different positions on the EMS are asynchronous.
Although the circumferential strength of the initial elliptical shock front is the same at
t = 0, the initial ω is not uniform due to the shock front deviating from the circular shape.
From the minor axis to the major axis, the initial ω of the characteristics on the EMS
increase and then decrease, in which the initial ω of C−

5 emitted from the major axis is the
smallest but equal to that on the CMS. As the shock converges and strengthens, the ω on
the characteristics initially near the minor axis (e.g. C−

0 and C−
1 ) increase monotonically

(see figure 14). Therefore, the ϕ on the characteristics C−
0 and C−

1 increase significantly
(see figure 12). Although the ω on the characteristics C−

2 to C−
4 change non-monotonically,

first increasing and then decreasing, they are always positive (see figure 14). Thus, the ϕ

on the characteristics C−
2 to C−

4 continues to increase (see figure 12). Interestingly, the
ω on the characteristic C−

5 decreases with time following the initially slight increase (see
figure 14). As the characteristic C−

5 crosses the major axis at the beginning, ω1 and ω2
change in the opposite directions, which turns ω negative once ω2 < −ω1. After that
turning point, the variation of ϕ on the characteristic C−

5 reverses, which creates a key
condition for the characteristics initially near the major axis to first catch up with C−

5 . In
other words, kinks inevitably appear on the characteristic initially emitted from the major
axis.

The characteristics C− originating from ϕ > 90◦ (e.g. C−
6 to C−

9 in figure 11a) are
further analysed to comprehensively understand the propagation of disturbances on the
EMS. Near the major axis, the variation of ϕ on the characteristics C− originating from
ϕ > 90◦ (e.g. C−

6 to C−
7 in figure 11a) are slower than that of the characteristic C−

originating from the endpoint of the major axis (i.e. C−
5 ), which can be revealed by the

change in ω. Note that ω1 and ω2 are in the opposite directions at the beginning for the
characteristics C− originating from ϕ > 90◦, which is different from ω1 together with ω2
in the promotion of ϕ on the characteristics C− originating from ϕ < 90◦. In the early
stage of shock convergence, the competition between ω1 and ω2 yields a smaller positive
ω on the characteristics C− originating from ϕ > 90◦. Thus, ϕ on the characteristics C−
originating from ϕ > 90◦ slightly increases. As the shock converges and strengthens,
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ω changes from positive to negative, causing a slow decline in ϕ (e.g. C−
6 to C−

7 in
figure 11a). It seems that the variation of ϕ in C−

6 gives an opportunity for C−
5 to catch

up with C−
6 , but C−

4 originating from ϕ < 90◦ intersects with C−
5 much earlier because

ω of C−
4 is always positive (see figure 14). For the characteristics C− far away from

the major axis (e.g. C−
7 to C−

9 in figure 11a), the initial angular difference between the
adjacent characteristics and the variations of ϕ on them make it impossible for the adjacent
characteristics to intersect. In short, the characteristics C− originating from ϕ ≤ 90◦ near
the major axis determine the formation of kink at ϕ = 97.27◦ rather than the characteristics
C− originating from ϕ > 90◦. Since the characteristics C+ and C− are strictly symmetric
about the major axis, the characteristics C+ originating from ϕ ≥ 90◦ near the major axis
simultaneously form another kink at ϕ = 82.73◦.

In summary, the FDTM can rapidly predict the positions and reveal the mechanisms of
kink formation in a 3-D steady elliptical ICS from the perspective of GSD. In fact, the
formation position of kinks in the flow direction is significantly affected by the elliptical
entry aspect ratio AR (Zhang et al. 2021), which can be thoroughly studied using the
FDTM.

4.3. Effects of AR on the formation positions of kinks
Previous work on typical 3-D elliptical ICSs (Zhang et al. 2021) showed that the formation
of kinks suppresses the enhancement in the strength of the elliptical ICS and the shock
segments divided by the kinks provide opportunities for the occurrence of the regular
reflection at the centre. It is therefore of particular importance to study the formation
positions of kinks on the 3-D elliptical ICS with different ARs, which indicates the
suppression on the elliptical ICS. From the 2-D unsteady perspective, the effects of AR
on the kinks of the equivalent EMS can first be rapidly predicted by the FDTM. Then, the
accuracy and evolution of the equivalent formation positions of kinks can be discussed by
comparison with the results from typical 3-D numerical simulations.

4.3.1. Effects of AR on kinks of the equivalent EMS
The propagations of the characteristics C+ and C− initially emitted from the endpoints
of the major axis dominate the formation positions of kinks on the equivalent EMS
(see § 4.2). Considering the symmetry of the disturbance’s propagation on the equivalent
EMS, only the characteristic C−

5 initially emitted from the endpoint of the major axis
is extracted until a kink forms on it, according to the results predicted by the FDTM
with Δs0/S0 = 2.5 × 10−3. Thirty-three elliptical ring wedges with the same conditions
of δ0 = 10◦ and M∞ = 6 are selected by equidistantly changing b within the range of
20 mm ≤ b ≤ 85 mm, which yields different ARs ranging from 1.18 to 5.00. To be sure,
all elliptical ring wedges are in the conservative area in figure 10 (i.e. λM < λN).

Figure 15 shows the variations of ω on the characteristic C−
5 with typical ARs listed in

table 1, where the abscissa of the propagation time t/T of C−
5 is displayed in logarithms

starting from 10−3 to enlarge the behaviour of C−
5 in the early stage. Although all ω on C−

5
for different ARs are the same at the initial time, the propagation process of C−

5 changes
significantly for different ARs, which affects the formation position of the kink on the
equivalent EMS. When the initial deviation of the shock front from the CMS is small, such
as AR = 1.18, 1.25 and 1.43, the propagation of C−

5 along the shock front dominates the
variation of ω in the early stage rather than the convergence effect of the shock front itself.
In other words, the gain of ω1 induced by the propagation speed u of the disturbance along
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Figure 15. Variation of ω on the characteristic C−
5 with time t for typical ARs when δ0 = 10◦ and M∞ = 6.

the shock front overcomes the loss of the angular speed ω2 induced by the convergence
speed w of the shock front itself (see figure 13). Thus, ω of C−

5 grows at the first stage
for these relatively small ARs (see the close-up view of figure 15). As the equivalent EMS
converges towards the centre, the convergence effect of the shock front itself enhances
rapidly, which causes the ω of C−

5 to decrease sharply. Moreover, the time taken for the
growth stage of ω shortens with the increase in AR. In contrast, for large ARs, such as
AR = 2.00, 3.50 and 5.00, the convergence effect of the shock front itself plays a dominant
role in the variation of ω rather than the propagation of C−

5 along the shock front, which
causes the ω of C−

5 to decrease at the beginning (see the close-up view of figure 15). When
the ω of C−

5 decreases to a negative value, the characteristic C− initially close to the major
axis catches up with C−

5 easier to form the kink on C−
5 . As shown in figure 15, kinks form

earlier on the EMS as AR increases.
To better understand the evolution of the kink on the EMS with different ARs, the

formation time tK and position (rK, ϕK) of the kink are extracted from the endpoint of
C−

5 and shown in figures 16(a) and 16(b), respectively. It is evident that tK decays with the
increase in AR, in which tK shows asymptotic behaviour following a sharp decrease for
AR approximately less than 2 (see figure 16a). Similarly, rK and ϕK also asymptotically
approach different values with the increase in AR (see figure 16b). Moreover, the variation
of rK and ϕK exhibit opposite trends, which indicates that the formation position of the
kink is closer to the major axis and farther away from the convergence centre with the
increase in AR. As kinks on the equivalent EMS are already calculated by the FDTM,
the formation positions of kinks on the 3-D steady elliptical ICS in the flow direction
(i.e. x) can be predicted according to (2.2), while the formation positions of kinks in the
cross-section of the elliptical ICS are ideally the same as those on the equivalent EMS.
Note that the accuracy of the equivalent formation positions of kinks for different ARs
needs to be examined.

4.3.2. Equivalence of the kinks at different AR
It is worth briefly reviewing the evolution of the 3-D steady elliptical ICS before examining
the equivalent formation positions of kinks. As reported by Zhang et al. (2021), the initial
strength of the elliptical ICS is the same on the circumference, but the non-uniform
intensification effects on the circumference drive the initially smooth shock surface to be
discontinuous as the formation of kinks on the shock surface. The kinks separate the shock
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Figure 16. (a) Variation of the kink’s formation time tK with AR. (b) Variation of the kink’s formation
position rK and ϕK with AR on the equivalent EMS when δ0 = 10◦ and M∞ = 6.0.

surface into two pairs of shock segments, including one stronger pair around the major
axis and the other weaker pair around the minor axis, both of which propagate towards
the centreline. Therefore, four kink trajectories are inevitably created on the elliptical ICS
surface (see figure 1a). Correspondingly, the kinks in the equivalent 2-D unsteady flow are
not stable shock anchoring. It is well demonstrated by the typical case of AR = 1.43 in
§ 4.2 that the FDTM can quickly reproduce the process of the 3-D elliptical ICS from
the initially smooth shock front to kink formation from the equivalent 2-D unsteady
perspective, although the FDTM is not yet sufficient to predict the propagation of the
shock segments after the formation of kinks. For a wide range of ARs, the equivalence of
the kink’s formation position predicted by the FDTM needs further verification.

Figure 17 shows the shock front (i.e. the black dashed line) with the formation of kinks
(i.e. blue dots) on the EMS calculated by the FDTM for typical ARs listed in table 1, in
which the formation time of kinks is marked as tK/T . For comparison, the normalized
density contours in the equivalent cross-section xKT/a = V∞tK/a of the 3-D elliptical
ICS are superimposed on the upper half-plane of figure 17. Surprisingly, the shock front
including the kinks’ positions at time tK/T (i.e. the black dashed line) differs obviously
from that of the equivalent cross-section xKT/a (i.e. the purple line) of the 3-D elliptical
ICS for small ARs shown in the upper half-planes of figures 17(a) and 17(b). Actually,
the discontinuous points on the equivalent cross-section xKT/a of the 3-D elliptical ICS
(i.e. pink dots in figure 17) are not the formation positions of kinks, but rather the points
on the kink trajectories after the kink formation. As AR increases, e.g. AR = 1.43 and 2,
kinks form earlier on the EMS, and the difference in the shock front between the time
tK/T and the equivalent cross-section xKT/a shrinks significantly (see the close-up view
of figures 17c and 17d). Particularly, the difference in the shock front, including the kink
positions, is indistinguishable for AR = 5.0 (see the enlarged view in figure 17e). The
comparisons in the upper half-planes of figure 17 indicate that the shock front with the
formation of kinks calculated by the FDTM is always larger than that of the equivalent
cross-section on the 3-D elliptical ICS for different ARs. It seems that the spatial evolution
of the 3-D elliptical ICS is faster than the temporal evolution of the equivalent EMS
predicted by the FDTM, but the evolutions of the shock front are similar to each other
(see figure 17). The difference between them is caused by a mismatch in the x direction.

To quantify the difference in the kink formation position in the x direction, one can look
for a cross-section xK/a on the 3-D elliptical ICS upstream of xKT/a, on which the shock
front including the kink positions are almost identical to those calculated by the FDTM at
tK/T . The cross-sections xK/a on the 3-D elliptical ICS for different ARs are superimposed
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Figure 17. Comparison of the kink formation position between the EMS and the 3-D elliptical ICS for typical
ARs listed in table 1 when δ0 = 10◦ and M∞ = 6: (a) AR = 1.18; (b) AR = 1.25; (c) AR = 1.43; (d) AR =
2.00; (e) AR = 5.00.

on the lower half-planes of figure 17, which are considered the kink formation positions
on the 3-D elliptical ICS. The differences between xKT predicted by the FDTM and the
real position xK on the 3-D elliptical ICS are listed in table 2. As expected, the difference
between xKT and xK gradually decreases with the increase in AR. For AR greater than 1.43,
(xKT − xK)/xKT is less than 1 % (see table 2), and the kink formation positions on the xKT
cross-section predicted by the FDTM are extremely close to the real positions on the 3-D
elliptical ICS (see the upper half-planes of figure 17c–e). Although the difference between
xKT and xK increases for small ARs, (xKT − xK)/xKT is only approximately 3 % even for
the smallest AR = 1.18 (see table 2). An interesting question is why a slight difference
between xKT and xK for small ARs causes a significant difference in the shock front and
the kink formation positions (see the upper half-planes of figure 17a,b),which needs to be
addressed. It is of great importance to accurately and quickly determine the kink formation
positions on the elliptical ICS using the FDTM, once the results predicted by the FDTM
can be improved.
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AR 1.18 1.25 1.43 2.00 5.00

(xKT − xK)/xKT % 3.13 2.12 0.94 0.35 0.26

Table 2. Differences in the kink formation position calculated by the FDTM and the 3-D numerical
simulations.
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Figure 18. (a) Variation of the shock front λM in the upper half of the major plane along the x direction
calculated by the FDTM and the 3-D numerical simulation for typical ARs. (b) Variation of the Δx with λM for
typical ARs when δ0 = 10◦ and M∞ = 6.

4.3.3. Modification of the kink formation position in the x direction
The reason for the difference in the kink formation position between the equivalent EMS
and the 3-D elliptical ICS is discussed by seeking the evolution of the shock angle λM
along the x direction. When the λM of the EMS and the 3-D elliptical ICS are the same,
the shape of the shock front is almost consistent with that of the 3-D elliptical ICS. While
the horizontal spacing Δx of the same λM reflects the difference in the shock front in the
x direction between the equivalent EMS and the 3-D elliptical ICS.

Since the symmetry of the shock front and the kink formation positions are near the
major axis, only the shock angle λM in the upper half of the major plane (i.e. the slope
of the shock front along the x direction) calculated by the FDTM and the 3-D numerical
simulations for typical ARs are compared in figure 18(a). The λM in the major plane of
the 3-D elliptical ICS is obtained spontaneously using the 3-D numerical simulations,
while the abscissa x/a and λM on the equivalent EMS are calculated by (2.2) and (4.1),
respectively. The cut-off positions of the equivalent EMS and the 3-D elliptical ICS in
figure 18(a) correspond to xKT/a = V∞tK/a and xK/a, respectively. Moreover, the λM
of the axisymmetric ICS (i.e. AR = 1.00) and the equivalent CMS with the theoretical
solution are superimposed in figure 18(a) as a pair of limit cases without kinks, where the
cut-off position in the axisymmetric ICS corresponds to the Mach disk.

As shown in figure 18(a), the initial λM for different ARs are the same due to the
identical leading-edge angle δ0 and M∞. The results of the CMS calculated by the FDTM
are consistent with the theoretical solution by Hornung et al. (2008) (see figure 18a),
indicating that the FDTM can accurately calculate the evolution of the moving shock.
Nevertheless, discrepancies still exist when compared with the equivalent axisymmetric
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ICS (see figure 18a). Thus, the difference between the equivalent moving shock and the
3-D steady ICS is caused by the hypersonic equivalence principle itself rather than the
FDTM. In fact, the applicability of the hypersonic equivalence principle decays as the
shock strengthens along the x direction (see § 2.2), which indicates that the accuracy of
the equivalence depends on the change in λM . In other words, the horizontal spacing Δx
of the same λM between the equivalent moving shock and the 3-D steady ICS varies with
λM , which is extracted in figure 18(b).

As shown in figure 18(b), the difference Δx between the equivalent CMS and the
axisymmetric ICS gradually enlarges as λM increases. Undoubtedly, the Δx in the cut-off
position between the equivalent CMS and the axisymmetric ICS is the largest (see
figure 18a). However, the λM in the cut-off position of the elliptical ICS decreases with the
increase in AR (see figure 18a), resulting in a rapid decrease in Δx at the cut-off position
(see figure 18b). Note that for small AR, e.g. AR = 1.25, the λM in the cut-off position is
still large (see figure 18a), indicating a steep rise in the shock surface of the elliptical ICS.
Therefore, a small difference between xKT and xK (see AR = 1.25 in table 2) can lead to a
discernible distinction in the shock front including the kink positions (see figure 17b).

Interestingly, the variation of Δx with λM for the elliptical ICS is almost consistent with
that of the axisymmetric ICS (see figure 18b). Thus, once the relationship between Δx
and λM on the equivalent CMS is known in advance, it can be used to improve the kink
formation position predicted by the FDTM for different ARs . The variation of Δx with λM
on the equivalent CMS in figure 18(b) is easily obtained, which can be approximated by

Δx(λM)

a
= B1 + B2 exp([(λM − λ0)/B3]), λM > λ0, (4.8)

where λ0 is the initial shock angle on the elliptical ICS, and the coefficients B1 = 9.7 ×
10−4, B2 = 2.6 × 10−4 and B3 = 2.2. When the kink formation time tK and λM in the
cut-off position are calculated by the FDTM for a given AR, the modified equivalent kink
formation position in the x direction is x′

KT/a = (V∞tK − Δx(λM))/a. The relative errors
(x′

KT − xK)/x′
KT for AR = 1.18, 1.25, 1.43, 2.00 and 5.00 are 0.44 %, 0.26 %, 0.16 %, 0 %

and −0.01 %, respectively. Compared with table 2, the modified x′
KT is much closer to

the real flow position xK on the 3-D elliptical ICS, which is less than 0.5 %. Thus, the
modification is helpful to more accurately and quickly determine the kink formation
positions on the 3-D elliptical ICS using the FDTM.

5. Conclusions

The formation positions and mechanism of the kinks on the 3-D steady elliptical ICSs
generated by elliptical ring wedges in a Mach 6 flow are investigated using a theoretical
method with the reduction in spatial dimensions. The spatial evolution of the 3-D steady
elliptical ICS is converted into a temporal evolution of a 2-D EMS using the hypersonic
equivalence principle. The applicability of the equivalent theoretical method is examined
using typical entry aspect ratios (ARs) of the elliptical ring wedges with the same
leading-edge angle of 10◦.

A FDTM based on GSD is proposed to rapidly calculate the evolution of the EMS.
With the help of the FDTM, the shock front and the disturbances propagating along
the shock front are simultaneously tracked for the equivalent EMS. It is found that the
shock–compression disturbances from the same family initially near the major axis of
the EMS catch up with the disturbance initially emitted from the major axis of the EMS
to transform into shock–shock disturbances, which eventually leads to the formation of
kinks. The kinks indicate the discontinuity on the shock front and mark sharp changes in
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Known: the discrete points yi(t);
Calculate the ray

tube area Ai(t).

Equation (3.4) Equation (3.1)
Calculate the shock Mach

number Msi(t + �t).

Calculate the front tracking points

yi(t + �t).
Calculate the ray

tube area Ai(t + �t).

the unit normal vector ni(t);
the shock Mach number Msi(t).

Figure 19. Flowchart of the front tracking module.

the shock intensity, which is of great importance in understanding the evolution of the 3-D
steady elliptical ICS. The temporal formation positions of kinks on the EMS predicted
by the FDTM can be converted into the spatial formation positions of kinks on the 3-D
elliptical ICS using the hypersonic equivalence principle.

The equivalent kink formation position in the incoming flow direction predicted by the
FDTM shows asymptotic behaviour following a sharp decrease for AR approximately
greater than 2. Similarly, the polar radius and the polar angle of kinks on the flow
cross-section asymptotically approach the major axis with opposite manners, both of
which are farther away from the convergence centre with the increase in AR. The accuracy
of the equivalent kink formation positions on the 3-D elliptical ICS is examined for a
wide range of ARs by comparing the kinks predicted by the FDTM with 3-D inviscid
numerical simulations. It is demonstrated that the equivalent kink formation positions
in the incoming flow direction predicted by the FDTM always lag behind the real kink
formation positions on the 3-D elliptical ICS because the applicability of the hypersonic
equivalence principle decays as the shock strengthens along the incoming flow direction.
The accuracy of the equivalent kink formation positions in the incoming flow direction
predicted by the FDTM gradually decreases with the reduction in AR, which limits the
applicability of the equivalent theoretical method for small ARs.

It is found that the differences in the shock front along the incoming flow direction
between the 3-D elliptical ICS and the equivalent EMS for different ARs depend on
the shock angle in the major plane of the 3-D elliptical ICS, which is almost identical
to that between the axisymmetric ICS and the equivalent CMS. Thus, a modification of
the equivalent relationship by considering the shock angle in the major plane of the 3-D
elliptical ICS is established, which adopts the already known differences in the incoming
flow direction between the axisymmetric ICS and the equivalent CMS with the same shock
angle. After this modification, the accuracy of the equivalent kink formation positions
predicted by the FDTM improves significantly for all ARs. The combination of the FDTM
with the modified equivalent relationship provides a new theoretical way to solve the kinks
on the 3-D steady elliptical ICS. The converging shock will face complicated interactions
between the shock–compression and the shock–shock after the kink formation. Embedding
these complicated interactions into the FDTM is an important research direction in the
future.
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Known: the discrete points yi(t), the shock Mach number
Msi(t), the ray angle θi(t) and the included angle vi(t).

Equation (3.6) or (3.7)
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Calculate the disturbance tracking point Yj(t + �t).

Calculate the shock Mach number Msj(t + �t).

Figure 20. Flowchart of the disturbance tracking module.

Delete all front tracking points yi(t + �t) and Msi(t + �t) at time t + �t;
Retain all disturbance tracking points Yj(t + �t) and Msj(t + �t) at time t + �t;

Renumber Yj(t + �t) with Msj(t + �t) as yi(t + �t) with Msi(t + �t).

Calculate the unit normal vector ni(t + �t), the ray angle θi(t + �t) and

the included angle vi(t + �t) the of new discrete points at time t + �t.

Calculate the minimum distance lmin between adjacent characteristics C +

or C – and the average length �s between new discrete points at time t + �t.

The same family of adjacent
characteristics C + or C – intersect

before t + �t?

Yes

No Assign the parameters of new
discrete points at time t + �t to
the shock front at time t.

End

Calculate the shock front, characteristics

C + and C – when kinks form.

Output the kink position, shock front and

characteristics C + and C –.

Figure 21. Flowchart of redistribution module with a termination criterion.
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Appendix. Flowcharts of the FDTM

The flowcharts of the FDTM include three important modules: the front tracking module;
the disturbances tracking module; the redistribution module with a termination criterion.

The flowchart of the front tracking module is shown in figure 19, which solves the front
tracking point yi(t + Δt) and shock Mach number Msi(t + Δt) on the shock front at time
t + Δt using (3.4) and (3.1), assuming that the discrete point position yi(t), the unit normal
vector ni(t) and shock Mach number Msi(t) on the shock front at time t are known.
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Begin
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Equations (3.1) and (3.4)

Equations (3.6) and (3.7)

Calculate the front tracking points

yi(t + �t), Msi(t + �t) at time t + �t.

Calculate the disturbances tracking points

Yj(t + �t), Msj(t + �t) at time t + �t.

Delete yi(t + �t) at time t + �t; retain Yj(t + �t) at

time t + �t as new discrete points at time t + �t.

Calculate the unit normal vector ni(t + �t), the ray

angle θi(t + �t) and vi(t + �t) of new discrete

points with dual identities at time t + �t.

The same family of adjacent
characteristics C+ or C– intersect

before t + �t?

Front

tracking module

Disturbances

tracking module
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with a termination
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Input the position, shock Mach number, unit normal
vector and ray angle of the discrete points on the
shock front at initial time t = t0.

No

Yes

End

Calculate the shock front, characteristics

C+ and C– when kinks form. 

Output the kink position, shock front and

characteristics C+ and C–.

Assign the parameters of
new discrete points with
dual identities at time t + �t
to the shock front at time t.

Figure 22. Entire flowchart of the FDTM.

The flowchart of the disturbance tracking module is shown in figure 20, which can track
the disturbance tracking points Y j(t + Δt) and their shock Mach numbers Msj(t + Δt) on
the shock front at time t + Δt. First, the disturbance tracking points Y j(t + Δt) on the
shock front at time t + Δt are solved by combining the shock front at the time t + Δt with
the characteristic equation (3.6) or (3.7). Then, the moving shock Mach numbers Msj(t +
Δt) on these disturbance tracking points Y j(t + Δt) are determined by linear interpolating
among the already known Msi(t + Δt).

The flowchart of redistribution module with a termination criterion is shown in figure 21,
which is mainly used for postprocessing to renumber the discrete points on the shock
front at time t + Δt and calculate the unit normal vector of new discrete points with dual
identities for next iteration. Significantly, a termination criterion is examined before the
shock advancing.
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From the above three modules, an entire flowchart of the FDTM is shown in figure 22.
Given the initial shape and intensity of the moving shock wave, the evolution of the moving
shock and the disturbances causing the shock deformation can be simultaneously tracked.
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