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A CONSTRUCTION OF SURFACES WITH LARGE
HIGHER CHOW GROUPS

TOMOHIDE TERASOMA

On the occasion of 60th birthday of Shuji Saito

Abstract. In this paper, we construct surfaces in P3 with large higher Chow

groups defined over a Laurent power series field. Explicit elements in higher

Chow group are constructed using configurations of lines contained in the

surfaces. To prove the independentness, we compute the extension class in the

Galois cohomologies by comparing them with the classical monodromies. It is

reduced to the computation of linear algebra using monodromy weight spectral

sequences.

§1. Introduction

1.1 Introduction

Let k be a field andX be a variety over k. For nonnegative integers i and j,

Bloch [B] defined the jth higher Chow group CH i(X, j) of codimension i

of X. To study the higher Chow group, it is useful to consider the cycle

map:

ci,j? (X) : CH i(X, j)→H2i−j
? (X,Q(i))

for ?-cohomology theory for ?= et(ale), B(etti), dR(ham),D(eligne), when

X is smooth over k. Rich arithmetic invariants are conjectured to appear

from these cohomology theories. First natural question is how big the image

of ci,j? (X) is. For a smooth surface X in P3 over an algebraically closed

field k, the map is trivial for ?= et and i= 2, j = 1. We are mainly interested

in the case where k is not algebraically closed. Concerning this question,

there are some previous works, for example, [M], [CMS]. In this paper, we

give an example of a surface over C((t)), whose image of the cycle map is of

big dimension. We construct many elements in higher Chow group explicitly,

which can be studied in detail.

Let S = Spec(C[t]) and L1, . . . , Ld,M1, . . . ,Md be linear forms on P3
C.

Let li and mi be the zero loci of Li and Mi, respectively. In the following,
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we assume that
⋃d
i=1(li ∪mi) is a normal crossing divisor. Let f :X → S be

a family of surfaces over S in P3
S defined by

X := {(x, t) ∈P3 × S | L1(x) · · · Ld(x) + tM1(x) · · · Md(x) = 0}.

Let k = C((t)) and η : Spec(k)→ S the natural morphism. The fiber of X

at η is denoted by Xη. In this paper, we consider the image of the etale

cycle map

(1) c2,1
et (Xη) : CH2(Xη, 1)⊗Ql→H3

et(Xη,Ql(2)).

The main theorem of the paper is as follows.

Theorem 1.1. Under the above notations, we have

dimQl
(Im(c2,1

et (Xη))) >
(d− 1)2(d− 2)

2
.

As a corollary, we have the following:

Corollary 1.2.

dimQ(CH2(Xη, 1)) >
(d− 1)2(d− 2)

2
.

Let us explain the contents of the paper. In Section 2, we construct elements

in the higher Chow group of Xη. Moreover, we give a relation between the

image of these elements under the etale cycle map and the extension classes

of relative homologies. In Section 3, we compare the etale extension classes

and extension classes as representations of the (classical) fundamental group

of a punctured disc. Thus we reduce the proof of Theorem 1.1 to the proof of

the relevant statement for representations of fundamental groups. We recall

how to compute the extension classes as representations of the fundamental

group. In Section 4, we recall the monodromy weight spectral sequence and

compute its terms forX∆∗ . The monodromy weight spectral sequence is used

to compute the cokernel of the logarithm of monodromy action. To compute

every term of the monodromy weight spectral sequence explicitly, we use the

model obtained by the blowing up of the original model. In Section 5, we

execute a local computation for the extension class using a nice topological

model. In this model, the extension class is computed by a topological lifting

whose period map can be expressed by the dilogarithmic function. By these

computations, we have the local description for the extensions, which will

be used in the next section. In Section 6, we sum up the previous results to

compute the lower bound for the dimension of the image of the cycle map.
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§2. Construction of elements in the higher Chow group and

extension

From now on, we use the same notations for X, Xη in the previous section.

In this section, we define an element Γijk.l in CH2(X, 1), and study the

extension class obtained by the generic fiber Γijk,l,η of Γijk.l at η.

2.1 Elements in the higher Chow group of X

Let us briefly recall the definition of higher Chow group after Bloch [B].

Let ∆j be the scheme defined by

∆j = Spec

(
C[x0, . . . , xj ]

/(
1−

j∑
k=0

xk

))
.

Let X be a variety over C. The simplicial faces of X ×∆j are defined

in [B]. The Bloch cycle complex Zi(X, j) is defined by the group of Z-linear

combinations of codimension i algebraic cycles in X ×∆j , which intersect

properly to the simplicial faces. We consider the boundary operator

Zi(X, j)→ Zi(X, j − 1)

using simplicial structure defined as in [B]. Then we have a complex

Zi(X, •) : · · · → Zi(X, j)→ Zi(X, j − 1)→ · · · → Zi(X, 1)→ Zi(X, 0).

The jth cohomology of Zi(X, •) is called the jth higher Chow group of

codimension i and denoted by CH i(X, j).

We set

Li = li × S, Ml =ml × S.

For integers 1 6 i, l 6 d, the intersection Li ∩Ml is a family of projective

lines over S contained in X. For i 6= j, we set

pij,l = li ∩ lj ∩ml, Pij,l = pij,l × S.

We fix 1 6 i < j < k 6 d and 1 6 l 6 d. The three lines Li ∩Ml, Lj ∩Ml,

Lk ∩Ml form a family of triangles in X. Let (li ∩ml)
0, (lj ∩ml)

0 and

(lk ∩ml)
0 be one-dimensional affine spaces contained in (li ∩ ll), (lj ∩ml)

and (lk ∩ml) such that (li ∩ml)
0 ∪ (lj ∩ml)

0 ∪ (lk ∩ml)
0 contains pij,l, pjk,l

and pki,l. We choose an isomorphism ϕi,jk,l : ∆1 ' (li ∩ml)
0 such that

ϕi,jk,l(0) = pij,l, ϕi,jk,l(1) = pik,l. The isomorphism ϕi,jk,l induces an isomor-

phism ∆1 × S ' (li ∩ml)
0 × S over S which is also denoted by ϕi,jk,l.
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Definition 2.1.

(1) We set Γi,jk,l = {(x, y) ∈∆1 ×X | ϕi,jk,l(x) = y}. Then it is an element

in Z2(X, 1).

(2) We define an element Γijk,l in Z2(X, 1) by

Γijk,l = Γi,jk,l + Γj,ki,l + Γk,ij,l.

It is easy to see that ∂Γijk,l = 0. The class of Γijk,l in CH2(X, 1) is also

denoted by Γijk,l.

For a point x over S, the fiber of f :X → S is denoted by Xx. We set

T = (Li ∩Ml) ∪ (Lj ∩Ml) ∪ (Lk ∩Ml).

Let fT : T → S be the natural projection. The fiber of T and Γijk,l at x are

written as Tx and Γijk,l,x, respectively.

Let Γϕi,jk,l be the graph of ϕi,jk,l. We define an element δ by

δ = (Pij,l, Pjk,l, Pki,l, Γϕi,jk,l , Γϕj,ki,l , Γϕk,ij,l)

∈ (Z0(Pij,l ×∆0)⊕ Z0(Pjk,l ×∆0)⊕ Z0(Pki,l ×∆0))

⊕ (Z1((Li ∩Ml)×∆1)⊕ Z1((Lj ∩Ml)×∆1)⊕ Z1((Lk ∩Ml)×∆1)).

Then the sum of cycles δ determines an element in CH1(T, 1) by the Mayer–

Vietoris theorem. We have a natural map τ : CH1(T, 1)→ CH2(X, 1). The

cycle Γijk.l ∈ CH2(X, 1) is equal to τ(δ).

2.2 Cycle maps and connecting homomorphisms

LetDT =DTη/η be the Ql-dualizing complex of Tη over η. For a subvariety

W in X the restriction of f to W is denoted by fW . The restriction of f to

Xη is denoted by fη. For simplicity we consider the case (i, j, k) = (1, 2, 3).

The complex RfTη∗DT (1)[2] is quasi-isomorphic to

(2)
⊕

16i<j63

RfPij,l,η∗, Ql→
⊕

16i63

Rf(Li∩Ml)η∗Ql(1)[2].

The homomorphism
⊕

16i63 Rf(Li∩Ml)η ,∗Ql(1)[2]→Rfη∗Ql(2)[4] induces a

homomorphism

(3) RfTη∗DT (1)[2]→Rfη∗Ql(2)[4].
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Its cone is denoted by Cη. Let S0 be the maximal open set of S over which

f :X → S is smooth. By the definition of the cone Cη, we have the long

exact sequence:

(4) · · · →H i−1(Tη, D(1))→H i+1(Xη,Ql(2))→H i+1(Cη)
→H i(Tη, D(1))→H i+2(Xη,Ql(2))→ · · ·

The same complex of (3) can be considered over η. The corresponding

complex are denoted as Cη. We have the following similar long exact sequence

of G= Gal(k/k) modules:

(5) · · · →H i−1(Tη, D(1))→H i+1(Xη,Ql(2))→H i+1(Cη)
→H i(Tη, D(1))→H i+2(Xη,Ql(2))→ · · ·

By the compatibility of cycle maps and the connecting homomorphisms,

we have the following commutative diagram:

CH1(Tη, 1)
τ−→ CH2(Xη, 1)

c1,1
et ↓ ↓ c2,1

et

H1(Tη, D(1)) → H3(Xη,Ql(2)).

The image of δ in H1(Tη, D(1)) under the cycle map is denoted by δ. Then

we have

H1(Tη, D(1)) = δ ·Ql.

2.3 Cycle map and extension group

We study extensions arising from Γijk,l. Until the end of this section, we

consider the fibers Xη over η→ S. The varieties (Li ∩Ml)η, Tη, etc. are

subvarieties of Xη. We set η = Spec(k). Since Xη is a hypersurface in

P3, we have H0(ket, H
3(Xη,Ql(2))) = 0 and by Hochschild–Serre spectral

sequence, we have a map

H3(Xη,Ql(2))→H1(ket, H
2(Xη,Ql(2))).

Proposition 2.2. The image of Γijk,l ∈ CH2(Xη, 1) under the map

CH2(Xη, 1)
c2,1et−−→H3(Xη,Ql(2))→H1(ket, H

2(Xη,Ql(2)))

is equal to the extension class of

0→H2(Xη,Ql(2))→H2(Cη)→H1(Tη, D(1))→ 0
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as G-module. In other words, the image of δ under the connecting homo-

morphism:

(6) H1(Tη, D(1))→H0(G, H1(Tη, D(1)))→H1(G, H2(Xη,Ql(2))).

Proof. We consider the long exact sequence (5). We obtain similar long

exact sequence by replacing k by k. Applying the functor Hp(G, ∗), we have

a complex

· · · →Hp(G, H i−1(Tη, D(1))) → Hp(G, H i+1(Xη,Ql(2)))

→ Hp(G, H i+1(Cη))

→Hp(G, H i(Tη, D(1)))→Hp(G, H i+2(Xη,Ql(2)))→ · · ·

Since the cohomological dimension of G is one, we have the following exact

sequences by Hochschild–Serre spectral sequence.

0 → H1(G, H i−2(Tη, D(1)))→H i−1(Tη, D(1))

→ H0(G, H i−1(Tη, D(1)))→ 0,

0 → H1(G, H i(Xη,Ql(2)))→H i+1(Xη,Ql(2))

→ H0(G, H i+1(Xη,Ql(2)))→ 0,

0 → H1(G, H i(Cη))→H i+1(Cη)→H0(G, H i+1(Cη))→ 0.

Since the sequence (5) is exact, the homology of

(7) H0(G, H i+1(Cη))→H0(G, H i(Tη, D(1)))
α−→H0(G, H i+2(Xη,Ql(2)))

and that of

(8)

H1(G, H i−1(Tη, D(1)))
β−→H1(G, H i+1(Xη,Ql(2)))→H1(G, H i+1(Cη))

are isomorphic. The following lemma is straight forward.

Lemma 2.3. Assume that

(9) 0→H i+1(Xη,Ql(2))→H i+1(Cη)→H i(Tη, D(1))→ 0

is exact. Then α and β are zero maps.
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The homomorphism

(10) H0(G, H i(Tη, D(1)))→H1(G, H i+1(Xη,Ql(2)))

induced by the isomorphism between cohomologies of (7) and (8) is equal

to the connecting homomorphism arising from the exact sequence (9). The

connecting homomorphism (6) is induced by the following zigzag.

H1(G, H2(Xη,Ql(2)))

↓
H1(Tη, DT 0(1)) → H3(Xη,Ql(2))

↓
H0(G, H1(Tη, D(1))).

Therefore the image c2,1
et (Γijk,l) = c2,1

et (τ(δ)) of Γijk.l under the cycle map is

equal to the image of δ ∈H0(G, H1(Tk, D)) under the connecting homo-

morphism.

§3. Comparison to classical cohomology theory

In this section, we compare extensions for etale cohomologies with those

for classical cohomology theory.

3.1 Comparison to classical theory

Let S0 be the maximal open set of S over which f :X → S is smooth.

Let ∆ = {t ∈C | |t|< ε} be a sufficiently small neighborhood of 0 in S(C)

such that ∆∗(= ∆− {0})⊂ S0(C). We fix an element t0 in ∆∗.

The restrictions of f and fT to f−1(S0) and f−1(S0) ∩ T are denoted by

fS0 and fT,S0 , respectively. We have the following short exact sequence of

etale l-adic local systems on S0.

(11) 0→R2fS0∗Ql(2)→R2fS0∗C →R1fT,S0∗DT (1)→ 0.

We set η = Spec(k). Let Sst be the strict Henselization under η of S

at t0 over η. Then the diagram t0← Sst→ η defines an isomorphism

πet1 (S0, t0)
'−→ πet1 (S0, η) and isomorphism between the fiber of the exact

sequence (11) at t0 and that at η. We have the following diagram

πcl1 (S0(C), t0) → πet1 (S0, t0)
'−→ π1(S0, η)

∪ ∪
πcl1 (∆∗, t0) πet1 (η, η).
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We can easily see that the above homomorphism induces a homomorphism

cπ : πcl1 (∆∗, t0)→ πet1 (η, η).

By composing the comparison map the fiber of the exact sequence (11) at η

(12) 0→H2
et(Xη,Ql)→H2

et(Xη, Cη)→H1
et(Tη, DS)→ 0

is isomorphic to the exact sequence

(13) 0→H2
B(Xt0 ,Ql)→H2

B(Xt0 , Cη)→H1
B(T, DS)→ 0.

This isomorphism is equivariant under the fundamental groups via the

map cπ. As a consequence, we have the following proposition.

Proposition 3.1. The extension class εet of (12) in H1(πet1 (η, η),

H2(Xη,Ql(2))) goes to the extension class εcl of (13) in H1(πcl1 (∆∗, t0),

H2(Xt0 ,Ql(2))) under the map cπ.

The short exact sequence (13) is isomorphic to the following short exact

sequence

(14) 0→H2(Xt0 ,Q)→H2(Xt0 , Tt0 ,Q)→H1(Tt0 ,Q)→ 0

as a module over fundamental group πcl1 (∆∗, t0) after tensoring with Ql.

Therefore, we have the following proposition.

Proposition 3.2. The extension class εcl is equal to the exten-

sion class of (14) in H1(πcl1 (∆∗, t0), H2(Xt0 ,Q)) via the isomorphism

H2(Xt0 ,Ql(2))'H2(Xt0 ,Q)⊗Ql.

3.2 Extensions from the topological side

The surface Xt0 contains three affine lines (li ∩ml)
0, (lj ∩ml)

0,

(lk ∩ml)
0. We choose a topological path γjk,l (resp. γki,l, γij,l) connecting

pij,l and pik,l (resp. pjk,l and pji,l, pki,l and pkj,l) in (li ∩ml)
0 (resp. (lj ∩ml)

0

and (lk ∩ml)
0). Then we have a topological cycle τ = γij,l + γjk,l + γki,l.

Since Xt0 is simply connected, there exists a 2-chain σ0 in Xt0 such that

τ = ∂(σ0). Then the relative cycle τ defines a relative homology class in

H2(Xt0 , Tt0). Let

ψ : [0, 1]→∆∗,

be a path in ∆∗ beginning from t0 ending at t0 turning around the origin,

whose homotopy class is a positive generator γ of πcl1 (∆∗, t0). We extend

the relative two-cycle σ0 to a continuous family on of relative two-cycle σ(s)

in Xψ(s). (0 6 s6 1) such that:
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(1) ∂(σ(s)) = ∂(σ(0)) (⊂ Tψ(s)) for all s ∈ [0, 1];

(2) σ(0) = σ.

We set σ(1) = σ′. Then the chain σ − σ′ becomes a closed two-chain in Xt0

and we have the homology class [σ − σ′] in H2(Xt0 ,Q). The element [σ − σ′]
constructed as above defines an element in

H1(π1(∆∗, t0), H2(Xt0 ,Q)) ' H2(Xt0 ,Q)/(γ − 1)H2(Xt0 ,Q)

' Coker(H2(Xt0 ,Q)
N−→H2(Xt0 ,Q)).

Here N is the logarithm of γ. It is equal to εcl introduced in the last subsec-

tion. Here γ denotes a positive generator of π1(∆∗, t0). As a consequence,

we have the following proposition.

Lemma 3.3. We have c2,1
B (Γijk,l) = εcl.

§4. Monodromy weight spectral sequence

4.1 Blowing up and strata

From now on, we consider varieties in the category of complex analytic

spaces. We use the same notations for the complex analytic space associated

to X and the morphism f :X →A1. Let ∆ be a sufficiently small disc

around t= 0 as in the previous section and X∆ the pull back f−1(∆).

Then the total space XD has nodes at pij,l =X0 ∩ Pij,l = {Li = Lj =

Ml = t= 0} for 1 6 i < j 6 d, 1 6 l 6 d. For example, we can choose a local

coordinate x, y, z, t at pij,l such that x= Li, y = Lj , z =Ml. Under this

coordinates, X∆ is defined by {xy + tz = 0} around pij,l. The blowing up

along
⋃
i<j,l{(pij,l, 0)} is denoted by X̃ and the induced morphism X̃ →∆

is denoted by f̃ .

Let hij,k be the exceptional divisor over (pij,l, 0) (1 6 i < j 6 d, 1 6 l 6 d).

Then the singular fiber f−1(0) consists of the following d+ (d2(d− 1))/2

components.

(1) Proper transforms g1, . . . , gd of li × 0, where gi is isomorphic to the

blowing up of P2 along the points pij,l (j 6= i, 1 6 l 6 d).

(2) (d2(d− 1))/2 exceptional components hij,k (1 6 i < j 6 d, 1 6 k 6 d).

Each component hij,k is isomorphic to P1 ×P1.

One-dimensional stratum of the singular fiber consists of the followings.

(1) (d(d− 1))/2 intersections lij = gi ∩ gj (1 6 i < j 6 d).

(2) d2(d− 1) intersections of mij,k = hij,k ∩ gi.
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The zero-dimensional stratum consists of the following points:

(1) (d(d− 1)(d− 2))/6 intersection points pijk = gi ∩ gj ∩ gk;
(2) (d2(d− 1))/2 intersection points qij,k = hij,k ∩ gi ∩ gj =mij,k ∩mji,k.

We have hij,k ⊃mij,k ∪mji,k. The disjoint union of the k-dimensional

stratum is denoted by T (k). Then we have

T (0) = {pijk}16i<j<k6d ∪ {qij,k}16i<j6d,16k6d,

T (1) = {lij}16i<j6d ∪ {mij,k}16i 6=j6d,16k6d,

T (2) = {gi}16i6d ∪ {hij,k}16i<j6d,16k6d.

For example, for d= 4, we have

#T (0) = 28, #T (1) = 54, #T (0) = 28.

4.2 The E1-term of the monodromy weight spectral sequence

In this section, we recall the monodromy weight spectral sequence [PSt,

Section 11.2, p. 259]. We set ∆∗ = {t ∈∆ | t 6= 0}. Let η :H →∆∗ be the

universal covering of ∆∗. We consider the following fiber products:

Xη
k−→ X∗

j−→ X̃

↓ ↓ ↓

H
η−→ ∆∗ −→ ∆.

We set j = j ◦ k. We consider the following complex which is quasi-

isomorphic to the near by cycle sheaf RψQ = i∗j̄∗ j̄
∗Q.

(15) 0→ i∗Rj∗Q(1)16[1]→ i∗Rj∗Q(2)26[2]→ i∗Rj∗Q(3)36[3]→ 0.

We have H i(T (j))(−1) = 0 for odd i and 0 6 j 6 2. Therefore the E1-terms

of the associate monodromy weight spectral sequence are given as follows:

H0(T (0))(−2) H2(T (1))(−1) H4(T (2))(0) 0 0
0 0 0 0 0

0 H0(T (1))(−1) H2(T (2))(0) ⊕H0(T (0))(−1) H2(T (1))(0) 0
0 0 0 0 0

0 0 H0(T (2))(0) H0(T (1))(0) H0(T (0))(0).

Therefore GrW0 (H2(Xt0 ,Q)) is isomorphic to the cohomology of

H0(T (1))(−1)→H2(T (2))(0)⊕H0(T (0))(−1)→H2(T (1))(0).
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In this section, we consider the E1-differential for H2(X). We have

H0(T (1))(−1) =
⊕
i,j

Q1lij ⊕
⊕
i,j,k

Q1mij,k ,

H2(T (1))(0) =
⊕
i,j

Q[lij ]⊕
⊕
i,j,k

Q[mij,k],

H0(T (0))(−1) =
⊕
i,j,k

Q1pijk ⊕
⊕
i,j,k

Q1qij,k .

The cohomology class of [lij ] in H2(gi) is denoted by [lij ]gi , etc. We identify:

(1) H∗(l12) and H∗(l21) by [x]l12 =−[x]l21 ;

(2) H0(q12,k)(−1) and H0(q21,k)(−1) by 1q12,k =−1q21,k ;

(3) H0(p123)(−1) and H0(p213)(−1) by 1p123 =−1p213 =−1p132 , etc.;

(4) H2(h12,k)(0) and H2(h21,k)(0) by [x]h12,k =−[x]h21,k .

We describe the differentials.

The map d :H0(T (1))(−1)→H2(T (2))(0)⊕H0(T (0))(−1).

The differential is given by

d(1lij ) = [lij ]gi − [lij ]gj +
∑
k 6=i,j

1pijk +
∑

16l6d

1qij,l ,(16)

d(1mij,l) = [mij,l]gi + [mij,l]hij,l − 1qij,l .(17)

The map d :H2(T (2))(0)⊕H0(T (0))(−1)→H2(T (1))(0).

The differential is given by

d([x]gi) =
∑
j 6=i

[lij ](x, lij)gi +
∑
j 6=i

d∑
k=1

[mij,k](x, mij,k)gi ,

d([x]hij,l) = −[mij,l](x, mij,l)hij,l + [mji,l](x, mji,l)hij,l ,

and

d(1pijk) = [lij ] + [ljk] + [lki],

d(1qij,l) = −[mij,l] + [mji,l] + [lij ].

Since d[x]h21,k =−d[x]h12,k , this map is consistent with the rule of suffix. We

can check that d2 = 0.
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4.3 Description of the 1-cocycle associated to Γijk,l

We define a closed element γijk,l in H2(T (2))(0)⊕H0(T (0))(−1) by

γijk,l = [mij,l +mji,l]hij,l + [mjk,l +mkj,l]hjk,l + [mki,l +mik,l]hki,l

+ 1pijk − 1qij,l − 1qjk,l − 1qki,l .(18)

We prove the following proposition in the next section.

Proposition 4.1. The extension class associated to c1,2
B (Γijk,l) is equal

to the image of γijk,l in GrMH2(Xt0 ,Q).

§5. Extension class and a topological model

In this section, we compute the monodromy on the cohomologies of Wt0 .

This computation will be used for the computation of c1,2
B (Γijk,l).

5.1 Computation of monodromy for the homotopical model Wt0

We define a family of affine varieties W by

(19) W : xyz + t(1− x− y − z) = 0

in A3 = {(x, y, z) | x, y, z ∈C}. If t 6= 0, 1/4, then it is smooth. Let t0 be a

sufficiently small complex number. The fiber at t0 is denoted by Wt0 . We

consider the cohomology of Wt0 in this subsection. Let f :Wt0 →A2 be a

map defined by (x, y, z)→ (y, z). We set

Σ = {(y, z) ∈A2 | yz = t0, 1− y − z = 0}= {p1, p2}.

Let Â2 be the blowing up of C2 at two points p1, p2. The exceptional divisor

at p1 and p2 are denoted by E1 and E2. Since the defining equation is

x(yz − t) + t(1− y − z) = 0, the fiber of f at p1 is isomorphic to A1 and we

have a map Wt0 → Â2. Let D be a curve in A2 defined by yz = t0 and D̂

be the proper transform of D. Then we have

Wt0 = Â2 − D̂

and a long exact sequence

H2
D̂

(Â2)
α−→ H2(Â2) → H2(Wt0) → H3

D̂
(Â2) → 0.

‖ ‖ ‖

Q[D̂] Q[E1]⊕Q[E2] H1(D̂)(−1)

‖ ‖ ‖
Q(−1) Q(−1)⊕Q(−1) Q(−2)
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The map α is defined by α(D) = E1 + E2. As a consequence, we have the

following proposition.

Proposition 5.1.

(1) There is a sub Hodge structure V2 in H2(Wt0) such that

V2 'Q(−1), H2(Wt0)/V2 'Q(−2).

(2) The de Rham part H3
D̂,dR

(Â2) is generated by the image of

ω =
dy dz

yz − t
∈H2

dR(Wt0).

We set V4 =H2(Wt0)/V2.

Proof. (2) Let

Ω =
dx dy dz

xyz + t(1− x− y − z)
=

(yz − t) dx
x(yz − t) + t(1− y − z)

∧ dy dz

yz − t

be a differential form on A2 −Wt0 . Then the residue resWt0
(Ω) of Ω along

Wt0 is equal to ω on A2 −D ⊂ Â2 − D̂. Therefore ω defines a holomorphic

two form on Wt0 . Since the residue of

ω =
z dy

yz − t
∧ dz
z

along D is equal to dz/z, the image of ω under the map H2
dR(Wt0)→

H1
dR(D̂)(−1) is a generator of H1

dR(D̂)(−1).

5.2 Relative cycles and extension

We define four affine planes L1, L2, L3 and M in A3 by L1 =

{x= 0}, L2 = {y = 0}, L3 = {z = 0} and M = {1− x− y − z = 0}. Then

(Li ∩M)t0 ⊂Wt0 . We set T = (L1 ∩M) ∪ (L2 ∪M) ∪ (L3 ∩M). Then we

have the following dual exact sequences.

0→H2(Wt0 ,Q)→H2(Wt0 , Tt0 ,Q)
α−→H1(Tt0 ,Q)→ 0,

0→H1(Tt0 ,Q)→H2(Wt0 , j!Q)→H2(Wt0 ,Q)→ 0,

where j :Wt0 − Tt0 →Wt0 is the open immersion. We set γ = γ1 + γ2 + γ3,

where

γ1 = {(x, y, z) = (0, t, 1− t) | t ∈ [0, 1]},
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γ2 = {(x, y, z) = (1− t, 0, t) | t ∈ [0, 1]},

γ3 = {(x, y, z) = (t, 1− t, 0) | t ∈ [0, 1]}.

Then γ defines an element in H1(Tt0 ,Q), which is also denoted by γ. Let

γ be an element in H2(Wt0 , Tt0 ,Q) such that α(γ) is equal to γ. Then γ is

represented by the relative 2-cycle Γ defined by

Γ = {(y, z) | y, z > 0, y + z 6 1}.

5.3 Pairing given by period integral

We use the coordinate (y, z) to compute the pairing (γ, ω). We assume

that t ∈R and t < 0. Then we have

(γ, ω) =

∫
Γ

dy dz

yz − t
=

∫ 1

0

{∫ 1−z

0

dy

yz − t

}
dz.

It is equal to∫ 1

0

1

z

[
log
(

1− yz

t

)]1−z

y=0
dz =

∫ 1

0

dz

z
log

(
1− z

t
+
z2

t

)
=

∫ 1

0

{
log

(
1− z

α(t)

)
+ log

(
1− z

1− α(t)

)}
dz

z

= Li2

(
1

α(t)

)
+ Li2

(
1

1− α(t)

)
=−1

2
{log(1− α(t))− log(−α(t))}2

where α(t)< 0, 1− α(t)> 1 are the solutions of the equation

z2 − z + t= 0.

Then α(t)→ 0 for t→ 0. As a consequence, we have

Proposition 5.2.

(1) We have

(γ, ω) =−1
2{log(1− α(t))− log(−α(t))}2.

(2) Let ρt be the monodromy action of a small circle around t= 0. Then

we have

(ρt(γ), ω) =−1
2{log(1− α(t))− log(−α(t))− 2πi}2,
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and

((ρt − 1) · γ, ω) = 2πi(log(1− α(t))− log(−α(t))) + 2π2,

((ρt − 1)2 · γ, ω) = 4π2.

5.4 Two topological cycles and the monodromy action on the

homology

Definition of γ1. Let δ be a small circle around 0 in z-plane and δ be

its image in D̂ = {yz = t}. Let Nδ be its tubular neighborhood in Â2 and

γ1 = ∂Nδ be its boundary. The cycle γ1 is a S1 bundle over δ. By Cauchy

formula, we have

(γ1, ω) = (2πi)2.

Definition of γ2. Let l be a path connecting α(t) and 1− α(t) in

{z ∈C | z 6= 0} and l be its image in D̂ = {yz = t}. We choose a tubular

neighborhood Nl of l and retraction r :Nl→ l such that r−1(α(t))⊂ E1

and r−1(1− α(t))⊂ E2. Note that the point p1 and p2 are given by

(y, z) = (1− α(t), α(t)) and (y, z) = (α(t), 1− α(t)). Then ∂(r−1(α(t))) and

∂(r−1(1− α(t))) are bounded by T1 and T2 in E1 ∩Xt and E2 ∩Xt. Let z0

be a point in l and z0 be the corresponding point in D̂. Then ∂(r−1(z0))

forms an S1-bundle S over l. We set γ2 = S ∪ T1 ∪ T2 and we have

(γ2, ω) = 2πi

∫ 1−α(t)

α(t)

dz

z
= 2πi(log(1− α(t))− log(α(t))).

It is equal to 2πi(log(1− α(t))− log(−α(t))) + 2π2 by choosing a proper

choice of l.

Action of the monodromy on the topological cycles. By the previous

subsection, we have the following proposition.

Proposition 5.3. Under the above notations, we have

(ρt − 1) · γ = γ2, (ρt − 1)2 · γ =−γ1.

§6. Lower bound of the image of cycle map

6.1 Monodromy weight filtration and the element γijk,l

In this section, we prove Proposition 4.1. We choose an open set U0 of X̃0

such that the pair (U0, U0 ∩Ml) is homeomorphic to (Y0, Y0 ∩D) where Y0

and D0 is a subvariety of A3
C defined by Y0 = {xyz = 0}, D = {1− x− y =

0}. Let U be a sufficiently small tubular neighborhood of U0. Then U is

homeomorphic to A3
C.
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We consider the restriction of the complex (15) to U0, and the induced

filtration M on it. This filtration is also denoted by M . Let X →∆ = {t ∈
C | |t|< ε} be the family of affine varieties defined in (19). We blow up the

variety X at q23 = {(x, y, z, t) = (1, 0, 0, 0)}, q31 = {(x, y, z, t) = (0, 1, 0, 0)},
q12 = {(x, y, z, t) = (0, 0, 1, 0)}, and we have a family X̃ →∆ whose closed

fiber is a simple normal crossing variety. Though it is not a proper family of

varieties, we consider a filtration similar to the monodromy weight filtration

in i∗Rj̄∗j̄
∗Q. The associated spectral sequence will be written as Ep,qU,r.

Proposition 6.1.

(1) The E2-terms are given as follows.

E−2,4
U,2 = Q(−2), E0,2

U,2 = Q(−1), E2,0
U,2 = 0.

As a consequence it degenerates at E2.

(2) The natural map Ep,q2 → Ep,qU,2 is surjective. As a consequence, the

natural map H2(Xt0)→H2(Ut0) is strictly compatible with respect to

the induced filtration.

Proof. We compute E0,2
2 . E1-terms are similar as in Section 4.2. The

suffix l appearing in the symbol mij,l is 1, so we denoted it by mij . The

differentials are given by the same formula.

H0(T
(1)
U )(−1) ' 〈1lij 〉16i<j63 ⊕ 〈1mij 〉16i 6=j63,

H0(T
(0)
U )(−1)⊕H2(T

(2)
U )(0) ' 〈[mij ]gi〉16i 6=j63 ⊕ 〈[mij ]hij 〉16i 6=j63

⊕ 〈1qij 〉16i<j63 ⊕ 〈1p123〉,

H2(T
(1)
U )(0) ' 〈[mij ]〉16i 6=j63.

The space E0,2
U,2 is one dimensional generated by

γ123 = [m12 +m21]h12 + [m23 +m32]h23 + [m31 +m13]h31

+ 1p123 − 1q12 − 1q23 − 1q31 .

In fact, the linear form

γ∗123 = −[m12 +m21]∗h12 − [m23 +m32]∗h23 − [m31 +m13]∗h31

+ 1∗p123 − 1∗q12 − 1∗q23 − 1∗q31
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vanishes on the image of E−1,2
1 and nonzero on γ123. Therefore the restriction

E0,2
2 → E0.2

U,2 is surjective.

We can check that E−2,4
2 is generated by the class [p123]. Since d> 4, the

class [p123]− [p124] + [p134]− [p234] defines an element in E−2,4
2 , which maps

to [p123] under the natural map E−2,4
2 → E−2,4

U,2 .

Let ι :H2(Ut0 ,Q)→H2(Xt0 ,Q) be the homomorphism induced by the

inclusion. Via this inclusion, the filtration M induces that on the image

of ι, which is also denoted M .

Corollary 6.2.

(1) Then the image of GrM0 (ι) :GrM0 (H2(Ut0 ,Q))→GrM0 (H2(Ut0 ,Q)) is

equal to GrM0 (Im(ι)).

(2) The image of GrM0 (ι) is equal to the annihilator of the kernel of

GrM0 H2(Xt0 ,Q(2))→GrM0 H2(Ut0 ,Q(2))

under the natural pairing

GrM0 H2(Xt0 ,Q(2))⊗GrM0 H2(Xt0 ,Q)→Q(2).

(3) The image GrM0 (ι) is generated by γijk,l defined by (18).

6.2 The subspace of GrM0 H2(Xt0 ,Q(2)) generated by γijk,l
In this subsection, we compute the dimension of the subspace of

GrM0 H2(Xt0 ,Q(2)) generated by the image of γijk,l. Eliminating elements

of the form [mij,k]hij,k using the relation (17), we have an isomorphism

(20) coker(d :H0(T (1))(−1)→H2(T (2))(0)⊕H0(T (0))(−1))'W/K,

where

(21) W = 〈[ui]gi〉i ⊕ 〈[mij,k]gi〉i 6=j ⊕ 〈1pijk〉i<j<k ⊕ 〈1qij,k〉i<j,k.

Here ui is the pull back of the line in gi, and K is the space generated by

elements of the form (16). By the definition of ui, we have

[lij ]gi = [ui −
∑
l

mij,l]gi .

Under the isomorphism (20) the class of γijk,l corresponds to

γ∗ijk,l = [−mij,l +mik,l]gi + [−mjk,l +mji,l]gj + [−mki,l +mkj,l]gk

+ 1pijk + 1qij,l + 1qjk,l + 1qki,l .
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The projection from W to 〈[ui]gi〉16i6d (resp. 〈1qij,l〉16i<j6d) with respect to

the direct sum (21) is denoted by πu (resp. πq,l).

Lemma 6.3. Suppose that v =
∑

16i<j6d aijd(1lij ) is an element in

〈γ∗ijk,l〉. Then v can be uniquely expressed as a linear combination of

d(1l1i + 1lij + 1lj1) for 2 6 i < j 6 d.

Proof. We set Aijk = d(1lij + 1ljk + 1lki). We have πu(γ∗ijk,l) = 0 and

πu(d(1lij )) = ui − uj . Therefore v is a linear combination of Aijk. Since

A1ij −A1ik +A1jk −Aijk = 0, v is a linear combination of A1ij for i < j.

Since

πq,l(A1ij) = 1q1i,l + 1qij,l + 1qj1,l ,

A1ij (1 6 i < j 6 d) are linearly independent by looking the component

〈1qij 〉26i<j6d.

For 1 6 i < j < k <m6 d and 1 6 l 6 d, we set

γ̂ijkm,l = γ∗ijk,l − γ∗ijm,l + γ∗ikm,l − γ∗jkm,l
= pijk − pijm + pikm − pjkm.

Then 〈γ∗ijk.l〉 is generated by γ̂1jkm,1 for 2 6 j < k <m6 d and γ∗1ij,l for

2 6 i < j 6 d, 1 6 l 6 d.

Lemma 6.4.

(1) We have

πq,l(γ
∗
1ij,l′) = δl,l′(1q1i,l + 1qij,l + 1qj1,l)

and πq,l(γ̂ijkm,1) = 0.

(2) The set γ∗1ij,l (2 6 i < j 6 d, 1 6 l 6 d) are linearly independent in

〈γ∗ijk,l〉/〈γ̂ijkm,l〉. As a consequence, we have

dim(〈γ∗ijk,l〉/〈γ̂ijkp,l〉) =
d(d− 1)(d− 2)

2
.

(3) Then the set γ̂1ijk,1 for (2 6 i < j < k 6 d) forms a basis of the space

〈γ̂ijkm,l〉. As a consequence, we have

dim〈γ̂ijkm,l〉=
(d− 1)(d− 2)(d− 3)

6
.

(4) We have

dim〈γ∗ijk,l〉=
(d− 1)(d− 2)(4d− 3)

6
.
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Proof. The equalities in (1) and (2) are obtained by direct calculations.

The argument for linear independence is similar to the previous lemma. The

statement (3) is a consequence of (1) and (2).

Proposition 6.5. The set {A1ij}16i<j6d forms a basis of 〈γ∗ijk,l〉 ∩K.

As a consequence, dim(〈γ∗ijk,l〉 ∩K) = ((d− 1)(d− 2))/2.

Proof. Since A1ij −
∑d

l=1 γ
∗
1ij,l is annihilated by πu and πq,l, it is an

element in 〈1pijk〉.

A1ij −
d∑
l=1

γ∗1ij,l = (3− d)1p1ij +
∑

k 6=i,j,k
(1p1ik + 1pijk + 1pj1k)

=
∑

k 6=i,j,k
(1p1ik + 1pijk + 1pj1k − 1p1ij )

= −
∑

k 6=i,j,k
γ̂1ijk,1.

As a consequence, A1ij is an element in 〈γijk,l〉 ∩K. Thus we have the

proposition.

Corollary 6.6. The dimension of the subspace of GrM0 H2(Xt0 ,Q(2))

generated by γijk,l is equal to ((d− 1)(d− 2)(2d− 3))/3.

6.3 The dimension of GrM−2H
2(Xt0 ,Q) and the proof of the main

theorem

In this subsection, we prove the following proposition.

Proposition 6.7. The dimension of GrM−2H
2(Xt0 ,Q) is equal to

((d− 1)(d− 2)(d− 3))/6.

Proof. Since the monodromy weight spectral sequence degenerates at

E2-term, the 0th, 1st and 2nd cohomology of the following complex is iso-

morphic to GrM−2H
2(Xt0 ,Q), GrM−1H

3(Xt0 ,Q) = 0 and GrM0 H4(Xt0 ,Q)'
Q(−2). Since E2-term is a cohomology of the complex

0→H0(T (0))(−2)−→H2(T (1))(−1)−→H4(T (2))(0)→ 0

and by the expression of strata in Section 4, we have

dim(H0(T (0))(−2)) =
d(d− 1)(d− 2)

6
+ d · d(d− 1)

2
,
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dim(H2(T (1))(−1)) =
d(d− 1)

2
+ d2(d− 1),

dim(H4(T (2))(0)) = d+ d · d(d− 1)

2
.

Therefore we have the dimension of GrM−2H
2(Xt0 ,Q).

Proof of Theorem 1.1. The image of the cycle map c2,1
et (X) contains the

image

Im(〈γijk,l〉) → H1(π1(∆∗, t0), H2(Xt0 ,Q))

= Coker(H2(Xt0 ,Q)
N−→H2(Xt0 ,Q)).

Since the monodromy action is strictly compatible with respect to the

monodromy weight spectral sequence, the graded piece of the above cokernel

is equal to

GrM0 H1(π1(∆∗, t0), H2(Xt0 ,Q))

= Coker(GrM−1H
2(Xt0 ,Q)

N−→GrM0 H2(Xt0 ,Q)).

Now we consider the following homomorphism of vector spaces.

W/K⋃
GrM−1H

2(Xt0)
N−→ GrM0 H2(Xt0)

↑
〈γijk,l〉.

Let 〈γijk,l〉 be the image of 〈γijk,l〉 in Coker(GrM−1H
2(Xt0)→W/K). Then

we have

dim 〈γijk,l〉 = dim(〈γijk,l〉+GrM−1H
2(Xt0))− dimGrM−1H

2(Xt0)

> dim〈γijk,l〉 − dimGrM−1H
2(Xt0)

=
(d− 1)(d− 2)(2d− 3)

3
− (d− 1)(d− 2)(d− 3)

6

=
(d− 1)2(d− 2)

2
.

Thus we have the theorem.
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