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Irregular cusps of orthogonal modular
varieties
Shouhei Ma
Abstract. Irregular cusps of an orthogonal modular variety are cusps where the lattice for Fourier
expansion is strictly smaller than the lattice of translation. The presence of such a cusp affects
the study of pluricanonical forms on the modular variety using modular forms. We study toroidal
compactification over an irregular cusp, and clarify there the cusp form criterion for the calculation
of Kodaira dimension. At the same time, we show that irregular cusps do not arise frequently: besides
the cases when the group is neat or contains −1, we prove that the stable orthogonal groups of most
(but not all) even lattices have no irregular cusp.

1 Introduction

Irregular cusps of a modular curve are cusps where the width of translation is strictly
smaller than the width for Fourier expansion. It does not arise frequently, but does
exist. At such a cusp, the vanishing order of cusp forms has to be considered carefully,
especially when compared with that of pluricanonical forms (cf. [3, Sections 3.2 and
3.3]). In this article, we study and classify irregular cusps for orthogonal groups of
signature (2, b), and clarify the effect of such cusps on the study of Kodaira dimension
of orthogonal modular varieties.

Let L be a lattice of signature (2, b). Let D =DL be the Hermitian symmetric
domain attached to L, which is defined as either of the two connected components
of the space

{Cω ∈ PLC ∣ (ω, ω) = 0, (ω, ω̄) > 0}.

We write O+(L) for the subgroup of the orthogonal group O(L) that preserves the
component D.

The domain D has zero-dimensional and one-dimensional cusps. For simplicity of
exposition, we speak only of zero-dimensional cusps for the moment: in fact, the case
of one-dimensional cusps can be reduced to that of adjacent zero-dimensional cusps
(Proposition 6.3). A zero-dimensional cusp of D corresponds to a rank 1 primitive
isotropic sublattice I of L. Let U(I)Q be the unipotent radical of the stabilizer of I
in O+(LQ). Then U(I)Q is already abelian: it is a Q-vector space of dimension b
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2 S. Ma

(with a hyperbolic quadratic form). Let Γ be a finite-index subgroup of O+(L). The
cusp I is called an irregular cusp for Γ if U(I)Q ∩ Γ ≠ U(I)Q ∩ ⟨Γ,−id⟩. As we will
explain, U(I)Z = U(I)Q ∩ Γ is the lattice for Fourier expansion of Γ-modular forms
around I, while U(I)′Z = U(I)Q ∩ ⟨Γ,−id⟩ is the lattice of translation around I in the
Γ-action. We give several characterizations of irregularity (Proposition 3.1), including
one suitable for explicit calculation.

Irregular cusps are rather rare: they do not exist when −id ∈ Γ or when Γ is neat
or when Γ ⊂ SO+(L) with b odd. But they do exist, in infinitely many examples
in every dimension (Section 4.5). Our particular interest is in the so-called stable
orthogonal groups Õ+(L) of even lattices L, defined as the kernel of the reduction
map O+(L) → O(L∨/L). This is the group that most frequently appears in the moduli
problem related to orthogonal modular varieties. Our calculation concerning Õ+(L)
can be summarized as follows.

Proposition 1.1 (Sections 4.1 and 4.5) The stable orthogonal group Õ+(L) of an even
lattice L has no irregular cusp unless L∨/L ≃ Z/8⊕ (Z/2)⊕a or L∨/L ≃ (Z/4)⊕2 ⊕
(Z/2)⊕a as abelian groups. Conversely, if L = U ⊕ ⟨−8⟩ ⊕ M or L = U ⊕ ⟨−4⟩⊕2 ⊕ M
with M∨/M 2-elementary, then Õ+(L) has an irregular zero-dimensional cusp.

Consequently, we obtain classification for the following examples from moduli
spaces (Section 4):

• The modular group for K3 surfaces of degree 2d has an irregular cusp exactly when
d = 4.

• The modular group for irreducible symplectic manifolds of K3[t+1]-type with
polarization of split type and degree 2d [10] has an irregular cusp exactly when
(t, d) = (1, 4), (2, 2), (4, 1).

• The modular group for O’Grady10 manifolds with polarization of split type and
degree 2d [6], which is larger than Õ+(L), has an irregular cusp exactly when d = 4.

• Similarly, the modular group for deformation generalized Kummer varieties with
polarization of split type and degree 2d [2] has an irregular cusp exactly when
(t, d) = (4, 1).

• We will also cover the groups considered in [4, 16, 18].

A subtle issue concerning irregular cusps, which is the main object of this article,
is comparison of the vanishing order between cusp forms and pluricanonical forms.
We take a toroidal compactification F(Γ)Σ of the modular variety F(Γ) = Γ/D. This
is defined by choosing a finite collection Σ = (ΣI) of suitable fans, one for each
Γ-equivalence class of rank 1 primitive isotropic sublattices I of L. A ray σ in ΣI
corresponds to a boundary divisor D(σ) of the torus embedding D/U(I)Z, and thus
determines a boundary divisor Δ(σ) of F(Γ)Σ as the image of D(σ). The projection
D/U(I)Z → F(Γ)Σ is ramified along D(σ) (with index 2) exactly when I is irregular
and the ray σ is irregular in the sense of Definition 3.2.

The vanishing order νσ(F) of a Γ-modular form F at D(σ) ⊂D/U(I)Z can be
measured by Fourier expansion (Section 8.2): this is done with U(I)Z. On the other
hand, the vanishing order of a pluricanonical form ω on F(Γ) should be measured at
the level of Δ(σ) ⊂ F(Γ)Σ : this is essentially done with U(I)′Z. When ω is m-canonical
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Irregular cusps 3

and corresponds to F (of weight k = mb and character χ = detm), we have the relation
(Proposition 8.7)

νΔ(σ)(ω) = aσ ⋅ νσ(F) − m,

where aσ = 1 if σ is regular but aσ = 1/2 if σ is irregular due to the boundary
ramification. If we are involved only with modular forms of specific parity of weight
k, namely k even for χ = 1 (e.g., [8, 13]) or k ≡ b mod 2 for χ = det, we do not need
to worry about irregular cusps because we can enlarge Γ to ⟨Γ,−id⟩ without any loss.
However, if we use a modular form of weight in the remaining parity, we cannot add
−id to Γ, and have to be careful about the coefficient aσ = 1/2 at irregular rays σ .

Gritsenko, Hulek, and Sankaran [7] gave a criterion, called the low weight cusp
form trick, for F(Γ) to be of general type in terms of existence of a certain cusp form.
It appears that irregular cusps are not covered in [7], essentially by assuming −id ∈ Γ,
explicitly for one-dimensional cusps [7, p. 539] and implicitly for zero-dimensional
cusps (see a remark below). In view of the coefficient aσ = 1/2 at irregular σ , it seems
that this criterion needs to be modified at such boundary divisors. The result is
summarized as follows (compare with [7, Theorem 1.1]).

Theorem 1.2 (Theorem 8.9) Let L be a lattice of signature (2, b) with b ≥ 9, and let Γ
be a subgroup of O+(L) of finite index. We take a Γ-admissible collection Σ = (ΣI) of
fans so that ΣI is basic with respect to U(I)Q ∩ ⟨Γ,−id⟩ at every zero-dimensional cusp
I. Assume that there exists a Γ-cusp form F of weight k < b and some character satisfying
the following:
(1) F vanishes at the ramification divisor of D→ F(Γ).
(2) νσ(F) ≥ 2 at every irregular ray σ at every irregular I.
Then F(Γ) is of general type.

The condition on Σ is imposed in order to ensure that F(Γ)Σ has canonical
singularities [7, 13], and this can always be satisfied. When Γ has no irregular cusp,
the condition (2) is vacuous, and this is the criterion in [7]; the choice of Σ does not
matter with F and can be dropped (or hidden) from the criterion. Even when Γ has an
irregular cusp, if the weight k is even for χ = 1 or k ≡ b mod 2 for χ = det, the condition
(2) is still automatically satisfied by the cuspidality of F (Proposition 8.3). However,
when Γ has an irregular cusp and k belongs to the remaining parity, the condition (2)
arises, and the choice of ΣI is then involved with F. Practically it would not be very
easy to check (or achieve) νσ(F) ≥ 2 for specific F and ΣI . Probably the most plausible
scenario would be to expect and check that the group Γ in question has no irregular
cusp. We could say that this is a small cost for using cusp forms of arbitrary weight.

By the examples discussed after Proposition 1.1, the general-type results in [2, 4,
10–7, 16, 18] are not affected. This is our essential purpose.

As a related remark, it should be remembered that in [1], subgroups of O+(LR)/ ±
id are considered, rather than of O+(LR). This means that the given group Γ < O+(L)
is replaced by ⟨Γ,−id⟩/ ± id. In this situation, it is not U(I)Z = U(I)Q ∩ Γ but rather
U(I)′Z = U(I)Q ∩ ⟨Γ,−id⟩ that is written as U(F)Z in the notation of [1]. This is
a subtle difference that may arise when working with [1] and that could cause
overlooking of irregular cusps.
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4 S. Ma

To conclude, irregular cusps are cusps where the lattice for Fourier expansion is
smaller than the lattice of translation. It is the central element −id in the Lie group
O+(LR) that is eventually responsible for the presence of such cusps. We need to be
careful about such cusps when we use a cusp form of odd weight with χ = 1 or weight
k /≡ b mod 2 with χ = det for constructing a pluricanonical form on F(Γ)Σ .

This article is organized as follows. In Section 2, we recall the structure of the
stabilizer of a zero-dimensional cusp. In Section 3, we define and study irregular zero-
dimensional cusps. In Section 4, we give examples of groups Γ with/without irregular
cusp. In Section 5, we recall the structure of the stabilizer of a one-dimensional cusp. In
Section 6, we study irregular one-dimensional cusps. In Section 7, we study some basic
properties of a toroidal compactification of F(Γ). In Section 8, we prove Theorem 1.2.
The main contents of this article are contained in Sections 3, 4, 6, and 8. Sections 2 and
5 are expository, but we tried to be rather self-contained because of the subtle nature
of irregular cusps and for calculation of explicit examples in Section 4.

Throughout the article, a lattice usually means a free Z-module of finite rank
endowed with a nondegenerate integral symmetric bilinear form (⋅, ⋅) ∶ L × L → Z. In
a few occasions, we use the word “lattice” just for a free Z-module of finite rank, but
no confusion will likely to occur. The dual lattice Hom(L,Z) of L will be denoted by
L∨. A sublattice I ⊂ L is called primitive when L/I is free, and isotropic when (I, I) ≡ 0.
A lattice L is called even if (l , l) ∈ 2Z for every l ∈ L, but this is not assumed except in
Section 4. We write U for the even unimodular lattice of signature (1, 1) given by the

Gram matrix (0 1
1 0).

2 Zero-dimensional cusps

Let L be a lattice of signature (2, b). We write Q = QL for the isotropic quadric in PLC

defined by (ω, ω) = 0. The Hermitian symmetric domain attached to L is the open set
of Q

D =DL = {Cω ∈ Q∣(ω, ω̄) > 0}+,

where + means the choice of a connected component. The domain D has two types
of rational boundary components (cusps): zero-dimensional and one-dimensional
cusps. They correspond to primitive isotropic sublattices of L of ranks 1 and 2, respec-
tively. In this section, we recall the structure of the stabilizer of a zero-dimensional
cusp and partial toroidal compactification over it. Although the contents of this
section are quite standard (cf. [7, 11, 12, 17]), we tried to be rather self-contained and
explicit for two reasons: because of the subtle nature of irregular cusps (Section 3), and
for the sake of calculation of explicit examples (Section 4).

2.1 Tube domain model

Throughout this section, we fix a rank 1 primitive isotropic sublattice I of L. The zero-
dimensional cusp corresponding to I is the point PIC of Q. We abbreviate I⊥ = I⊥ ∩ L
and write

L(I) = (I⊥/I) ⊗ I.
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Twisting by I, not choosing its generator, will be rather essential. The quadratic form
on I⊥/I and an isomorphism I ≃ Z define a hyperbolic quadratic form on L(I). This
is independent of the choice of I ≃ Z. We denote by CI the positive cone in L(I)R,
namely a chosen connected component of {w ∈ L(I)R ∣ (w , w) > 0}.

We write D(I) = Q − Q ∩ PI⊥C. Then D is contained in D(I). Indeed, if [ω] ∈D ∩
PI⊥C, the positive-definite plane ⟨Re(ω), Im(ω)⟩ would be contained in I⊥R/IR, which
contradicts the hyperbolicity of I⊥R/IR. The linear projection PLC � P(L/I)C from
the point PIC ∈ Q defines an isomorphism

D(I) ≃→ P(L/I)C − P(I⊥/I)C .

If we choose a rank 1 sublattice I′ of L with (I, I′) /≡ 0, this defines the base point
P(⟨I, I′⟩C/IC) of the affine space P(L/I)C − P(I⊥/I)C, and hence an isomorphism

P(L/I)C − P(I⊥/I)C ≃ (I⊥/I)C ⊗ (I′)∨C ≃ L(I)C .

The image of D ⊂D(I) by this series of isomorphisms is the tube domain in L(I)C
defined by

DI = { Z ∈ L(I)C ∣ Im(Z) ∈ CI }.

In this way, we obtain the tube domain realization

D
≃→DI ⊂ L(I)C(2.1)

depending on the choice of I′.
If we change I′, the base point is changed, and the tube domain realization (2.1) is

shifted by the corresponding translation of L(I)C. For a given I′, we can always find a
(unique) isotropic line ≠ IQ from the hyperbolic plane ⟨I, I′⟩Q. (Explicitly, if we take
vectors l ∈ IQ , l ′ ∈ I′Q with (l , l ′) = 1, the vector l ′ − 2−1(l ′ , l ′)l generates this isotropic
line.) This means that we can replace the given I′ to be isotropic without changing the
base point. When I′ is isotropic, the inverse of (2.1) is given by

DI →D, z ⊗ l ↦ C(l ′ + z − 2−1(z, z)l),(2.2)

where z ∈ (I⊥/I)C, l ∈ I, and l ′ ∈ I′Q with (l , l ′) = 1, and we identify (I⊥/I)C ≃
⟨I, I′⟩⊥C ⊂ LC in the right side.

2.2 Stabilizer over Q

Let Γ(I)Q be the stabilizer of I in O+(LQ). Note that we are not considering the
stabilizer of IQ, but of I. This is not restrictive when restricting to subgroups of O+(L).
We put

U(I)Q = Ker(Γ(I)Q → O(I⊥Q/IQ) ×GL(I)).

This is the unipotent radical of Γ(I)Q and can be explicitly described as follows. For a
vector m ⊗ l of L(I)Q, the Eichler transvection Em⊗l ∈ Γ(I)Q is defined by (cf. [9, 17])

Em⊗l(v) = v − (m̃, v)l + (l , v)m̃ − 1
2
(m, m)(l , v)l , v ∈ LQ ,
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where m̃ ∈ I⊥Q = I⊥Q ∩ LQ is an arbitrary lift of m ∈ (I⊥/I)Q. This does not depend on
the choice of m̃. In particular, Em⊗l(v) = v − (m, v)l when v ∈ I⊥Q. We have Ew ○ Ew′ =
Ew+w′ for w , w′ ∈ L(I)Q. Then we have the canonical isomorphism

L(I)Q → U(I)Q , m ⊗ l ↦ Em⊗l .

We identify U(I)Q with L(I)Q in this way. We also identify O(I⊥Q/IQ) ×GL(I) with
O(L(I)Q) ×GL(I) by the canonical twisted isomorphism

O(I⊥Q/IQ) ×GL(I) → O(L(I)Q) ×GL(I), (γ1 , γ2) ↦ (γ1 ⊗ γ2 , γ2).

We thus have the canonical exact sequence

0 → L(I)Q → Γ(I)Q
π→ O+(L(I)Q) ×GL(I) → 1.(2.3)

If we choose a lift (I⊥/I)Q ↪ I⊥Q of (I⊥/I)Q, or equivalently, a rank 1 sublattice I′ of
L with (I, I′) /≡ 0, the exact sequence (2.3) splits:

Γ(I)Q ≃ (O+(L(I)Q) ×GL(I)) ⋉ L(I)Q .(2.4)

Here the lifted group O+(L(I)Q) acts on the lifted component (I⊥/I)Q ⊂ LQ through
the natural isomorphism O(L(I)Q) ≃ O((I⊥/I)Q), and GL(I) corresponds to {±idL}.
Since γ ○ Ew ○ γ−1 = Eγw for γ ∈ Γ(I)Q, the adjoint action of Γ(I)Q on U(I)Q coincides
with the natural action of Γ(I)Q on L(I)Q. Therefore, in the induced action of
O+(L(I)Q) ×GL(I) on U(I)Q, GL(I) = {±1} acts trivially, and O+(L(I)Q) acts by
its natural action on L(I)Q.

We take the tube domain realization D→DI associated with (the same) I′. Then
the action of Γ(I)Q on D is translated to the action of the right side of (2.4) on DI .
This is described as follows.

Lemma 2.1 In the action of the right side of (2.4) on DI ,
(1) Ew ∈ U(I)Q acts on DI as the translation by w ∈ L(I)Q on L(I)C;
(2) O+(L(I)Q) acts on DI by its linear action on L(I)C;
(3) GL(I) = {±1} acts on DI trivially.

Proof This can be seen from direct calculation using (2.2). ∎

2.3 Stabilizer over Z

Now let Γ be a subgroup of O+(L) of finite index. We write

Γ(I)Z = Γ(I)Q ∩ Γ, U(I)Z = U(I)Q ∩ Γ, Γ(I)Z = Γ(I)Z/U(I)Z .

Then U(I)Z is a lattice on U(I)Q. By definition, we have the exact sequence

0 → U(I)Z → Γ(I)Z → Γ(I)Z → 1.(2.5)

Although (2.3) splits, this does not mean that (2.5) splits. We write U(I)Q/Z =
U(I)Q/U(I)Z. This is the group of torsion points of the algebraic torus T(I) =
U(I)C/U(I)Z. We also put

Γ(I)Q = π−1(O+(U(I)Z) ×GL(I))/U(I)Z ,
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which makes sense because U(I)Z is normal in π−1(O+(U(I)Z) ×GL(I)) by defini-
tion. This group has the canonical exact sequence

0 → U(I)Q/Z → Γ(I)Q → O+(U(I)Z) ×GL(I) → 1.(2.6)

Then Γ(I)Z is a subgroup of Γ(I)Q naturally. We have

Γ(I)Z ∩U(I)Q/Z = {0}(2.7)

by the definition U(I)Z = Γ(I)Z ∩U(I)Q of U(I)Z.
We choose a rank 1 sublattice I′ ⊂ L with (I, I′) /≡ 0 and accordingly take a tube

domain realization of D and a splitting of Γ(I)Q. Dividing by U(I)Z and writing
X(I) =D/U(I)Z, we obtain isomorphisms

X(I) ≃DI/U(I)Z ⊂ D(I)/U(I)Z ≃ T(I),

Γ(I)Q ≃ (O+(U(I)Z) ×GL(I)) ⋉U(I)Q/Z ,(2.8)

both depending on the choice of I′. By Lemma 2.1, the natural action of Γ(I)Q onX(I)
is translated to the standard action of (O+(U(I)Z) ×GL(I)) ⋉U(I)Q/Z on T(I).
Here O+(U(I)Z) acts by torus automorphisms fixing the identity, GL(I) acts trivially,
and U(I)Q/Z acts by translation.

By (2.7), the projection Γ(I)Z → O+(U(I)Z) ×GL(I) is injective. But this does
not mean that Γ(I)Z as a subgroup of Γ(I)Q is contained in the lifted subgroup
O+(U(I)Z) ×GL(I) in (2.8). Thus, the action of Γ(I)Z on X(I) may have translation
component.

Remark 2.2 Let I = Zl and Γ(l)Z < Γ(I)Z be the kernel of Γ(I)Z → GL(I). In the
case −id ∈ Γ, we have Γ(I)Z = Γ(l)Z × {±id}, so we may replace Γ(I)Z by Γ(l)Z when
considering action on D, as was done in [13, Appendix]. (The last sentence of [13,
Remark A.8] for Γ = Õ+(L) should be understood under the condition Γ(l)Z = Γ(I)Z
(e.g., div(I) > 2) or AL 2-elementary, or div(I) = 1.)

2.4 Partial toroidal compactification

We recall partial toroidal compactification of X(I) =D/U(I)Z following [1]. We put
a Q-structure on U(I)R by U(I)Q ≃ L(I)Q. We write C+I = CI ∪⋃w R≥0w, where w
ranges over all isotropic vectors of L(I)Q in the closure of CI . A rational polyhedral
cone decomposition (fan) Σ = (σα)α in U(I)R is called Γ(I)Z-admissible [1] if the
support of Σ is C+I , Σ is preserved under the adjoint (= natural) action of Γ(I)Z on
U(I)R = L(I)R, and there are only finitely many cones up to the action of Γ(I)Z.
Isotropic rays in Σ correspond to rational isotropic lines in L(I)Q (hence independent
of Σ), which in turn correspond to rank 2 primitive isotropic sublattices J of L
containing I.

The fan Σ defines a torus embedding T(I) ↪ T(I)Σ of the torus T(I) =
U(I)C/U(I)Z. Each ray σ of Σ defines a sub-torus embedding T(I) ↪ T(I)σ ⊂
T(I)Σ , isomorphic to (C×)b ↪ C × (C×)b−1, whose unique boundary divisor is the
quotient torus defined by the quotient lattice U(I)Z/(Rσ ∩U(I)Z). The character
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group of this boundary torus is σ⊥ ∩U(I)∨Z. Here we regard U(I)∨Z as a lattice on
U(I)Q by the quadratic form on U(I)Q = L(I)Q, which gives the pairing between
U(I)Z and U(I)∨Z.

We take a tube domain realization of D by choosing I′ ⊂ L with (I, I′) /≡ 0. Then let
X(I)Σ be the interior of the closure of X(I) ≃DI/U(I)Z in T(I)Σ . This embedding
X(I) ↪ X(I)Σ is the partial toroidal compactification over I defined by the fan Σ. It
is Γ(I)Z-equivariant, and does not depend on the choice of I′. We can think of X(I)Σ

as giving a local chart for the boundary points of a full toroidal compactification lying
over the I-cusp (see Section 7), like D gives a local chart for the interior points in Γ/D.

3 Irregular zero-dimensional cusps

We now study irregular zero-dimensional cusps. Let Γ be a finite-index subgroup of
O+(L), and let I be a rank 1 primitive isotropic sublattice of L. We keep the notation
from Section 2. We will define irregularity in two stages: irregularity of a cusp (Section
3.1), and irregularity of a toroidal boundary divisor over (or adjacent to) an irregular
cusp (Section 3.2). The first stage is concerned only with Γ, but the second stage is also
involved with a Γ(I)Z-admissible fan.

3.1 Irregularity

We give several equivalent definitions of irregularity of a zero-dimensional cusp in the
following form.

Proposition 3.1 The following conditions are equivalent.

(1) U(I)Z ≠ U(I)′Z where U(I)′Z = U(I)Q ∩ ⟨Γ,−id⟩.
(2) −id /∈ Γ and −Ew ∈ Γ(I)Z for some w ∈ L(I)Q.
(3) −id /∈ Γ and Γ(I)Z → O+(U(I)Z) is not injective.
(4) Γ(I)Z contains an element which acts by a nonzero translation on

X(I) =D/U(I)Z.

When these hold, we have U(I)′Z/U(I)Z = ⟨Ew⟩ ≃ Z/2 and

Ker(Γ(I)Z → O+(U(I)Z)) = ⟨−Ew⟩ ≃ Z/2,

and the translation in (4) is given by [w] ∈ U(I)Q/Z and is unique.

Definition 3.1 We say that the zero-dimensional cusp I is irregular for Γ when these
properties hold, and regular otherwise.

Proof (1) ⇒ (2): Since Γ ≠ ⟨Γ,−id⟩, we have −id /∈ Γ. Let Ew ∈ U(I)′Z, but Ew /∈
U(I)Z. Since ⟨Γ,−id⟩ = Γ ⊔ −Γ, we have Ew ∈ −Γ, and so −Ew ∈ Γ. Note that
U(I)′Z/U(I)Z ≃ ⟨Γ,−id⟩/Γ is of order 2, and so U(I)′Z/U(I)Z = ⟨Ew⟩.
(2) ⇒ (1): If −Ew ∈ Γ(I)Z and −id /∈ Γ, then Ew /∈ U(I)Z, but Ew ∈ U(I)′Z.
(2) ⇒ (3): Since −Ew acts on L(I)Q = U(I)Q trivially, its image in Γ(I)Z is

contained in the kernel of Γ(I)Z → O+(U(I)Z).
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(3) ⇒ (2): Recall from (2.6) that the kernel of Γ(I)Q → O+(U(I)Z) is

GL(I) ×U(I)Q/Z = U(I)Q/Z ⊔ (−id) ⋅U(I)Q/Z .

Since Γ(I)Z ∩U(I)Q/Z = {0} by (2.7), a nontrivial element of the kernel of Γ(I)Z →
O+(U(I)Z) must be contained in (−id) ⋅U(I)Q/Z, hence, is the image of −Ew for
some w ∈ L(I)Q. This also shows that the kernel is Z/2 generated by −Ew .
(2) ⇒ (4): The element −Ew of Γ(I)Z acts on X(I) by the translation by [w] ∈

U(I)Q/Z. Since −id /∈ Γ, we have Ew /∈ U(I)Z. This means that [w] ≠ 0 ∈ U(I)Q/Z.
(4) ⇒ (2), (3): We choose a splitting of Γ(I)Q as in (2.8) and express an element

of Γ(I)Z ⊂ Γ(I)Q as γ = (γ1 , γ2 , [w]) accordingly, where γ1 ∈ O+(U(I)Z), γ2 ∈ GL(I)
and [w] ∈ U(I)Q/Z. If γ acts on X(I) by a nonzero translation, we must have γ1 =
idL(I) and the translation is given by [w] ∈ U(I)Q/Z. Therefore, γ is contained in the
kernel of the projection to O+(U(I)Z). Since Γ(I)Z ∩U(I)Q/Z = {0} by (2.7) and
[w] ≠ 0, we have γ2 = −idI . Thus, γ = −Ew . Finally, we have −id /∈ Γ, for otherwise
Ew = −γ would be contained in U(I)Z and then [w] = 0 ∈ U(I)Q/Z. ∎

Remark 3.2 Let Γ(l)Z < Γ(I)Z be as in Remark 2.2. By the condition (3), I is irregular
if and only if −id /∈ Γ, Γ(l)Z ≠ Γ(I)Z, and Γ(l)Z and Γ(I)Z have the same image in
O+(U(I)Z). We do not use this characterization.

The condition (2) is useful for explicit calculation (Section 4). We give some
immediate consequences.

Corollary 3.3 The group Γ has no irregular cusp when −id ∈ Γ or when Γ is neat or
when Γ < SO+(L) with b odd.

Proof The case −id ∈ Γ is obvious. When Γ is neat, the subquotient Γ(I)Z is torsion-
free, so it does not contain an element of finite order like −Ew . When b is odd,
−Ew has determinant (−1)b+2 = −1, so a subgroup of SO+(L) never contains such an
element. ∎

Corollary 3.4 When b is even, Γ has an irregular cusp if and only if Γ ∩ SO+(L) has
an irregular cusp.

Proof When b is even, both −id and −Ew are contained in SO+(L). ∎

Corollary 3.5 If Γ has an irregular cusp, any Γ′ < O+(L) with Γ′ ⊃ Γ and −id /∈ Γ′ has
an irregular cusp. Equivalently, if −id /∈ Γ and Γ has no irregular cusp, any subgroup of
Γ of finite index has no irregular cusp.

The lattice U(I)′Z = U(I)Q ∩ ⟨Γ,−id⟩ is the projection image of

U(I)⋆Z = ({±id} ⋅U(I)Q) ∩ Γ = Ker(Γ(I)Z → O+(U(I)Z))

in U(I)Q. Thus, U(I)′Z is the lattice of translation in the Γ(I)Z-action on the tube
domain model. We have
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U(I)⋆Z/U(I)Z =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨−id⟩ ≃ Z/2, −id ∈ Γ,
{1}, −id /∈ Γ, I regular,
⟨−Ew⟩ ≃ Z/2, I irregular.

(3.1)

This gives yet another characterization of irregularity: −id /∈ Γ and U(I)Z ≠ U(I)⋆Z.
As we will explain in Section 8.1, U(I)Z is the lattice for Fourier expansion of

Γ-modular forms around I. Thus, irregular zero-dimensional cusps are those cusps
whose lattice of translation is larger than the lattice for Fourier expansion.

Remark 3.6 In the case b = 1, we have an accidental isomorphism SO+(2, 1) ≃
PSL(2,R) which induces an isomorphism between the type IV domain here and the
upper half-plane. However, O+(2, 1) = SO+(2, 1) × {±id} and SL(2,R) are different
double covers of SO+(2, 1) ≃ PSL(2,R). Therefore, although we have the perfect
analogy

U(I)Z ↔ {(1 ∗
0 1) ∈ Γ} ,

U(I)′Z ↔ {(1 ∗
0 1) ∈ ⟨Γ,−1⟩} ,

subgroups of O+(2, 1) which have irregular cusps never correspond to subgroups
of SL(2,R) which have irregular cusps (in the classical sense [3]): they live in
different covers of SO+(2, 1) ≃ PSL(2,R). Subgroups of SO+(2, 1) ≃ PSL(2,R) have
no irregular cusp anyway.

3.2 Irregular boundary divisors

Let Σ = (σα) be a Γ(I)Z-admissible fan in U(I)R, and let X(I) ↪ X(I)Σ be the partial
compactification defined in Section 2.4. For a ray σ in Σ, we denote by D(σ) ⊂ X(I)Σ

the corresponding boundary divisor. When I is irregular, these boundary divisors are
divided into two types as follows.

Proposition 3.7 Let I be an irregular zero-dimensional cusp for Γ. Let −Ew ∈ Γ(I)Z.
The following conditions for a ray σ in Σ are equivalent:
(1) σ ∩U(I)Z ≠ σ ∩U(I)′Z.
(2) −Ew acts trivially on the boundary divisor D(σ).
(3) D(σ) is fixed by some nontrivial element of Γ(I)Z.
When these hold, the element in (3) is given by −Ew . In particular, it is unique,
independent of σ, and of order 2.

Definition 3.2 When these properties hold, we call σ an irregular ray and D(σ) an
irregular boundary divisor. Otherwise, we call σ regular. For the sake of completeness,
we call any ray σ regular when I is regular.

Proof (1) ⇔ (2): Recall from Lemma 2.1 that −Ew acts on X(I) ⊂ T(I) as the
translation by [w] ∈ U(I)Q/Z. A Zariski open set of D(σ) is the quotient torus (or
its analytic open set) associated with the quotient lattice U(I)Z/Λσ where Λσ =
Rσ ∩U(I)Z. Hence, −Ew acts on D(σ) as the translation by the image of [w] in
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U(I)Q/(U(I)Z + (Λσ)Q). This is trivial if and only if w ∈ U(I)Z + (Λσ)Q, which in
turn is equivalent to Λσ ≠ Rσ ∩U(I)′Z. In this case, −Ew acts by −1 on the normal
torus (Λσ)C/Λσ ≃ C×.
(2) ⇒ (3) is obvious.
(3) ⇒ (2): Suppose that γ ∈ Γ(I)Z acts trivially on D(σ). Let γ1 be the image of

γ in O+(U(I)Z). Then γ1 must preserve σ ∩U(I)Z and act trivially on U(I)Z/Λσ .
Hence, γ1 acts trivially on Λσ and Λ⊥σ , and so γ1 = id. This implies that γ is contained
in the kernel of Γ(I)Z → O+(U(I)Z), whence γ = −Ew by Proposition 3.1. Therefore,
−Ew acts trivially on D(σ). ∎

Corollary 3.8 When I is irregular, the quotient map X(I)Σ → X(I)Σ/Γ(I)Z is ram-
ified along the irregular boundary divisors with ramification index 2, caused by the
common subgroup ⟨−Ew⟩ ≃ Z/2 of Γ(I)Z, and not ramified along other boundary
divisors. When I is regular, X(I)Σ → X(I)Σ/Γ(I)Z is not ramified along any boundary
divisor.

Proof It remains to supplement the argument in the case I is regular. If γ ∈ Γ(I)Z
fixes a boundary divisor, we see that γ acts trivially on U(I)Z by the same argument
as (3) ⇒ (2) above. When −id /∈ Γ, Γ(I)Z → O+(U(I)Z) is injective by the condition
(3) of Proposition 3.1, so we find that γ = id. When −id ∈ Γ, the kernel of Γ(I)Z →
O+(U(I)Z) is {±id}, so γ = ±id, which acts trivially on X(I). ∎

4 Examples

In this section, we study some examples of groups with/without irregular cusp.
Logically, this section should be read after Section 6 where we complete the discussion
of irregular one-dimensional cusps. But we encourage the reader to read this section
just after Section 3 for the following two reasons. First, most of Sections 5 and 6 is
designed for Sections 7 and 8, while the only result from Sections 5 and 6 we need in
this section is Corollary 6.4, which just says that Γ has no irregular one-dimensional
cusp if it has no irregular zero-dimensional cusp. Second, it is Proposition 3.1(2),
which is frequently used in this section, so we do not want to put this section too
far from it.

We assume that the lattice L is even in this section. The quotient AL = L∨/L is called
the discriminant group of L, equipped with a canonical quadratic form AL → Q/2Z
called the discriminant form. If I is a rank 1 primitive isotropic sublattice of L, we
write div(I) for the positive generator of the ideal (I, L) ⊂ Z. Then I∗ = div(I)−1I is
primitive in L∨, and we have a canonical isometry I⊥ ∩ L∨/I∗ ≃ (I⊥/I)∨.

4.1 Stable orthogonal groups

Let L be an even lattice of signature (2, b). Let Õ+(L) < O+(L) be the kernel of the
reduction map O+(L) → O(AL), called the stable orthogonal group or the discriminant
kernel. The following was asserted in [13, p. 901]. We supplement the proof for the sake
of completeness.

https://doi.org/10.4153/S0008414X24000129 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000129


12 S. Ma

Lemma 4.1 Let I be a rank 1 primitive isotropic sublattice of L. For Γ = Õ+(L), we have
U(I)Z = L(I).

Proof We take a generator l of I. The inclusion L(I) ⊂ U(I)Z can be checked by
testing the definition of Em⊗l(v) for v ∈ L∨ and m ∈ I⊥/I, taking a lift of m from I⊥ ∩ L.
Conversely, if Em⊗l ∈ Õ+(L) for a vector m ∈ I⊥Q/IQ, then Em⊗l(v) = v − (m, v)l must
be contained in v + L for v ∈ I⊥ ∩ L∨. This implies that (m, v) ∈ Z for every v ∈ I⊥ ∩ L∨,
and so m ∈ (I⊥/I)∨∨ = I⊥/I. ∎

We obtain a first example of regular cusps.

Lemma 4.2 If Γ ⊃ Õ+(L) and div(I) = 1, then I is a regular cusp for Γ.

Proof We take a generator l of I. Since div(I) = 1, we can take an isotropic vector
l ′ ∈ L with (l , l ′) = 1. We can and do identify I⊥/I with ⟨l , l ′⟩⊥ ∩ L. We have the
splitting L = ⟨l , l ′⟩ ⊕ (⟨l , l ′⟩⊥ ∩ L). Suppose −Em⊗l ∈ Γ for a vector m ∈ ⟨l , l ′⟩⊥ ∩ LQ.
Then Em⊗l preserves L, so we find that the vector Em⊗l(l ′) = l ′ + m − 1

2 (m, m)l is
contained in L. This implies that m ∈ ⟨l , l ′⟩⊥ ∩ L = I⊥/I. Since Γ ⊃ Õ+(L), we have
U(I)Z ⊃ L(I) by Lemma 4.1, and so m ⊗ l ∈ U(I)Z. This means that Em⊗l ∈ Γ, and
then −id ∈ Γ. ∎

For Γ = Õ+(L), we have the following constraints for existence of irregular cusp.

Lemma 4.3 If I is an irregular zero-dimensional cusp for Γ = Õ+(L), then div(I) = 2,
AL(I) is 2-elementary, and U(I)′Z/U(I)Z ≃ Z/2 is a subgroup of AL(I).

Proof Let I = Zl and assume that −Em⊗l ∈ Õ+(L) for a vector m of I⊥Q/IQ. Then, for
any v ∈ I⊥ ∩ L∨, the vector −Em⊗l(v) = −v + (m, v)l must be contained in v + L. This
implies that

2v ∈ (m, v)l + L.(4.1)

If we substitute v = l/div(I), we find that (2/div(I))l ∈ L, and so div(I) = 1 or 2. The
case div(I) = 1 is excluded by Lemma 4.2. Thus, div(I) = 2.

If [v] ∈ (I⊥/I)∨ denotes the image of v ∈ I⊥ ∩ L∨, then (4.1) means that 2[v] ∈ I⊥/I.
This shows that AI⊥/I is 2-elementary. Finally, (4.1) implies that (m, v) ∈ Z for every
v ∈ I⊥ ∩ L, and so m ∈ (I⊥/I)∨. ∎

This determines the structure of AL when Õ+(L)has an irregular zero-dimensional
cusp.

Proposition 4.4 If Õ+(L) has an irregular cusp, then AL ≃ Z/8⊕ (Z/2)⊕a or AL ≃
(Z/4)⊕2 ⊕ (Z/2)⊕a as abelian groups.

Proof Let I = Zl be as in Lemma 4.3. Let x = [l/2] ∈ AL . Since AL(I) ≃ x⊥/x is 2-
elementary and both ⟨x⟩ and AL/x⊥ are isomorphic to Z/2, we see that AL must
be isomorphic to either (Z/2)⊕a or Z/4⊕ (Z/2)⊕a or Z/8⊕ (Z/2)⊕a or (Z/4)⊕2 ⊕
(Z/2)⊕a as an abelian group. The first case AL ≃ (Z/2)⊕a cannot occur because then
−id ∈ Õ+(L). Let us show that the second case does not occur.

Suppose to the contrary that AL ≃ Z/4⊕ (Z/2)⊕a as an abelian group. Then
we have an orthogonal decomposition AL = A0 ⊕ A1 where A0 ≃ Z/4 is generated
by an element x0 of norm ε/4 for some ε ∈ (Z/8)×, and A1 = A⊥0 is 2-elementary.
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The isotropic element x ∈ AL is either (i) contained in A1 or (ii) of the from 2x0 + x1
with x1 ≠ 0 ∈ A1. In the case (i), x⊥/x ⊃ A0 is not 2-elementary. In the case (ii), we
can take an element y1 ∈ A1 with (x1 , y1) = 1/2 by the nondegeneracy of A1. Then the
element y = x0 + y1 is contained in x⊥ and 2y ≠ x. Hence, x⊥/x is not 2-elementary
again. ∎

Remark 4.5 Further calculation shows that x = [l/2] ∈ AL is divisible by 4 (and
hence unique) in the case AL ≃ Z/8⊕ (Z/2)⊕a , and divisible by 2 in the case AL ≃
(Z/4)⊕2 ⊕ (Z/2)⊕a .

Example 4.6 Let L = 2U ⊕ mE8 ⊕ ⟨−2d⟩. Then Õ+(L) has no irregular cusp when
d ≠ 4. We show in Proposition 4.14 that Õ+(L) indeed has an irregular cusp when
d = 4. When m = 2, Õ+(L) is the modular group for the moduli space of polarized K3
surfaces of degree 2d.

Example 4.7 Let L = 2U ⊕ mE8 ⊕ ⟨−2t⟩ ⊕ ⟨−2d⟩. Then Õ+(L) has no irregular cusp
when (t, d) ≠ (4, 1), (2, 2), (1, 4). We show in Section 4.5 that Õ+(L) indeed has an
irregular cusp in these exceptional cases. When m = 2, Õ+(L) is the modular group for
the moduli space of polarized irreducible symplectic manifolds of K3[t−1]-type with
polarization of split type and degree 2d [10].

Example 4.8 When L = U ⊕ 2E8 ⊕ M, where M is a certain lattice of signature (1, 2)
and discriminant d ≡ 2 mod 6, Õ+(L) is the modular group for the moduli space of
special cubic fourfolds of discriminant d [18]. Since AL has length ≤ 3 and order d, we
find that Õ+(L) has no irregular cusp when d ≠ 8, 32.

Example 4.9 Similarly, when L = U ⊕ 2E8 ⊕ M, where M is a certain lattice of
signature (1, 2) and discriminant d ≡ 0, 2, 4 mod 8, Õ+(L) is the modular group for
the moduli space of special K3[2]-fourfolds of degree 2 and discriminant d [16]. This
group has no irregular cusp when d ≠ 32.

Example 4.10 When L = U ⊕ 2E8 ⊕ ⟨2d⟩, Õ+(L) is the modular group for the
moduli space of U ⊕ ⟨−2d⟩-polarized K3 surfaces studied in [4]. This group has no
irregular cusp when d ≠ 4.

4.2 O’Grady 10

In this subsection, we let L be an even lattice of the form L = M ⊕ ⟨−2d⟩ with M of
signature (2, b − 1). We consider the group

Γ = { γ ∈ O+(L) ∣ γ∣AM = ±id, γ∣A⟨−2d⟩ = id }.

Then Γ contains Õ+(L) with index ≤ 2, with Γ = Õ+(L) if and only if AM is 2-
elementary. We have −id ∈ Γ if and only if d = 1. When M = 2U ⊕ 2E8 ⊕ A2, Γ is
the modular group for the moduli space of polarized O’Grady 10 manifolds with
polarization of split type and degree 2d [6].

Proposition 4.11 The group Γ has no irregular cusp when d ≠ 2, 4.

Proof Assume that I = Zl is an irregular cusp for Γ and −Em⊗l ∈ Γ for m ∈ I⊥Q/IQ.
The case d = 1 is excluded by −id /∈ Γ. We shall show that d ∣ 4. Since E2m⊗l =
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(−Em⊗l) ○ (−Em⊗l) ∈ Õ+(L), we see that 2m ⊗ l ∈ L(I) by Lemma 4.1. Hence, we can
take a lift m̃ of m from I⊥ ∩ 1

2 L. Let v be a generator of ⟨−2d⟩∨. The vector

−Em⊗l(v) = −v + (m̃, v)l − (l , v)m̃ + 1
2
(m, m)(l , v)l

must be contained in v + L, and hence

2v ∈ (m̃, v)l − (l , v)m̃ + 1
2
(m, m)(l , v)l + L.(4.2)

Since (m̃, v) ∈ 1
2Z, (l , v) ∈ Z and (m, m) ∈ 1

2Z, we find that 2v ∈ 1
4 L. Hence,

2d ∣ 8. ∎
The case d = 2 does not occur when ∣AM ∣ is square-free, because then AL is

anisotropic and hence div(I) = 1. In Proposition 4.14, we show that Γ indeed has an
irregular cusp when d = 4 and M contains U.

4.3 Generalized Kummer

In this subsection, we let L = M ⊕ ⟨−2d⟩ be as in Section 4.2 and consider the group

Γ = { γ ∈ O+(L) ∣ γ∣AM = det(γ)id, γ∣A⟨−2d⟩ = id }.

This is an index ≤ 2 subgroup of the group considered in Section 4.2. When M = 2U ⊕
⟨−2t⟩with t ≥ 3, Γ is the modular group for the moduli space of polarized deformation
generalized Kummer varieties of A[t]-type with polarization of split type and degree
2d [2].

Proposition 4.12 The group Γ has no irregular cusp when d ∤ 4. Moreover, when b is
even, Γ has no irregular cusp unless AL is isomorphic to Z/8⊕ (Z/2)⊕a or (Z/4)⊕2 ⊕
(Z/2)⊕a as abelian groups.

Proof The assertion d ∤ 4 follows from Corollary 3.5 and Proposition 4.11. Since
Γ ∩ SO+(L) = Õ+(L) ∩ SO+(L), Corollary 3.4 shows that when b is even, Γ has an
irregular cusp if and only if Õ+(L) has an irregular cusp. Then our assertion follows
from Proposition 4.4. ∎

This shows that when M = 2U ⊕ ⟨−2t⟩, Γ has no irregular cusp when (t, d) ≠
(4, 1), (2, 2), (1, 4). In Section 4.5, we show that Γ indeed has an irregular cusp in these
exceptional cases.

4.4 Special cubic fourfolds

In this subsection, we let L be an even lattice of the form L = M ⊕ K with ∣AK ∣ > 1 odd.
(K may be either negative-definite or hyperbolic or of signature (2, ∗).) We consider
the group

Γ = { γ ∈ O+(L) ∣ γ∣AM = ±id, γ∣AK = id }.

When M = ⟨2n⟩ ⊕U ⊕ 2E8 and K = A2, Γ is the modular group for the moduli space
of special cubic fourfolds of discriminant 6n [18].

Proposition 4.13 The group Γ has no irregular cusp.
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Proof Suppose to the contrary that I = Zl is an irregular cusp and −Em⊗l ∈ Γ. As in
the proof of Proposition 4.11, we can take a lift of m from I⊥ ∩ 1

2 L. We take a vector
v ∈ K∨ − K. Then −Em⊗l(v)must be contained in v + L. The same calculation as (4.2)
tells us that 8v ∈ L. Therefore, [v] ∈ AK ⊂ AL satisfies 8[v] = 0, but this contradicts the
assumption that ∣AK ∣ is odd. ∎

4.5 Examples of irregular cusps

In this subsection, we present two series of examples of irregular cusps, infinitely many
in every dimension. We will denote by e , f the standard basis of U.

As the first series of examples, we consider even lattices of the form L = U ⊕ ⟨−8⟩ ⊕
M with M hyperbolic. We define the group Γ by

Γ = { γ ∈ O+(L) ∣ γ∣AM = ±id, γ∣A⟨−8⟩ = id }.

This is the group considered in Section 4.2 with d = 4. The group Γ contains Õ+(L)
with index ≤ 2, and we have Γ = Õ+(L) if and only if AM is 2-elementary.

Proposition 4.14 The group Γ has an irregular cusp.

Proof First, note that −id /∈ Γ by the condition γ∣A⟨−8⟩ = id. Let v be a generator of
⟨−8⟩. We take the vectors

l = 2e + 2 f + v , m = e/2 − f /2,

and show that −Em⊗l ∈ Γ. This amounts to checking the following:

Em⊗l(L) ⊂ L, Em⊗l ∣AM = ±id, Em⊗l(v/8) ∈ −v/8 + L.

Since M ⊥ ⟨l , m⟩, Em⊗l acts trivially on M. By direct calculation, we see that

Em⊗l(e) = 4e + f + v , Em⊗l( f ) = e , Em⊗l(v) = −v − 8e .

This proves our assertion. ∎

As the second series of examples, we consider even lattices of the form L = U ⊕
⟨−4⟩⊕2 ⊕ M with M hyperbolic, and the group Γ defined by

Γ = { γ ∈ O+(L) ∣ γ∣AM = ±id, γ∣A⟨−4⟩⊕2 = id }.

The group Γ contains Õ+(L) with index ≤ 2, and Γ = Õ+(L) if and only if AM is
2-elementary.

Proposition 4.15 The group Γ has an irregular cusp.

Proof This is similar to the first example. We let v1 , v2 be the standard basis of ⟨−4⟩⊕2

and show that −Em⊗l ∈ Γ for the vectors

l = 2e + 2 f + v1 + v2 , m = e + v1/2.

The detail is left to the reader. ∎
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5 One-dimensional cusps

In this section, we recall, following [7, 11, 12, 17], the structure of the stabilizer of a
one-dimensional cusp of D =DL with its action on the Siegel domain model, and the
canonical partial toroidal compactification over the cusp. This is a long preliminary
for the next Section 6. Although this section is no more than expository, we need to
keep the rather self-contained style of Section 2, for the same reasons as in Section 2
and for consistency.

Throughout this section, we fix a rank 2 primitive isotropic sublattice J of L. The
choice of the componentD determines a connected component ofPJC − PJR, which is
the cusp corresponding to J. This in turn determines an orientation of J. We abbreviate
J⊥ = J⊥ ∩ L and write

L(J) = J⊥/J ,

which is a negative-definite lattice of rank b − 2. We will call an embedding 2UQ ↪ LQ

a splitting for JQ if it sends the standard two-dimensional isotropic subspace of 2UQ

to JQ. This defines a lift L(J)Q ↪ J⊥Q of L(J)Q as 2U⊥Q.

5.1 Siegel domain model

We consider the two-step linear projection

PLC � P(L/J)C � P(L/J⊥)C
and restrict it to D ⊂ Q ⊂ PLC. The center of the first projection PLC � P(L/J)C is
the line PJC, and its fibers are planes containing PJC (minus PJC). Since Q contains
PJC, a plane containing PJC either
• intersects with Q at two distinct lines (one is PJC), or
• intersects with Q at PJC with multiplicity 2, or
• is contained in Q.
The first case occurs exactly when the plane is not contained in PJ⊥C. In that case, we
can write the plane as P⟨J , v⟩C with (v , v) = 0 and (v , J) /≡ 0. Then we have

P⟨J , v⟩C ∩ Q = PJC ∪ P⟨l , v⟩C ,

where Cl = v⊥ ∩ JC. This shows that the restriction of the first projection PLC �
P(L/J)C to Q − Q ∩ PJ⊥C

π1 ∶ Q − Q ∩ PJ⊥C → P(L/J)C − PL(J)C
is an affine line bundle, with the fiber over the point P(⟨J , v⟩C/JC) being the affine
line P⟨l , v⟩C − [l]. The inequality (ω, ω̄) > 0 defines a (shifted) upper half-plane in
this affine line.

We identify (L/J⊥)C = J∨C by the pairing. The second projection

π2 ∶ P(L/J)C − PL(J)C → P(L/J⊥)C = PJ∨C
is an affine space bundle. It is (non-canonically) isomorphic to the vector bundle
L(J)C ⊗OPJ∨

C
(1) where, by abuse of notation, OPJ∨

C
(1) stands for the line bundle

corresponding to this sheaf (the dual of the tautological line bundle). To be more
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specific, if we choose a lift L(J)C ↪ J⊥C of L(J)C, this determines a splitting (L/J)C ≃
L(J)C ⊕ (L/J⊥)C where (L/J⊥)C is mapped to L(J)⊥C/JC. This splitting defines an
isomorphism

L(J)C ⊗OPJ∨
C
(1) ≃ P(L/J)C − PL(J)C

over PJ∨C = P(L/J⊥)C. At the fiber over each point [v] of P(L/J⊥)C, this isomorphism
is written as

Hom(Cv , L(J)C) → P(Cv ⊕ L(J)C) − PL(J)C ,(5.1)

where to a linear map Cv → L(J)C we associate its graph.
The orientation of J determines a connected componentHJ of PJ∨C − PJ∨R. We write

VJ = π−1
2 (HJ) and D(J) = π−1

1 (VJ). By definition, D(J) consists of points Cω ∈ Q
such that the map (⋅, ω)∶ JR → C is an orientation-preserving R-isomorphism. We
thus have the enlarged two-step fibration

D ⊂D(J) π1→ VJ
π2→ HJ .

This is the Siegel domain realization ofDwith respect to J. HereD(J) → VJ is an affine
line bundle, inside which D→ VJ is a fibration of upper half-planes. Over HJ ⊂ PJ∨C,
we have the Hodge line bundle in JC = JC ⊗OHJ defined by

F ∶= OHJ(−1)⊥ ⊂ JC ,

where we view OHJ(−1) as a sub-line bundle of J∨C ⊗OHJ naturally. Then OHJ(1) is
naturally isomorphic to JC/F. To summarize, we have an isomorphism

VJ ≃ L(J)C ⊗OHJ(1) ≃ L(J)C ⊗ (JC/F).(5.2)

The relation with the tube domain model is as follows. We choose a rank 1 primitive
sublattice I of J. This corresponds to a zero-dimensional cusp in the closure of
the one-dimensional cusp for J. The filtration I ⊂ J ⊂ J⊥ ⊂ L determines the projec-
tions P(L/I)C � P(L/J)C � P(L/J⊥)C. Then the composition of this with the tube
domain realization D ⊂D(I) ↪ P(L/I)C is the Siegel domain realization above.

5.2 Stabilizer over Q

Let Γ(J)Q be the subgroup of the stabilizer of JQ in O+(LQ) that acts on JQ with
determinant 1. The determinant 1 condition is not restrictive when restricting to
subgroups of O+(L). We write

W(J)Q = Ker(Γ(J)Q → O(L(J)Q) × SL(JQ)),

U(J)Q = Ker(Γ(J)Q → GL(J⊥Q)),

V(J)Q = W(J)Q/U(J)Q .

By definition, we have the canonical exact sequences

1 → W(J)Q → Γ(J)Q → O(L(J)Q) × SL(JQ) → 1,(5.3)

0 → U(J)Q → W(J)Q → V(J)Q → 0.(5.4)
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The group W(J)Q is the unipotent radical of Γ(J)Q. If we choose a splitting LQ ≃
2UQ ⊕ L(J)Q for JQ, the first exact sequence (5.3) splits (non-canonically):

Γ(J)Q ≃ (O(L(J)Q) × SL(JQ)) ⋉W(J)Q .(5.5)

Here SL(JQ) acts on the component 2UQ ≃ JQ ⊕ J∨Q, and O(L(J)Q) acts on the
component L(J)Q.

On the other hand, the second exact sequence (5.4) never splits. Indeed, W(J)Q
is a Heisenberg group as follows. We have a canonical ∧2 J-valued symplectic form
on L(J) ⊗ J as the tensor product of the quadratic form on L(J) and the canonical
symplectic form J × J → ∧2 J on J. This gives a Heisenberg group structure on ∧2 JQ ×
(L(J)Q ⊗ JQ). Explicitly, we take a bijection L(J)Q ⊗ JQ ≃ L(J)Q × L(J)Q by choosing
a positive basis of J, and define a product on ∧2 JQ × L(J)Q × L(J)Q by

(α, v1 , v2) ⋅ (β, w1 , w2) = (α + β + (v2 , w1), v1 +w1 , v2 +w2).

The center is ∧2 JQ × {0} × {0}.

Lemma 5.1 W(J)Q is isomorphic to the Heisenberg group for L(J)Q ⊗ JQ with center
U(J)Q, and we have the canonical isomorphisms

∧2 JQ → U(J)Q , l ∧ l ′ ↦ E l⊗l ′ ,

L(J)Q ⊗ JQ → V(J)Q , m ⊗ l ↦ Em̃⊗l mod U(J)Q .

Proof This should be well-known (see, e.g., [12]), but we provide a proof in the
present context for the convenience of the readers. We choose a rank 1 primitive
sublattice I of J and put J̄ = (J/I) ⊗ I ⊂ L(I). Note that J̄ ≃ ∧2 J naturally. We restrict
the sequence (2.3) for Γ(I)Q to W(J)Q ⊂ Γ(I)Q. It is clear that W(J)Q ∩U(I)Q =
J̄⊥Q ∩ L(I)Q, which contains U(J)Q with

U(J)Q = (J̄⊥Q)⊥ = J̄Q ≃ ∧2 JQ ⊂ U(I)Q .(5.6)

The image of W(J)Q → O+(L(I)Q) is the subgroup of the stabilizer of J̄Q that acts
trivially on J̄Q and J̄⊥Q/J̄Q. This consists of Eichler transvections of L(I)Q with respect
to J̄Q, hence isomorphic to (J̄⊥Q/J̄Q) ⊗ J̄Q ≃ L(J)Q ⊗ (J/I)Q. In this way, we obtain the
exact sequence

0 → J̄⊥Q ∩ L(I)Q → W(J)Q → L(J)Q ⊗ (J/I)Q → 0.(5.7)

We choose lifts L(J)Q ↪ J⊥Q and (J/I)Q ↪ JQ. This induces a section of (5.7) which
consists of the Eichler transvections Ew of LQ with w ∈ L(J)Q ⊗ (J/I)Q. Together with
the splitting J̄⊥Q ∩ L(I)Q ≃ J̄Q ⊕ (L(J)Q ⊗ IQ), we obtain a bijection

W(J)Q ≃ J̄Q × (L(J)Q ⊗ IQ) × (L(J)Q ⊗ (J/I)Q).

This gives an isomorphism with the Heisenberg group. ∎

Note that U(J)Q is not just the center of W(J)Q, but also the center of Γ(J)Q. This
is the reason we put the determinant 1 condition in the definition of Γ(J)Q.
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The action of Γ(J)Q on the Siegel domain model can be described through the
filtration U(J)Q ⊂ W(J)Q ⊂ Γ(J)Q. By definition U(J)Q acts on VJ ⊂ P(J⊥C)∨ trivially
and W(J)Q acts on HJ ⊂ PJ∨C trivially. We let U(J)C ⊂ O(LC) be the group of Eichler
transvections E l⊗l ′ with l , l ′ ∈ JC. Then U(J)C ≃ ∧2 JC preserves D(J) and acts on VJ
trivially. The following descriptions should be well-known, but we provide a proof in
the present setting for the convenience of the readers.

Lemma 5.2 The following holds.
(1) D(J) → VJ is a principal U(J)C-bundle.
(2) The group V(J)Q ≃ L(J)Q ⊗ JQ acts on VJ → HJ as the relative translation on

the vector bundle L(J)C ⊗ (JC/F) via an isomorphism (5.2).
(3) We choose a splitting for JQ, which induces a splitting (5.5) of Γ(J)Q and an

isomorphism (5.2) forVJ . Then the lifted subgroup O(L(J)Q) × SL(JQ) of Γ(J)Q acts on
VJ → HJ by the equivariant action of SL(JQ) on JC/F and the linear action of O(L(J)Q)
on L(J)C.

Proof (1) Recall from Section 5.1 that a fiber of D(J) → VJ is an affine line
P⟨l , v⟩C − [l]where v ∈ LC is an isotropic vector with (v , J) /≡ 0 and Cl = v⊥ ∩ JC. We
take l ′ ∈ JC with (l ′ , v) = 1. Then Eαl∧l ′ ∈ U(J)C, α ∈ C, sends a point C(v + βl) of
P⟨l , v⟩C − [l] to

C(v + βl) ↦ C(v + (αl ′ , v)l + βl) = C(v + (α + β)l).

This shows that U(J)C acts on each fiber of D(J) → VJ freely and transitively.
(2) We choose a splitting LQ ≃ JQ ⊕ L(J)Q ⊕ (L/J⊥)Q for JQ where the lift of

(L/J⊥)Q is perpendicular to the lift of L(J)Q. Let [v] be a point of HJ ⊂ P(L/J⊥)C.
By (5.1), the fiber of VJ → HJ over [v] is the affine line

P(Cv ⊕ L(J)C) − PL(J)C ≃ Hom(Cv , L(J)C)

in P(L/J)C. Here the point corresponding to f ∈ Hom(Cv , L(J)C) is its graph C(v +
f (v)). We take Em⊗l ∈ W(J)Q/U(J)Q where m ∈ L(J)Q and l ∈ JQ. Then Em⊗l sends
C(v + f (v)) to

C(v + f (v)) ↦ C(v + (l , v)m − 2−1(m, m)(l , v)l + f (v) − (m, f (v))l)
= C(v + f (v) + (l , v)m) ∈ P(L/J)C .

This means that Em⊗l acts on Hom(Cv , L(J)C) by the translation f ↦ f + (l , ⋅)m.
Finally, we notice that the R-isomorphism

L(J)R ⊗R JR → L(J)C ⊗C (JC/F[v]) = L(J)C ⊗C (JC/v⊥) ≃ L(J)C ⊗C (Cv)∨

sends m ⊗ l to m ⊗ (l , ⋅). This proves the assertion (2).
The proof of (3) is straightforward and is left to the readers. ∎

5.3 Stabilizer over Z

Now let Γ be a finite-index subgroup of O+(L). We write

Γ(J)Z = Γ(J)Q ∩ Γ, W(J)Z = W(J)Q ∩ Γ, U(J)Z = U(J)Q ∩ Γ,
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and consider the quotients

Γ(J)Z = Γ(J)Z/U(J)Z , V(J)Z = W(J)Z/U(J)Z , ΓJ = Γ(J)Z/W(J)Z ,

Γ(J)Q = Γ(J)Q/U(J)Z , W(J)Q/Z = W(J)Q/U(J)Z , U(J)Q/Z = U(J)Q/U(J)Z .

By definition, we have the canonical exact sequences

0 → V(J)Z → Γ(J)Z → ΓJ → 1,(5.8)

0 → W(J)Q/Z → Γ(J)Q → O(L(J)Q) × SL(JQ) → 1,(5.9)

0 → U(J)Q/Z → W(J)Q/Z → V(J)Q → 0.

Then (5.8) is canonically embedded in (5.9). We have

V(J)Z ∩U(J)Q/Z = {0}(5.10)

as subgroups of W(J)Q/Z because W(J)Z ∩U(J)Q = U(J)Z by definition. Note
that U(J)Q/Z is the group of torsion points of the one-dimensional torus T(J) =
U(J)C/U(J)Z. If we choose a splitting for JQ, the induced splitting (5.5) of Γ(J)Q
defines a splitting of (5.9):

Γ(J)Q ≃ (O(L(J)Q) × SL(JQ)) ⋉W(J)Q/Z .(5.11)

But this does not mean that (5.8) splits.

5.4 Partial toroidal compactification

We denote T(J) =D(J)/U(J)Z and X(J) =D/U(J)Z. By Lemma 5.2, T(J) → VJ is a
principal T(J)-bundle acted on equivariantly by Γ(J)Q. The projectionX(J) → VJ is a
punctured disk bundle in T(J) → VJ . By Lemma 5.2, the action of Γ(J)Q on VJ → HJ
is described as follows.

Lemma 5.3 We choose a splitting for JQ to give an isomorphism (5.2) for VJ and a
splitting (5.11) of Γ(J)Q. We express an element γ of Γ(J)Q as γ = (γ1 , γ2 , α) accordingly,
where γ1 ∈ O(L(J)), γ2 ∈ SL(J), and α ∈ W(J)Q/Z. Then γ acts on VJ ≃ L(J)C ⊗
(JC/F) as the equivariant action by (γ1 , γ2) and the translation by [α] ∈ V(J)Q ≃
L(J)Q ⊗ JQ.

Thus, VJ/V(J)Z is a fibration of abelian varieties over HJ isogenous to the self-
fiber product of the universal elliptic curve. The group ΓJ acts on VJ/V(J)Z by the
equivariant action plus some possible translation.

Now let T(J) ≃ C be the canonical partial compactification of the torus T(J). We
take the relative torus embedding

T(J) = (T(J) × T(J))/T(J).

This is the line bundle associated with the principal T(J)-bundle T(J) → VJ and the
standard character of T(J). Let X(J) be the interior of the closure of X(J) in T(J).
This is the partial toroidal compactification of X(J) over the one-dimensional cusp J.
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Note that no choice of fan is required: this is canonical. The boundary divisor of X(J)
is canonically isomorphic to VJ .

The relation with a partial toroidal compactification over an adjacent zero-
dimensional cusp I ⊂ J is as follows. Recall that J̄ = (J/I) ⊗ I ≃ ∧2 J is an isotropic
sublattice of L(I), oriented by the orientation of J. The ray σJ = (J̄R)≥0 is in the closure
of the positive cone, and it is contained in any Γ(I)Z-admissible fan Σ. The torus
embedding T(I) ↪ T(I)σJ defined by σJ is a Zariski open set of T(I)Σ . By (5.6), we
have U(J)R = J̄R ⊂ U(I)R and

U(J)Z = J̄R ∩U(I)Z = RσJ ∩U(I)Z .(5.12)

Therefore, the inclusion D(J) ⊂D(I) induces the etale map

T(J) → T(I)σJ ⊂ T(I)Σ ,(5.13)

which maps the boundary divisor of T(J) to the unique boundary divisor of T(I)σJ .
We note that U(I)Z ⊂ Γ(J)Z.

6 Irregular one-dimensional cusps

In this section, we define and study irregular one-dimensional cusps. For simplicity,
we assume b ≥ 3 so that L(J) ≠ {0}. Let Γ be a finite-index subgroup of O+(L), and let
J be a rank 2 primitive isotropic sublattice of L. We keep the notation from Section 5.
Irregularity of the one-dimensional cusp J can be characterized as follows.

Proposition 6.1 The following conditions are equivalent.
(1) U(J)Z ≠ U(J)′Z where U(J)′Z = U(J)Q ∩ ⟨Γ,−id⟩.
(2) −id /∈ Γ and −Ew ∈ Γ(J)Z for some w ∈ ∧2 JQ.
(3) −id /∈ Γ and Γ(J)Z contains an element γ of finite order whose image in O(L(J)) ×

SL(J) is (−idL(J),−idJ).
(4) Γ(J)Z contains an element γ which acts trivially on VJ but nontrivially on X(J).
When these hold, the element γ of Γ(J)Z in (3), (4) is given by −Ew in (2), has order 2,
and is unique.

Definition 6.1 We say that the one-dimensional cusp J is irregular when these
properties hold, and regular otherwise.

Proof The equivalence (1) ⇔ (2) is similar to (1) ⇔ (2) in Proposition 3.1. The
quotient U(J)′Z/U(J)Z ≃ Z/2 is generated by Ew in (2).
(2) ⇒ (4): Since Ew for w ∈ ∧2 JQ acts trivially on VJ by Lemma 5.2, so does −Ew .
(2) ⇒ (3): The element γ = [−Ew] of Γ(J)Z is of order 2 and acts on J, L(J) by −1.
(3) ⇒ (4): By the description of the Γ(J)Z-action on VJ in Lemma 5.3, we find

that the element γ of (3) acts on VJ by some translation. Since γ is of finite order by
assumption, this translation must be trivial.
(4) ⇒ (2), (3): Suppose that γ ∈ Γ(J)Z acts trivially on VJ but nontrivially on

X(J). We take a splitting (5.11) of Γ(J)Q and express γ = (γ1 , γ2 , α) accordingly.
Since γ acts on HJ trivially, we must have γ2 = idJ or −idJ . Then, since γ acts on
VJ ≃ L(J)C ⊗ (JC/F) trivially, we see from Lemma 5.3 that (γ1 , γ2) = (idL(J), idJ)
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or (−idL(J),−idJ), and the image of α ∈ W(J)Q/Z in V(J)Q must be 0, namely α ∈
U(J)Q/Z. The case (γ1 , γ2) = (idL(J), idJ) cannot occur, because then γ ∈ U(J)Q/Z ∩
V(J)Z and so γ = id by (5.10). Therefore, γ = (−idL(J) ,−idJ , Ew) for some w ∈ ∧2 JQ.
Since −idL = (−idL(J) ,−idJ , 0) with respect to this (and any) splitting, we find that
γ = −Ew . Thus, −Ew ∈ Γ. Finally, we have −id /∈ Γ, for otherwise Ew = −γ would be
contained in U(J)Z, which in turn implies that γ acts trivially on X(J). ∎

As in the case of zero-dimensional cusps, U(J)′Z is the projection image of
U(J)⋆Z = ({±id} ⋅U(J)Q) ∩ Γ in U(J)Q, and we have U(J)⋆Z/U(J)Z = ⟨−Ew⟩ when
J is irregular.

Since the boundary divisor of X(J) is naturally isomorphic to VJ , the condition
(4) can be restated as follows.

Corollary 6.2 A one-dimensional cusp J is irregular if and only ifX(J) → X(J)/Γ(J)Z
is ramified along the boundary divisor of X(J). In that case, the ramification index is 2,
and the unique nontrivial element of Γ(J)Z fixing the boundary divisor is given by −Ew .

By the condition (1), irregularity of a one-dimensional cusp reduces to that of an
adjacent zero-dimensional cusp as follows.

Proposition 6.3 Let I ⊂ J be a rank 1 primitive sublattice, and let σJ ⊂ U(I)R be the
isotropic ray corresponding to J. Then J is irregular if and only if I is irregular and σJ is
an irregular ray.

Proof Recall from Definition 3.2 that the ray σJ is called irregular when RσJ ∩
U(I)Z ≠ RσJ ∩U(I)′Z. By (5.12), we have RσJ ∩U(I)Z = U(J)Z, and similarly RσJ ∩
U(I)′Z = U(J)′Z. This proves our assertion. ∎

Corollary 6.4 If Γ has no irregular zero-dimensional cusp, it has no irregular one-
dimensional cusp.

7 Toroidal compactification

In this section, we study singularities and ramification divisors in the boundary of a
toroidal compactification of the modular variety. These are studied in [7, 13] under the
condition −id ∈ Γ, and we explain what modification is necessary in the general case,
especially at the irregular cusps.

Let L be a lattice of signature (2, b), and let Γ be a subgroup of O+(L) of finite
index. The input data for constructing a toroidal compactification of F(Γ) = Γ/D
are a collection Σ = (ΣI)I of Γ(I)Z-admissible fans (Section 2.4), one for each Γ-
equivalence class of rank 1 primitive isotropic sublattices I of L. No choice is required
for one-dimensional cusps. Thus, Σ is a finite collection of independent fans.

The toroidal compactification associated with Σ is defined as ([1, p. 163])

F(Γ)Σ = (D ⊔⊔
I
X(I)ΣI ⊔⊔

J
X(J)) / ∼,

where I (resp. J) ranges over all primitive isotropic sublattices of L of rank 1 (resp. 2),
and ∼ is the equivalence relation generated by the following:
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• action of γ ∈ Γ giving D→D, X(I)ΣI → X(γI)ΣγI , and X(J) → X(γJ);
• the natural maps D→ X(I)ΣI and D→ X(J);
• the etale gluing maps X(J) → X(I)ΣI for I ⊂ J given by (5.13).

Theorem 7.1 [1] The space F(Γ)Σ is a compact Moishezon space containing F(Γ) as a
Zariski open set, and we have a morphism from F(Γ)Σ to the Baily–Borel compactifica-
tion of F(Γ). For each cusp I, J, the natural map

X(I)ΣI/Γ(I)Z → F(Γ)Σ , X(J)/Γ(J)Z → F(Γ)Σ

is locally isomorphic in an open neighborhood of boundary points lying over that cusp.

Perhaps a word might be in order because, strictly speaking, the theory of [1] is
applied to the image of Γ in O+(LR)/ ± id, which is ⟨Γ,−id⟩/ ± id, rather than Γ itself.
Then U(I)Z should be replaced by U(I)′Z, X(I) =D/U(I)Z by X(I)′ =D/U(I)′Z,
Γ(I)Z by Γ′(I)Z = ⟨Γ(I)Z ,−id⟩/ ± id, and similarly for one-dimensional cusps J. But
sinceX(I)′ = X(I) orX(I)′ = X(I)/⟨−Ew⟩with−Ew ∈ Γ(I)Z (and similarly for J), we
have naturally

(D ⊔⊔
I
X(I)ΣI ⊔⊔

J
X(J)) / ∼ = (D ⊔⊔

I
(X(I)′)ΣI ⊔⊔

J
X(J)′)/ ∼′ ,

where ∼′ is the equivalence relation similar to ∼. The last statement of Theorem 7.1 [1,
p. 175] is justified because we have

X(I)ΣI/Γ(I)Z = (X(I)′)ΣI/(Γ′(I)Z/U(I)′Z)

(see also (7.1)), and similarly for J.
The reason we prefer to work with U(I)Z rather than U(I)′Z is that Fourier

expansion of Γ-modular forms of arbitrary weight can be done with U(I)Z (see
Section 8).

If D(σ) ⊂ X(I)ΣI is the boundary divisor corresponding to a ray σ ∈ ΣI , general
points of D(σ) lie over the I-cusp if and only if σ is positive-definite. When σ = σJ
is isotropic corresponding to a one-dimensional cusp J ⊃ I, D(σJ) is glued with the
boundary divisor of X(J), and its general points lie over the J-cusp. By combining the
last statement of Theorem 7.1 with Corollaries 3.8 and 6.2, we obtain the following.

Proposition 7.2 (1) The projectionX(I)ΣI → F(Γ)Σ is ramified along irregular bound-
ary divisors of X(I)ΣI with ramification index 2, and not ramified along other boundary
divisors. If we take quotient by U(I)⋆Z/U(I)Z, then (D/U(I)⋆Z)ΣI → F(Γ)Σ is not
ramified along the boundary divisors.

(2) The projection X(J) → F(Γ)Σ is ramified along the unique boundary divisor
(with index 2) if and only if J is irregular. If we take quotient by U(J)⋆Z/U(J)Z, then
D/U(J)⋆

Z
→ F(Γ)Σ is not ramified along the boundary divisor.

Proof What remains is to show that (1) is still true even when a ray σ = σJ is isotropic.
Since the map X(J) → F(Γ)Σ in (2) factorizes as X(J) → X(I)ΣI → F(Γ)Σ and the
gluing map X(J) → X(I)ΣI is etale, our assertion for X(I)ΣI → F(Γ)Σ follows from
(2) and Proposition 6.3. ∎
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When Γ contains −id, Proposition 7.2 is proved in [7, 13]. In that case, we have no
irregular cusp, so no ramification divisor in the boundary.

Remark 7.3 It appears that in some literatures, the “no ramification boundary
divisor” property is used to claim that F(Γ′)Σ → F(Γ)Σ is not ramified along the
boundary divisors for neat subgroups Γ′ < Γ. This seems not true already in the case of
modular curves: for example, Γ(N) < SL2(Z). The point is that U(I)Z,Γ = U(I)Q ∩ Γ
depends on Γ, so U(I)Z,Γ′ = U(I)Q ∩ Γ′ is in general smaller than U(I)Z,Γ . If σ is a
ray in ΣI , assumed regular for simplicity, we have ramification index

[Rσ ∩U(I)Z,Γ ∶ Rσ ∩U(I)Z,Γ′]

at the corresponding boundary divisor. It seems that so far, all argument using the
above claim can be avoided: see the proof of Theorem 8.9.

Next, we study singularities. A fan ΣI = (σα) is called basic with respect to a lattice
Λ ⊂ U(I)Q if each cone σα is generated by a part of a basis of Λ. The singularity
theorem [7, 13] is still true, if we require the fan ΣI to be basic with respect to U(I)′Z,
rather than U(I)Z.

Proposition 7.4 (cf. [7, 13]) (1) We choose the fans Σ = (ΣI) so that each ΣI is basic
with respect to U(I)′Z. Then F(Γ)Σ has canonical singularities at the boundary points
lying over the zero-dimensional cusps.

(2) When b ≥ 9, F(Γ)Σ has canonical singularities at the boundary points lying over
the one-dimensional cusps.

Proof When Γ contains −id, this is proved in [7, 13] for zero-dimensional cusps, and
in [7] for one-dimensional cusps. We show that the general case is reduced to this case.
We consider zero-dimensional cusps. The case of one-dimensional cusps is similar. It
suffices to show that X(I)ΣI/Γ(I)Z has canonical singularities.

Let Γ′ = ⟨Γ,−id⟩ and Γ′(I)Z = Γ′ ∩ Γ(I)Q. Then U(I)′Z = U(I)Q ∩ Γ′ and Γ′(I)Z =
⟨Γ(I)Z ,−id⟩. Since the fan ΣI is also rational with respect to U(I)′Z, it defines a toroidal
embedding (D/U(I)′Z)ΣI of D/U(I)′Z. This is the quotient of (D/U(I)Z)ΣI by the
translation by U(I)′Z/U(I)Z (which is nontrivial exactly when I is irregular). Since
U(I)′Z/U(I)Z ⊂ Γ′(I)Z/U(I)Z, we have

(D/U(I)Z)ΣI/Γ(I)Z = (D/U(I)Z)ΣI/(Γ′(I)Z/U(I)Z)(7.1)
≃ (D/U(I)′Z)ΣI/(Γ′(I)Z/U(I)′Z).

Since ΣI is basic with respect to U(I)′Z and −id ∈ Γ′, we can apply the result of [13] to
the last quotient to see that this has canonical singularities. ∎

8 Modular forms and pluricanonical forms

Let L be a lattice of signature (2, b), and let Γ be a subgroup of O+(L) of finite index.
For simplicity, we assume b ≥ 3. In this section, we compare the vanishing order of
cusp forms and pluricanonical forms, and explain how the low weight cusp form trick
of Gritsenko, Hulek, and Sankaran [7] is modified at irregular boundary divisors. We
take this occasion to generalize “low weight” to “low slope,” for possible future use.
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8.1 Modular forms

Let L = OPLC
(−1)∣D be the restriction of the tautological line bundle to D ⊂ PLC. Let

χ be a character of Γ. By our assumption b ≥ 3, χ(Γ) ⊂ C× is finite [14]. We assume
that χ∣U(I)Z ≡ 1 for every zero-dimensional cusp I. This holds, e.g., for χ = 1, det.
A Γ-invariant section of the Γ-linearized line bundle L⊗k ⊗ χ over D is called a
modular form of weight k and character χ with respect to Γ.

Let I be a rank 1 primitive isotropic sublattice of L. We choose a generator lI of I.
This defines a frame sI of L determined by the condition (sI([ω]), lI) = 1, where we
view sI([ω]) ∈ L[ω] = Cω ⊂ LC. The factor of automorphy with respect to sI is given
by

j(γ, [ω]) = (γω, lI)
(ω, lI)

= (ω, γ−1 lI)
(ω, lI)

, γ ∈ Γ, [ω] ∈D.(8.1)

Let 1χ be a nonzero vector in the representation line of χ. Then s⊗k
I ⊗ 1χ is a frame

of the line bundle L⊗k ⊗ χ, via which modular forms F = f s⊗k
I ⊗ 1χ of weight k and

character χ are identified with holomorphic functions f on D satisfying

f (γ[ω]) = χ(γ) j(γ, [ω])k f ([ω]), γ ∈ Γ, [ω] ∈D.

Since s⊗k
I ⊗ 1χ is invariant under U(I)Z by our assumption, f is U(I)Z-invariant,

hence descends to a function on D/U(I)Z. By the tube domain realization D→DI ⊂
U(I)C (after a choice of I′ ⊂ L with (I, I′) /≡ 0), f is identified with a function on DI
invariant under translation by the lattice U(I)Z. Then it admits a Fourier expansion

f (Z) = ∑
l∈U(I)∨

Z

a(l)q l , q l = exp(2πi(l , Z)), Z ∈DI .(8.2)

By the Koecher principle, we have a(l) ≠ 0 only when l ∈ CI . The modular form F
is called a cusp form if a(l) = 0 for every l ∈ U(I)∨Z with (l , l) = 0 at every rank 1
primitive isotropic sublattice I of L. (a(0) is the value of f at the zero-dimensional
cusp for I, and ∑σ∩U(I)∨

Z

a(l)q l for an isotropic ray σ = σJ gives the restriction of f to
the one-dimensional cusp for J ⊃ I.)

Fourier expansion at an irregular cusp satisfies the following.
Lemma 8.1 Suppose that I is irregular and −Ew ∈ Γ(I)Z. When the weight k satisfies
χ(−Ew) = (−1)k+1, e.g., k odd for χ = 1 or k /≡ b mod 2 for χ = det, then we have a(l) = 0
for l ∈ (U(I)′Z)∨. In particular, a(0) = 0 in this case. When χ(−Ew) = (−1)k , we have
a(l) = 0 for l /∈ (U(I)′Z)∨.
Proof Since −Ew acts on I by −1, the factor of automorphy of −Ew on L

is −1 by (8.1). Therefore, we find that f (Z +w) = χ(−Ew)(−1)k f (Z). Thus, we
have f (Z +w) = − f (Z) when χ(−Ew) = (−1)k+1, while f (Z +w) = f (Z) when
χ(−Ew) = (−1)k .

On the other hand, since w generates U(I)′Z/U(I)Z ≃ Z/2 by Proposition 3.1, pair-
ing with w defines an isomorphism U(I)∨Z/(U(I)′Z)∨ → 1

2Z/Z. Thus, we have (l , w) ∈
Z for l ∈ (U(I)′Z)∨, while (l , w) ∈ 1/2 +Z for l ∈ U(I)∨Z − (U(I)′Z)∨. Therefore, if
we substitute Z → Z +w into q l = exp(2πi(l , Z)), then q l → q l if l ∈ (U(I)′Z)∨ and
q l → −q l if l ∈ U(I)∨Z − (U(I)′Z)∨. This implies our assertion. ∎
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8.2 Vanishing order

In this subsection, we study the vanishing order of modular forms along boundary
divisors. We will define two types of vanishing order: νσ(F) and νσ ,geom(F). νσ(F) is
defined by Fourier expansion and is always an integer. On the other hand, νσ ,geom(F)
can be strictly half-integral, and measures the vanishing order at the level of F(Γ)Σ .

Let I be a rank 1 primitive isotropic sublattice of L. Let Σ = ΣI = (σα) be a Γ(I)Z-
admissible fan in U(I)R, and let σ be a ray in Σ. Let wσ be the generator of σ ∩
U(I)Z. Let f (Z) = ∑l∈U(I)∨

Z

a(l)q l be the Fourier expansion of a Γ-modular form
F = f s⊗k

I ⊗ 1χ around I. We define the vanishing order of F along σ as

νσ(F) = min{ (l , wσ) ∣ l ∈ U(I)∨Z , a(l) ≠ 0 }.

This is a nonnegative integer because wσ ∈ CI has nonnegative pairing withCI . Clearly,
νσ(F) depends on U(I)Z and hence on Γ. If we shrink Γ without changing F and σ ,
then νσ(F) will be multiplied in general.

When σ is positive-definite, we have σ⊥ ∩ CI = {0}, and so l = 0 is the only vector in
CI with (l , wσ) = 0. Therefore, for such σ , we have νσ(F) > 0 if and only if a(0) = 0.
Similarly, when σ is isotropic, we have σ⊥ ∩ CI = σ . Therefore, in this case, we have
νσ(F) > 0 if and only if a(l) = 0 for all l ∈ σ ∩U(I)∨Z. Thus, F is a cusp form if and
only if νσ(F) > 0 at every ray σ at every zero-dimensional cusp I.

The following criterion is trivial but perhaps might be sometimes useful in view of
Theorem 8.9. Compare with [1, 5] in related cases.

Corollary 8.2 Assume that the following holds: if a(l) ≠ 0, then (l , w) ≥ r for every
w ∈ U(I)Z ∩ CI . Then we have νσ(F) ≥ r for every ray σ ∈ Σ.

Proof Take w to be the generator of σ ∩U(I)Z. ∎

When σ is irregular, νσ(F) belongs to the following parity.

Proposition 8.3 Suppose that the ray σ is irregular and −Ew ∈ Γ(I)Z. Then νσ(F) is
odd when χ(−Ew) = (−1)k+1, and even when χ(−Ew) = (−1)k .

Proof Let wσ be the generator of σ ∩U(I)Z. Since U(I)′Z = ⟨U(I)Z , wσ/2⟩, a vector l
of U(I)∨Z belongs to (U(I)′Z)∨ if and only if (l , wσ) is even. Then our assertion follows
from Lemma 8.1. ∎

We also define the geometric vanishing order of F along σ as

νσ ,geom(F) =
⎧⎪⎪⎨⎪⎪⎩

νσ(F), σ ∶ regular,
1
2 νσ(F), σ ∶ irregular.

If w′σ is the generator of σ ∩U(I)′Z, we can write uniformly as

νσ ,geom(F) = min{ (l , w′σ) ∣ l ∈ U(I)∨Z , a(l) ≠ 0 }.(8.3)

Note that νσ ,geom(F) is in 1/2 +Z when σ is irregular and the weight k satisfies
χ(−Ew) = (−1)k+1 so that νσ(F) is odd.

Geometric interpretation of νσ(F) is as follows. Recall that the ray σ corresponds to
a boundary divisor D(σ) of the partial compactification X(I)Σ of X(I) =D/U(I)Z.
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The line bundleL⊗k ⊗ χ descends to a line bundle overX(I), again denoted byL⊗k ⊗
χ. The point is that, since s⊗k

I ⊗ 1χ is U(I)Z-invariant, it descends to a frame of L⊗k ⊗
χ over X(I), and we use this frame to extend L⊗k ⊗ χ to a line bundle over X(I)Σ , still
denoted by the same notation. Namely, s⊗k

I ⊗ 1χ extends to a frame of the extended line
bundle by definition. The property l ∈ CI = CI

∨
in the Fourier expansion implies that

a modular form F extends holomorphically over X(I)Σ as a section of L⊗k ⊗ χ.

Proposition 8.4 νσ(F) is equal to the vanishing order of F as a section of L⊗k ⊗ χ over
X(I)Σ along the boundary divisor D(σ).

Proof Recall that σ defines a sub-toroidal embedding X(I)σ ⊂ X(I)Σ , the unique
boundary divisor of which is a Zariski open set of D(σ) and is the quotient torus (or its
analytic open set) defined by the quotient lattice U(I)Z/Zwσ . The character group of
this boundary torus is σ⊥ ∩U(I)∨Z. We choose a vector lσ ∈ U(I)∨Z such that (lσ , wσ) =
1 and put q = q lσ , which is a character of T(I). Then q extends holomorphically
over X(I)σ with D(σ) = (q = 0). The Fourier expansion (8.2) can be arranged as
f = ∑m≥0 φm qm where

φm = ∑
l∈σ⊥∩U(I)∨

Z

a(l + mlσ)q l .

This is a Taylor expansion of f along the divisor D(σ). Since (l + mlσ , wσ) = m for
l ∈ σ⊥ ∩U(I)∨Z, we find that

νσ(F) = min{ m ∣ φm /≡ 0 }.

This proves our assertion. ∎

We can also give a geometric interpretation of νσ ,geom(F) when

s⊗k
I ⊗ 1χ is invariant under U(I)⋆Z = ({±id} ⋅U(I)Q) ∩ Γ.(8.4)

This holds, e.g., when k is even with χ = 1 and when k ≡ b mod 2 with χ = det. Recall
that U(I)′Z is the image of U(I)⋆Z in U(I)Q. Under the condition (8.4), the function
f (Z) on the tube domain DI is invariant under translation by U(I)′Z, so the index
lattice in the Fourier expansion reduces to (U(I)′Z)∨ ⊂ U(I)∨Z. In other words, a(l) =
0 if l /∈ (U(I)′Z)∨, so νσ ,geom(F) is an integer. The frame s⊗k

I ⊗ 1χ descends to a frame
of L⊗k ⊗ χ over

X(I)′ =D/U(I)⋆Z =D/U(I)′Z ,

using which we can extend L⊗k ⊗ χ to a line bundle over (X(I)′)Σ . The ray σ
corresponds to a boundary divisor D(σ)′ of (X(I)′)Σ . We have
• D(σ)′ = D(σ) in X(I)Σ = (X(I)′)Σ when I is regular.
• D(σ)′ ≃ D(σ) with X(I)Σ → (X(I)′)Σ doubly ramified along D(σ)′ when σ is

irregular.
• D(σ)′ is the quotient of D(σ) by U(I)′Z/U(I)Z ≃ Z/2 with X(I)Σ → (X(I)′)Σ

unramified along D(σ)′ when I is irregular but σ is regular.
Then we see, either from Proposition 8.4 or by a similar argument, the following.

https://doi.org/10.4153/S0008414X24000129 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24000129


28 S. Ma

Proposition 8.5 When (8.4) holds, νσ ,geom(F) is equal to the vanishing order of F as
a section of L⊗k ⊗ χ over (X(I)′)Σ along the boundary divisor D(σ)′.

The vanishing order at a one-dimensional cusp J is reduced to the case considered
above. We choose a rank 1 primitive sublattice I ⊂ J and let σJ be the isotropic ray in
U(I)R corresponding to J. Then we define

νJ(F) = νσJ(F), νJ ,geom(F) = νσJ ,geom(F).

The Taylor expansion f = ∑m φm qm in this case is nothing but the Fourier–Jacobi
expansion, and φm is essentially the mth Fourier–Jacobi coefficient. Thus, νJ(F) is the
minimal degree of nonzero Fourier–Jacobi coefficients.

We also have the following geometric interpretation of νJ(F). We use the U(J)Z-
invariant frame s⊗k

I ⊗ 1χ to extend L⊗k ⊗ χ to a line bundle over X(J). This is the
pullback of the extended line bundle L⊗k ⊗ χ over X(I)Σ by the etale gluing map
X(J) → X(I)Σ . This extension does not depend on the choice of I up to isomorphism.
Then νJ(F) is the vanishing order of F as a section of the extended line bundle L⊗k ⊗
χ over X(J) along the boundary divisor. Similarly, when s⊗k

I ⊗ 1χ is invariant under
U(J)⋆Z, νJ ,geom(F) equals to the vanishing order of F along the boundary divisor of
D/U(J)⋆

Z
=D/U(J)′

Z
.

8.3 Pluricanonical forms

In this subsection, we compare the vanishing order of modular forms and pluricanon-
ical forms along the boundary divisors. Recall that we have a canonical isomorphism

L⊗b ⊗ det ≃ KD

over D, as a consequence of the isomorphism KPLC
≃ OPLC

(−b − 2) ⊗ det and the
adjunction formula. Let I be a rank 1 primitive isotropic sublattice of L. The above iso-
morphism descends to L⊗b ⊗ det ≃ KX(I)′ over X(I)′ =D/U(I)⋆Z. Both line bundles
are extended over the partial compactification (X(I)′)Σ in the respective manner:
L⊗b ⊗ det is extended by the frame s⊗b

I ⊗ 1det, while KX(I)′ is extended to K(X(I)′)Σ .

Proposition 8.6 (cf. [15]) Over (X(I)′)Σ , the above isomorphism extends to

L⊗b ⊗ det ≃ K(X(I)′)Σ (∑
σ

D(σ)′) ,

where σ ranges over all rays in Σ and D(σ)′ is the boundary divisor of (X(I)′)Σ

corresponding to σ.

Proof By the isomorphism L⊗b ⊗ det ≃ KD, the frame s⊗b
I ⊗ 1det of L⊗b ⊗ det

corresponds to a flat canonical form ωI on the tube domainDI ⊂ U(I)C, because both
extend over D(I) ≃ U(I)C and are U(I)C-invariant. Let σ be a ray in Σ and w′σ be the
generator of σ ∩U(I)′Z. We take a vector lσ ∈ (U(I)′Z)∨ with (lσ , w′σ) = 1 and extend
it to a basis of (U(I)′Z)∨. This defines a coordinate Z1 = (lσ , ⋅), Z2 , . . . , Zb on U(I)C.
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We have ωI = dZ1 ∧ ⋅ ⋅ ⋅ ∧ dZb up to constant. Then q = q lσ , Z2 , . . . , Zb define a local
coordinate around a point of D(σ)′ ⊂ (X(I)′)Σ with D(σ)′ = (q = 0). Since we have

s⊗b
I ⊗ 1det = dZ1 ∧ ⋅ ⋅ ⋅ ∧ dZb =

dq
q
∧ dZ2 ∧ ⋅ ⋅ ⋅ ∧ dZb

around a point of D(σ)′, this proves our assertion. ∎

This is the situation at a local chart for the boundary. We pass to the global situation.

Proposition 8.7 Let F be a modular form of weight mb and character detm with respect
to Γ and ωF be the corresponding rational m-canonical form on F(Γ)Σ . Let I be a zero-
dimensional cusp, σ be a ray in ΣI , and Δ(σ) be the corresponding boundary divisor of
F(Γ)Σ . Then the vanishing order νΔ(σ)(ωF) of ωF along Δ(σ) is given by

νΔ(σ)(ωF) = νσ ,geom(F) − m =
⎧⎪⎪⎨⎪⎪⎩

νσ(F) − m, σ ∶ regular,
1
2 νσ(F) − m, σ ∶ irregular.

Proof Let π∶ (X(I)′)ΣI → F(Γ)Σ be the projection. By Propositions 8.5 and 8.6, we
have

νD(σ)′(π∗ωF) = νσ ,geom(F) − m.

By Proposition 7.2(1), π is not ramified along D(σ)′, regardless of whether σ is
positive-definite or isotropic. This implies that νD(σ)′(π∗ωF) = νΔ(σ)(ωF). ∎

When σ = σJ is isotropic, the above equality can be written as

νΔ(σJ)(ωF) = νJ ,geom(F) − m,

where Δ(σJ) is the boundary divisor of F(Γ)Σ over J.
By Gritsenko, Hulek, and Sankaran [7], every irreducible component of the rami-

fication divisor of D→ F(Γ) has ramification index 2 (and is defined by a reflection).
Since every boundary divisor of F(Γ)Σ is of the form Δ(σ) for some ray σ at some
zero-dimensional cusp I, Proposition 8.7 implies the following.

Corollary 8.8 The m-canonical form ωF extends holomorphically over the regular
locus of F(Γ)Σ if and only if the following hold:
(1) νR(F) ≥ m at every irreducible component R of the ramification divisor of D→

F(Γ).
(2) νσ(F) ≥ m at every regular ray σ for every zero-dimensional cusp.
(3) νσ(F) ≥ 2m at every irregular ray σ for every irregular zero-dimensional cusp.

Note that extendability at the boundary divisors over the one-dimensional cusps is
encoded in the conditions (2) and (3) at isotropic rays σ for adjacent zero-dimensional
cusps.

8.4 Low slope cusp form criterion

We now arrive at our principal purpose. Theorem 1.2 follows from the case k < b in
the following.
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Theorem 8.9 Let L be a lattice of signature (2, b) with b ≥ 9. Let Γ be a subgroup of
O+(L) of finite index. We take a Γ-admissible collection of fans Σ = (ΣI) such that ΣI is
basic with respect to U(I)′Z = U(I)Q ∩ ⟨Γ,−id⟩ at each zero-dimensional cusp I. Assume
that we have a cusp form F of some weight k and character with respect to Γ satisfying
the following:
(1) At every irreducible component R of the ramification divisor of D→ F(Γ), we have

νR(F)/k > 1/b.
(2) At every regular ray σ of ΣI at every zero-dimensional cusp I, we have νσ(F)/k >

1/b.
(3) At every irregular ray σ of ΣI at every irregular zero-dimensional cusp I, we have

νσ(F)/k > 2/b.
Then F(Γ) is of general type.

Proof The following argument is a slight modification of the proof of [7, Theorem
1.1], avoiding the use of a neat cover.

Replacing F with its power, which does not change the slopes ν∗(F)/k, we may
assume that the character χ is trivial. We first consider the case b ∤ k. By further
replacing F with its power F2N

, where N is determined by [k/b] + 2−N−1 ≤ k/b <
[k/b] + 2−N , we may assume that k/b ≥ [k/b] + 1/2 so that [2k/b] = 2[k/b] + 1. We
write N0 = [k/b] + 1. Then F has vanishing order ≥ N0 at the ramification divisors
of D→ F(Γ) and at the regular boundary divisors, and vanishing order ≥ 2N0 at
the irregular boundary divisors. We denote by M l(Γ) the space of Γ-modular forms
of weight l with trivial character. For an even number m, we consider the subspace
Vm = Fm ⋅ M(bN0−k)m(Γ) of MbN0 m(Γ). Modular forms in Vm have vanishing order
≥ mN0 at the interior ramification divisors and at the regular boundary divisors, and
vanishing order ≥ 2mN0 at the irregular boundary divisors. Thus, the corresponding
mN0-canonical forms extend holomorphically over the regular locus of F(Γ)Σ by
Corollary 8.8. By our choice of Σ, F(Γ)Σ has canonical singularities at the bound-
ary points by Proposition 7.4, and the interior F(Γ) has canonical singularities by
Gritsenko, Hulek, and Sankaran [7]. Therefore, these mN0-canonical forms extend
holomorphically over a desingularization X of F(Γ)Σ . Since bN0 > k, we have

dim Vm = dim M(bN0−k)m(Γ) ∼ c ⋅ mb (m →∞)

for some c > 0, so we find that KX is big.
When b ∣ k, we replace F with the product of a sufficiently large power of F and a

modular form of weight indivisible by b. This perturbs the slopes ν∗(F)/k only by ε,
so the inequalities in (1)–(3) still hold. Then the same argument works. ∎

Remark 8.10 If we replace “>” in the conditions (1)–(3) by “≥,” then the conclusion
will be weakened to “F(Γ) has nonnegative Kodaira dimension.” A power of F gives
a nonzero pluricanonical form.

Geometric explanation of Theorem 8.9 is as follows. We have the Q-linear equiva-
lence

KF(Γ)Σ ∼Q bL − B/2 − Δre g − Δ irr
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over F(Γ)Σ , where B is the interior branch divisor and Δre g , Δ irr are the regular
and irregular boundary divisors, respectively. The coefficients of B and Δ irr will be
multiplied by 2 when pulled back to local charts. The existence of the cusp form
F means that b′L − B/2 − Δre g − Δ irr is Q-effective for some b′ < b, b′ ∈ Q. (To be
explicit, b′ = k/N0 in the case b ∤ k in the proof.) Thus, we have

KF(Γ)Σ ∼ (Q-effective) + (b − b′)L = (Q-effective) + (big) = (big),

and the singularities do not impose obstruction.
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