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Abstract
Cyclic proof systems permit derivations that are finite graphs in contrast to conventional derivation trees.
The soundness of such proofs is ensured by imposing a soundness condition on derivations. The most
common such condition is the global trace condition (GTC), a condition on the infinite paths through
the derivation graph. To give a uniform treatment of such cyclic proof systems, Brotherston proposed an
abstract notion of trace. We extend Brotherston’s approach into a category theoretical rendition of cyclic
derivations, advancing the framework in two ways: first, we introduce activation algebras which allow for
a more natural formalisation of trace conditions in extant cyclic proof systems. Second, accounting for the
composition of trace information allows us to derive novel results about cyclic proofs, such as introducing
a Ramsey-style trace condition. Furthermore, we connect our notion of trace to automata theory and prove
that verifying the GTC for abstract cyclic proofs with certain trace conditions is PSPACE-complete.

Keywords: Cyclic proof theory; category theory; fixed-point logic; Mu-calculi

1. Introduction
In a cyclic proof system, proofs are finite graphs which represent the ill-founded derivations
obtained by unravelling them. Broadly speaking, the logics benefiting from cyclic proofs often
feature notions of (co-)induction or fixed points (e.g., Brotherston 2006; Das 2021; Fortier and
Santocanale 2013; Niwiński and Walukiewicz 1996; Simpson 2017; Sprenger and Dam 2003).
Differing from conventional proof systems, cyclic systems typically eschew explicit induction
axioms which can instead be simulated by cyclic derivations. Cut-free cyclic proof systems lend
themselves well to proof theoretic investigations (e.g., Afshari and Leigh 2017; Afshari et al. 2021;
Marti and Venema 2021) and proof search procedures (e.g., Brotherston et al. 2011, 2012; Tellez
and Brotherston 2017).

Since cyclic proofs contain infinite paths, their soundness cannot be reduced to the local sound-
ness of their derivation rules. Instead, one usually needs to impose further soundness conditions
on these paths. The most common such condition is known as the global trace condition (GTC).
While the concrete formulation of the trace condition differs between logics, it usually adheres to
a certain form: a path satisfies the trace condition if it has a suffix along which some parameter
(such as a term or fixed-point quantifier) can be traced and which progresses (e.g., decreases or is
unfolded) infinitely often.

Motivated by this structural similarity, Brotherston (2006) developed an abstract framework to
uniformly represent and reason about cyclic proof systems. The formalism has been used to give
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a general proof of the decidability of proof checking for cyclic proofs and to study various trans-
formations of cyclic derivations which maintain the GTC. While Brotherston’s notion of trace
condition encompasses most cyclic proof systems in the literature, it does not readily capture the
common trace condition of μ-calculi, which hold a prominent position in cyclic proof theory.

This article introduces an abstract representation of cyclic proof systems which extends
Brotherston’s approach. It is formed by an abstract, category theoretical rendition of cyclic deriva-
tions and their trace conditions. By replacing Brotherton’s notion of single progress points with
a more nuanced, algebraic notion of progress, we are able to succinctly express most trace
conditions, including those of μ-calculi. Our categorical formalism, in addition, allows for the
composition of trace information, yielding two novel results: derivation compression and an alter-
native soundness condition. Derivation compression allows a cyclic derivation with n simple
cycles to be represented as a graph of size O(n), which we believe should yield performance-
gains in implementations of, for example, cyclic proof checking algorithms. Second, we give a
soundness condition on derivations that induces a proof checking algorithm reliant on Ramsey’s
theorem instead of automata-theoretic machinery. While a similar condition has been known
in the field of program termination (Lee et al. 2001), this is, to the best of our knowledge, the
first time such a condition has been considered for cyclic proofs. Furthermore, we reprove some
known results to demonstrate applicability of our representation in cyclic proof theory: we show
decidability of proof checking and regularisability of ill-founded proofs in finite proof systems via
automata theory. Lastly, we show that the proof checking problem for our abstract notion of proof
is PSPACE-complete.

Overview. In Section 2, we introduce cyclic proof systems, the modal μ-calculus serving as a
concrete example which is frequently revisited throughout the rest of the article. Section 3 presents
our abstract notion of trace condition which is then used in Section 4 to introduce an abstract
notion of cyclic derivation. In Section 5, we give a soundness condition, equivalent to the GTC,
inspired by a result from program termination. Section 6 relates our abstract notion of trace to
prevalent uses of automata theory in cyclic proof theory. In Section 7, we give a proof of the
PSPACE-completeness of checking the GTC of abstract cyclic proofs with certain kind of trace
conditions. We close with a discussion of related and future work in Section 8.

This article is an extended version of Afshari and Wehr (2022) with the following notable
additions.

(1) The notion of trace interpretations is introduced in Section 3 to formally express the
connection of concrete and abstract cyclic proofs.

(2) The connection between our notion of trace categories and the most common uses of
automata theory in cyclic proof theory is included in Section 6.

(3) Section 7 is extended to incorporate a complete proof of PSPACE-hardness. By applying
the automata-theoretic results of Section 6, it is shown that proof checking for certain trace
categories is in PSPACE.

2. Cyclic Proof Systems
We begin by giving a general account of cyclic proof systems and their associated notion of cyclic
proof. We illustrate the definitions by presenting a cyclic proof system for the modal μ-calculus
from the literature.

A tree is a finite, non-empty set of sequences T ⊆ω∗ which is prefix closed, that is, if tn ∈ T for
t ∈ω∗ and n ∈ω then t ∈ T as well. We call t ∈ T a node of T and any tn ∈ T a child of t. A node
t ∈ T is a leaf of T if it has no children. The root of any tree T thus is the empty sequence ε ∈ω∗.
A cyclic tree is a pair C= (T, β) consisting of a tree T and a partial function β : Leaf(T)→ T
mapping (some) leaves of T to nodes of T with β(s) �∈ dom(β) for all s ∈ dom(β). Each s ∈ dom(β)
is called a bud and β(s) its companion.
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Figure 1. Derivation rules of the modal μ-calculus. � ranges over finite sets of formulas; ϕ[ψ/x] denotes the standard
substitution ofψ for x in ϕ.

A derivation system is a triple (SEQ,R, ρ) consisting of a set of sequents SEQ, a set R
of derivation rules and a rule interpretation ρ :R→ SEQ+ such that for each r ∈R, ρ(r)=
(�,	1, . . . ,	n) ∈ SEQn+1 for some n ∈ω. In this case, we call � the conclusion of r and the
	i its premises. Henceforth, we refer to a derivation system (SEQ,R, ρ) simply by R. An
R-pre-proof is a triple
= (C, λ, δ) consisting of a cyclic tree C= (T, β) together with a labelling
λ : T→ SEQ such that λ(t)= λ(β(t)) for every t ∈ dom(β). δ : T \ dom(β)→R is a function
with ρ(δ(t))= (�,	1, . . . ,	n), λ(t)= � and λ(ti)=	i where Chld(t)= {t1, . . . , tn} for each
t ∈ dom(δ). The sequent λ(ε) is called the endsequent of
.

We denote by PP(R) the set of R-pre-proofs. A cyclic proof system is a tuple (SEQ,R, ρ, PFS)
consisting of a derivation system (SEQ,R, ρ) and a set PFS⊆ PP(R) calledR-proofs. A pre-proof
is said to satisfy the soundness condition of R if is an R-proof. An R-proof with endsequent � is
called a proof of �. We extend the naming convention for derivation systems to cyclic derivation
systems, referring to (SEQ,R, ρ, PFS) byR.

To illustrate these notions, we present a cyclic proof system for themodalμ-calculus. It will also
serve as an example motivating the abstract definitions of Sections 3 and 4. This presentation of
the system is taken fromAfshari and Leigh (2017) and is an adaptation of the tableaux of Niwiński
and Walukiewicz (1996). The choice of logic for this example is secondary, the main focus being
the cyclic aspects of the proof system.

For a set PROP of propositional letters and a countable set VAR of variables, the μ-formulas are
given by the following grammar:

ϕ ∈ FORM ....= p | ¬p | x | ϕ ∧ ϕ | ϕ ∨ ϕ |�ϕ | ♦ϕ | μx.ϕ | νx.ϕ p ∈ PROP, x ∈VAR

If x, y ∈VAR occur in ϕ, we say x subsumes y, writing x<ϕ y, if σy.ψ occurs as a subformula
of ϕ for some σ ∈ {μ, ν} and ψ , and furthermore x is free in σy.ψ . If the relation <ϕ is a strict
preorder, we call ϕ well-named. In the remainder of this article, we assume allμ-formulas are well-
named. This is a reasonable restriction as anyμ-formula is α-equivalent to a well-named one. Any
μ-formula is positive in all variables. The fixed-point formulasμx.ϕ and νx.ϕ denote, respectively,
the least and greatest fixed point of the semantic counterpart to the function x 	→ ϕ(x). These are
well defined by the observation on positivity and the Knaster–Tarski theorem. The semantics of
the modalities and connectives are as in the modal logic K.

The derivation rules of the cyclic μ-calculus are given in Fig. 1. The sequents of this calculus
are finite sets of μ-formulas. Not all pre-proofs derive valid endsequents. For example, μx.�x
is invalid but is concluded by the μ-pre-proof given in Fig. 2. It is thus necessary to impose an
additional soundness condition which delineates μ-proofs from μ-pre-proofs.

A branch through a pre-proof ((T, β), λ, δ) is an infinite sequence t ∈ Tω such that t0 = ε and
for any ti, either (a) ti+1 ∈Chld(ti) or (b) ti ∈ dom(β) and ti+1 = β(ti). This induces the sequence
(�i)i∈ω ∈ SEQω with �i ..= λ(ti) and the partially defined r :ω→R with ri ..= δ(ti), both of which
we use interchangeably with t ∈ Tω to denote a branch.

Given a branch (�i)i∈ω through a μ-pre-proof, a formula ϕ′ ∈ �i+1 is called a precursor of
ϕ ∈ �i, written ϕ′ ←i ϕ, if ti+1 ∈Chld(ti) and either ϕ is principal in ri, that is, ϕ is ‘altered by
ri’, and ϕ′ is one of the residual formulas, or ϕ is not principal in ri and ϕ = ϕ′. If ti ∈ dom(β)
and ϕ = ϕ′ then ϕ′ ←i ϕ as well. A sequence of formulas (ϕi)i∈ω is called a trace along (�i)i∈ω if
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Figure 2. A μ-pre-proof of an invalid μ-formula. The dashed arrow represents the bud-
companion relation β.

ϕi+1←i ϕi for all i ∈ω. It is easily observed that the subsumption order is preserved along traces,
that is, <ϕi+1 ⊆<ϕi whenever ϕi+1←i ϕi, which is why we henceforth associate with each trace
(ϕi)i∈ω a global subsumption order <ϕ ..=<ϕ0 =

⋃
i∈ω <ϕi .

Let (�i)i∈ω be a branch through a μ-pre-proof and (ϕi)i∈ω a trace along it. The trace is called a
ν-trace if there exists an x ∈VAR(ϕ0) such that ϕi = νx.ψ and ϕi+1 =ψ[ϕi/x] for infinitely many
i ∈ω, and furthermore for any y ∈VAR(ϕ0) if there are infinitely many ϕi =μy.θ then x<ϕ y. In
other words, there is a greatest fixed-point variable x that occurs infinitely often and subsumes all
infinitely occurringμ-variables. Aμ-proof is aμ-pre-proof that satisfies the global trace condition,
that is, every infinite branch has a ν-trace. As the unique branch through the pre-proof in the
example of Fig. 2 does not have a ν-trace, it fails to be a proof.

At this point, we want to clearly distinguish between a ‘trace condition’ and a ‘global trace
condition’. A trace condition is a specification of which traces along infinite branches of a pre-
proof are considered progressing. A global trace condition is a certain type of condition on cyclic
proofs, usually formulated via a trace condition, used to ensure soundness of proofs. Alternative
soundness conditions have been considered, such as the reset condition (Jungteerapanich 2009),
induction orders (Sprenger and Dam 2003) and trace manifolds (Brotherston 2006). These sound-
ness conditions are often still defined in reference to a trace condition, or at least its implicit notion
of progress. It is, therefore, possible for two differently formulated soundness conditions for a cer-
tain derivation system to share the same underlying trace condition. For example, this is the case
for the GTC of the μ-proofs specified above and the reset proof system for the modal μ-calculus
given by Stirling (2013).

3. Abstracting the Trace Condition
In this section, we demonstrate our formalism for capturing the trace conditions of cyclic proof
systems. It encompasses two levels of abstraction: The notion of a trace category which captures
what it means to be a trace condition, and a family of concrete trace categories, generated by the
notion of an activation algebra.

An abstract notion of trace condition requires an abstract notion of branches through a proof.
Working in a category theoretical framework, we observe that branches are infinite sequences
of rule applications and identify them with infinite sequences of morphisms called paths. A trace
condition is then a condition on such paths which is invariant under certain path transformations.

A semi-category is a category which may not have (all) identity morphisms. That is,
a semi-category C consists of a collection of objects Ob(C) and collections of morphisms
HOMC(X, Y) between each pair of objects X, Y ∈Ob(C). There is a composition ◦ :
X, Y , Z ∈
Ob(C). HOMC(Y , Z)×HOMC(X, Y)→HOMC(X, Z) which is associative. A semi-functor is a
semi-category homomorphism. That is, for semi-categories C,D, a semi-functor F : C→D con-
sists of a map on objects F0 :Ob(C)→Ob(D) and a further map F2 on morphisms of C such that
for f : X→ Y we have F1(f ) : F0(X)→ F0(Y). F1 distributes over the composition operation, that
is, F1(g ◦ f )= F1(g) ◦ F1(f ). As is also common for standard functors, we denote both F0 and F1
by F.

The standard <-ordering of the natural numbers ω induces a semi-category whose objects
are the natural numbers and in which there is a (unique) morphism between n and m, denoted
‘n<m : n→m’, if n<m. The ≤-ordering induces an analogous proper category. In this article,
we denote both of these categories by ω; which one is meant will be clear from the context.
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A path through a category T is a functor P : ω→ T . Given P, P′ : ω→ T , we call P a subpath
of P′, written P⊆ P′, if there is a semi-functor S : ω→ω between the ω-semi-categories such that
P= P′ ◦ S. The transitive, symmetric closure of⊆ is denoted∼. This means P⊆ P′ holds if P′ can
be transformed into the P by applying a combination of two path transformations: (1) discarding
a finite prefix of path P′, for example, by taking S(m) ..=m+ n. (2) Composing morphisms along
P′. For example, if P′ is of the form

X0
0

R00−→ X1
0

R10−→ · · · Xn0
0

Rn00−−→ X0
1

R01−→ · · · Xn1
1

Rn11−−→ X0
2

R02−→ · · · Xn2
2

Rn22−−→ . . .

then P⊆ P′ for the path P below

X0
0

Rn00 ◦···◦R00−−−−−−→ X0
1

Rn11 ◦···◦R01−−−−−−→ X0
2

Rn22 ◦···◦R02−−−−−−→ . . .

witnessed by S(i) ..=∑
j<i (nj + 1).

Definition 3.1. Given a category T , a trace condition is a predicate on paths invariant under ∼.
That is, for any two paths P∼ P′ the trace condition holds for P if and only if it holds for P′.

A trace category is a category equipped with a trace condition.

Note that the notion of trace category in the above definition is unrelated to the ‘traced
monoidal categories’ of Joyal et al. (1996).

Remark 3.1. Any trace condition is invariant under taking suffixes and composition. All concrete
trace conditions in the literature are closed under taking suffixes, making closure under suffixes a
natural criterion for identifying trace conditions.

Composition of rules along branches is not part of cyclic proof systems and hence there is a priori
no precedent for it. The cumulative nature of trace conditions, however, suggests that composition
of traces should not invalidate them. Indeed, all trace categories which we use to model concrete
trace conditions from the literature have a trace condition closed under composition. Furthermore,
it is precisely this closure condition that has proven instrumental in deriving new results in our
framework.

The remainder of this section is concerned with defining a family of concrete trace categories
which can model the trace conditions of many cyclic proof systems we know of.

Definition 3.2. An activation algebra is a tupleA= (A,≤,∨, 0, α) consisting of a finite semilattice
(A,≤,∨, 0) and an activation element α ∈A where 0 �= α. We often write A to refer to the carrier
set A.

Definition 3.3. Let A be an activation algebra. The A-activated trace category TA has as its
objects the finite sets. The morphisms between sets X, Y are relations R⊆ X×A× Y. The iden-
tities are 1X ..= {(x, 0, x) | x ∈ X}. We often write xRay to mean (x, a, y) ∈ R. Given morphisms
R : X→ Y , R′ : Y→ Z, their composition is specified by (x, c, z) ∈ R′ ◦ R iff

∃y ∈ Y∃a, b ∈A. (x, a, y) ∈ R and (y, b, z) ∈ R′ and a∨ b= c.
A path P : ω→ TA satisfies the trace condition if there exists a subpath P′ ⊆ P and a sequence

σ : 
i ∈ω.P′(i) along it such that σiP′(i< i+ 1)ασi+1 for all i ∈ω.
Example 3.1. The simplest example of an activation algebra is given by the simplest semilattice of at
least two elements: the binary Boolean algebraB= {�,⊥}. The choice α ..=� is forced as necessarily
⊥= 0 �= α. This activation algebra is implicit in Brotherston’s (2006) abstract notion of trace and
suffices to model most trace conditions in the literature.

Example 3.2. The activation algebra used to formalise the trace condition of the modal μ-calculus
is the three-value failure algebra F ..= ({0, 1, 2},≤,∨, 0, 1). In this algebra, the value 2 can be used to
represent a ‘failure’ state (see the proof of Proposition 3.1).
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Example 3.3. More complex examples are the ‘k out of n’ algebras for 0< k≤ n given by
(n
k
)

..=
(A,≤,∨, ∅, α) where A ..= {X⊆ n | |X|< k} ∪ {α}, the order ≤ is such that X ≤ Y iff X⊆ Y for
X, Y ⊆ n, and a≤ α for all a ∈A. More concretely, observe the Hasse diagram of

(3
2
)
.

∅

{1}{0} {2}
α

The idea behind
(n
k
)
is to view the singleton sets {i} as ‘events’ which can occur along a trace. To

achieve activation, k distinct ‘events’ need to take place along a segment. As opposed to B and F, we
are not yet aware of a cyclic proof system whose trace condition is best expressed in terms of some(n
k
)
(except of course

(1
1
)
which the same as B). We conjecture that cyclic proof systems whose trace

condition is naturally modelled in some non-trivial
(n
k
)
would require a kind of fairness condition of

their progressing traces.

Lemma 3.1. The trace condition in Definition 3.3 is well defined, that is, it fulfils the invariance
condition of Definition 3.1.

Proof. It suffices to prove invariance under ⊆. Let P⊆Q with P=Q ◦ S. Suppose P satisfies the
trace condition meaning there exists P′ ⊆ P with P′ = P ◦ S′ and a validating sequence σ . Then,
P′ ⊆Q via P′ =Q ◦ S ◦ S′, meaning σ is a validating sequence through a subpath of Q as well.

For the converse direction, let P=Q ◦ S and suppose Q satisfies the trace condition as wit-
nessed by Q′ =Q ◦ S′ and a sequence σ : 
i ∈ω.Q′(i). It remains to show that there is P′ ⊆ P and
a suitable sequence σ ′′ :
i ∈ω.P′(i) along it. By fixing b ..= S′(0) and analysing Definition 3.3, one
can conclude there are two sequences σ ′ : 
i ∈ω.Q(b+ i) and a : ω→A such that σ ′i Q(b+ i<
b+ i+ 1)ai σ ′i+1 with ai ≤ α. For ij ..= S′(j)− b, we then have σ ′ij = σj and

∨i<ij+1
i=ij ai = α. Now

construct the following sequence:

k0 ..= least i ∈ω such that S(i)≥ b
kn+1 ..= least i> kn s.t. S(kn)≤ S′(j)< S′(j+ 1)≤ S(i) for some j ∈ω

We claim setting S′′(i) ..= S(ki) induces the desired subpath P′ ..=Q ◦ S′′P with P′(i)= P(ki)
as witnessed by σ ′′ : 
i ∈ω.P′(i) given by σ ′′i ..= σ ′S(ki). For this, we need to check that σ ′′i+1 P′(i<
i+ 1)α σ ′′i+1. Let j ∈ω be such that S′′(i)≤ S′(j)< S′(j+ 1)≤ S′′(i+ 1). Then, P′(i< i+ 1)=
Q(b+ ij+1 ≤ S(ki+1)) ◦Q(b+ ij < b+ ij+1) ◦Q(S(ki)≤ b+ ij), meaning⎛⎜⎜⎜⎜⎜⎝σ ′′i ,

l<S(ki+1)∨
l=b+ij+1

al−b

︸ ︷︷ ︸
≤α

∨
l<ij+1∨
l=ij

al

︸ ︷︷ ︸
=α

∨
l<b+ij∨
l=S(ki)

al−b︸ ︷︷ ︸
≤α

, σ ′ki+1−b︸ ︷︷ ︸
=σ ′′i+1

⎞⎟⎟⎟⎟⎟⎠ ∈ P′(i< i+ 1)

and thus (σ ′′i , α, σ ′′i+1) ∈ P′(i< i+ 1) as desired.

We now proceed to demonstrate how trace categories can be used to specify the trace condi-
tions and, thereby, the GTCs of cyclic proof systems. Fix a derivation systemR= (SEQ,R, ρ) and
a trace category T . A trace interpretation ι :R→ T consists of a function ι : SEQ→Ob(T ) map-
ping sequents to their trace sets and for each rule r ∈R with ρ(r)= (�,	1, . . . ,	n) a morphism
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ri : ι(�)→ ι(	i) for each 1≤ i≤ n called a trace map. Let (C, λ, δ) be a pre-proof and t ∈ Tω be a
branch through C. Its corresponding path P :ω→ T is defined as follows:

P(i) ..= ι(λ(πi)) P(i< i+ 1) ..=
{
rj : ι(λ(πi))→ ι(λ(πi+1)) πi �∈ Leaf(T) and πi+1 = π j
1P(i) πi ∈ dom(β)

This induces a cyclic proof system ι(R) ..= (SEQ,R, ρ, PFS) in which PFS contains those R-pre-
proofs for which every induced path P :ω→ T through them satisfies the trace condition of T .

In the following, we demonstrate how to specify the trace condition for the modal μ-calculus
by a trace interpretation ι :μ→ F.

Definition 3.4. The trace interpretation ι : μ→ TF is given by ι(�) ..= {(ϕ, x) | ϕ ∈ � and
x ∈VARν(ϕ)} in which VARν(ϕ) ..= {x | x is bound by ν in ϕ}. For each r ∈μ with ρ(r)=
(�,	1, . . . ,	n), the trace maps ri : ι(�)→ ι(	) are defined by ri ..= {((ϕ, x), a∗, (ϕ′, x)) | ϕ′ ←i

r ϕ}
where a∗ is defined by:

a∗ ..=

⎧⎪⎨⎪⎩
2, if r instance of μ, ϕ =μy.θ , ϕ′ = θ[μy.θ/y] and y<ϕ x,
1, if r instance of ν, ϕ = νx.θ , ϕ′ = θ[νx.θ/x],
0, otherwise.

Proposition 3.1. The notion of μ-proofs and that induced by ι :μ→ F coincide.

Proof. It suffices to prove that a branch (�i)i∈ω through a μ-pre-proof has a ν-trace if and only if
its induced path P : ω→ TF satisfies the trace condition of TF.

Suppose (�i)i∈ω has a ν-trace (ϕi)i∈ω. Then there exists x ∈⋂
i∈ω VAR(ϕi) bounded by a

ν-quantifier and an increasing sequence (ji)i∈ω such that

(i) ϕji = νx.ψ and ϕji+1 =ψ[ϕji/x], and
(ii) no formula μy.θ with y<ϕ x is unfolded along (ϕi)i>j0 .

The subpath P ◦ S⊆ P induced by S(i) ..= ji and the sequence σi ..= (ϕji , x) witness that P satisfies
the trace condition: clearly always (σi, a, σi+1) ∈ P(ji, ji+1) for some a ∈ F. We know 1≤ a since
between �ji and �ji+1 , νx.ψ is unfolded, and further a< 2, as noμy.θ with y<ϕ x is unfolded after
j0, yielding a= 1 as desired.

Conversely, suppose P satisfied the trace condition. Then there exist S : ω→ω and σ : 
i ∈
ω. P(S(i)) such that (σi, 1, σi+1) ∈ P(S(i< i+ 1)) for every i ∈ω. Necessarily, σi = (ϕi, x) for some
fixed ν-variable x and ϕi ∈ �S(i). Furthermore, because the activation algebra element along that
trace is precisely 1, we can conclude that between �S(i) and �S(i+1):

(i) the formula νx.ψ corresponding to x in ϕi is unfolded (as 1≤ α),
(ii) no μy.θ with y<ϕ x is unfolded (as α < 2).

By scrutinising the derivation rules, it can be deduced that ϕS(0) can be ‘traced back’ to some ϕ ∈ �0
and subsequently completed into a trace (ϕ′i)i∈ω along (�i)i∈ω with ϕ′S(i) = ϕi. By the observations
above, this must be a ν-trace.

Remark 3.2. We have claimed that the trace condition given for the modal μ-calculus in Section 2
cannot be represented naturally in terms of the activation algebra B. From the description in
Section 2, it is clear that any natural representation of it as ι :μ→ TB must coincide with the
trace interpretation given in Definition 3.4 on trace objects and relations. That is, ι(�) must be
the set {(ϕ, x) | ϕ ∈ � and x ∈VARν(ϕ)} (or equivalent) and for a derivation rule with ρ(r)=
(�,	1, . . . ,	n) any ((ϕ, x), a, (ϕ′, y)) ∈ ri : ι(�)→ ι(	i) should be such that ϕ′ ←i

r ϕ and x= y.
It thus remains to describe how to assign the values a in the triples in ri. Clearly, non-unfolding
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rules should assign a= 0 and ν-unfoldings a= 1. For μ-unfoldings, if such an unfolding occurs
infinitely often, the trace should be ‘spoiled’. Neither an assignment of a= 0 nor a= 1 can model
this behaviour. The assignment of a= f in Definition 3.4, on the other hand, succinctly takes care of
this case.

For further examples of modelling of the trace conditions of cyclic proof systems in trace cat-
egories, in particular, those of cyclic arithmetic (Simpson 2017), HFLN (Kori et al. 2021) and
Grzegorczyk modal logic (Savateev and Shamkanov 2021), we refer the reader to Wehr (2021).

We close this section by stressing that the purpose of activation algebras is to specify trace
conditions of cyclic proof systems in a natural manner. Indeed, if naturality is of no concern, the
following result shows that the trace category TB, or equivalently the formalism of Brotherston
(2006), is sufficient to model the majority of trace conditions from the literature, including that of
the modal μ-calculus.

Concretely, the notion of naturality we allude to here is embodied in the fact that the informa-
tion of traces may be separated into two parts: the elements of the trace sets signify which objects
is being tracked, while the elements of the activation algebra describe how progress of these trace
objects is detected. Indeed, Theorem 3.1 is achieved by collapsing this separation. An example
of the importance of maintaining this distinction is given by (Leigh and Wehr 2023): the article
describes how to generate so-called reset proof systems for cyclic proof systems whose trace con-
dition is specified in terms of a trace interpretation into some A-activated category. One of the
examples considered there is the modal μ-calculus. The trace interpretation in terms of F (as in
Definition 3.4) leads to a very natural reset system, whereas the reset system induced by the trace
interpretation into B given by Theorem 3.1 would be highly artificial.

Theorem 3.1. For any activation algebra A, there exists a function I mapping objects of TA to
objects of TB andmaps R : X→ Y in TA to maps I(R) : I(X)→ I(Y) in TB. Furthermore, associate to
each path P :ω→ TA a path P̂ :ω→ TB given by P̂(i) ..= I(P(i)) and P̂(i< i+ 1) ..= I(P(i< i+ 1)).
Then P satisfies the trace condition iff P̂ does.

Proof. WritingA= (A,≤,∨, 0, α), take I(X) ..= X×A and, for R : X→ Y ,

I(R) ..= {((x, a),⊥, (y, a∨ b)) | a ∈A, xRby} ∪ {((x, a),�, (y, 0)) | a ∈A, xRby, a∨ b= α}
Suppose that P satisfied the trace condition. That means there is a subpath P ◦ S and a sequence
σ :
i ∈ω.P(S(i)) such that σiP(S(i))ασi+1. We claim that P̂ ◦ S is the witnessing subpath of P
with the sequence σ̂ :
i ∈ω.P̂(S(i)) given by σ̂i ..= (σi, 0). We prove that σ̂iP̂(S(i< i+ 1))�σ̂i+1:
There must be σi = x0, . . . , xn = σi+1 and a0, . . . , an−1 for n ..= S(i+ 1)− S(i) and b ..= S(i)
such that xjP(b+ j)ajxj+1 and α =∨

j<n aj. Then define x̂j ..= (xj,
∨

k<j−1 ak) and observe that
σ̂i = x̂0P̂(b)⊥x̂1P̂(b+ 1)⊥ . . . x̂n−1P̂(b+ n− 1)�(xn, 0)= σ̂i+1 because x̂n−1 = (xn−1,

∨
k<n−2 ak)

and (
∨

k<n−2 ak)∨ an−1 = α.
Conversely, suppose that P̂ satisfied the trace condition. Then there is a subpath P̂ ◦ S and a

sequence σ̂ :
i ∈ω.P̂(S(i)) such that σ̂iP̂(S(i< i+ 1))�σ̂i+1. There must be σi = (x0, a0), . . . ,
(xn, an)= σi+1 and b0, . . . , bn−1 ∈B for n ..= S(i+ 1)− S(i) and k ..= S(i) such that (xj, aj)
P̂(k+ j)bj(xj+1, aj+1) and �=∨

j<n bj. Per construction, the latter means there is some J < n
such that (xJ , aJ)P̂(k+ J)�(xJ+1, 0). Consider analogous σi+1 = (x′0, a′0), . . . , (x′m, a′m)= σi+2 and
b′0, . . . , b′m−1 ∈B such that (x′j, a′j)P̂(k′ + j)b

′
j(x′j+1, a′j+1) with k′ ..= S(i+ 1), yielding an analogous

J′ such that (x′J′ , a
′
J′)P̂(k+ J′)�(xJ′+1, 0). Intuitively, this means that the aj and a′j between

(xJ+1, 0) and (x′J′+1, 0) ‘accumulate’ activation algebra elements up to α. That is, there must be
c0, . . . , cl−1 ∈A with l ..= n− (J + 1)+ (J′ + 1) such that α=∨

j<l cj and xJ+1P(k+ J + 1< k+
J + 2)c0 . . . P(k+ n− 1< k+ n)cn−J−1xn = x′0P(k′ < k′ + 1)cn−J . . . P(k′+ J′ < k′ + J′+ 1)cl−1x′J′+1.
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In other words, xJ+1P(k+ J + 1< k′ + J′ + 1)αx′J′+1, which can be extended to x0P(k< k′ +m)α

x′m by observing that necessarily aj <α and a′j <α for all j< n and j<m, respectively, for the
original trace along P̂ to be successful. Based on this observation, we may conclude that the sub-
path P ◦ S′ of P with S′(i)= S(2i) satisfies the trace condition for the sequence σ ′ :
i ∈ω.P(S′(i))
with σ ′i ..= π1(σ2i), that is, π1(σ2i)P(S(2i< 2i+ 2))απ1(σ2i+2) as demonstrated above.

Remark 3.3. The statement of Theorem 3.1 is given in terms of functions, rather than functors. This
is so because the resulting functions fail to be functors on both accounts: preserving identities and
distributing over composition. The failure of identity preservation is easily observed. Notice that any
I(1X) will contain triples of the form ((x, α),�, (x, 0)) which the identities of TB do not contain. This
issue could be alleviated by taking the definition to be

I(R) ..= {((x, a),⊥, (y, a∨ b)) | a ∈A, xRby}
∪ {((x, a),�, (y, 0)) | a ∈A \ {α}, xRby, a∨ b= α}

instead, that is, explicitly excluding that kind of transition. However, as this still does not resolve the
distributivity over composition, we chose to forgo this in favour of a simpler definition and proof.

The failure of distributivity over composition is a bit more subtle. For this, suppose there were
a< b< c<α ∈A such that a∨ b= α and consider R ..= {(�, b, �)} and R′ ..= {(�, c, �)}. Then
clearly, (�, a) I(R)� (�, 0) I(R′)⊥ (�, c). However, as R′ ◦ R= {(�, b∨ c, �)}, the only two transitions
possible via I(R′ ◦ R) are (�, a) I(R′ ◦ R)⊥ (�, α) and (�, a) I(R′ ◦ R)� (�, 0). Thus, I(R′) ◦ I(R) �=
I(R′ ◦ R).

4. Abstract Cyclic Derivations
This section combines the abstract notions of branches, traces and the trace condition into an
abstract presentation of cyclic derivations. Abstract cyclic derivations (ACDs) are pairs (C, Tr) of
cyclic trees C and maps Tr which ‘decorate’ the edges of C with maps of a trace category. Such an
ACD is considered to be a proof if all paths which can be generated by traversingC satisfy the trace
condition imposed by the trace category. To express these ideas in a category theoretical manner,
we begin by giving a categorical representation of cyclic trees, by defining the (semi-)category
induced by the finite paths through these trees.

Fix a cyclic treeC= (T, β). The finite paths from s to t, denoted by PathC(s, t)⊆ T+, are defined
as the smallest sets satisfying the following three conditions:

(1) For any s ∈ T, we have s ∈ PathC(s, s),
(2) For any t, u ∈ T with u child of t, if p ∈ PathC(s, t) then pu ∈ PathC(s, u),
(3) For any t ∈ dom(β), if p ∈ PathC(s, t) then pβ(t) ∈ PathC(s, β(t)).

The category PC of paths through C= (T, β) has the nodes of T as its objects and fixes
HOMPC (s, t)= PathC(s, t). The identities are 1s = s : s→ s and, given morphisms p : s→ t and
q : t→ u, we define q ◦ p= pq′ where q= tq′ for q′ ∈ T∗. The semi-category PS

C of progressing
paths is the same as PC except that HOMPS

C
(s, t) ..= {p ∈ Path(s, t) | ∣∣p∣∣> 1}.

The informal notion of ‘decorating a cyclic tree with trace information’ can thus be expressed
as a functor.

Definition 4.1. An abstract cyclic derivation over a trace category T is a pair (C, Tr) consisting of
a cyclic tree C= (T, β) and a functor Tr : PC→ T such that for any s ∈ dom(β), Tr(s)= Tr(β(s))
and Tr(sβ(s))= 1Tr(s).

We delineate the abstract cyclic proofs from mere ACDs via a GTC.
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Figure 3. A μ-proof and its corresponding ACD, discussed in
Example 4.1.

Definition 4.2. Let D be an ACD given by (C, Tr : PC→ T ). A path through D is a path P :ω→ T
such that there exists a semi-functor P′ : ω→PS

C with P= Tr ◦ P′. D satisfies the GTC if every path
through D satisfies the trace condition of T . We call an ACD satisfying the GTC an abstract cyclic
proof.

Requiring P′ to be a semi-functor in the definition above rules out constant ‘paths’ obtained
via P(i) ..= Tr(s), P(i< i+ 1) ..= 1Tr(s) which are not generated by traversing the ACD along any
branch of the cyclic tree.

As ACDs serve as an abstract representation of pre-proofs, each pre-proof naturally induces an
ACD.

Definition 4.3. Let (SEQ,R, ρ, PFS) be a cyclic proof system whose soundness condition is induced
by a trace interpretation ι :R→ T . Any pre-proof (C, λ, δ) induces an abstract cyclic derivation
(C, Tr) with

Tr(s) ..= ι(λ(s)) Tr(s< si) ..= ri : ι(λ(s))→ ι(λ(si)) where r= δ(s)
Example 4.1. Consider the μ-pre-proof and its corresponding ACD depicted in Fig. 3. For the
sake of readability, we have opted to write the carrier sets of the ACD as simple sets of variables
x, y, etc., instead of sets of pairs (ϕ, x), (ψ , y), etc., since each variable occurs in only one of the
formulas in the sequent. Fully specified, the first set should be {(νx.x, x), (μy.νz.y, z)}. The anno-
tated morphisms are 1 ..= {(x, 0, x), (z, 0, z)}, Rx ..= {(x, 1, x), (z, 0, z)}, Ry ..= {(x, 0, x), (z, 2, z)} and
Rz ..= {(x, 0, x), (z, 1, z)}.

Note that (z, 2, z) ∈ Ry as y<ϕ z with ϕ ..=μy.νz.y. Theμ-pre-proof above has only one branch �
which has one ν-trace (that on x) and is thus a proof. Similarly, its corresponding path �̂ :ω→ TF is
a path through the ACD and satisfies the trace condition with S(i) ..= 5i and σ ..= i 	→ x. In principle,
verifying that the ACD is a proof would require checking infinitely many other paths P. This is
because paths through ACDs need not start at their root and a step P(i< i+ 1) may correspond
to a path segment p ∈ PathC(s, t) with

∣∣p∣∣> 2. However, as all such paths are subpaths of �̂, they
satisfy the trace condition by subpath invariance. Indeed, this observation extends to arbitrary ACDs
obtained by transforming concrete cyclic derivations: any path through an ACD is always a subpath
of �̂ for some branch � through the corresponding concrete cyclic derivation. This means that the
GTC in Definition 4.2, although it may have seemed stricter than needed, corresponds precisely to
that of concrete cyclic proof systems.

We close this section by showing that, via composition of trace maps, ACDs can be trans-
formed into equivalent ACDs whose number of nodes |T| is linear in their number of cyclic edges
|β|. For ACDs generated from concrete cyclic derivations, as defined in Definition 4.3, this will
usually result in a drastic reduction of |T|. The procedure can be viewed as a sort of ‘compres-
sion algorithm’ which could prove useful for implementing programs, such as proof checking
(cf. Theorem 5.3), that have |T| as one of their complexity parameters. Indeed, it seems the auto-
mated theorem prover CYCLIST already relies on a similar optimisation (see Brotherston et al.
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Figure 4. Compressing an ACD via the proce-
dure outlined in the proof of Theorem 4.1.

2012, Section 4.2) though we are not aware of a formal characterisation of this optimisation in the
literature. An example illustrating the procedure is given in Figure 4.

Theorem 4.1. Any D= ((T, β), Tr) can be transformed into D′ = ((T′, β ′), Tr′) such that D′ is a
proof if and only if D is a proof and

∣∣T′∣∣≤ 2 |β| + 1.

Proof. Fix B ..= im(β)∪ dom(β)∪ {ε | �s ∈ im(β).∀t ∈ im(β)∪ dom(β). s≤ t}, where s< t if t is
a proper prefix of s. We now construct a sequence of partial maps (fi : B→ω∗)i. Fix f0(s) ..= ε
where s is the <-least element of B. To construct fn+1 consider each s ∈ dom(fn), that is, every
s ∈ B which was added by the previous construction step. For each such s, let {t0, . . . , tn} ⊆ B be
all t ∈ B such that s can reach t without crossing any other node from B (formally, if there is
spt ∈ PathC(s, t) with p ∈ (T \ B)∗) and set fn+1(ti) ..= fn(s)i. Fixing f ..=⋃

n≤|B| fn and T′ ..= im(f ),
observe that f : B→ T′ is a<-isomorphism between B and T′. Thus C′ ..= (T′, β ′ ..= f ◦ β ◦ f−1) is
a cyclic tree with β ′(x)= y iff β(f−1(x))= f−1(y). Also, clearly

∣∣T′∣∣= |B| ≤ 2 |β| + 1.
To extend C′ to an ACD D′, take Tr′(s) ..= Tr(f−1(s)) for s ∈ T′. For any s< t ∈ T′, observe

that per construction of T′, there exists a unique path f−1(s)pstf−1(t) ∈ PathC(f−1(s), f−1(t)) with
the property that pst ∈ (T \ B)∗. Pick Tr′(st) ..= Tr(f−1(s)pstf−1(t)) and note that this is both well
defined and fully specifies Tr′ : PC′ → T . The claim now follows from the following fact, which is
easily verified: for any path P through D, there exists a path P′ ∼ P through D′ and vice versa.

5. A Ramsey-based Soundness Condition
This section presents a soundness condition on pre-proofs which is equivalent to the common
global trace condition. It is similar to the condition put forward by Lee et al. (2001) for the pur-
pose of program termination based on the size-change principle, a condition analogous to the
trace conditions of cyclic proof systems such those put forward in Sprenger and Dam (2003) and
Simpson (2017). The correctness proof of the soundness condition relies on Ramsey’s (1930) the-
orem, rather than the automata-theoretic methods prevalent in cyclic proof theory. We employ
the notation [A]n ..= {X⊆A | |X| = n}.
Theorem 5.1. Ramsey’s theorem. Let A be a countable set, C finite and n ∈ω. For any colouring
f : [A]n→ C, there exists a colour c ∈ C and a countable B⊆A such that f (X)= c for any X ∈ [B]n.

The central insight motivating the soundness condition is that the Ramsey theorem guarantees
the existence of certain well-behaved subpaths of paths through HOM-finite categories. For every
R : X→ X in a category T , the periodic R path is Rω : ω→ T with by Rω(i) ..= X and Rω(i< i+
1) ..= R. A morphism R : X→ X is idempotent if R= R ◦ R.

Lemma 5.1. Let P : ω→ T be a path and X ∈Ob(T ) such that P(i)= X infinitely often. If
HOMT (X, X) is finite, then Rω ⊆ P for some idempotent R : X→ X.

Proof. P(i)= X holding infinitely often means there exists Q⊆ P such that Q(i)= X for all i ∈ω.
Then Q({i, j}) ..=Q(i< j) induces a colouring Q : [ω]2→HOMT (X, X) on ω. By the Ramsey
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theorem, there exists R ∈HOMT (X, X) and an infiniteM⊆ω such thatQ(i< j)= R for i< j ∈M.
Then, Rω =Q ◦ Swhere S(i) ..= the ith leastm ∈M. The idempotence of R follows as R=Q(S(0<
2))=Q(S(1< 2)) ◦Q(S(0< 1))= R ◦ R.

Similarly to Definition 4.2, we limit our attention to the image of the trace functor T̂r : PS
C→ T

restricted to the category of progressing paths. Fixing some ACD (C, Tr), we thus write HOM(s, t)
for HOMim(̂Tr)(̂Tr(s), T̂r(t)), that is, the set of all trace maps that can be generated by walking along
some path p ∈ PathC(s, t) with

∣∣p∣∣> 1.

Definition 5.1. Let (C, Tr) be an ACD such that for every u ∈ dom(β),HOM(u, u) is finite. Then it
satisfies the Ramsey trace condition if for every u ∈ dom(β) and every idempotent R ∈HOM(u, u),
the path Rω : ω→ T satisfies the trace condition.

Theorem 5.2. Let (C, Tr) be an ACD such that for every u ∈ dom(β), HOM(u, u) is finite. Then it
satisfies the GTC if and only if it satisfies the Ramsey trace condition.

Proof. First, suppose D satisfies the GTC. Then pick u ∈ dom(β) and R ∈HOM(u, u). As R is in
the image of T̂r, we know that there exists some p ∈ PathC(u, u) with

∣∣p∣∣> 1 and Tr(p)= R. Then
Rω = Tr ◦ pω, meaning Rω is a path through D and thus satisfies the trace condition.

Conversely, if D satisfies the Ramsey trace condition and pick some path Tr ◦ P for
P : ω→PS

C. Clearly, there exists P⊆ P′ with
∣∣P′(i< i+ 1)

∣∣= 2 for all i ∈ω, that is, a represen-
tation of P which does not ‘skip’ any nodes. As P′ describes an infinite path through C, there
needs to be some u ∈ dom(β) with P′(i)= u for infinitely many i ∈ω and thus by Lemma 5.1 an
idempotent R : Tr(u)→ Tr(u) such that Rω ⊆ Tr ◦ P′ ⊇ Tr ◦ P. By the Ramsey trace condition, Rω
satisfies the trace condition, meaning Tr ◦ P does so as well.

Remark 5.1. By restricting our attention toHOMTrs(u, u), we guarantee that 1Tr(u) can only occur in
HOMTrs(u, u) if there is some p ∈ PathC(u, u) such that Tr(p)= 1Tr(u). This is important as in most
sensible trace categories – including all trace categories defined in this article – the path 1ωTr(u) does
not satisfy the trace condition. Naïvely including 1Tr(u) in the collection of idempotent morphisms to
consider when checking for GTC satisfaction would thus invalidate the condition given above.

Note that this soundness condition can only be stated in a setting like ours, in which the com-
position of trace maps is considered. This is because the closed collection of compositions, in this
case the HOM-set, gives rise to the finite colouring required to apply the Ramsey theorem. The
Ramsey trace condition induces a novel algorithm for checking whether an ACD is a proof. This
algorithm is analogous to that given for program termination by Lee et al. (2001). A more care-
ful analysis of algorithms of this type in the realm of cyclic proofs is undertaken by Cohen et al.
(2024).

Theorem 5.3. Let T be such that

(1) from R : X→ Y and R′ : Y→ Z one can compute R′ ◦ R : X→ Z,
(2) for R, R′ : X→ Y one can decide whether R= R′, and
(3) for idempotent R : X→ X one can decide whether Rω : ω→ T satisfies the trace condition.

Further let D= (C, Tr : PC→ T ) be an ACD with Tr computable and such that for every u, v ∈ T
the setHOM(u, v) is finite. Then it is decidable whether D is a proof.

Proof. By Theorem 5.2, we know that it suffices to check that for each u ∈ dom(β) and for all
idempotent R ∈HOM(u, u), Rω satisfies the trace condition. Thus, simply compute all of the
HOM-sets and then check each idempotent endomorphism via procedure (3). The HOM-sets are
computed by an iterative procedure with base cases:
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H0(u, v) ..= {Tr(uv) | if v child of u} ∪ {1Tr(u) | if u ∈ dom(β) and β(u)= v}
and the iterative steps, using the procedure from assumption (1),

Hi+1(u, v) ..=Hi(u, v)∪ {R ◦ R′ | w ∈ T, R′ ∈Hi(u,w), R ∈Hi(w, v)}.
We carry out the procedure until Hi(u, v)=Hi+1(u, v) for all u, v ∈ T, that is, until a fixed point
is reached, which can be detected using procedure (2). That such a fixed point will be reached
is guaranteed by the finiteness of the HOM(u, v). It is easily observed that H(u, v)=HOM(u, v).
Now check whether D satisfies the Ramsey trace condition by using the procedure (3) on all
R ∈H(u, u) for u ∈ dom(β) that satisfy R= R ◦ R, which can be detected by using the procedures
(1) and (2).

Remark 5.2. As the assumptions of Theorem 5.3 are phrased in terms of computability, nothing
more can be said about the complexity of the procedure in general. In Section 7, we prove the GTC,
and equivalently the RTC, to be PSPACE-complete for the category TA of any activation algebra A.
The witnessing decision procedure in PSPACE (see Lemma 7.4) is based on infinite word automata.
Lee et al. (2001) demonstrate how an approach similar to Theorem 5.3 can be carried out in PSPACE
by constructing theHOM-sets ‘not all at once’.

While the GTC and RTC are equivalent, it may seem that a procedure designed for verification of
the RTC could be more efficient than one implemented in terms of the GTC, based on the fact that in
the RTC case a property is only checked per simple cycle (rather than every possible path). However,
every morphism of a simple cycle’s HOM-set must be checked, which can lead to an exponential
blowup in cases such as TB. As pointed out above, procedures in PSPACE ‘designed for’ both are
known.

Corollary 5.1. Let A be a activation algebra. It is decidable whether an ACD (C, Tr : PC→ TA) is
a proof.

Proof. Simply observe that TA satisfies the criteria above. Notably, for an idempotent R : X→ X
in TA, one can decide whether Rω satisfies the trace condition by checking if there exists an x ∈ X
such that (x, α, x) ∈ R.
Corollary 5.2. It is decidable whether a μ-pre-proof constitutes a μ-proof.

Proof. For a μ-pre-proof 
, compute its induced ACD 
̂ over TF as in Definition 4.3 and
then decide whether 
̂ satisfies the GTC via Corollary 5.1. The decision extends to 
 via
Proposition 3.1.

6. Relating Trace Categories and Automata Theory
This section connects our abstract framework for cyclic derivations to automata theory, a field
instrumental to cyclic proof theory. The main theorems of this section are abstractions of prop-
erties common to many cyclic proof systems. They serve to illustrate that ACDs allow reasoning
uniformly about a large class of cyclic proof systems by abstracting away the logic-specific details.

Themain point of interaction between cyclic proofs and automata theory is based on the obser-
vation that the trace condition of cyclic proof systems tends to be ω-regular. That is, the branches
of cyclic proofs which satisfy the trace condition can be recognised by infinite word automata. We
thus begin by recalling Büchi-automata, one of the classes of automata characterisingω-regularity.
A Büchi-automaton is a tuple B= (�,Q,	, s, F) consisting of a finite alphabet �, a finite set of
states Q, a starting state s ∈Q, a transition relation 	⊆Q×� ×Q and a set F⊆Q called the
acceptance condition.

Given a Büchi-automaton B and a word σ ∈�ω, a sequence ρ ∈Qω is called a run of B on σ
if ρ0 = q0 and for each i ∈ω we have (ρi, σi, ρi+1) ∈	. A run ρ is accepting if there is some q ∈ F
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such that ρi = q for infinitely many i ∈ω. A word σ is accepted by B if there exists an accepting
run of B on σ . The set L(B) ..= {σ ∈�ω | σ is accepted by B} is the language of B.

For most cyclic proof systems, given a cyclic pre-proof, there exists a infinite word automaton
which recognises precisely the branches through that pre-proof that satisfy the trace condi-
tion (see Niwiński and Walukiewicz 1996 and Sprenger and Dam 2003 for examples of such
constructions). This principle is extended to the setting of trace categories below.

Definition 6.1. Fix a trace category T . Its trace condition is ω-regular if, for any finite set M of
morphisms of T and starting object S ∈Ob(T ), there exists a Büchi-automaton B such that
L(B)= {π ∈Mω | P(i< i+ 1) ..= πi is a valid path with P(0)= S, satisfying the trace condition}
This notion of ω-recognisably captures most uses of automata theory in the cyclic proof theory

literature. For example, it allows us to carry out the most common proof of the decidability of the
GTC in our abstract setting.

Theorem 6.1. Let the trace condition of T be ω-regular in a computable manner, that is, the recog-
nising automaton B for every set M of morphisms and S ∈Ob(T ) can be computed. It is decidable
whether an ACD D= (C, Tr :PC→ T ) satisfies the GTC.

Proof. For C= (T, β), consider the set of trace maps along the edges of D:
M ..= {Tr(uv) | u ∈ T, v ∈Chld(u)} ∪ {1Tr(u) | u ∈ dom(β)}

which is finite asT is. Compute the recognising automatonB for S ..= Tr(ε) and construct a second
Büchi-automaton A= (T,M, ε,	, T) with

	 ..= {(u, Tr(uv), v) | u ∈ T, v ∈Chld(u)} ∪ {(u, 1Tr(u), β(u)) | u ∈ dom(β)}
A accepts precisely the sequences of morphisms along the infinite branches of D. Thus, deciding
whether D satisfies the GTC reduces to deciding L(B)⊆ L(A). Such inclusions between Büchi-
automata are decidable (McNaughton 1966).

As a consequence of the Ramsey trace condition Theorem 5.2, every trace category with finite
HOM-sets has an ω-regular trace condition. Note that under computability conditions analo-
gous to those of Theorem 5.3, the ω-recognisability proven below is ‘computable’ as required for
Theorem 6.1. Notably, the result below applies (in a computable manner) to every A-activated
trace category.

Theorem 6.2. Let T be a trace category with finite HOM(X, Y) for every X, Y ∈Ob(T ). Then its
trace condition is ω-regular.

Proof. As a corollary to Lemma 5.1, a path P : ω→ T satisfies the trace condition iff there exists
an idempotent R : X→ X in T such that Rω ⊆ P and Rω satisfies the trace condition. Fix some
finiteM and S ∈Ob(T ). DefineO ..= {dom(R) | R ∈M} ∪ {cod(R) | R ∈M}. Define the set of good,
idempotent morphisms on X ∈O as:

GI(X) ..= {R : X→ X | R idempotent and Rω satisfies the trace condition}
and construct a Büchi-automaton B= (M,Q,	, F, S) with

Q ..= O∪�X, Y ∈O. GI(X)×HOM(X, Y)
	 ..= {(X, R, Y) | X, Y ∈O, R : X→ Y ∈M} (a)
∪ {(X, R′, (X, Y , R, R′)) | X, Y ∈O, R ∈GI(X), R′ : X→ Y} (b)
∪ {((X, Y , R, R′), R′′, (X, Z, R, R′′ ◦ R′)) | X, Y , Z ∈O, R′′ : Y→ Z ∈M, R �= R′} (c)
∪ {((X, X, R, R), R′, (X, Y , R, R′)) | X ∈O, R ∈GI(X), R : X→ Y ∈M} (c)

F ..= {(X, X, R, R) | X, Y ∈Ob(T ), R ∈GI(X), R′ : X→ Y ∈M}
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Q is finite as O and each of the HOM(X, Y) are. First, note that B clearly rejects every sequence
π ∈Mω which does not represent a well-formed path starting at S. It thus remains to show B
accepts a path P : ω→ T iff it is such that Rω ⊆ P for some R ∈GI(X) and X ∈O. First, suppose
Rω = P ◦ S as desired. Then an accepting run on the sequence πi ..= P(i< i+ 1) is obtained by:

• Taking (a)-transitions, reading π[0, S(1)− 1], then taking a (b)-transition on P(S(1)− 1,
S(1)), the ‘first part of ’ P(S(1)< S(2)): (X, Y , R, P(S(1)< S(1)+ 1)) where R : X→ X. For
this, note that S(1)− 1≥ 0 because S(0)< S(1). Continue reading π[S(1), S(2)− 1], reaching
(X, X, R, R) as P(S(1)< S(2))= R.

• From then on, taking (c)-transitions, reading π[S(i), S(i+ 1)− 1], always arriving at
(X, X, R, R) as P(S(i< i+ 1))= R.

This run is accepting as (X, X, R, R) ∈ F is passed infinitely often. For the converse direction, sim-
ply observe that every accepting run on B needs to be structured as above, that is, eventually
‘picking’ an X ∈O and R ∈GI(X) via a (b)-transition and then ‘assembling’ R along π infinitely
often via (c)-transitions, thereby demonstrating Rω ⊆ P.

Remark 6.1. The converse of Theorem 6.2 need not hold. Consider a trace category T with
ω-regular trace condition. Then T × SET, where SET is the usual category of sets, can be equipped
with an ω-regular trace condition, namely that of its first component. However, the HOM-sets of
T × SET are not all finite.

Remark 6.2. It is also possible to construct recognising Büchi-automata for TA more directly in
terms of A. Roughly, the states of such automata are triples �X ∈O. X×A which take transitions
((X, x, a), R : X→ Y , (Y , y, a∨ b)) for (x, b, y) ∈ R. Whenever the third component reaches α, it is
reset to 0, crossing a state in the acceptance condition F. The resulting automata resemble more
closely the automata constructions usually found in the cyclic proof theory literature. The full details
of this automata construction can be found in Wehr (2021, Proposition 5.11).

The second result connecting the theories of cyclic proofs and automata we cover in this sec-
tion relates cyclic proofs and∞-proofs.∞-proofs allow ill-founded, finitely branching derivation
trees and thus require a soundness condition, similar to cyclic proofs. From this point of view,
cyclic proofs are simply regular∞-proofs, that is, those which are representable as finite graphs.
The result states that on finite derivation systems, the cyclic and ∞-proof systems induced by
a trace interpretation prove the same sequents. This property does generally not hold for infi-
nite derivation systems: for example, in cyclic arithmetic (Simpson 2017), the ∞-proofs prove
all true sentences of first-order arithmetic, whereas the cyclic proofs only prove the same sen-
tences as Peano arithmetic. We begin by formally defining∞-proof systems and the infinite tree
Büchi-automata, which play a key role in the result’s proof.

Given a derivation system (SEQ,R, ρ), an ∞-derivation is a triple (T, λ, δ) consisting of a
(possibly infinite) tree T and functions λ : T→ SEQ and δ : T→R such that for every t ∈ T
with Chld(t)= {t1, . . . , tn} the functions λ and δ agree: ρ(δ(t))= (λ(t), λ(t1), . . . , λ(tn)). In other
words, an ∞-derivation is a derivation which might have infinite branches. Denote the set of
∞-proofs in R by ID(R). An∞-proof system is a tuple (SEQ,R, ρ, PFS) consisting of a deriva-
tion system (SEQ,R, ρ) and a set of ∞-derivations PFS⊆ ID(R) called ∞-proofs. An ∞-proof

= (T, λ, δ) with λ(ε)= � is called a proof of �. Analogously to the case for cyclic proof systems,
a derivation system (SEQ,R, ρ) and a trace interpretation ι :R→ T induce an∞-proof system
in which
 ∈ PFS iff every path along its branches satisfies the trace condition of T .

For a finite alphabet�, a�-labelled tree is a pair (T, λ : T→�) for a tree T. A�-labelled tree
(T, λ) is a subtree of �-labelled (T′, λ′) if it is a ‘suffix’ of T′, that is, there exists some t ∈ T′ such
that T = {ts ∈ T′ | s ∈ T′} and λ(s)= λ′(ts). A Büchi tree automaton is a tuple A= (�,Q,	, s, F)
consisting of a finite alphabet �, a set of states Q, a set of transitions 	⊆Q×� ×Q∗, a starting
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state s ∈Q and an acceptance condition F⊆Q. Let (T, λ) be a�-labelled tree. A run of A on (T, λ) is
a Q-labelling ρ : T→Q of T such that ρ(ε)= s and for each t ∈ T with Chld(t)= {t1, . . . , tn} the
transition (ρ(t), λ(t), ρ(t1), . . . , ρ(tn)) ∈	. A run is accepting if for every infinite branch b ∈ Tω
of T, there exists a q ∈ F such that ρ(bi)= q infinitely often. A �-labelled tree (T, λ) is accepted
by A if there is an accepting run of A on it. The set L(A) ..= {(T, λ) | (T, λ) is accepted by A} is the
language of A.

Theorem 6.3. Let (SEQ,R, ρ) be a derivation system with R finite. Fix a trace interpretation
ι :R→ T such that the trace condition of T is ω-regular. Then any sequent � ∈ SEQ is proven
by a cyclic proof iff it is proven by an∞-proof.

Proof. For the left-to-right direction, simply observe that unfolding the cyclic proof yields an
∞-derivation satisfying the trace condition induced by ι.

Conversely, note that any ∞-derivation (T, λ, δ) in R thus constitutes a R-labelled tree
(T, δ). We begin by constructing a Büchi tree automaton which accepts precisely the∞-proofs
of �, represented as R-labelled trees. By ω-regularity of T , there exists a Büchi-automaton
A= (Q,M,	, s, F) for M ..= {ri : ι(�)→ ι(	i) | r ∈R, ρ(r)= (�,	1, . . . ,	n), i≤ n} and
S ..= ι(�). From it, the desired Büchi tree automaton B ..= (SEQ×Q,R,	B, (�, s), SEQ× F) is
constructed, taking

	B
..=

⋃
r∈R

{(
(�, q), r,

(
(�1, q1), . . . , (�n, qn)

)) ∣∣∣∣∣ q ∈Q and ρ(r)= (�,�1, . . . ,�n) and
(q, ri : ι(�)→ ι(�i), qi) ∈	 for each i

}
.

That is, the automaton takes transition steps corresponding to the derivation rule r ∈R labelling
the tree, ‘walking the state from Q along according to A’ for the trace maps ri chosen by the trace
interpretation ι.

For the correctness of the automaton, observe that by the choice of 	B , B has a run an
R-labelled tree if it constitutes an∞-derivation with endsequent �, that is, its rules were applied
with matching premises and conclusions. Furthermore, such a run is accepting if and only if the
run of the T -path induced by each infinite branch of the∞-derivation is accepted by A. Thus, B
accepts precisely the∞-proofs of �.

Because there is a ∞-proof of �, the language L(B) of B is not empty. It is a classic result
of infinite tree automata theory (see e.g., Corollary 8.20 in Nieer 2002) that in such a case, L(B)
contains a regular tree
. Such regular trees can be represented as finite graphs, allowing the proof

 to be represented as a cyclic proof
′. As any element of L(B) is a proof of �, so is
′.

An application of the result above is establishing the equivalence between cyclic proof systems
with and without a Cut-rule. Many Cut-elimination procedures for cyclic proof systems in the
literature are corecursive algorithms which lazily transform cyclic proofs with Cut-applications
into∞-proofs without Cuts (e.g., Baelde et al. 2016; Fortier and Santocanale 2013; Savateev and
Shamkanov 2021). If the Cut-free fragment of the derivation system is finite, the result above can
then be applied to conclude that there must also exist a Cut-free cyclic proof. An example of the
result being applied in this way is given by Savateev and Shamkanov (2021). A disadvantage of this
method of Cut-elimination is that the Cut-free cyclic proof need not be related to the original Cut-
free∞-proof. This means this Cut-elimination result does not preserve computational content.

The automata construction employed in the proof of Theorem 6.3 also yields a decision pro-
cedure for provability in the cyclic and ∞-proof systems. The result again requires some light
computability assumptions.

Corollary 6.1. Let (SEQ,R, ρ) be a derivation system with R finite. Fix a trace interpretation
ι :R→ T such that the trace condition of T is ω-regular in a computable manner and for any r ∈R
with ρ(r)= (�,	1, . . . ,	n) the ri : ι(�)→ ι(	i) can be computed. Then it is decidable whether
� ∈ SEQ is provable in the induced cyclic and∞-proof systems.
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Proof. The proof of Theorem 6.3 constructs a Büchi tree automaton B such that L(B) is precisely
the∞-proofs of �. By the computability assumptions, the automaton B can be computed. As the
emptiness problem for parity tree automata is decidable (Rabin 1969), one can thus decide if there
exists an∞-proof of � by deciding whether L(B) is empty.

Corollary 6.2. The μ-sequents provable by the cyclic proof system and∞-proof system induced by
the trace interpretation in Definition 3.4 coincide. Furthermore, the provability of a μ-sequent is
decidable.

Proof. As noted above, TF is ω-regular in a computable manner. It is also clear that the trace
interpretation ι :μ→ TF is computable as required by Corollary 6.1. The derivation system given
for the modal μ-calculus in Fig. 1 is not finite. However, because it is Cut-free, one can restrict
the sequents occurring in a∞-derivation of a μ-sequent � to the so-called Fischer–Ladner closure
of �. This closure is well known to be finite, as for example argued by Kozen (1983). Thus, it
suffices to consider a finite fragment of the derivation system given in Fig. 1 for each sequent �,
meaning Theorem 6.3 and Corollary 6.1 apply.

7. PSPACE-Completeness of Cyclic Proof Checking
In addition to putting forward the size-change criterion for program termination, Lee et al.
(2001) also prove that the associated decision is PSPACE-complete. This result has been trans-
ferred to the setting of cyclic proofs by Nollet et al. (2019) who prove that checking the GTC of
linear logic with least and greatest fixed points (μMALL) is PSPACE-complete. We extend this
result to ACDs over TA. The proof of PSPACE-hardness proceeds analogously to Nollet et al.
(2019) by a reduction to BOOLE program termination. Indeed, the ACDs given in Definition 7.2
are obtained by representing the cyclic derivations given by Nollet et al. as ACDs, applying
the compression procedure (Theorem 4.1) and removing some spurious elements from their
trace sets.

Definition 7.1. A BOOLE program is a numbered sequence of instructions 1 : I1; 2 : I2; . . . ;m : Im
composed according to the following grammar

I ....= X ..=¬X | IF X THEN � ELSE �′

where the labels �, �′ ∈ {0, . . . ,m} and the variables X stem from some stock of variable letters.
Fix a BOOLE program p of length m making use of the variables � ..= {X1, . . . , Xn}. Given

assignments σ , σ ′ :�→B and labels �, �′ ∈ {0, . . . ,m}, we write (�, σ )� (�′, σ ′) if � �= 0 and
either:

(1) the instruction labelled by � in p is X ..=¬X for some X ∈�, �′ ≡ �+ 1 mod (m+ 1) and
σ ′ = σ [X 	→ ¬σ (X)], or

(2) the instruction labelled by � in p is IF X THEN �1 ELSE �0 for some X ∈�, �′ = �σ (X) and
σ ′ = σ .

We write (�, σ )�∗ (�′, σ ′) if there are �1, . . . , �k and σ1, . . . , σk such that (�, σ )� (�1, σ1) and
(�i, σi)� (�i+1, σi+1) and (�k, σk)� (�′, σ ′). To make the labels explicit, we sometimes write
(�, σ )�∗

��1...�k,�′ (�
′, σ ′).

Writing φ for the constant assignment x 	→ 0, define

BOOLEfalse ..= {p a BOOLE program | (1, φ)�∗ (0, φ) under p}.
For the remainder of this section, we fix some program p= 1 : I1, . . . ,m : Im making use of

variables X1, . . . , Xn.
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Definition 7.2. The ACD associated with p is �p� ..= (C, Tr :PC→ TA) for an arbitrary activation
algebraA can be sketched as follows.

�0� �1 : I1� . . . �m : Im�

Every node s of C shares the same trace values Tr(s)= {X+1 , X−1 , . . . , X+n , X−n , R,G0, . . . ,Gm}. The
‘subtrees’ �0� and �� : I�� each comprise of one or two buds whose companion is the root of �p�
(drawn in white below).We refer to these buds by the names written above them. The TA-morphisms
‘decorating’ the subtrees’ edges are written next to them. For notational convenience, we often treat
�+ and �− as the label �.

0

�0�

R0

�

�� : Xi ..=¬Xi�

R¬

�+ �−
�� : IF Xi THEN �1 ELSE �2�

R+ R−

The morphisms are specified below. A dashed line between A and B indicates the pair (A, 0, B), a
bold line the pair (A, α, B) and the absence of a connecting line between A and B the absence of all
pairs (A, c, B). In R¬, �′ = �+ 1 mod m+ 1.

R0 :
X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 G1 G2 G3 . . . Gm

X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 G1 G2 G3 . . . Gm

R¬ :
X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� G�′ . . . Gm

X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� G�′ . . . Gm

R+ :
X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� . . . G�1 . . . Gm

X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� . . . G�1 . . . Gm

R− :
X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� . . . G�2 . . . Gm

X+1 X−1 . . . X+i X−i . . . X+n X−n R G0 . . . G� . . . G�2 . . . Gm
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Write B for the set of names for buds of �p�, that is,

B ..= {0} ∪ {� | � : X ..=¬X in p} ∪⋃
{{�+, �−} | � : IF X THEN GOTO �1 ELSE GOTO �0 in p}.

Any path through �p� corresponds to an infinite sequence � ∈ Bω describing the sequence in which
the buds of �p� are passed to generate said path. For this reason, we treat such sequences and paths
P :PC→ TA interchangeably. The property central to the reduction is that if p ∈ BOOLEfalse, then
�p� does not satisfy the trace condition. Thus, sequences � ∈ Bω representing unsuccessful runswill
satisfy the trace condition. The various aspects of the trace maps given in Definition 7.2 can thus
be reframed as ensuring certain conditions on such � ∈Vω.

We begin by showing that all sequences � ∈ Bω � ∈ Bω which eventually diverge or do not even
adhere to the control structure of p have progressing traces through R or the Gis, respectively. For
this, we define the control-graph of p as G= (B, E) with

E ..= {(0, 1)} ∪ {(�, �+ 1 mod m+ 1) | � : X ..=¬X in p}
∪

⋃
{{(�+, �1), (�−, �0)} | � : IF X THEN GOTO �1 ELSE GOTO �0 in p}

where, if �2 : IF X THEN GOTO � ELSE GOTO �′ in p, then pairs (�1, �2) are included as (�1, �+2 )
and (�1, �−2 ). For a sequence � of labels from B (finite or infinite), � is a path through G, writing
� ∈G, if for each i< |�|, (�i, �i+1) ∈ E.

Lemma 7.1. Let � ∈ Bω be a path through �p�. Then,

(1) � has a progressing trace along R iff eventually 0 never occurs along �.
(2) � has a progressing trace along the G0, . . . ,Gm iff no suffix of � is a path through G.

Proof.

(1) Observe that R-traces are interrupted by R0 whenever a path passes through 0 ∈ B and are
activated when passing through any other bud.

(2) An activation on aG-trace takes place whenever it ‘jumps incorrectly’. That is, if (�i, �i+1) �∈
E, then there is an activating trace from G�i to G�i+1 in the trace maps of the subtree ��i�.
Thus, a progressing trace through the Gs indicates that such violations take place infinitely
often, meaning no suffix of � can be a path through G. Conversely, no suffix of � being a
path through G indicates infinitely many violations taking place.

The only paths through �p� which remain unclassified are of the shape u0u10u20u30 . . . where
each ui0 describes a potential run of p which at least is a path through the control-graph of p.
We continue by analysing the traces on the X•i along such potential runs. Consider a sequence
u= �0 . . . �n ∈ Bn+1 and denote by Ri the morphism in �p� from the root to the bud �i. In the
following, we denote the trace map of the sequence u by Ru ..= Rn−1 ◦ . . . ◦ R0 ◦ R0.

Lemma 7.2. Let u ∈ (B \ {0})+ with |u| = n+ 1 be such that 0u is a path through G. Then

(1) There is no X•j ∈ Tr(ε) and no activation algebra element c such that (X+i , c, X•j ) ∈ Ru.
(2) There are no X•i , X•j ∈ Tr(ε) with i �= j and (X•i , c, X•j ) ∈ Ru for any activation algebra

element c.
(3) If (�0, φ)�∗u (�n, σ ) for some σ then for each Xi, there is exactly one a+i and exactly one

a−i such that (X−i , a
+
i , X

+
i ) ∈ Ru and (X−i , a

−
i , X

−
i ) ∈ Ru. Furthermore,
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– if σ (Xi)= 0 then a+i = α and a−i = 0
– if σ (Xi)= 1 then a−i = α and a+i = 0

(4) If there is no σ such that (�0, φ)�∗u (�n, σ ), then there exists some Xi such that
(X−i , 1, X

+
i ), (X

−
i , 1, X

−
i ) ∈ Ru

Proof.

(1) Observe that R0, the map from the root to 0, interrupts all traces starting at the X+i .
(2) Observe that all trace maps in �p� only ever connect trace values corresponding to the same

variable Xi.
(3) At the beginning of a BOOLE-run, all variables are 0. This is mirrored by R0 in the sense of

(2), as it connects each X−i to the X•i according to the first clause. We continue by reason-
ing inductively along the run (�0, φ)�∗u (�n, σ ), performing a case distinction on the final
transition (�n−1, σ ′)� (�n, σ ). The negation step inverts the value σ ′(Xi) of some variable
Xi. This is mirrored in R¬ by ‘swapping’ the traces on X+i and X−i which preserves the
property. For the IF -instruction, observe that (�n−1, σ ′)� (�n, σ ) means branch dictated
by σ (Xi) is taken (i.e., �n−1 is some �+ and σ (Xi)= 1). Then the trace of the X•i dual to
σ (Xi) is activated (i.e., X−i if σ (Xi)= 1), preserving the property.

(4) We again reason inductively on u. If |u| = 1, then (�0, φ)�∗u (�0, φ), meaning the claim
does not apply. Thus, u= u′�n for some u′ ∈ (B {0})+ and we perform a case distinction
on whether there exists a σ such that (�0, φ)�∗u′ (�n−1, σ ). If there exists no such σ , this
property holds for Ru′ per inductive hypothesis and it is easily observed that any possible
choice of Rn−1 preserves the property for Ru′�n . If (�0, φ)�∗u′ (�n−1, σ ) then, as (�n−1, �n) ∈
E, this must mean that �n−1 : IF Xi THEN � ELSE �′ and �n−1 is the ‘incorrect bud’ (i.e.,
�n−1 is some �+ and σ (Xi)= 0). In such cases, the X•i corresponding to the value of σ (Xi)
is activated by Rn−1 (i.e., X−i if σ (Xi)= 0). Combining this with what is known about Ru′
by property (3), this means that (X−i , α, X

−
i ), (X

−
i , α, X

+
i ) ∈ Ru.

With this classification of the potential runs, we can connect the trace condition on branches
not covered by Lemma 7.1 to the runs of the program p.

Lemma 7.3. Let � ∈ Bω be a path through �p� which does not have a progressing trace along R or
the G0, . . . ,Gm. Then, �= u0u10u20u30 . . . with each ui ∈ (B− {0})+. Furthermore, � does not
satisfy the trace condition iff from some N ∈ω onwards, (1, φ)�∗ui (0, φ) for all i>N.

Proof. That �= u0u10u20 . . . follows directly from Lemma 7.1.
First suppose that (1, φ)�∗ui (0, φ) for i>N. As BOOLE-programs are deterministic, this

means ui = u for all i>N and some fixed u. From Lemma 7.2 (3), it follows that for every Xj
we have (X−j , α, X

+
j ), (X

−
j , 0, X

−
j ) ∈ Ru. By Lemma 7.2 (1), the trace on X+j is interrupted in R0.

Thus, there can be no progressing trace along any X+j , X
−
j along the path 0u0u . . .. Then, because

of the previous results, there is no progressing trace along any of the elements of Tr(ε) meaning �
does not satisfy the trace condition.

Conversely, suppose that infinitely many of the ui did not satisfy (1, φ)�∗ui (0, φ). There are
two possibilities for such uis: either there is some σ �= φ with (1, φ)�∗ui (0, σ ) or not. In the former
case, there thus must be some Xj with σ (Xj)= 1, meaning (X−j , 1, X

−
j ) ∈ Rui . In the latter case,

there alsomust be someXj with (X−j , 1, X
−
j ). As the traces onX

−
j are never interrupted, if infinitely

many such ‘deviant’ runs exist along �, someX−j must be activated infinitely often, as there are only
finitely many variables. Then, � satisfies the trace condition.
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Corollary 7.1. For any given BOOLE program p, p ∈ BOOLEfalse iff �p� does not satisfy the trace
condition of TA.
Theorem 7.1. Verifying the trace condition on ACDs in TA for anyA is PSPACE-hard.

Proof. A BOOLE-program can be transformed into the ACD given in Definition 7.2 in
LOGSPACE. By Corollary 7.1, this constitutes a LOGSPACE-reduction of a PSPACE-hard prob-
lem (BOOLEfalse) to cyclic proof checking in TA for anyA.

Remark 7.1. The PSPACE-hardness result in Theorem 7.1 is only given in terms of a concrete family
of trace categories, the activation algebra induced TA. It remains an open question if a more general
condition on trace categories can be found which would yield PSPACE-hardness.

HOM-set finiteness of a trace category T does not entail PSPACE-hardness. For instance, consider
a HOM-set finite trace category T in which every path satisfies the trace condition and which thus
makes checking it trivially O(1). This example also illustrates that ω-regularity of the trace condition
of T does not entail PSPACE-hardness.

Remark 7.2. Theorem 7.1 does not directly imply that the proof checking of any concrete cyclic
proof system is PSPACE-hard, even if its trace condition can be expressed in terms of A. Instead,
Theorem 7.1 only proves that there exist ‘suitably small’ ACDs overA whose GTC satisfaction codes
the termination of BOOLE-programs. To extend this result to a concrete cyclic proof system, one must
prove that for any BOOLE-program p, there exists a ‘suitably small’ cyclic proof whose (compressed)
ACD is �p�. Usually, this can be accomplished by finding formulas which can produce various traces.
For example, for the variables, the following ‘trace gadgets’ are required:

To conclude PSPACE-completeness, it remains to show that proof checking for TA-ACDs is in
PSPACE.

Lemma 7.4. For a given ACD D= (C, Tr :PC→ TA), the verification whether it constitutes an
abstract cyclic proof can be carried out in PSPACE.

Proof. Following the proof of Theorem 6.1, one can verify whether D is a proof by deciding
whether the language of a Büchi-automaton A recognising all paths through D is included in the
language of a Büchi-automaton B recognising all paths consisting of morphisms from Tr which
satisfy the trace condition of TA. The language inclusion problem for regular languages is known
to be in PSPACE (Kupferman andVardi 1996). Thus, it remains to find automata A andB adhering
to the aforementioned specifications whose sizes are polynomial in the size ofD. The automaton A
given in Theorem 6.1 is already suitable for this. On the other hand, the automatonB constructed
according to Theorem 6.2 is too large, as its set of states contains the sets HOM(X, X) for each
set X of trace values in the image of Tr, whose size is exponential in the size of X. However, the
TA-specific construction for theB given inWehr (2021, Proposition 5.11) is of size polynomial to
the size ofD. Thus, there are suitable automata such that deciding L(A)⊆ L(B) decides whetherD
is a proof, meaning this can be decided in PSPACE.

Corollary 7.2. The problem of verifying whether an ACD over TA is a proof is PSPACE-complete.

The fact that proof checking for TA-ACDs is in PSPACE extends to a concrete cyclic proof
system R much more readily than PSPACE-hardness. The only restriction is that the set of trace
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values of each R-sequent is of polynomial size and that the trace data of an R-pre-proof can be
computed in PSPACE. All cyclic proof systems we know of satisfy these properties.

Lemma 7.5. Let (SEQ,R, ρ, PFS) be a cyclic proof system whose trace condition is given by a
trace interpretation ι :R→ TA. Suppose that ι is such that for sequents � ∈ SEQ the set ι(�) of
trace values in � is of size polynomial to the size of � and can be computed from � in PSPACE.
Suppose further that for each rule r ∈R with ρ(r)= (�,	1, . . . ,	n), the maps ri : ι(�)→ ι(	i)
can be computed in PSPACE. Then deciding whether anR-pre-proof is a proof is in PSPACE.

Proof. Given anR-pre-proof
= (C, λ, δ), simply compute its induced ACD D= (C, Tr :PC→
TA) as described in Definition 4.3. By the assumptions about ι, D can be computed in PSPACE.
Thus, if D is of size polynomial to the size of
, checking whether
 is anR-proof can be carried
out in PSPACE as described in Lemma 7.4. As C is simply ‘copied’, it suffices to show that Tr is of
polynomial size. Per assumption, each Tr(s) is ι(λ(s)) and thus of polynomial size of the sequent
λ(s) which is accounted for in the size of
. Similarly, Tr(s si)⊆ Tr(s)×A× Tr(si) for each s ∈ C
and si ∈Chld(s) and is thus of polynomial size to max{|λ(s)| , |λ(si)|}. As this data suffices to code
Tr, D overall is of polynomial size to
 as desired.

Corollary 7.3. Verifying whether a μ-pre-proof is a proof is in PSPACE.

8. Conclusion
The derivations of cyclic proof systems, which are finite, directed graphs, rather than finite trees,
may not be sound, that is, they might conclude invalid sequents. Thus, cyclic proof systems distin-
guish between pre-proofs (well-formed derivations) and proofs (sound, well-formed derivations).
The most common method is to impose a global trace condition: for a pre-proof to be a proof,
all of its infinite branches must satisfy a so-called trace condition. We capture this trace condition
in categorical terms: infinite branches are represented by paths, functors P :ω→ T from the pre-
order category on ω to a trace category T . A trace category T is a category equipped with a trace
condition, a predicate on paths through T which is closed under taking suffixes and internal com-
position.We further define a family of trace categories TA whosemorphisms are relations between
finite sets annotated with an activation algebra A: a finite ∨-semilattice with a distinguished acti-
vation element α. A path through TA satisfies the trace condition if it carries an infinite sequence
of connected elements which attains the activation value α infinitely often. Almost all notions of
trace from the literature can be represented naturally in terms of some TA. Notably, the usual trace
condition for the cyclic systems of μ-calculi is given in terms of the three-value failure algebra F.

Using this abstracted notion of trace, a pre-proof with underlying graph C may be represented
as an annotation of C with maps of a trace category T . In categorical terms, the latter is a functor
Tr :PC→ T from the category of finite paths through C into T . When representing a pre-proof
in this manner, all details unrelated to the trace condition are abstracted away, leading us to call
such functors abstract cyclic derivation. The requirement of trace conditions being closed under
internal composition allows us to prove the following two novel results in cyclic proof theory.

• Compression: ACDs may be ‘compressed’ to trace-condition-equivalent ACDs over graphs
whose size is linear in the number of simple cycles in C (Theorem 4.1).

• Ramsey-style soundness: An ACD Tr :PC→ T is a proof (i.e., every path through it satis-
fies the trace condition) if and only if for every idempotent endomorphism R : X→ X in
the image of Tr, the periodic path Rω :ω→ T (which simply repeats R) satisfies the trace
condition (Theorem 5.2).

We also prove some well-known results of cyclic proof theory in terms of our abstract notion
of trace and derivation in order to demonstrate the adequacy of our notions for tackling questions
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of cyclic proof theory and connect them to the wider field. In Section 6, we consider trace cat-
egories with ω-regular trace conditions, connecting ACDs with ω-automata theory. As a result
of the Ramsey-style soundness condition, every trace category with finite HOM-sets, includ-
ing all TA, has an ω-regular trace condition. We prove the following results using automata
theory.

• Decidability: If the trace condition of T is ω-regular in a ‘computable’ manner, the GTC of
ACDs on T is decidable (Theorem 6.1).

• Regularisation: If a proof system is finite (i.e., the set of sequents occurring in a proof is
finite), then every sequent provable via a ill-founded proof is provable via a cyclic proof
(Theorem 6.3).

In Section 7, we generalise a result about the cyclic proof system for multiplicative-additive
linear logic with fixed points (μMALL) by Nollet et al. (2019) to obtain.

• PSPACE-completeness: The problem of deciding whether an ACD over TA satisfies the GTC
is PSPACE-complete (Theorem 7.1 & Lemma 7.4).

The above result is proven in such a way that the decision problem being in PSPACE readily trans-
fers to concrete cyclic proof systems with a TA-trace condition. Transferring PSPACE-hardness,
however, requires certain assumptions on the concrete cyclic proof system.

8.1 Related work
Definitions and results in this article originate fromWehr’s Masters thesis (Wehr 2021), although
most have undergone significant changes. The thesis contains results that are not presented in
this article, including a categorical treatment of a further three cyclic proof systems: cyclic arith-
metic (Simpson 2017), HFLN (Kori et al. 2021) and Grzegorczyk modal logic (Savateev and
Shamkanov 2021).

To the best of our knowledge, Brotherston (2006) is the only previous work on abstracting
cyclic proofs. The present article can be viewed as an extension of Brotherston’s in two ways:
first, his abstract notion of derivation is closer to the common definition of pre-proofs, being
presented in terms of abstract sequents and derivation rules. Crucially, this bars him from con-
sidering the composition of trace information, which enabled us to derive the ACD compression
result (Theorem 4.1) and the alternative soundness condition (Theorem 5.2). Second, Brotherston
only considers trace conditions expressed in terms of the Booleans B which, as we have remarked,
is insufficient to directly express the trace condition of the modal μ-calculus, a problem our
activation algebras alleviate.

Lee et al. (2001) propose a termination criterion for first-order programs called the size-change
principle. This criterion can be considered an instance of the TB trace condition. The authors give
a decision procedure for the size-change principle which is a variant of the decision procedure for
the Ramsey trace condition we give in Theorem 5.3, specialised to TB. They also prove PSPACE-
completeness of their criterion by reducing it to BOOLE termination. This argument has been
adapted by Nollet et al. (2019) to the cyclic proof system for multiplicative, additive linear logic
with fixed points (μMALL) which we in turn adapted to ACDs in Section 7.

The Ramsey trace condition (Definition 5.1) is not the first application of Ramsey’s theorem
in the field of cyclic proof theory. Notably, existing proofs of the equivalence of (extensions
of) cyclic arithmetic and (extensions of) Peano arithmetic (Berardi and Tatsuta 2017; Das 2020;
Simpson 2017) rely on (arithmetised) variants of Ramsey’s theorem for concluding provability in
Peano arithmetic from cyclic provability. In their proofs, it is applied to ‘internalise’ the soundness
justification given by the GTC into non-cyclic PA proofs.
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Cohen et al. (2024) use a variant of Brotherston’s framework, that is, TB in our setting, to
carry out a parameterised analysis of the worst-case complexity of various methods for checking
soundness of cyclic proofs. The two parameters they considered, presented in terms of an ACD
(C, Tr :PC→ TB) with C= (T, β), are vertex count n= |T| and vertex width w=maxt∈T |Tr(t)|.
They find that many checking procedures, such as those based on automata akin to those sketched
in Remark 6.2 and the Ramsey decision procedure of Section 5, are polynomial in vertex count
n and exponential in vertex width w. They also propose an optimisation to the Ramsey decision
procedure, called Order-reduced Transitive Looping procedure, which reduces the exponential
degree in the vertex widthw.We conjecture that all of their results can be extended to arbitrary TA.

In some sense, every cyclic proof system in the literature might be considered related work, as
one can ask whether its trace condition can be modelled by our formalism. For most cyclic proof
system we are aware of, including all those referred to in this article, this seems to be the case with
three exceptions: The first is the bouncing-thread trace condition of Baelde et al. (2022) which con-
siders traces that do not reside along the branches of a pre-proof. The second is the limit condition,
presented by Hazard and Kuperberg (2022) in their system for transfinite word languages, which
has traces running through multiple separate pre-proofs. The third are the higher-dimensional
trace conditions of the hypersequent calculi of Das and Girlando (2022) and Afshari et al. (2023).

Since the publication of the conference version of this article, further work using the proposed
framework of A-activated categories has been carried out by Leigh and Wehr (2023). The article
covers reset proof systems, cyclic proof systems with a soundness that can be verified in poly-
nomial time and which have proven fruitful for proof-theoretic investigation (see, e.g., Afshari
and Leigh 2017; Afshari et al. 2021; Marti and Venema 2021). In the article, it is shown that for
each cyclic proof system whose GTC is specified in terms of some TA, there exists an associated
reset proof system which proves the same theorems. To obtain the reset proof system, the original
proof system is equipped with an annotation mechanism which is derived from the trace sets and
trace maps of the trace interpretation. In this application, the ‘naturality’ of a trace interpretation
culminates in a natural reset proof system.
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Niwiński, D. and Walukiewicz, I. (1996). Games for the μ-calculus. Theoretical Computer Science 163 (1–2) 99–116.
Nollet, R., Saurin, A. and Tasson, C. (2019). PSPACE-completeness of a thread criterion for circular proofs in linear logic

with least and greatest fixed points. In: Cerrito, S. and Popescu, A. (eds.) Automated Reasoning with Analytic Tableaux
and Related Methods, Lecture Notes in Computer Science, Cham, Springer International Publishing, 317–334.

Rabin, M. O. (1969). Decidability of second-order theories and automata on infinite trees. Transactions of the American
Mathematical Society 141 1–35.

Ramsey, F. P. (1930). On a problem of formal logic. Proceedings of the London Mathematical Society s2-30 (1) 264–286.
Savateev, Y. and Shamkanov, D. (2021). Non-well-founded proofs for the Grzegorczyk modal logic. The Review of Symbolic

Logic 14 (1) 22–50.
Simpson, A. (2017). Cyclic arithmetic is equivalent to Peano arithmetic. In: Esparza, J. andMurawski, A. S. (eds.) Foundations

of Software Science and Computation Structures, LectureNotes in Computer Science, Berlin, Heidelberg, Springer, 283–300.
Sprenger, C. and Dam, M. (2003). On global induction mechanisms in a μ-calculus with explicit approximations. RAIRO -

Theoretical Informatics and Applications 37 (4) 365–391.
Stirling, C. (2013). A proof system with names for modal Mu-calculus. Electronic Proceedings in Theoretical Computer Science

129 18–29.

https://doi.org/10.1017/S0960129524000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000070


Mathematical Structures in Computer Science 577

Tellez, G. and Brotherston, J. (2017). Automatically verifying temporal properties of pointer programs with cyclic proof. In:
de Moura, L. (ed.) Automated Deduction – CADE 26, Lecture Notes in Computer Science, Cham, Springer International
Publishing, 491–508.

Wehr, D. (2021). An Abstract Framework for the Analysis of Cyclic Derivations. MSc thesis, University of Amsterdam.

Cite this article: Afshari B and Wehr D (2024). Abstract cyclic proofs. Mathematical Structures in Computer Science 34,
552–577. https://doi.org/10.1017/S0960129524000070

https://doi.org/10.1017/S0960129524000070 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129524000070
https://doi.org/10.1017/S0960129524000070

	Abstract cyclic proofs
	Introduction
	Cyclic Proof Systems
	Abstracting the Trace Condition
	Abstract Cyclic Derivations
	A Ramsey-based Soundness Condition
	Relating Trace Categories and Automata Theory
	PSPACE-Completeness of Cyclic Proof Checking
	Conclusion
	Related work



