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WITH DELIVERY COST AND RANDOM DEMAND

YING OUYANG 1, ZHAOMAN WAN ) 1 and ZHONG WAN 1

(Received 26 May, 2019; accepted 31 May, 2020; first published online 3 July 2020)

Abstract

Online retailers are increasingly adding buy-online and pick-up-in-store (BOPS) modes
to order fulfilment. In this paper, we study a system of BOPS by developing a stochastic
Nash equilibrium model with incentive compatibility constraints, where the online
retailer seeks optimal online sale prices and an optimal delivery schedule in an order
cycle, and the offline retailer pursues a maximal rate of sharing the profit owing to
the consignment from the online retailer. By an expectation method and optimality
conditions, the equilibrium model is first transformed into a system of constrained
nonlinear equations. Then, by a case study and sensitivity analysis, the model is
validated and the following practical insights are revealed. (I) Our method can reliably
provide an equilibrium strategy for the online and offline retailers under BOPS mode,
including the optimal online selling price, the optimal delivery schedule, the optimal
inventory and the optimal allocation of profits. (II) Different model parameters, such
as operational cost, price sensitivity coefficient, cross-sale factor, opportunity loss ratio
and loss ratio of unsold goods, generate distinct impacts on the equilibrium solution
and the profits of the BOPS system. (III) Optimization of the delivery schedule can
generate greater consumer surplus, and makes the offline retailer share less sale profit
from the online retailer, even if the total profit of the BOPS system becomes higher.
(IV) Inventory subsidy is an indispensable factor to improve the applicability of the
game model in BOPS mode.

2020 Mathematics subject classification: primary 90B36; secondary 90-10, 91A35.

Keywords and phrases: online sale, delivery plan, buy-online and pick-up-in-store
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1. Introduction

1.1. Background With explosion of mobile apps and e-commerce, consumers are
free to trade online and offline, and these technologies have fundamentally changed the
omni-channel business. Since the consumers can search for information in physical
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stores and online platforms at the same time, they can use online channels for actual
purchases at a lower price and take goods offline [1, 23]. Many studies have shown
that the omni-channel business is the future of the retail industry [21, 25].

Buy-online and pick-up-in-store (BOPS) is one of the typical omni-channel
retailing formats. As an integration of online and offline channels, BOPS can enrich
customer choices and improve operational efficiency. Actually, for the online retailers,
BOPS service allows them to use offline inventory delivery for their online sales,
such that delivery fulfilment time reduces and customer loyalty increases [12]. It was
reported [9] that 42% of retailers have added the BOPS option to their sales systems.
For the offline retailers, BOPS can offer the opportunity to cross-sell and cross-promote
products, which can bring them additional profits [3]. For customers, the BOPS service
reduces waiting time compared with courier service.

1.2. Literature review Despite wider application of BOPS services in practice,
theoretical research on how to quantitatively improve their cost efficiency is still far
from meeting the operational needs, especially those from the perspective of offline
retailers and consumers.

Ofek et al. [22] studied how the competing retailers operate dual channels, and
examined how pricing strategies and physical store assistance levels change as a result
of the additional internet outlet. It suggested that when the decision to open an internet
channel is endogenized, there exists an asymmetric equilibrium where only one retailer
elects to operate an online arm but earns lower profits than its bricks-only rival. In
their analysis, the demand of consumers was assumed to be fixed, and it is also not a
consignment mode in a physical store.

Gallino and Moreno [8] analysed the impact of BOPS strategy by using a
proprietary data set. They concluded that BOPS implementation results in lower
online sales, higher store sales, higher store traffic and the additional store sales can
be generated by the cross-selling effect and the channel-shift effect. Note that their
developed model [8] is not a game model for the online and offline retailers.

Chen et al. [4] constructed a random Nash equilibrium model to optimize strategy
of the online and offline retailers under the BOPS model, where the demand of
consumers was supposed to be a continuously random variable, and inventory or
shortage cost was considered. Owing to the uncertainty of demand, it was shown
that inventory or shortage cost can seriously affect the profits of online retailers and
offline retailers. Insufficient store inventory often hinders cross-channel fulfilment and
increases the likelihood of losing customers, while excessive inventory increases its
cost. However, shipment cost and optimization of delivery plan were not taken into
account in this model.

Cao et al. [2] developed an analytical framework to study the impact of BOPS
mode on the demand allocations and profitability of a retailer who sells products to
customers through multiple distribution channels. It was concluded that BOPS can
help the retailer tap new customer segments and generate additional demand, but may
also hurt the retailer by cannibalizing existing channels and increasing operating costs.
This analytical framework was not studied by a game model done by Chen et al. [4].
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Kim et al. [15] used a scenario-based factor survey approach to study how perceived
perceptions of innovation and perceived risk of online shopping affect consumers’
intentions to use BOPS, but no optimization model was constructed to make optimal
decisions for the online or offline retailers such that their profits are maximized.

Jin et al. [13] developed a theoretical model in which one physical store adopting
BOPS uses a recommended service area to fulfil orders from both determined (online)
and casual (offline) customers in one order cycle; they derived the optimal decisions
on the product price and recommended service radius for the retailer adopting BOPS.
However, cross-selling benefits and commodity shipment costs were not reflected in
this model.

Liu et al. [20] explored whether it is always beneficial for companies to introduce
BOPS on the basis of dual channel, and analysed the impact of traditional-consumer
proportion and degree of consumers’ service sensitivity. The results suggested that
whether corporations adopt the BOPS mode or not depends on the size of BOPS-
consumer and consumers’ degree of service sensitivity, and corporations should not
only consider the production and service cost but also have a precise understanding
and orientation of consumers’ service sensitivity when making the price and service
strategies. However, cross-selling benefits and commodity transport costs were not
reflected in this model. The profit distribution of the online and offline retailers, cross-
selling revenue and various costs of commodity transaction were not also taken into
account.

Shi et al. [26] studied a BOPS strategy for the online retailer in the face of both
informed and uninformed consumers, where the retailer sells the product over two
periods: the informed consumers make pre-orders with unknown valuations in the first
period and then pick up the pre-orders in store with realized valuations in the second
period. Thresholds of the unit production cost and demand uncertainty were given to
answer whether the BOPS strategy with pre-orders is beneficial or not. We note that
no cross-selling effect and no practical constraint were considered in this paper [26].

In summary, by utilizing the online and offline retailers’ pursuit of profit, the well-
structured channel supply chain under the BOPS mode can be cost effective and meet
customer needs. Therefore, the retailers have strategic implications for the design of
supply chain networks in the BOPS mode, including the time and quantity of inventory,
the mode and the shipment frequency [5]. In short, there is widespread consensus
on the roles of BOPS mode: it provides customers with real-time information about
in-store inventory availability and introduces a new shopping mode that can add
convenience to the customers. The former effect (information effect) helps attract
customers by letting customers know about inventory availability, but it is a double-
edged sword, because it disappoints the customers who are willing to visit the store
when inventory is not available. The latter effect (convenience) is suitable for the
customers to use the store pick-up function, which can attract the customers to the
store and may even open up new sources of demand.

However, in the existing research results on the BOPS mode, there are still the
following deficiencies.
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(1) There are few game models to describe the competition relation between the
online and offline retailers in the BOPS mode.

(2) No integrated optimization model has been constructed to offer an optimal
strategy for the selling, inventory, delivery and profit allocation for the online
and offline retailers in BOPS.

(3) The demand is often assumed to be fixed, rather than a continuously random
variable.

1.3. Research intention of this paper From the above literature review, it is clear
that development of an integrated stochastic equilibrium model is valuable to the
BOPS mode, which can offer the online and the offline retailers an optimal strategy of
selling, inventory, delivery and profit allocation. In this paper, we attempt to develop
such a model to answer how the online retailer first determines an optimal selling
price online under random demand, and then chooses an optimal delivery schedule
(the delivery frequency and the quantity of single delivery), and how the offline retailer
shares the sale profit with the online retailer owing to consignment.

Compared with the stochastic model of Chen et al. [4], we are more concerned how
to optimize the delivery schedule, since it is a distinct feature of consignment strategy
under the BOPS mode. Additionally, apart from the existing results, it is necessary
to take into account the overstocking cost and understocking loss in the case that the
demand is uncertain.

In essence, the problem of optimal decision making in the BOPS mode is
formulated by a stochastic Nash equilibrium model. By the aid of this model, we
will expound the following issues.

(i) How to determine the optimal strategy of selling, inventory, delivery and profit
allocation by mathematical modelling?

(ii) What are the impacts of model parameters on the optimal decisions and the
profits of the online and offline retailers?

The rest of this paper is organized as follows. In the next section, a stochastic
Nash equilibrium model is constructed. Section 3 is devoted to analysis of the model’s
properties. Case study and sensitivity analysis are conducted in Section 4. Conclusions
and directions in future research are given in Section 5.

2. Equilibrium model for online and offline retailers

In this section, we present an equilibrium model for the online and offline retailers
under BOPS mode.

2.1. Problem description and notation We first make the following settings to
specify the handled problem in this paper.

• In the system of BOPS, there are an online retailer (OL) and an offline retailer
(OF).
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• To achieve a cooperation between OL and OF, a mechanism of incentive
compatibility is adopted.
• The online retailer first orders products from suppliers at a given cost and then

consigns a part of the products to the offline retailer.
• The offline retailer has unlimited stocking capacity for the consignment quantity.

She sells the goods for the online retailer to share the profit generated by the
consignment sale.
• The consigned goods is complementary to the other goods sold in the physical

store (the offline retailer). Therefore, for the offline retailer, there are additional
sales generated by cross-sale.
• By the principle of “economic lot size”, we assume that inventory consumption

is uniform.
• Smaller delivery frequency is beneficial to the online retailer, but it can increase

inventory cost of the offline retailer. Since only one planning period is
considered, loss caused by unsold goods is taken into account. For this, the
inventory subsidy must be taken into account, which is paid by the online retailer
to the offline retailer. In other words, the unsold goods do not enter the next
planning period.
• In the planning period, the goods are not perishable.

The following is the notation used in this paper.

Parameters

T0: a fixed planning period, which can be regarded as a unit time.
OL: the online retailer.
OF: the offline retailer.

D(p): the demand for the consignment goods per unit time.
y(p): the expected demand at the offline retailer per unit time.
m(D): the cross-sale quantity generated by consignment per unit time.

a: the primary demand per unit time.
β: the price sensitivity.
ε: a random scaling factor.
u: the probability density function factor.

f (x): the probability density function of ε.
F(x): the cumulative distribution function of ε.
E(·): the expectation of a random variable.

col: the unit cost of ordering the consignment goods by the online retailer.
co f : the unit cost of selling the consignment goods by the offline retailer.

h: the unit cost of handling the consignment goods by the offline retailer per unit
time.

cd: the fixed cost of a single delivery by the online retailer.
c: the unit shipment cost of the consignment goods by the online retailer.

https://doi.org/10.1017/S1446181120000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000127


[6] Random game model of BOPS mode with delivery cost 67

α: the opportunity loss ratio.
γ: the loss ratio of unmarketable products.
δ: δ ∈ {0, 1}. Here δ = 1 if and only if the online retailer offers inventory subsidy

to the offline retailer.
L: the online retailer’s expected loss.
πol: the online retailer’s expected profit.
πo f : the offline retailer’s expected profit.
π: the total profit.
v: the cross-sale factor.

Q: the total shipment quantity during the planning period; Q = Nd.
z: the stocking factor.

Decision variables

r: the rate of sale-profit sharing.
p: the selling price.
N: the delivery frequency per unit time.
d: the single-delivery quantity.

2.2. Demand function Suppose that the demand for the consignment goods is
random and price-dependent during a single selling season [1, 19]. A popular model
for such a demand per unit time is specified by

D(p) = y(p)ε, (2.1)

where p is the selling price of the online retailer and ε is a random factor with
expected value E[ε] = 1. Particularly, we suppose that the support set of ε is an interval
[A, B] ⊂ R (B > A ≥ 0), and the relation between the demand and the price is

y(p) = ap−β, (2.2)

where β > 1 is called a price sensitivity parameter and a is the primary demand [4].
In practice, different values of β are used to reflect the potential feature of the goods.
For luxury goods, β is relatively large compared with daily necessities. Clearly, the
expected demand of the consignment goods per unit time is y(p).

With the above definition of the demand, we are going to construct an equilibrium
model for the optimal decision making of the online and offline retailers.

2.3. Optimization model for online retailers The online retailer maximizes the
profit by optimizing the online sale price, the delivery quantity in a single shipment
and the delivery frequency during the planning period.

Denote by p the online sale price of consignment goods, d the delivery quantities
and N the delivery frequency, respectively. By a take-it-or-leave-it consignment
contract, let r (0 ≤ r ≤ 1) be the revenue rate of the offline retailer sharing with the
online retailer. Due to uncertainty of the demand, the profit is associated with possible
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cost of over-storage or loss of under-stocking. If the demand D is defined by (2.1) and
(2.2), then the cost of over-storage is

L1 = N
(
δ

hT0

N
+ γcol

)(
d − D(p)

T0

N

)+

, (2.3)

where the second and third factors in the right-hand side of equation (2.3) are the
inventory subsidy and loss of unsold goods, respectively. Then, the loss generated by
the shortage of the consignment goods is referred to as

L2 = Nα(1 − r)(p − col)
(
D(p)

T0

N
− d

)+

,

where (·)+ is defined by

(v)+ =

0, v ≤ 0,
v, v > 0

and α(1 − r)(p − col) is the unit opportunity loss. Besides these costs, the online retailer
needs to pay the shipment cost L3 = N(cd + cd). Thus, for the online retailer, the total
stochastic profit from selling the consignment goods is written as

πol(p,N, d) = N(1 − r)(p − col) min
{
d,D(p)

T0

N

}
− (L1 + L2 + L3).

Let F and f be the cumulative distribution function and the probability density
function of the random parameter ε in D with support set [A, B], respectively. We call
z = dN/T0y(p) the online retailer’s stocking factor, and define a function Λ : [A,B]→ R,
given by

Λ(z) =

∫ z

A
(z − x) f (x) dx. (2.4)

Consequently, Λ(z) =
∫ z

A F(x) dx, and l(z) = z − Λ(z) is positive and increasing in z
(see Propositions 2.1 and 2.2 in [4]). The following proposition gives the expected
total cost or loss of the online retailer.

Proposition 2.1. Suppose that the demand D is defined by (2.1) and (2.2). Let Λ be
defined by (2.4). Then, the expected total cost or loss of the online retailer is

L(p, z,N; r) = T0y(p)
[(
δ

hT0

N
+ γcol

)
Λ(z) + α(1 − r)(p − col){l(B) − l(z)} + cz

]
+ Ncd.

Proof. From the definition of D,

E
[(

d − D(p)
T0

N

)+]
= E

[
y(p)

T0

N
(z − ε)+

]
= y(p)

T0

N
E[(ε − z)+]

= y(p)
T0

N

∫ z

A
(z − x) f (x) dx

= y(p)
T0

N
Λ(z)

https://doi.org/10.1017/S1446181120000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000127


[8] Random game model of BOPS mode with delivery cost 69

and

E
[(

D(p)
T0

N
− d

)+]
= y(p)

T0

N
E[(ε − z)+]

= y(p)
T0

N

∫ B

z
(x − z) f (x) dx

= y(p)
T0

N

(
(x − z)F(x)|Bz −

∫ B

z
F(x) dx

)
= y(p)

T0

N

(
(B − z)F(B) −

∫ B

z
F(x) dx

)
= y(p)

T0

N

(
B −

∫ B

A
F(x) dx −

(
z −

∫ z

A
F(x) dx

))
= y(p)

T0

N
{l(B) − l(z)}.

Thus, the expected total cost or loss of the online retailer reads

L(p, z,N; r) = T0y(p)
[(
δ

hT0

N
+ γcol

)
Λ(z) + α(1 − r)(p − col){l(B) − l(z)} + cz

]
+ Ncd.

The desired result has now been proved. �

In the case that the online retailer is risk-neutral, the expected profit of the online
retailer is

πol(p, z,N; r) = N(1 − r)(p − col)E[min{d,D(p)(T0/N)}] − E[L]
= T0y(p)[(1 − r)(p − col){(1 + α)l(z) − l(B)}
− (δ(hT0/N) + γcol)Λ(z) − cz] − Ncd. (2.5)

Since the profit of the online retailer from selling unit consignment goods is
(1 − r)(p − col) − c, we require that

(1 − r)(p − col) ≥ c (2.6)

as one of the necessary conditions that the online retailer is willing to choose the
consignment mode.

2.4. Optimization model for offline retailers Under the assumptions in this paper,
the offline retailer attempts to maximize her own profit by choosing a sale-profit share
r as large as possible, with the given decisions (p, d, N) (or (p, z, N)) of the online
retailer. The profit of the offline retailer consists of two parts. One part is the share of
the sale profit of consignment goods from the online retailer. The other one is from the
profit brought by cross-sale in virtue of the consignment goods. We denote the first
part of the profit as π1

o f . Then,

π1
o f = N{r(p − col) − co f }min

{
d,D(p)

T0

N

}
−

1
2

N
(hT0

N

)
min

{
d,D(p)

T0

N

}
−Nh

T0

N

(
d − D(p)

T0

N

)+

+ Nhδ
T0

N

(
d − D(p)

T0

N

)+

, (2.7)
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where the first term in the right-hand side of equation (2.7) is the profit from the sale of
consigned goods, the second term is the inventory cost of uniformly sold consignment
goods, the third term is the inventory cost of unsold consignment goods in the physical
store and the last term is the inventory subsidy for unsold consigned goods paid by the
online retailer to the offline retailer.

Suppose that the cross-sale quantity generated by consignment per unit time is
m(D) = kD, where k > 0 is a given constant. Denote by p0 the net profit of unit goods
in the cross-sale. Then, the second part of the offline retailer’s profit reads

π2
o f = p0T0m(D) = kp0T0D.

Consequently, in the case that the online retailer is risk-neutral, the expected total profit
of the offline retailer is

πo f (r; p, z,N) = E[π1
o f + π2

o f ]

= T0y(p)
[{

r(p − col) − co f −
hT0

2N

}
l(z) − (1 − δ)

hT0

N
Λ(z) + p0k

]
. (2.8)

Since the expected shared profit of the offline retailer from selling consignment
goods is E(π1

o f ), we require that E(π1
o f ) ≥ 0 as one of necessary conditions, such that

the offline retailer is willing to choose the consignment mode and pay for all those
services. We call it the participation constraint, for which the following condition is
satisfied:

r(p − col)l(z) ≥ co f +
hT0

2N
l(z) + (1 − δ)

hT0

N
Λ(z). (2.9)

2.5. Incentive compatibility constraints From the profit functions (2.5) and (2.8),
it follows that the following inequalities always hold:

dπo f (r; p, z,N)
dr

> 0,
dπol(r; p, z,N)

dr
< 0,

which are in line with the fact that the online and offline retailers have opposite
preferences for the profit-sharing rate r. If a consignment contract fails to effectively
supervise and restrict the profit-sharing rate, the offline retailer may harm the interest of
the online retailer, known as the “agency problem”. To ensure that the online retailer is
willing to choose the consignment mode, incentive compatibility constraints are often
regarded as one of the necessary conditions, such that the online retailer accepts a
suitable division of the pie with the offline retailer [7, 14, 17]. Specifically, to ensure
a successful consignment mode addressed in this paper, an incentive compatibility
constraint is proposed, which requires that the online or offline retailers have the same
minimum marginal profit. Mathematically, for any r,

min
{∂πo f

∂p
(r),

∂πo f

∂N
(r),

∂πo f

∂z
(r)

}
= min

{
∂πol

∂p
(r),

∂πol

∂N
(r),

∂πol

∂z
(r)

}
. (2.10)

Remark 2.2. Compared with the model of Chen et al. [4], the incentive compatibility
constraint (2.10) is a new constraint to ensure a successful consignment mode between
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the online and offline retailers. By this constraint, how the offline retailer determines
a profit-sharing rate r as big as possible should take account of the profit (decision
making) of the online retailer. For the online retailer, the added constraint (2.10) makes
a smaller set of strategies such that the profit of the online retailer can be shared by the
offline retailer.

Remark 2.3. Clearly, if

∂πo f

∂p
(r) =

∂πol

∂p
(r),

∂πo f

∂N
(r) =

∂πol

∂N
(r),

∂πo f

∂z
(r) =

∂πol

∂z
(r), (2.11)

then (2.10) holds. From this viewpoint, (2.11) can be called strong incentive
compatibility constraints. However, for the equilibrium model in this paper, we will
prove in Theorem 3.2 that (2.10) is equivalent to

min
{∂πo f

∂p
(r),

∂πo f

∂z
(r)

}
= 0.

2.6. Nash equilibrium model between online and offline retailers With the
above preparation, the retailing system under BOPS mode is involved with the solution
of the following Nash equilibrium model by integrating (2.5), (2.8) and all the relevant
constraints:

max
(p,z,N;r)

πol = T0y(p)
[
(1 − r)(p − col){(1 + α)l(z) − αl(B)}

−

(
δ

hT0

N
+ γcol

)
Λ(z) − cz

]
− Ncd,

subject to (1 − r)(p − col) ≥ c, and
N ≥ 0, z ∈ [A, B];

max
(r;p,z,N)

πo f = T0y(p)
[(

r(p − col) − co f −
hT0

2N

)
l(z) − (1 − δ)

hT0

N
Λ(z) + p0k

]
,

subject to (2.10) holds, and

r(p − col)l(z) ≥ co f +
hT0

2N
l(z) + (1 − δ)

hT0

N
Λ(z).

(2.12)
Since δ = 1, Λ(B) = B − 1 and l(B) = 1, the model (2.12) can be rewritten as

max
(p,z,N;r)

πol = T0y(p)
[
(1 − r)(p − col){(1 + α)l(z) − α} −

(hT0

N
+ γcol

)
Λ(z) − cz

]
−Ncd,

subject to (1 − r)(p − col) ≥ c, and
N ≥ 0, z ∈ [A, B];

max
(r;p,z,N)

πo f = T0y(p)
[(

r(p − col) − co f −
hT0

2N

)
l(z) + p0k

]
,

subject to r ≥
co f + hT0/2N

p − col
, and (2.10) holds.

(2.13)
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Remark 2.4. Since this paper does not concern the choice of single-channel retailing
mode, the model (2.13) provides a way to formulate the BOPS system, rather than an
ordinary noncooperative Nash game. In this BOPS system, the players (the offline and
online retailers) are not allowed to choose respective single-channel retailing modes.
Actually, to ensure a successful BOPS mode, the model (2.13) contains incentive
compatibility and participation constraints, given by (2.9) and (2.10).

Remark 2.5. Apart from the existing models available in the literature, the
model (2.13) is a modified Nash equilibrium problem taking account of an optimal
delivery, apart from the randomness of demands as in [4]. Therefore, the model (2.13)
is more applicable in practice than those BOPS models without delivery cost.

Remark 2.6. Owing to the complexity of the model (2.13), it is impossible to directly
get its analytical solution. In the literature, random algorithms are often developed
to find its approximate solution [16, 24]. In this paper, we intend to first analyse
the analytical properties of the model (2.13). Then, an efficient algorithm will be
developed to seek for an equilibrium solution.

Remark 2.7. Since the delivery (or ordering) frequency means the delivered (ordered)
number per unit time, it is often regarded to be any real number [10]. In other words,
N in the model (2.13) is a real continuous decision variable, and T0/N is a time span
between two successive deliveries. Similarly, since the delivered quantity of goods is
usually calculated by weight or volume of goods, d in the model (2.13) is also a real
continuous variable.

3. Properties of model and solution method

In this section, we will study the analytical properties of the model (2.13) such that
a solution method can be proposed.

3.1. Equilibrium conditions We first prove the following results.

Theorem 3.1. For a given r, let (p∗(r), z∗(r), N∗(r)) be an optimal decision of the
online retailer. Then, (p∗(r), z∗(r), N∗(r)) satisfies the following system of nonlinear
equations. 

p =
β

β − 1

(
col +

(hT0/N + γcol)Λ(z) + cz
(1 − r){(1 + α)l(z) − α}

)
,

1 − F(z) =
c + hT0/N + γcol

(α + 1)(1 − r)(p − col) + hT0/N + γcol
,

N = T0

√
ap−βhΛ(z)

cd
.

(3.1)

https://doi.org/10.1017/S1446181120000127 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181120000127


[12] Random game model of BOPS mode with delivery cost 73

Proof. We first prove that the solution (p∗(r), z∗(r),N∗(r)) satisfying equation (3.1) is
in the feasible region. Since l(z) ≤ 1 and z − l(z) = Λ(z) ≥ 0,

(1 − r)(p∗ − col) =
1 − r
β − 1

col +
(hT0/N∗ + γcol)Λ(z∗) + cz∗

(1 + α)l(z∗) − α

>
cz∗

(1 + α)l(z∗) − α
> c.

Thus, from

0 <
c + hT0/N∗ + γcol

(α + 1)(1 − r)(p∗ − col) + hT0/N∗ + γcol

<
(1 − r)(p∗ − col) + hT0/N∗ + γcol

(α + 1)(1 − r)(p∗ − col) + hT0/N∗ + γcol
< 1,

it follows that 1 > F(z∗) > 0. From the definition of the cumulative distribution
function F, it is clear that z ∈ (A, B). Then,

N∗ =

√
ap∗−βhΛ(z)

cd
T0 ≥ 0.

Next, we prove that at the point (p∗(r), z∗(r), N∗(r)), the gradient of the online
retailer’s profit in (2.13) is 0, that is, ∇πol(p∗(r), z∗(r), N∗(r)) = 0. In fact, from the
definitions of y(p) and πol(p, z,N; r), it follows that for a given r,

dy(p)
dp

= −
β

p
(ap−β) = −

β

p
y(p),

∂πol(p, z,N; r)
∂p

= −
β

p
y(p)T0[(1 − r)(p − col){(1 + α)l(z) − α}

−(hT0/N + γcol)Λ(z) − cz] + y(p)T0[(1 − r){(1 + α)l(z) − α}] = 0,
∂πol(p, z,N; r)

∂z
= T0y(p)[(1 + α)(1 − r)(p − col)(1 − F(z))

−(hT0/N + γcol)F(z) − c] = 0,
∂πol(p, z,N; r)

∂N
= T0y(p)(hT0/N2)Λ(z) − cd = 0.

(3.2)
Since y(p)T0 > 0,

p =
β

β − 1

(
col +

(hT0/N∗ + γcol)Λ(z∗) + cz∗

(1 − r)(1 + α)l(z∗) − α

)
≡ p∗(r),

F(z) = 1 −
c + hT0/N∗ + γcol

(α + 1)(1 − r)(p∗ − col) + hT0/N∗ + γcol
≡ F(z∗(r)),

N = T0

√
ap∗−βhΛ(z)

cd
≡ N∗(r).

Therefore, for any given r, (p∗(r), z∗(r), N∗(r)) satisfying equation (3.1) are the first-
order optimality conditions of optimal decision of the online retailer. �
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Theorem 3.2. Under the participation constraint (2.9), the incentive compatibility
constraint (2.10) is equivalent to(

co f +
hT0

2N

)
pl(z) ≥ βp0k(p − col),

while the profit-sharing rate satisfies

r ∈
{co f + hT0/2N

p − col
,

(co f + hT0/2N)l(z) − p0k
(p − col − p/β)l(z)

}
.

Proof. Since (3.2) holds for any given r, the incentive compatibility constraint (2.10)
is equivalent to

min
{∂πo f

∂p
(r),

∂πo f

∂N
(r),

∂πo f

∂z
(r)

}
= 0. (3.3)

By the participation constraint (2.9),

∂πo f

∂N
(r) = T0y(p)

hT0

2N2 l(z) > 0,

∂πo f

∂z
(r) = T0y(p)

[(
r(p − col) − co f −

hT0

2N

)
(1 − F(z))

]
≥ 0,

where ∂πo f (r)/∂z = 0 if and only if

r =
co f + hT0/2N

p − col
. (3.4)

Thus, in the case that

r ,
co f + hT0/2N

p − col
,

equation (3.3) is equivalent to
∂πo f

∂p
(r) = 0.

By direct calculation,

∂πo f

∂p
(r) = −

β

p
T0y(p)

[{
r
(
p − col −

p
β

)
− co f −

hT0

2N

}
l(z) + p0k

]
= 0.

It follows that

r =
(co f + hT0/2N)l(z) − p0k

(p − col − p/β)l(z)
. (3.5)

On the basis of the above analysis, we conclude that when (3.4) holds, the constraint
(2.10) is equivalent to ∂πo f (r)/∂p ≥ 0, that is,

β

p
T0y(p)

[{co f + hT0/2N
p − col

(
p − col −

p
β

)
− co f −

hT0

2N

}
l(z) + p0k

]
≥ 0.
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Consequently, (
co f +

hT0

2N

)
pl(z) ≥ βp0k(p − col),

which makes the online retailer accept that the offline retailer shares the profit with a
profit-sharing rate specified by (3.4). If (3.4) does not hold, then the constraint (2.10)
implies that the profit-sharing rate of the offline retailer is specified by (3.5). With the
the participation constraint (2.9),

(co f + hT0/2N)l(z) − p0k
(p − col − p/β)l(z)

≥
co f + hT0/2N

p − col
.

Since
p − col −

p
β

=
(hT0/N + γcol)Λ(z) + cz
(1 − r){(1 + α)l(z) − α}

> 0

holds for any (p, z,N) satisfying (2.6) and the first equation in (3.1),{(
co f +

hT0

2N

)
−

p0k
l(z)

}
(p − col) ≥

(
co f +

hT0

2N

)(
p − col −

p
β

)
,

which also yields
(co f + hT0/2N)pl(z) ≥ βp0k(p − col).

The desired result has now been proved. �

For any given decision of the online retailer, the offline retailer will choose
an optimal sharing rate r from the total sale profit such that the expected profit
πo f (r; z, p,N) is maximized. The following result provides the optimal optimal sharing
rate r corresponding to a strategy of the online retailer.

Theorem 3.3. In the model (2.13), let r be the optimal profit-sharing rate of the offline
retailer corresponding to a given strategy (p, z,N) of the online retailer. Then,

r(p, z,N) =
(co f + hT0/2N)l(z) − p0k

(p − col − p/β)l(z)
. (3.6)

Proof. Since r given by (3.6) is a feasible solution of the optimization model of
the offline retailer, it satisfies the incentive compatibility constraint (2.10). By
Theorem 3.2,

(co f + hT0/2N)pl(z) ≥ βp0k(p − col).

Since
p − col −

p
β

=
(hT0/N + γcol)Λ(z) + cz
(1 − r){(1 + α)l(z) − α}

> 0

holds for any (p, z,N) satisfying (2.6) and the first equality in (3.1),

(co f + hT0/2N)l(z) − p0k
(p − col − p/β)l(z)

−
co f + hT0/2N

p − col

=
(co f + hT0/2N)pl(z) − βp0k(p − col)

β(p − col − p/β)l(z)(p − col)
≥ 0. (3.7)
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It yields

r(p, z,N) ≥
co f + hT0/2N

p − col
.

On the other hand, from dπo f /dr = T0y(p)l(z)(p − col) ≥ 0, it follows that πo f is
nondecreasing in r. From (3.7) and the result in Theorem 3.2, we conclude that for the
given strategy (p, z,N) of the online retailer,

πo f

[ (co f + hT0/2N)l(z) − p0k
(p − col − p/β)l(z)

]
≥ πo f

(co f + hT0/2N
p − col

)
,

that is, the optimal profit-sharing rate r in the model (2.13) is specified by (3.6). This
completes the proof. �

Combining the results in Theorems 3.1 and 3.3, we obtain the following result.

Theorem 3.4. Let (p∗, z∗,N∗, r∗) be an equilibrium solution of the model (2.13). Then,
(p∗, z∗,N∗, r∗) solves the following system of constrained nonlinear equations.

p =
β

β − 1

[
col +

(hT0/N + γcol)Λ(z) + cz
(1 − r)((1 + α)l(z) − α)

]
,

1 − F(z) =
c + hT0/N + γcol

(α + 1)(1 − r)(p − col) + hT0/N + γcol
,

N =

√
T 2

0 ap−βhΛ(z)
cd

,

r =
(co f + hT0/2N)l(z) − p0k

(p − col − p/β)l(z)
,(

co f +
hT0

2N

)
pl(z) ≥ βp0k(p − col).

(3.8)

3.2. Solution method Based on the properties of the game model, we further
transform the system of constrained nonlinear equations in (3.8) into a constrained
optimization problem, such that it can be solved by off-the-shelf optimization
algorithms.

We denote

h1(p, z,N, r) = p(r) −
β

β − 1

[
col +

(hT0/N + γcol)Λ(z) + cz
(1 − r){(1 + α)l(z) − α}

]
,

h2(p, z,N, r) = F(z) − 1 +
c + hT0/N + γcol

(α + 1)(1 − r)(p − col) + hT0/N + γcol
,

h3(p, z,N, r) = N2 −
T 2

0 ap−βhΛ(z)
cd

,

h4(p, z,N, r) = r −
(co f + hT0/2N)l(z) − p0k

(p − col − p/β)l(z)
.
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To facilitate solution of the constrained nonlinear equations in (3.8), it is rewritten as

hi(p, z,N, r) = 0, i = 1, 2, 3, 4,
subject to (co f + hT0/2N)pl(z) ≥ βp0k(p − col).

(3.9)

Further, we denote x = (p, z,N, r)T and transform (3.9) into a constrained optimization
problem as follows [27]:

min f (x) = 1
2 {h

2
1(x) + h2

2(x) + h2
3(x) + h2

4(x)},
subject to (co f + hT0/2N)pl(z) ≥ βp0k(p − col).

(3.10)

Clearly, if x∗ is a feasible solution of Problem (3.10) such that f (x∗) = 0, then hi(x∗) = 0
for all i = 1, 2, 3, 4, and x∗ is the solution of the constrained system of nonlinear
equations (3.8). With this thought, any powerful algorithm for solving a smooth
constrained optimization problem can be used to find an equilibrium point of the
original problem (3.8) [6, 11, 18], other than the random algorithms used in the
literature [16, 24].

4. Case study and sensitivity analysis

In this section, we will validate the developed game model by a case study, and
explore underlying managerial implications by sensitivity analysis of this model.

4.1. Case study Before the case study, we first construct a class of probability
density functions for the random variable ε in the demand function (2.1). As done
by Chen et al. [4], we also use the following cubic function as a model of the density
function:

fu(x) = kx(x − u)(x − w).

To facilitate our case study, we suppose that the support set of the stochastic
disturbance ε of demand in (2.1) is the interval [0, 2], that is, A = 0 and B = 2. Then,
fu satisfies 

fu(x) ≥ 0, x ∈ [0, 2],∫ 2
0 fu(x) dx = F(2) = 1,∫ 2
0 x fu(x) dx = E[ε] = 1.

In this case, the density function is

fu(x) =
u − 2

4u2/3 − 16u/5 + 8/5
· x(x − u)

(
x −

2u − 18/5
u − 2

)
,

where u ≥ 2 is called a shape factor of the density function. Without loss of generality,
we choose u = 3 in this paper. Then, the density function of ε is

f3(x) =
x
4

(
x −

12
5

)
(x − 3), x ∈ [0, 2].
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To conduct the case study, we choose the parameters in the model (2.13) as follows.

u = 3, T0 = 30 (days), a = 10000,
α = 0.4, β = 1.6, γ = 0, δ = 1,
h = 2(CNY/RMB), col = 30(CNY/RMB), co f = 8(CNY/RMB),
cd = 100(CNY/RMB), c = 2(CNY/RMB), v = 5(CNY/RMB).

(4.1)

For the given values of parameters in (4.1), we implement any solver of unconstrained
optimization problems, such as FMINUNC in the Matlab platform, to solve (3.10).
All computer codes are written in Matlab (R2018a), and the numerical experiments
are carried out on a laptop with an Intel Core i5 1.60 GHz processor and with 8 GB of
RAM under Windows 10. Within a total elapsed CPU time of less than 0.2 seconds,
we get a solution of Problem (3.10) as follows:

x∗ = (121.98, 1.60, 7.16, 0.45), d∗ = 30.73,
πol = 4881.06, πo f = 4609.52, π = 9490.58, (4.2)

where π is the total profit given by π = πol + πo f . The corresponding minimal value of
the objective function in the model (3.10) is

f (x∗) = 1
2 {h

2
1(x∗) + h2

2(x∗) + h2
3(x∗) + h2

4(x∗)} = 6.33 × 10−13.

As an equilibrium point of the original game model (2.13), the numerical results
in (4.2) demonstrate that for the online retailer, the optimal selling price is 121.98
CNY/RMB, the single-delivery quantity is 30.73 and the delivery frequency is 7.16.
For the offline retailer, the maximal profit-sharing rate is 0.45. Furthermore, at this
equilibrium point, the total profit earned by the online and offline retailers is 9490.58
CNY/RMB.

These results verify that the proposed method in this paper can reliably provide the
optimal strategy of selling, inventory, delivery and profit allocation for the two players
under BOPS mode.

4.2. Sensitivity analysis of cost coefficients To explore the underlying managerial
implications in our game model, we now study what are the impacts of operational
costs (co f , h, cd, c) on the equilibrium point and the profits by sensitivity analysis.

In practice, the service cost and inventory cost are mainly borne by the offline
retailer, while the shipment cost is completely borne by the online retailer. With this
consideration, the following three scenarios are designed for the subsequent analysis:

Scenario 1: (co f , h, cd, c) = (2, 1, 400, 4)(CNY/RMB),
Scenario 2: (co f , h, cd, c) = (5, 2, 250, 3)(CNY/RMB),
Scenario 3: (co f , h, cd, c) = (8, 3, 150, 2)(CNY/RMB).

Clearly, the above three scenarios stand for the following types of markets with distinct
operational costs.

Scenario 1 : (underdeveloped area) lower service cost and inventory cost with higher
shipment cost.
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Figure 1. Effects of operational costs.

Scenario 2 : (developing area) medium service cost and inventory cost with medium
shipment cost.

Scenario 3 : (developed area) higher service cost and inventory cost with lower
shipment cost.

The impacts of distinct operational costs on the profits and on the equilibrium
solution are depicted in Figure 1, from which we note the following results.

(1) The increasing shipment cost results in a smaller delivery frequency and an
increasing single shipment quantity (see the yellow and orange-red parts in
Figure 1(a). The shipment costs, including the fixed and the unit shipment cost,
seriously affect the optimal delivery schedule. As the unit service and holding
cost paid by the offline retailers increases, the optimal selling price also increases
with different degrees in line with the three types of markets (see the blue parts
in Figure 1(a)).

(2) Compared with developing areas, the online retailers in the developing and
underdeveloped areas are more profitable, although they need to pay for higher
shipment cost (see Figure 1(b)). Similarly, with the highest service and holding
cost in Scenario 3, the profit of the offline retailer is the highest. These results
imply that the proposed models in this paper can keenly capture uncertainty of
the operational costs.

4.3. Sensitivity analysis of price sensitivity coefficient We next study the impact
of the price sensitivity coefficient on the allocation of profits and the equilibrium
solution.

We change the value of the price sensitivity coefficient β in the model (2.13) from
1.15 to 1.85 by steps of 0.05; the corresponding equilibrium solutions are shown in
Figure 2.

From Figure 2, the following is clear.
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Figure 2. Impacts of price sensitivity coefficient.

(1) As the price sensitivity coefficient rises, the profits of the online and offline
retailers and the total shipment quantity go down (see Figure 2). It is easily
seen that the consignment goods (luxury goods) with higher price sensitivity
coefficient bring less profits to both of the online and offline retailers, but it
seems that the profit of the offline retailer is less sensitive to the price sensitivity
coefficient than that of the online retailer (see Figure 2(a)).

(2) Consignment goods with lower price sensitivity coefficient and higher sales
volume seem to be more suitable to adopt the BOPS mode (see Figures 2(a)
and 2(b)).

4.4. Sensitivity analysis of cross-sale factor We are in a position to investigate
the impacts of the cross-sale factor v. Since v = p0k represents the profit from the unit
cross-sale generated by the unit consignment goods, we explore its relation with the
profit-sharing rate and its impacts on the price. We change v from 0 to 10 by a step
size of 0.5. The numerical results are plotted in Figure 3.

From Figure 3, we conclude the following results.

(1) The profit-sharing rate, r, is sensitive to the cross-sale factor (see Figure 3(a)).
With an increasing unit profit of cross-sale, the profit-sharing rate decreases. In
other words, by the BOPS mode, both of the offline and the online retailers can
share the revenue generated by the cross-sale.

(2) When the cross-sale becomes more profitable, the optimal selling price of the
online retailer deceases, which surely brings dividends to the consumers (see
Figure 3(b)). Therefore, choosing a suitable type of goods with a higher cross-
sale factor in the BOPS mode can create a tripartite win–win situation.

4.5. Sensitivity analysis of opportunity loss ratio We come to answer what are
the influences of opportunity loss ratio on the equilibrium solution, which are related
with shortage of the consignment goods. To conduct our analysis, the opportunity
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Figure 3. Impacts of cross-sale factor.

loss ratio is taken from 0 to 1 by a step size of 0.1. For these different choices, the
numerical results are presented in Figure 4, where the following is presented.

(1) An increasing opportunity loss ratio results in a higher selling price, higher
delivery frequency, greater quantity in single delivery, greater total order volume
and smaller rate of sharing the sale profit (see Figure 4(a)–(e)). We conclude
that the opportunity loss ratio affects the optimal equilibrium point in the BOPS
mode, though the value of each equilibrium solution differs within 10% (α = 0
and α = 1).

(2) The profits of the online and offline retailers are only a little sensitive to
the opportunity loss ratio (see Figure 4(f)). In other words, the Nash game
strategy [4] in the BOPS mode can hedge the impact of opportunity loss on
profits, which can be earned by dynamically changing the equilibrium points for
the varying opportunity loss ratios.

4.6. Sensitivity analysis of loss ratio of unsold goods In practice, unsold goods
are a loss to retailers. Lower loss ratio of unsold goods often allows the retailers to
get greater profit of a BOPS system. Therefore, it is interesting to answer what are the
impacts of the loss ratio of unsold goods on the equilibrium.

We change the loss ratio γ of unsold goods in the model (2.13) from 0 to 1 with a
step size of 0.1. Numerical results are presented in Figure 5.

From Figure 5, we conclude the following results.

(1) As the loss ratio γ increases, the selling price increases and the sales-profit
sharing rate decreases, which indicates that the loss of unsold goods is borne
together by the online retailer, offline retailers and customers (see Figures 5(a)
and 5(b)).

(2) With an increasing loss ratio γ, both the delivery frequency and the delivery
quantities decrease. The total shipment quantity Q also decreases during the
planning period. It reveals that higher loss of unsold goods has negative impacts
to the equilibrium strategy (see Figures 5(c) and 5(d)).
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Figure 4. Impact of opportunity loss ratio.

(3) An increasing loss ratio γ results in a linear reduction of the retailers’ profit.
Therefore, it should be profitable to reduce the loss rate γ of unsold goods by
recycling or reusing them (see Figure 5(e)).
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Figure 5. Impact of the loss ratio of unsold goods.

4.7. Comparison between two models without and with delivery cost
Compared with the model of Chen et al. [4], our model concerns the delivery cost
in the BOPS mode. So, an interesting issue is to answer what are the differences
between the two similar models. Since no delivery schedule is regarded in [4], we can
think that its delivery frequency N∗ = 1. Additionally, since the model in [4] is not
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Table 1. Comparison between the BOPS systems with or without delivery cost.

Model NS f (x∗) π πol πo f p d r
Modelus N∗ = 5.00 3.83 × 10−14 7340.5 5439.9 1900.6 179.71 22.66 0.24

ModelChen N = 1 5.34 × 10−16 5398.3 1160.3 4238.0 490.51 20.10 0.75

associated with any inventory subsidy, we have δ = 0. Thus,

∂πol(p, z,N; r)
∂N

= T0y(p)δ
hT0

N2 Λ(z) − cd = −cd < 0.

Clearly, smaller delivery frequency is beneficial to the online retailer, but it may
increase inventory pressure and cause loss to the offline retailer. Thus, introduction of
inventory subsidy in the game model is helpful to the cooperation between the online
and offline retailers. We intend to address how the equilibrium point depends on the
delivery schedule, as well as what are the differences between the two models with or
without inventory subsidy.

For brevity, we denote “the model in this paper” and “the model in [4]” by
“Modelus” and “ModelChen”, respectively. Also, “NS” represents the number of
shipments. Since the unsold goods are regarded to be worthless without any profit,
we take the loss ratios of the unsold products γ = 1 and the opportunity loss α = 1 in
ModelChen and Modelus, respectively. Additionally, the shipment cost for these unsold
goods should also be added to ModelChen. The other model parameters are chosen to
be the same as in (4.1).

Clearly, unlike ModelChen, Modelus is concerned with the optimal delivery schedule
to maximize the total profit of the BOPS system, as well as the online retailer’s needs
to pay the inventory subsidies to the offline retailer for the unsold goods in Modelus.
By solving Modelus and ModelChen, we get the numerical results in Table 1.

Table 1 demonstrates the following results.

(1) By Modelus, the profit of the online retailer is 5439.9, much higher than that in
ModelChen. However, at the equilibrium point obtained by Modelus, the optimal
selling price of products is 179.71 for the online retailer, lower than that by
ModelChen. In other words, Modelus is beneficial to bring about greater consumer
surplus. Additionally, the big difference of the equilibrium solutions between
Modelus and ModelChen indicates that optimization to the delivery schedule in
Modelus greatly affects the optimal strategy of the game model in the BOPS
mode. Thus, Modelus is more applicable to incorporate the delivery schedule
into the game model of the BOPS system than ModelChen, where there is only a
shipment.

(2) By Modelus, the profit of the offline retailer is 1900.6, lower than that by
ModelChen. Therefore, even if the total profit of the BOPS system in Modelus
becomes higher (π = 7340.5), which is a 1942.2 CNY/RMB increase over that
in ModelChen, the offline retailer can only share less sale profit from the online
retailer by optimizing delivery schedule and inventory subsidies. Thus, we
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Figure 6. Robustness to varying price sensitivity coefficients.

can conclude that Modelus is a more applicable model on BOPS modes than
ModelChen.

To further show robustness of Modelus to the uncertain price sensitivity coefficient,
we compute the equilibrium points of the BOPS system by changing the value of the
price sensitivity coefficient, β, from 1.3 to 2 with a step size of 0.05. In Figure 6, we
show the numerical results with regard to the two models Modelus and ModelChen.

Figure 6 indicates that Modelus is better than ModelChen. Its main advantages can
be stated as follows.

(1) The total profits of the BOPS system by Modelus are always higher than those
by ModelChen for the varying price sensitivity coefficients. The profit of the
offline retailer in Modelus is less sensitive to the change of the price sensitivity
coefficient than that in ModelChen (see Figure 6(a)).

(2) For the varying price sensitivity coefficients, the optimal selling prices at the
equilibrium obtained by Modelus are more robust, always lower than those by
ModelChen (see Figure 6(b)). Clearly, lower price is helpful to generate greater
consumer surplus such that more customers are attracted by the developed BOPS
mode.

5. Conclusions

In this paper, we have established a new stochastic Nash equilibrium model of
BOPS mode, where the online retailer can obtain an optimal online sale price and an
optimal delivery schedule in an order cycle, while the offline retailer can get a maximal
sharing rate of the profit from the online retailer. Compared to the existing models in
the literature, our model is more applicable in practice.

Based on analytical properties of the model, the complicated model is transformed
into a smooth constrained optimization problem, such that any off-from-shelf efficient
algorithm is used to find its solution.
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By a case study and sensitivity analysis, the developed game model has been
validated, and a number of practical managerial implications have been revealed with
the help of this model as follows.

(1) The proposed integrated Nash game model in this paper can reliably provide
an equilibrium strategy for the online and offline retailers under BOPS mode,
including the optimal online selling price, the optimal delivery schedule, the
optimal inventory and the optimal allocation of profits. By this model, due to
existence of cross-selling profit, the offline retailer cares more about whether the
consignment cooperation is successful or not, rather than a sufficiently greater
rate of sharing the profit.

(2) Different model parameters, such as operational cost, price sensitivity
coefficient, cross-sale factor, opportunity loss ratio and loss ratio of unsold
goods, generate distinct impacts on the equilibrium solution and the profits of the
BOPS system. Specifically, (a) the online retailers need to pay higher shipment
cost in the underdeveloped area but it is more profitable. Similarly, the profit
of the offline retailer in the developed area is the highest despite of higher unit
service and holding cost. (b) By the Nash game strategy, the opportunity loss
ratio may affect the equilibrium point in the BOPS mode, but only generates little
change in the profits. (c) By the BOPS mode, both the offline and online retailers
can share revenue generated by cross-selling, and choosing of a suitable type
of goods with higher cross-sale factor can create a tripartite win–win situation.
(d) The profit of the offline retailers is less sensitive to the price sensitivity
coefficient and the cross-sale factor, compared with that of the online retailers.
Consignment goods with lower price sensitivity coefficient are more suitable to
adopt the BOPS mode.

(3) Optimization of delivery schedule plays a critical role in developing an efficient
game model for the BOPS mode. It is beneficial to bring greater consumer
surplus, and make the offline retailer share less sale profit from the online
retailer, even if the total profit of the BOPS system becomes higher.

In future research, it would be an interesting issue to develop a deterministic global
optimization algorithm to solve the unconstrained optimization (3.10), since any local
optimization method can not ensure that the obtained value of the objective function
is zero at the equilibrium. On the other hand, it is valuable to develop a new model
to study the interaction between a single online retailer and multiple heterogeneous
offline retailers under the BOPS mode. It is also significant to extend the proposed
method to the case of perishable goods.
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