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ON INFLATION AND TORSION OF 
AMITSUR COHOMOLOGY 

DAVID E. DOBBS 

I n t r o d u c t i o n . Studies of torsion [2] and inflation [11] of Amitsur cohomo-
logy have primarily been concerned with module-finite faithful projective 
algebras. In this paper, our goal is to consider these topics for more general 
algebras. T h e fundamental tool, in case R is a domain with quotient field K, 
is the functor UK/U (defined in § 1), together with the monomorphic con­
necting map of Amitsur cohomology Hl(S/R, UK/U) —> H2(S/R, U) arising 
from a (commutat ive) flat .R-algebra 5 and the uni t functor U. This map was 
first considered in [10, Chapter IV, Theorem 1.6], where it was proved to be 
an isomorphism for certain étale faithfully flat algebras 5 in case R is an alge­
braic number ring with trivial Brauer group. In Corollary 1.5 it is shown, in 
the case of a module-finite faithful projective 5 over a regular domain R, t h a t 
the connecting map is the kernel of the canonical homomorphism [8] from 
H2(S/R, U) to the split Brauer group B(S/R). As the lat ter map is often 
injective [8, Corollary 7.7], one might expect instances of vanishing of 
Hl(S/R, UK/U) without assuming both R Noetherian and .5 module-finite 
^-project ive. Much of § 1 (viz. (1.7)-(1.9)) is devoted to such examples. 

Section 2 deals with the inflation map inf: H2(S/R, U)->H2(T/R, U) 
arising from an i^-algebra homomorphism S —» T. Using the techniques of 
Grothendieck topologies and spectral sequences, we obtain for arb i t rary 
commuta t ive R (in Theorem 2.2 and the remark following) sufficient con­
ditions for inf to be injective. Our general approach for a domain R is to con­
sider annihilators of elements of the kernel of inf. For flat 5 and T, Proposition 
2.1 reduces the problem to analyzing the kernel of 

H^S/R, UK/U)->H^(T/R, UK/U). 

Some multiplicative functions (including the norms of Amitsur homology [2]) 
are used in (2.5)-(2.7) to show: if S and T are the integral closures of R in 
finite field extensions L C F of K then, with additional hypotheses, an appro­
priate power of [F:L] annihilates the kernel of inf. An analogous result for 
group cohomology is given in Theorem 2.9. 

Section 3 is concerned with diverse applications to U and UK/ U of a spectral 
sequence of Silver [17] t h a t connects Amitsur cohomology and group coho­
mology. In particular, (3.6)-(3.8) are the only general results known to the 
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author concerning torsion of two-dimensional Amitsur cohomology in U for 
algebras not assumed to be both module-finite and projective. 

1. A m i t s u r c o h o m o l o g y a n d UK/U. Throughout the paper, rings and 
algebras are commuta t ive with uni t elements and algebra homomorphisms are 
uni tary . W e assume familiarity with the Amitsur cohomology, Brauer group, 
and Pic functors (see [2; 7], [4], and [5], respectively) and with i^-based 
topologies (see [10, Chapter I I ] ) . 

W e begin by defining some coefficient functors for Amitsur cohomology. 
Le t R be a ring and U the functor t h a t assigns to an i^-algebra S its mult ipl icative 
group of invertible elements U(S). If K is an i^-algebra, the functor UK is 
defined by (UK)(S) = U(S ®BK). Now assume t h a t K is i^-faithful. By 
restricting U and UK to the full subcategory of flat R-algebras, we obtain a 
monomorphism of functors U —-> UK; let UK/U be its cokernel. As usual 
[8, (3.3)], there is a natura l long exact sequence of Amitsur cohomology groups 

. . .->Hn(S/R, U)-+H*(S/R, UK)->Hn(S/R, UK/U) -> 

Hn+l(S/R, £ / ) - > . . . 

for any flat i^-algebra S. Identify Hn(S/R, UK) and Hn(S ®BK/K, U) via 
the s tandard isomorphism of the corresponding complexes [15, footnote, p . 224]. 

Consider the above connecting homomorphism for n = 1. If 5 (x)fi K is 
faithfully flat over K and Pic(K) = 0 (e.g., if K is a field), then [8, Corollary 
4.6] shows H^S ®RK/K, U) = 0, whence Hl(S/R, UK/U) -*H2(S/R, U) 
is a monomorphism. Conditions t h a t this map also be surjective are studied 
below. 

First , some nota t ion: if R is a Dedekind domain with quot ient field K and 3 
is a maximal ideal of R, let K$ be the completion of K in the 3?-adic valuat ion 
and R% the closure of R in K%. In general, let I n t s A denote the integral closure 
of A in B. 

T H E O R E M 1.1. Let K be either an algebraic number field with at most one real 
place or a finite field extension of k (X) for some finite field k. Let R be the integral 
closure in K of either Z or k[X], as the case may be. Let S be a faithfully flat 
R-algebra such that S (x)^ K is finite dimensional over K and: for every maximal 
ideal $ of R, there exist a finite unramified (Galois) field extension L of K$ and 
an Rs-algebra homomorphism S ®R R$ —» IntL(Rs). Then the connecting homo­
morphism ^(S/R, UK/U) —* H2(S/R, U) is an isomorphism. 

Proof. See [10, Chapte r IV, Theorem 1.6, Theorem 3.3 and Remark (b) 
following, and supplement on p . 176]. 

Remark 1.2. Le t R be as in the preceding theorem. I t follows from [10, 
Chapter IV, Theorem 1.3] t h a t the hypotheses of Theorem 1.1 hold for R-
algebras which are projective, separable and faithful over T[Rxi where the xt 

are non-zerodivisors satisfying (xi, . . . , xn) = R. Although such algebras are 
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seldom module-finite over R, it is of interest to s tudy the connecting homo-
morphism in the module-finite case. An appropriate tool is the theorem of 
Chase-Rosenberg quoted below. For motivation, we note t ha t global class 
field theory and [4, Theorem 6.5, Propositions 7.4 and 8.2] imply t h a t the 
rings R of Theorem 1.1 have trivial Brauer group. 

T H E O R E M 1.3 (Chase-Rosenberg). Let S be a module-finite faithful and pro­
jective R-algebra. Then there is an exact sequence natural in R and S: 

0 -> H^S/R, U) -> Pic(R) -> H°(S/R, Pic) -> H2(S/R, U) -> 
B(S/R)->H1(S/R, Pic) ->H*(S/R, U). 

Proof. Exactness and natural i ty in 5 are proved in [8, Theorem 7.6]. Na tu r -
al i ty in R follows from the explicit calculation of the maps in [12, Appendix]. 

COROLLARY 1.4. Let Rbe a domain with quotient field K and S aflat R-algebra 
such that S (x)# K is finite dimensional over K and B(S (g)R K/K) = 0. Then the 
connecting homomorphism ^(S/R, UK/U) —> H2(S/R, U) is an isomorphism. 

Proof. As we noted earlier, H^S/R, UK/U) -> H2(S/R, U) is a mono-
morphism. By the cohomology long exact sequence arising from 

0 - » U-> UK-* UK/U->0, 

it is enough to prove H2 (S ®R K/K, U) = 0. Bu t 5 ®R K is art inian, hence 
semilocal, and so P ic (5 ®R K) = 0 [5, Proposition 5, p . 143]. Therefore, 
H°(S ®BK/K, Pic) = 0 and Theorem 1.3 applies to complete the proof. 

W e recall t ha t a Noetherian domain R is called regular if RM is a regular 
local ring for every maximal ideal M of R. Any Dedekind domain is regular. 
If R is regular with quotient field K, [4, Theorem 7.2] states t ha t the map on 
Brauer groups, B(R)~^B(K), is a monomorphism. In particular, if R is 
regular and 5 is an jR-algebra, the induced map on split Brauer groups, 
B(S/R) -+B(S ®RK/K), is a monomorphism. 

COROLLARY 1.5. Let R be a regular domain with quotient field K and S a 
module-finite faithful and projective R-algebra. Then ^(S/R, UK/U), viewed 
as a subgroup of H2 (S/R, U) via the connecting homomorphism, is the kernel of the 
canonical map H2(S/R, U) ->B(S/R). 

Proof. This is immediate from a chase of the exact commutat ive diagram 

0 

i 
0 -> IP (S/R, UK/ U) -> H2 (S/R, U) -> H2 (S ®R K/K, U) 

i i 
0-+B (S/R) ->B(S ®R K/K). 

Remark 1.6. Let R be a Dedekind domain with quotient field K, L a finite 
separable field extension of K, and 5 = In t L R. Then 5 is a module-finite 
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faithful i?-projective such t ha t 5 ®B K = L [18, Chapter V, Theorem 7] and 
H*(S ®RK/K, U)^B(L/K) (Theorem 1.3). 

Corollary 1.5 shows t h a t H^S/R, UK/U) -> H2(S/R, U) is an isomorphism 
if B(S/R) = 0. In case K is an algebraic number field, this holds if K has a t 
most one real place or if [L:K] is odd. No te t h a t Theorem 1.1 and Remark 1.2 
handle the special case in which K has a t most one real place and L/K is 
unramified. 

T H E O R E M 1.7. Let R be an algebraic number ring with quotient field K and let A 
be the ring of all algebraic integers. Then Hl(A/R, UK/U) = 0 and there is an 
exact sequence 

0-^H2(A/R, U)->B(K)->H2(A/R, UK/U) -> H*(A/R, U). 

Proof. Let F be an algebraic closure of 0 containing K; we may take 
A = IntF R. Let 5 range over the inclusion-directed collection of algebraic 
number overrings of R contained in A, with L the quot ient field of S. By 
working with the Hopf algebra R[X, X - 1 ] in the finite topology as in [11, 
Corollary 4.4], we obtain isomorphisms 

lim Hn(S/R, U)-=UHn(A/R, U) 
» 

and 

lim Hn(L/K, U)^Hn(F/K, U). 
> 

Although UK/U does not arise from a Hopf algebra (indeed UK/U is not 
a sheaf; see Remark 1.11 below), the same reasoning applies to it. In fact the 
n-th cochain group of the Amitsur complex C(S/R, UK/U) is (UK/U)(Sn+l), 
which is isomorphic to ULn+1/USn+1 since 5 ®RK^L. Similarly, A ®RK ^ F, 
whence 

Cn(A/R, UK/U) ^ UFn+l/UAn+l. 
As 

lim S = A 

and tensor products commute with direct limit, there is an isomorphism of 
complexes 

lim Cn(S/R, UK/U)-=->Cn(A/R, UK/U), 
> 

and hence 

lim H\S/R, UK/U) -=+Hn(A/R, UK/U) 
» 

[6, Ch. V, Proposition 9.3*, p. 100]. 
By the above discussion, there are isomorphisms 

H\A/R, UK) ^H\F/K, U) ^ lim H\L/K, U) ^ lim B{L/K) = B{K). 
» > 
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Applying 
lim 

> 

S 

to the cohomology sequence therefore leads to an exact sequence 

0->H\A/R, UK/U) -+H\A/R, U)^B(K) 

-+H\A/R, UK/U) -+H*(A/R, U). 

To complete the proof, we need only to prove/ is a monomorphism. However, 
/ is factored into the product of a monomorphism g:H2(A/R, U) -+B(R) 
[11, Corollary 4.4] and the canonical monomorphism B(R) -^B(K). Indeed, 
since g is also obtained via direct limit, the verification reduces to checking 
commutativity of diagrams of the form 

H*(S/R, U)-+B(S/R) 

I i 
H2(L/K, U)->B(L/K), 

and this is handled by the naturality assertion of Theorem 1.3. 
We now provide two more examples of vanishing one-dimensional UK/U-

cohomology. In view of Corollary 1.5 (and the fact that B(Z) = 0), Proposi­
tions 1.8 and 1.9 may each be regarded as generalizations of the result that 
H2(Z[i]/Z, U) = 0 [14, Theorem 6.3.2]. 

PROPOSITION 1.8. Let R be an integrally closed domain with ordered quotient 
field K. Let L = K (\/m)for some negative nonsquare m in R; assume S = lntL R 
is R-flat. If U(R) = {1, - 1 } , then H^S/R, UK/U) = 0. 

Note. The assumption that 5 is R-Û&t is used to guarantee that 

Hi(S/R, UK/U) 
is defined. 

Proof. By means of the usual identifications 

Cn(S/R, UK/U) ^ U(Ln^)/U(Sn+l), 

the problem becomes: given £ £ UL2 such that the Amitsur coboundary 
d^ e US" C UL\ find l G UL such that £ = l~l ® I mod(£AS2). 

Let £ = 23«i (x)j3* and G = gslÇL/K) = {l,g}. Under the isomorphism 
U(L2) -> UGU(L) = L X L, let £ be sent to (a, b); i.e. 

a = H<*£i a n d b = Y,<Xig(Pi)-

Now under the algebra isomorphism L3 —> TlG
2L = LXLXLXL, 

<**(£) = ( E l ®<*i ®0«)Œ>< 0 1 ®Pi)-lŒ<Xi ®Pi ® 1 ) 

corresponds to (a, b, g (a), g(b))(a, b, b, a ) - 1 (a, a, b, b). Since G maps S into 
itself, it follows that (a, a, g (a), a^bgib)) £ IlU(S). 
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Let N = NLIK. Then N(b) = bg(b) G aU(S) C\K= U(S) H K = { ± 1 ) ; 

similarly, N(a) G N(U(S)) = {±1}. 

Case 1: iV(a) = iV(6). Then Hilber t ' s Theorem 90 proves / 6 £ with 
ab~l = lg(l~l). Since a (g) 1 G U(S2) corresponds to (a, a) = (a, blg{l~1)) = 
(a,b)(l,lg{lr1)) e L X L, we conclude £(/ ® Z"1) = a ® 1, to finish the 
proof of this case. 

Case 2: N(a) = —N(b). W e shall prove t h a t this case cannot actually arise. 

Express £ as 

£ =: fenl (g) 1 + kul (x) V w + k2i\/m ® 1 + k22^/m (x) V ^ , 

for elements feï;- G i£. Since g(s/tn) = — Vra , the hypothesis of Case 2 implies 
(after a simple computa t ion) t h a t (fen)2 = m[(fei2)2 + (&21)2 — (^22)^ ] . As m 
is negative, we conclude (fen)2 = 0 = (fei2)

2 + (fe2i)2 — (k22)
2m. T h e n 

fen = fei2 =: fe2i = fe22 = 0 and 0 = £ £ U(L2), the desired contradict ion. 

P R O P O S I T I O N 1.9. Let R be an integrally closed domain with quotient field K of 
characteristic 3^2, 3. Let L be a quadratic field extension of K; then L = K(\/m) 
for some m 6 R. Let S be the free R-subalgebra of L with basis {1, \/m\. If 
U(R) = {1, - 1 } , thenH'iS/R, UK/U) = 0. 

Proof. Wi th the notat ion and a rgument of Proposition 1.8, we are reduced to 
showing tha t N(a) = —N(b) leads to a contradiction. There exist elements 
qj G R such t h a t 

d1^) = qd ® 1 (x) 1 + q2l ® 1 ® \ / w + gsl ® V w ® 1 

+ g4l ® V ^ ® V ^ + q&y/m ® 1 ® 1 + q^y/m ® 1 §§y/m 

+ q-iy/m ® V w ® 1 + qWm ® V ^ ® V ^ -

Viewed in ,S X S X 5 X «5, this gives rise to the following equations (recall 
g(y/m) = —\/m): 

(I) a = (qi + qm + q6m + q7m) + \/m(q2 + ^3 + ^5 + ffsw), 

( I I ) a = (qi — qm — qem + q7m) + y/m( — q2 + qz + q5 — q8m), 

( I I I ) g (a) = (gi + g4m — g6m - g7w) + ^/m{-q2 - qz + q» + q8m)} 

(IV) arlbg(b) = (q± — qm + q&m — g7ra) + \/m(q2 — qs + q5 — q8m). 

Since g(g(a)) = a a n <^ a^bgÇb) = — g (a), we may rewrite ( I I I ) and (IV) as: 

( I I I ' ) a = gi + qm — q6m — q7m) + y/m(q2 + g3 — q$ — q8m), 

(IV7) a = ( —gi + qm — qQm + g7ra) + y/m(q2 — g3 + gs - g8w). 

Since 5 is i^-free on {1, y/m}, a comparison of (I) with ( I I ) shows g4 = —gs 
and g2 = — q8m. A similar comparison of ( I I P ) with (IV') implies gx = g7ra 
and g3 = gs- Hence a = 2mg4 — 2mq8\/m and ± 1 = N(a) = ag{a) = 
4ra2(g4)2 — A.m2(q8)

2m\ then 2 G U(R) = {1, —1}, contradict ing the hypo­
thesis t h a t char( i£) 9^ 3. This completes the proof. 
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Remark 1.10. (a) It is perhaps interesting to note that the hypotheses of 
Propositions 1.8 and 1.9 do not imply that R is Prufer. For example, R = Z[X] 
is not Prufer; its quotient field K = Q(X) is ordered by defining a nonzero 
fraction//g in lowest terms to be positive if and only if the leading coefficients 
of/ and g have the same sign. If L = K(\/— 1), then S = lntL R is R4ree on 
{1, V— 1! and the preceding propositions each imply ^(S/R, UK/U) = 0. 

(b) If S is any quadratic algebraic number ring, it is known that 
H2(S/Z, U) = 0 [14, Theorems 6.4.2 and 6.4.3]. Another proof could proceed 
as follows. The quotient field of 5 is Qis/fh), for some nonzero squarefree 
rational integer m ^ l . If m = 2 or 3 (mod 4), Proposition 1.9 shows 
Hl(S/Z, UQ/U) = 0 and, by Corollary 1.5, H2 (S/Z, U) = 0 since £ (S /Z ) =0. 
In case m = 1 (mod 4), then {1, (1 + \/m)/2} is a Z-basis of S. With the 
notation of Proposition 1.9, we are reduced to deriving a contradiction if 
N(a) = —N(b). If dl{£) is expressed in terms of the induced Z-basis of S3, 
several different descriptions of a are obtained, and a basis argument similar 
to that of Proposition 1.9 shows 4 £ mZ, the desired contradiction. 

Remark 1.11. Let R be an algebraic number ring with quotient field K. Let 
T(R) be the i^-based topology whose underlying category is that of all module-
finite flat i^-algebras and whose covers are singleton sets consisting of faith­
fully flat i?-algebra maps. The purpose of this remark is to show that UK/ U is 
not a r(i?)-sheaf in case Pic(R) ^ 0 (e.g., R = ZW=5\). 

As in [9, Theorem 20.14], there exists a finite field extension L of K such 
that the canonical map Pic(i^) —»Pic(5) is zero, where S = IntL R. Now 6* 
is a module-finite faithful i^-projective, hence faithfully flat [8, p. 67]; i.e., 
{R -*S} is a 7^(i?)-cover. If UK/U were a sheaf, then the map UK/UR -> 
UL/ US would induce an isomorphism 

UK/UR-=-> (UK/U)(R) ^H\S/R, UK/U). 

However, [8 Proposition 3.9(a)] shows 

HQ(S/R, UK) ^ UK and H°(S/R, U) ^ UR; 

the cohomology sequence and [8, Corollary 4.6] then provide an exact sequence 

0-^UR-^UK-^ HQ(S/R, UK/U) -> Pic(2?) -> 0, 

thus proving UK/ U is not a sheaf. 
By adapting the argument of [10, supplement on p. 176] to T(R), one may 

construct T(i^)-sheaves which are not T(R)-additive. In the case just con­
sidered, UK/U is T(R)-additive but is not a T(R)-sheaf; additivity may be 
established by the five lemma since U and UK are each additive. 

2. Inflation and norms. Let / : S —> T be an i?-algebra homomorphism and 
J an ^46-valued functor defined on a full subcategory of i^-algebras containing 
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all the tensor products S" and Tn. The homomorphisms 

J(l®... ®f):J(Sn)->J(T") 

induce a map of Amitsur complexes C(S/R, J) —> C(T/R, J) which yields 
inflation homomorphisms 

inf = infn(5, T, R, J): Hn(S/R, J) -> Hn(T/R, J). 

In this section, we study the kernel of inf for the case n = 2 and J = U. Our 
work is motivated by the role played in Theorem 1.7 by direct limits of systems 
of Amitsur cohomology groups, where the maps of the directed sets are given 
by inflation. In addition to the background material for §1, we assume famili­
arity with the rudiments of group cohomology. 

PROPOSITION 2.1. Let Rbe a domain with quotient field K, F a finite extension 
field of K, and S and T flat R-subalgebras of F such that there exists an R-algebra 
homomorphismS —> T. Then ker(infi(5, T,R, UK/U)) = ker(inf2(S, T, R, [/)). 

Proof. S (x)/e K (respectively, T ®R K) is a i^-subspace of F (K)R K = F and, 
hence, is finite dimensional. Theorem 1.3 then supplies a commutative diagram 

H2 (S ®R K/K, U)-*BÇS ®R K/K) 

I i 
H2(T ®RK/K, U)-+B(T ®RK/K) 

in which the horizontal maps are isomorphisms, the left vertical map is inf and 
the right vertical map is inclusion of subgroups of B{K). We then have an 
exact commutative diagram 

0 
I 

0 -> H^S/R, UK/U) -» H*(S/R, U)-+B(S ®« K/K) 

0 -> R1 (T/R, UK/ U) -> H2 (T/R, U)-+B(T ®R K/K) 

in which the left and middle vertical maps are the infs in question. A diagram 
chase completes the proof. 

THEOREM 2.2 (cf. Morris [14, Theorem 3.2.1]). Let S be an R-algebra and T a 
faithfully flat S-algebra such that T2 is S2-faithfully flat. If Pic(7"2) = 0 = 
Pic(52), then inf2(S, T, R, U) is a monomorphism. 

Proof. Consider the i?-based topology X, the objects of whose underlying 
category are all i^-algebras A whose cardinality satisfies 

card (̂ 4) ^ max (card (S), card (2"), Ko), 

with Cov(X) consisting of all singleton sets containing a faithfully flat 
morphism in Cat(X). As X is dual to a Grothendieck topology, [3, Chapter II, 
1.8 (i)] shows that the category of X-sheaves has enough injectives. 
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Now U is an X-sheaf [8, Proposition 3.9 (a)] ; let 

0 - > E / - > Z 7 * - > I / ' - > 0 

be an exact sequence in the category of X-sheaves with U* injective. 

There is a commutat ive diagram 

0 U(S)^ l /*(S)- i >U'(S)-> fix1 (5, tf) 

i 1 ï 
U(S2) -> U*(S2)--* [/'(S2)-- • ^ ' ( S 2 , to 

Ï Ï 1 
£/(S8) -> U*(SS)--> t/'(53) 

1 i 1 
t/(S4) -> U*(S4)--» £/'(S4) 

whose rows are exact and whose columns are the initial segments of C(S/R, U), 
C(S/R} U*) and C(S/R, Uf), respectively. The Grothendieck cohomology 
group HX

1(S2, U) is isomorphic to the Cech cohomology group HX
1(S2, U) 

[3, Chapter I I , Corollary 3.6] which, [8, Corollary 4.6] shows, can be embedded 
i nP i c (5 2 ) = 0; hence H^^S2, U) = 0. Similarly, Hx*(S, U) embeds in P ic(5) , 
which is easily seen to vanish (cf. [11, Corollary 4.2]). A standard chase of the 
above diagram (cf. [6, p. 40]) then yields an exact sequence 

H^S/R, U*)-*Hl(S/R, U')-^H2{S/R, U) ->H2(S/R, U*). 

However, H^S/R, U*) = 0 = H2(S/R, Z7*) since t/* is injective [3, Chapter I, 
Corollary 3.1 and Chapter I I , 1.8 (ii)], and the connecting map is therefore an 
isomorphism 

H\S/R, U') J^H\S/R, U). 

We may deal with T similarly, to obtain an isomorphism 

H\T/R, U )-=+lf(T/R, U). 

I t follows from the commutat ivi ty of the diagram 

H^S/R, Uf)->H2(S/R, U) 

ï I 
Hl{T/R, U')-*H2(T/Ry U) 

t ha t we need only to establish t ha t infi(5, T, R, U') is a monomorphism. Since 
{S —» T] and {S2 —> T2} are in Cov(X) and U' is an X-sheaf, the argument of 
[14, Theorem 3.1.3] may be adapted to show tha t infi(5, T, R, U') is indeed a 
monomorphism, thus completing the proof. 

Remark. I t is interesting to compare Theorem 2.2 with the following con­
sequence of [11, Corollary 3.2]. Let 5 be an i^-algebra and T an 5-algebra which 
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is faithfully flat over R. If the canonical m a p Pic (S) - * P i c ( r ®RS) is a 
monomorphism, then inf2(5, T, R, U) is also a monomorphism. 

We pause to recall a connection between Amitsur cohomology and group 
cohomology [7]. If G is a finite group of automorphisms of a ring T with fixed 
ring R = TG and / is an addit ive Ab-vslued functor defined on a full sub­
category of i^-algebras containing all Tn, then there exist canonical homo-
morphisms Hn(T/R, J) —> Hn(G, JT). (The precise definition of these maps, 
apa r t from their natural i ty , will not be needed in what follows.) These maps 
are isomorphisms if T/R is Galois with respect to G [7, Theorem 5.4]. 

PROPOSITION 2.3. Let G be a finite group of automorphisms of a ring T, H a 
normal subgroup of G, R = TG and S = TH. Assume S/R is Galois with respect 
to the canonical G/LL-structure {this holds if T/R is Galois with respect to G 
[7, Theorem 2.2]). If Hl(H, UT) = 0, then inf2(5, T, R, U) is a monomorphism. 

Proof. [10, Chapter I, Theorem 2.5] provides a commuta t ive diagram 

H*(S/R, U)-+IP(T/R, U) 

ï Ï 
H2(G/H, US)-+IP(G, UT) 

in which the left vertical map is an isomorphism (since U is addi t ive and S/R is 
Galois). As ( U T ) H = US, the inflation-restriction theorem of group cohomo­
logy [16, Chapter VI I , Proposition 5] shows the lower horizontal m a p is a 
monomorphism. By commuta t iv i ty oi the diagram, so is the upper horizontal 
map, namely inf2(.S, T, R, U). 

Remark 2.4. T h e preceding theorem, remark, and proposition generally fail 
to apply in case R C S C T is a tower of domains. Indeed, for algebraic 
number rings, the hypotheses of Theorem 2.2 imply t ha t 5 and T are principal 
ideal domains, while Proposition 2.3 requires t ha t the quot ient field of S is 
unramified over the quotient field of R [7, Remark 1.5(d)]. A more useful 
result for algebraic number rings may be deduced from [11, Remark 3.3]. Wi th 
the goal of an eventual generalization of this result (cf. Corollary 3.9 below), 
we devote the remainder of this section to exploiting Proposition 2.1. As a 
first application, we re-prove Proposition 2.3 in the special case t h a t R is a 
Prufer domain with quot ient field Ky K C L C F a tower of finite Galois field 
extensions, G = gsl(F/K), H = gsl(F/L), S = IntL R is Galois over R with 
respect to G/H, T = Int> R and Hl(H, UT) = 0. 

Since R is Prùfer, 5 and T are i^-flat and it therefore suffices (by Proposition 
2.1) to prove infi(5, T, R, UK/U) is a monomorphism. This will follow (cf. 
[14, Theorem 3.1.3]) in case: 

(a) (UK/U)(S2) -> (UK/U)(T2) is a monomorphism; 
(b) ( UK/ U) (S) maps onto the difference kernel of 

(UK/U)(T) = : (UK/U)(T 0s T). 
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Since R is integrally closed, multiplication induces isomorphisms 

/•̂  /̂ / 
S®RK^->L and T ®RK-=^>F. 

Therefore, (a) reduces to proving (UL2) / (US2) —> (UF2)/(UT2) is a mono-
morphism. As S/R is Galois, the canonical map S2 —» n <?/#.$ is an isomorphism 
[7, Theorem 1.3]. Since U(T) H £/(L) = Z7(5), the conclusion then follows 
easily from the commutative diagrams 

and 

0 0 

1 1 
5 2 ^n 5-

G/H 

• » o , z2 — - ^ 2 

ï Ï 1 i 
L^Y\L-

G/H 
-»o, 

G/H G 

0 0 
ï I 
r2->n T 

a 
i ï 
F2-*U F-+ 0. 0-

As for (b), it is enough to show that (UL)/(US) maps onto the difference 
kernel of 

(UF)/(UT)^[(UK/U)(T®sT)-^U (UK/U)(T)-=^U (UF)/(UT)]; 
H H 

i.e., that (UF/UT)H = (UL)/ (US). We have an exact commutative diagram 

0-> (UT)H-> (UF)H-+ (UF/UT)H-^H^(H, UT) = 0 

Il II Î II 
0-> US -* UL -> UL/US > 0 

from which the conclusion follows by the five lemma, thus completing the proof. 

THEOREM 2.5. Let Rbe a Priifer domain with quotient field K, K C L C F a 
tower of finite Galois field extensions, G = gal(F/K) and H = gsl(F/L) such 
that S = Int i R is Galois over R with respect to G/H. Let T be an S-subalgebra 
of Int/r R such that multiplication induces an isomorphism 

T ®RK-=+F. 

Then ker(inf2(S, T, R, U)) is [F:L]-torsion. 

Proof. We shall construct a group homomorphism N: U(F2) —> U(L2) such 
that the following three conditions hold: 
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(a) N(0 = f:L] for ail € € U(U); 
(b) N(f ® 1) = NP/L(f) <g> 1 and 7V(1 ® / ) = 1 ®NP/L(J) for a i l / 6 tf(F); 
(c) # ( £ 7 P ) C U(S2); 

where we are viewing the standard monomorphisms L2 —> -F2, T2 —> F2 and 
S2 —* L2 as inclusions. 

Explicitly, since L/K and F/if are Galois, there are canonical i?-algebra 
isomorphisms 

L2 -=-> n L and F2 - = * I l ^ > 
G/if G 

which give rise to group isomorphisms 

U(L2)J^Y[U(L) and U(F2) ^ U U(F). 
G/H G 

To construct TV, it therefore suffices to define a group homomorphism 
nGU(F) —» IIG / HC/(L). If {gi, . . . , gu . . .} is a fixed set of coset representa­
tives for H in G, we need only define group homomorphisms Nt: YlGU(F) —> 
U(L); take iV* to be the composition of the grth projection map YLGU(F) —> 
[/(F) with the usual field norm NF/L: U(F) -> £/(L). 

To establish (a), let J = 2 > ; ® bj G C/(L2). Fix 1 ^ i ^ \L:K]. The 
i fg r t h component of N(£) (viewed in YlG/HU(L)) is NF,L{^jajgi{bj)), which 
we must show equal to GC;û^gi(ô^))[F'1'1. For h £ H, let &* = g~1hgi(£H). 
Since if fixes each a ; and bjf we compute 

iW2>igi(M) = n £>*<** (*,)) 

= n (ZodiQ,)) 

= Œ > ^ ) ) [ F : L \ 
as required. 

The first assertion of (b) is trivial. As for the second, we must prove (for 
fixed *) that NF/L(gt(f)) = gtNr/L(f); i.e. that 

n hgt(f) = n gMf). 

This is immediate since the function h —» h* defined above is clearly a bijection. 
As for (c), the isomorphism 

u(s2) .= • n u(s) 
G/H 

reduces the problem to showing NF/L(UT) C US. Now 

NFIL(UT) C U(NF/L(T)) C U(NF/L(lntFR)) C U (L nintF R) = US, 

and so N has the stated properties. 
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Since R is Prûfer, S and T are i?-flat and Proposition 2.1 reduces the theorem 
to proving ker (inf i (S, T, R, UK/U)) is [/^L]-torsion. As R is integrally 
closed, 

S®BK-=+L 

and there are identifications of the cochains Cn(S/R, UK/U) = (ULn+1)/ 
(USn+1); similarly Cn(T/R, UK/U) = (U Fn+l) / {UTn+l). We must therefore 
prove that, if £ G U(L2) a n d / G UF satisfy £(/ ®/ _ 1 ) £ U(T2), then there 
exists / G UL with £iF:ii (/ ® /-1) G C/(S2). 

The homomorphism iV and properties (a)-(c) were made to order for this 
formulation of the problem. If / = NF/L(f) then 

N(f (g)/-1) = N(f ® 1) • N(l 0 / ) - 1 = / ® /-1. 

Hence J[™] (Z ^ /-i) = # ( £ ) # ( / 0 / " 1 ) = # ( £ ( / ® / - 1 ) ) G iV(CAr2) C CA(S2) 
and the proof is complete. 

Remark. The hypothesis that i? is Prûfer was used in the preceding proof only 
to guarantee that 5 and T are i?-flat and that 

S ®RK-^UL. 

COROLLARY 2.6. With the hypotheses of Theorem 2.5, we assume also that K 
is perfect of characteristic p > 0 and that [F:L] is a power of p. Then 
inf2(5', T, R, U) is a monomorphism. 

Proof. As above, we must prove that, if £ £ U(L2) and / G UF satisfy 
£( / ®/ _ 1 ) £ U(T2), then there exists / G UL with £(Z ®/-1) G C/(S2). Let 
g = [F:L] and m = NL/K(f); then applying iV yields £?(ra (x) m - 1) G U(S2). 
Choose / G CAL with lq = m. Then [£(Z (g)/"1)]* G C/(S2), and the result will 
follow once we prove that U(S2) is closed under g-th roots in U(L2). This, in 
turn, follows from the exact commutative diagram 

0 

Ï 

o-> c/(52)->n u(S)-+o 
G/H 

Ï 
0 ^ C / ( L 2 ) ^ n U(L)-*0 

G/H 

since CAS is closed under g-th roots in CAL. 

THEOREM 2.7. Let R be a domain with quotient field Ky K C L C F a tower 
of finite field extensions, and S and T flat R-sub algebras of F such that multi­
plication induces isomorphisms 

S®RK-=L>L and T®RK-^LF. 
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Assume also that S C T and that T2 is a module-finite S1-projective. Then 
ker(inf2(5, 7\ R, U)) is [F:L]2-torsion. 

Proof. As in the proof of Theorem 2.5, it suffices to construct a group homo-
morphism N: U(F2) —» U(L2) such that the following three conditions hold: 

(a) N(£) = É ^ 1 for all £ € U(L2); 
(b) N(f ® 1) = NFIL{fYF^ ® 1 and N(l <g>/) = 1 ® NFIL(f)™ for all 

(c) iv(c/r2) c u(s2). 
Since F2 is L2-free of rank [F:L]2, we may define N by 

#fo) = Norm(FVL2;77), 

the determinant of the LMinear endomorphism of F2 effected by multiplication 
by -q. Then it is standard that N is a homomorphism. If £ 6 U(L2) then iV(£) 
is the determinant of the scalar matrix £/, and (a) is immediate. 

As for (b), we need only prove the assertion about N(f ® 1) (apply [2, 
Proposition 2(a)] to the "switch" map F2 —» F2). Assume that multiplication 
by f on F is represented by the matrix A = {ati) with respect to an L-basis 
[xi, x2, . . .} ; i.e., fxt = Y^anxj for all i. Then multiplication by / ® 1 in F2 

is represented, with respect to the L2-basis 

{xi (x) xi, . . . , xi ® X [F :Z/ ], X2 (x) xi, . . . , x2 (x) X [F :Z / ] , . . . , 

*[*•:£] ® * 1 , • • • , ^ [ F : Z , ] ® *[*•:£]} 

by the matrix i3 whose entry at the (i,j)-ih row and (k, /)-th column is 
(flijt ® l)ô^ t ï. (For example, if [T7:^] = 3, then 

5 = 

an ® 1 0 0 
0 an <g) 1 0 

ai2 (x) 1 0 0 
0 a i2 ® 1 0 

ais (x) 1 0 0 
0 ai3 ® 1 0 

\ 

0 0 a3i ® 1 0 0 a32 ® 1 0 0 a33 ® l j . / 

It is easy to see that, if we regard B as representing a transformation t with 
respect to an ordered basis {v\y . . . , v[F:L]

2}, then 2 is represented with respect 
to the basis 

m , fl[**:z,]+li • • • , ^ [ ^ : Z , ] ( [ F : Z , ] - 1 ) + 1, *>2, ^ [ F : L ] + 2 , 

by the [F:L] -square block matrix 

<V[F:L]> 

c = 4̂ ® 1 
A ® 1 

4 ® 1 . 
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Hence 

N(f <g> 1) = det(5) = det(/) = det(C) = det(Ay-Li <g) 1 = 

^W/) [F :L1 ® 1, 
thus proving (b). 

The flatness assumptions permit us to view S2 as a subalgebra of T2 and thus 
to define Ni = Norm(T2/S2) in the sense of Goldman-Amitsur [13; 2]. 
Explicitly, let X Ç T2. If 

^ : 0 ( 5 2 ) ^ F 0 r 2 

is an isomorphism exhibiting T2 as an 52-summand of a direct sum of finitely 
many copies of S2 and if g = multiplication by X on T2, then 

NtQi) = d e t C A - U l r e ^ A ) . 
Since 

S(g)RK-=L>L and T ®RK-=UF, 

we may view A (x) 1^ as an L2-isomorphism 

®L2-^{Y®K)@F\ 

Now g (g) 1K is just multiplication by X on F2 and so [13, Proposition 1.2] 
implies 

N(\) = det([A (x) l j - ^ l r ^ 0 (g ® 1X)][A ® 1 J ) 

which, by [13, Proposition 1.4], equals det(A_ 1(lF 0 g)h) = iVi(X). Hence 
7V(X) G i m a g e d ) C S2. As iV(l) = 1 G S2, it is clear that N(UT2) C £/(S2), 
to establish (c) and complete the proof. 

Remark. It is perhaps worthwhile to note that the preceding proof actually 
yielded a commutative diagram 

T2-*S2 

i i 
F2->L2 

where the horizontal maps are the norms, iV\ and iV, and the vertical maps are 
the canonical inclusions. 

Remark 2.8. We should note that the conclusion of Theorem 2.7 may be 
strengthened in the following case. Let R be a Dedekind domain with quotient 
field K, K C L C F a tower of finite separable field extensions, S = lntL R 
and T = IntF R. Then (by [2, Theorem 6] and [11, Remark 3.3]) we may 
conclude ker(inf2(.S, T, R, U)) is ([F:L], [L:K])-torsion. This is the result 
alluded to in Remark 2.4, and generalizations of it will appear in Proposition 
3.7 and Corollary 3.9. For the present, it is interesting to observe the following 
group cohomological analogue. 
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THEOREM 2.9. Let Rbe a domain with quotient field K, K C L C F a tower of 
finite Galois field extensions with groups G = gal(F/K) and H = ga\(F/L), 
S = IntLR and T = IntF R. Then ([L:K], [F:L]) annihilates the kernel of the 
group cohomology homomorphism H2(G/H, US) —>H2(G, UT) induced by the 
maps G —> G/H and US —> UT. 

Note. If T/R is Galois with respect to G, then the homomorphism in question 
may be identified with inf2(5, T, R, U). 

Proof of Theorem. [7, Theorem 5.4] implies HX(G, UF) is isomorphic to 
Hl(F/K, U) which vanishes by [8, Corollary 4.6] ; similarly, Hl(G/H, UL)=0. 
With the aid of the classical natural isomorphisms H2(G, UF) = B(F/K) and 
H2(G/H, UL) =B(L/K), the long cohomology sequences provide an exact 
commutative diagram 

0 0 

i ai 
H1 (G/H, UL/US)-* H1 (G, UF/UT) 

i P i 
H2(G/H, US) ->H2(G, UT) 

1 i 
0->B(L/K) ->B(F/K) 

A diagram chase shows ker(a) = ker(/3). Moreover, a factors through group 
cohomological inflation Hl(G/H, (UF/UT)H) ->Hl(G, UF/UT), which is a 
monomorphism by the usual inflation-restriction result for group cohomology 
[16, Chapter VII, Proposition 5]. Hence we need only to consider ker(7), 
where7: Hl(G/H, UL/US) -+Hl(G/H, (UF/UT)H). As [G:H] = [L:K] anni­
hilates Hl(G/H, UL/US), it remains only to prove that ker(7) is \H\ = 
[F:L] -torsion. 

We use the standard nonhomogeneous complex (the "bar resolution") for 
group cohomology. If £ G TLG/HUL/US is a 1-cocycle which becomes a 
1-coboundary in TlG/H(UF/UT)H (i.e., lies in ker (7)), then there exists 77 G UF 
such that £(Hg) = {gri),rrl(UT) for all g G G. In other words, if ag G UL 
satisfies £(Hg) = ag(US), then 

a>o = (gv)v'1 mod (UT). 

Let / = NF/L(r)). Then (writing gh = h*g as before) we compute 

(gDr1 = n h*g(v)]/ f n *(i»)l = n HMV-1) 

= UHa») = (a„)mmod(UT). 

Hence 
(gZ)J-i = (a„)l*l mod(UL Pi UT); i.e., mod(US). 

The 1-coboundary of I (US) is therefore £'ff|, completing the proof. 
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Remark 2.10. Let R be a domain with quotient field K, K C L C F a tower 
of finite field extensions with F/K Galois, and T a flat i^-subalgebra of Int^ R. 
In Theorems 2.5 and 2.7, we had reason to consider elements £ G U(L2) for 
which there ex i s t / G C/î  such that £(/ (x)/^1) G U(T2). We conclude this 
section by proving that such elements always satisfy 

Norm(L2 , i£;£) G U(lntKR). 

Let iV = Norm(/^2, K), N± = Norm(L2, X) , N2 = Norm(F2, L2), 
& = NF/K(f) and # = [F:L], As in the proof of Theorem 2.7, we have 
N(f O / - 1 ) = # ( / ® 1)7V(1 ® / ) - i = (*»)(*"*) = 1 and N2(£) = £»'. By 
[2, Corollary 3], iV(£) = N1(N2(£)) = (iVi£)w2. Since £7(Int* i?) is closed under 
roots in UK, and iV is a homomorphism, it therefore suffices to show 
N(U(T2)) C U(lntKR). 

Let G = gal(F/K), I = IntF R and X G UiT2). By means of the standard 
isomorphism 

G 

we may identify X with (. . . , X„ . . .) G UGU(I). Then 

iV(X) = UgNF/K(\g) G U(NFIK{I)) C £/(Int*20, 

completing the proof. 

3. Relations with group cohomology. In this final section we study some 
connections between Amitsur and group cohomology. The following result will 
prove to be basic. 

THEOREM 3.1 (Silver). Let G be a finite group of automorphisms of an {respec­
tively, a flat; respectively, a module-free; respectively, a projective) R-algebra S. Let J 
be an additive Ab-valued functor defined on the category of all (respectively, fiat; 
respectively, module-free; respectively, projective) R-algebras. For q > 0, define 
the functor JQ by Ja(A) = Hq(G, J (A (x) RS)). Then there exists a first quadrant 
spectral sequence HP(S/R, JQ) =$ H*+*(G, J(S)). 

Proof. One may adapt the arguments leading to [17, Theorem 2.3, p. 31] to 
the category of all (respectively, flat; respectively, module-free; respectively, 
projective) i^-algebras and thus derive a double complex for which the above is 
an associated spectral sequence. 

We pause to record the exact sequence of low terms of the above spectral 
sequence. (Note that an apparent error in [17] identifies J° with J in stating this 
result.) 

COROLLARY 3.2. Under the conditions of the theorem, there is an exact sequence 

0 - > H ^ S / R , J°) -> IP(G, J(S)) -> H°(S/R, J1) 

-> H2(S/R, J°) -> ker[H2(G, J(S)) -> H2(G, J(S2))] 

-> H1 (S/R, J1) -> H9 (S/R, J°). 
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COROLLARY 3.3. If S is the ring of algebraic integers of a quadratic number field 

L and G = gal ( L / Q ) , then H1 (G, CAS) is nonzero and is the difference kernel of the 

two homomorphisms from Hl(G, US2) to Hl(G, CAS3) induced by the face maps 

eo, ei: S2—>S8 . 

Proof. Since SG = Z, it is easy to see t h a t the canonical m a p U(A) —> 
U(A ®RS)G is an isomorphism for any module-free i^-algebra A. T h e n the 
natura l transformation £7 —•» U° is an equivalence, and the preceding corollary 
yields an exact sequence 

IPiS/Z, U)->H^(G, US) -+H°ÇS/Z, U1) -> H2(S/Z, U). 

However, Theorem 1.3 shows Hl(S/Z} U) = 0 (since P ic (Z) = 0) and, as 
noted in Remark 1.10 ( b ) , # 2 ( S / Z , U) = 0; hence, H^G, US)^H°(S/Z, C/1), 
the difference kernel in question. I t remains only to prove t h a t H1 (G, CAS) 9^ 0. 
If N is the restriction of NL/Q viewed as an endomorphism of CAS and if g is the 
nontrivial element of G, then Hl{G, US) ^ [ker ( # ) ] / { s^g fc ) : s G CAS}. 

Case 1: S is real. By the Dirichlet uni t theorem, CAS is the direct product of 
{1, —1} with the free multiplicative abelian group generated by a "funda­
mental un i t " , u. Since g2 = 1, freeness implies g{u) = ±u±l\ of course 
g(u) 9^ u because u d Z . 

Subcase (i): g(u) = —u. Then , for all 5 G CAS, one checks easily t h a t 
s - 1 g 0 0 G {1, - 1 } . Since N(u2) = N(u)2 = (=hl) 2 = 1 and u2 ?± dbl, the 
proof of this subcase is complete. 

Subcase (ii): g(u) = tu~x, where t = zb l . If t! = ± 1 and j G Z then 
(t'uj)-lg(t'uj) = tju~2j j * - 1 G ker(iV). 

Case 2: S is complex. Express L = Q ( V ^ ) for some negative squarefree 
rat ional integer m. If m = — 1 , then CAS = {1, — 1, i, —i} where i2 = — 1; 
note i £ {s- igO): 5 G CAS} al though iV(i) = 1. If m = - 3 , then 

US = {1, - 1 , ( - 1 + V ^ 3 ) A ( - 1 - V = 3 ) / 2 , (1 - V = 3 ) / 2 , _ 

(1 + V ^ 3 ) / 2 } ; 

note — 1 $ {s_1gOO: s G CAS} al though iV(—1) = 1. For other values of m, 
US = {1, —1} and the assertion is clear. 

P R O P O S I T I O N 3.4. Let R be a domain with ordered quotient field K. Let 
L = K(\/m) for some negative nonsquare m G K. Let G = gal(L/K) and 
S = IntLR. If U(R) = {1, - 1 } , then Hl(G, UL/US) = 0. 

Proof. As in the preceding argument , the usual formula for the cohomology 
of a cyclic group shows Hl(G, UL/US) ^ ker(N)/1G(UL/US) where IG is 
the augmenta t ion ideal of G and N is the endomorphism of UL/US induced 
by the field norm NL/K. Note t h a t /CAS G ker(iV) if and only if NL,K(l) = ± 1 ; 
if G = {1, g}, then IG(UL/US) is jus t the collection of cosets of elements of 
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the form g{l)l~l. By Hilbert 's Theorem 90, it is enough to show tha t no / £ L 
can satisfy NL/K(l) = — 1. If I = a + by/m (with a, b 6 K) and NL/K(l) = - 1 
then (since g(y/m) = — y/m) we obtain a2 — mb2 = — 1, contradicting 
negat ivi ty of m. 

Remark 3.5. (a) Corollary 3.3 provides an example in which corresponding 
one-dimensional Amitsur and group cohomology groups (in U) differ. For 
another example, let G = {1, g\ act on 5 = Z[X]/(X2) = Z[x] by g(m + nx) = 
m — nx; then 5 is Z-free on {1, x} and SG = Z. T h e existence of ring maps, 
Z -> 5 and S -> Z, implies Hn(S/Z, U) = Hn(Z/Z, U) = 0 for all w > 1, by 
the fundamental homotopy property of Amitsur cohomology [1, Lemma 2.7]. 
However, H2^(G, US) ^ Z / 2 Z 0 Z / 2 Z and H2n{G, US) ^ Z / 2 Z for all 
n > 0. Of course, 5 / Z is not Galois since (1, —1) is not in the image of the 
canonical map S2 —> 5 X S. 

(b) Remark 1.10 (b) and Proposition 3.4 show tha t the corresponding 
connecting homomorphisms, Hl(G, UL/US) -^H2(G, US) and 

H'iS/Z, UQ/U)-^H2(S/Z, U), 

are both zero maps if S is the ring of algebraic integers of a complex quadrat ic 
number field L. However, the former map is not epimorphic (it is 0 —> Z / 2 Z ) , 
while the la t ter map is the trivial isomorphism. In particular, the connecting 
homomorphism of group cohomology is not the kernel of a map into the split 
Brauer group (cf. Corollary 1.5). 

We next show tha t certain (not necessarily module-finite) i^-algebras have 
torsion Amitsur cohomology groups. 

PROPOSITION 3.6. Let S be a faithful projective R-algebra and G a finite group of 
R-algebra automorphisms of S such that SG = R. If G has exactly n elements, then 
H2(S/R, U) is n2-torsion. 

Proof. For each i^-module, A, l e t / A : A —> (A ®R S)G be the canonical homo­
morphism. By a s tandard argument , fA® B is an isomorphism if and only if 
fA a n d / B are each isomorphisms. However , / ^ is an isomorphism for any free 
i?-module F, and hence also for any ^-project ive. I t is then easy to show t h a t 
the natural transformation U —» U° is an equivalence on the category of 
projective i^-algebras, and an analysis of the spectral sequence of Theorem 3.1 
leads to the exact sequence H°(S/R, U1) -*H2(S/R, U) ->H2(G, US). Since 
H°(S/R, U1) is a subgroup of H1^, U(S2)) and group cohomology in G is 
annihilated by \G\ = n, the conclusion is immediate. 

PROPOSITION 3.7. Let Rbea Prufer domain with quotient field K, L a finite field 
extension of K, and S an R-subalgebra of IntLR. Then [L:K] annihilates 
Hn(S/R, U) for all n > 0. 

Proof. Let M range over the inclusion-directed collection of finitely generated 
i^-subalgebras of S. Each M is a module-finite i£-flat, hence ^-project ive of 
rank dividing [L:K]. (One uses [5, Théorème 1, p . 138], noting t ha t R is con-
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nected, to see the rank of M exists and is the i£-dimension of the subspace 
M (X)R K of L). Hence [2, Theorem 6] shows [L:K] annihilates each 
Hn(M/R, U). Since 

lim M = S, 
» 

we may argue as in Theorem 1.7 to show 

lim H\M/R, U) ^H\S/R, U), 
> 

which readily yields the desired result. 

THEOREM 3.8. Let R be a domain with quotient field K, L a finite Galois field 
extension of K, and S = lntL R. Assume that S is R-flat and that multiplication 
induces an isomorphism 

S ®RK-=^L. 

If n = [L:K], then H^S/R, UK/U) is n2-torsion and hence H2(S/R, U) is 
nz-torsion. 

Proof. The last statement follows from the exact sequence 

H^S/R, UK/U)^>H*(S/R, U)->H2(L/K, U) 

since n • H2(L/K, U) = 0 [2, Theorem 6]. 
For the first statement, let / = UK/U. Since Theorem 3.1 supplies a mono-

morphism H^S/R, J°) -* H^G, J(S)), it follows that H^S/R,!0) is anni­
hilated by \G\ = n. If X is the kernel of the homomorphism Hl(S/R, J) —> 
^(S/R, J°) induced by the natural transformation / —-> J°, it suffices to prove 
n • X = 0. 

Consider the commutative diagram 

j(S) ^ZJ(S2) ZXJ(S*) 

ai Pi i 
J°(S)ZÏJ0(S2)^J0(S*). 

Under the usual identifications, f$ may be regarded as the face map 
J(e 2) : J(S2) = UL2/US2-+J(S3) = UL*/US\ with image restricted to lie in 
J(SS)G. Hence fi is a monomorphism and it therefore suffices to prove that 
n - J°(S) C im(oO; i.e., that the n-th power of any element £ of (UL2/US2)G 

is in the image of UL/US. 
Let £ = ^di (x) bi be a coset representative of £. Since G acts on L2 via the 

second factor, we have 

I > i ®bt = 2>* ®g(bi) mod(US2) 

for all g G G. Multiplying the congruences yields 

? = X = I l Œ>* <x)g(^))mod(£/S2). 
0 
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Evidently, X € (L 2)G = L (x) 1. Viewing X G f/L, we see f = a(X • C/5), and 

the proof is complete. 

Combining Theorems 2.7 and 3.8 leads to the following result. 

COROLLARY 3.9. Let R be a domain with quotient field K, K C L C F a tower 

of finite field extensions with L/K Galois, S = lntL R, and T a fiat R-subalgebra 

of F containing S such that multiplication induces isomorphisms 

S (g)RK ^=-± L and I ®R K -=-+ F. 

Assume also that S is R-flat and that T2 is a module-finite S2-projective. Then 

([F:L]2, [L:K]*) annihilates ker(inf2(S, T, R, U)). 

Remark. Although we have dealt exclusively with UK/U, we close by s tat ing 

a result t ha t indicates the usefulness of a new coefficient functor (proof via 

s tandard techniques). If R is a domain with quotient field K and 5 is a flat 

i^-subalgebra of a field extension L of K, then the canonical map 

H'(S/R, UL/U)-^H2(S/R, U) 

is an isomorphism. 
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