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ON INFLATION AND TORSION OF
AMITSUR COHOMOLOGY

DAVID E. DOBBS

Introduction. Studies of torsion [2] and inflation [11] of Amitsur cohomo-
logy have primarily been concerned with module-finite faithful projective
algebras. In this paper, our goal is to consider these topics for more general
algebras. The fundamental tool, in case R is a domain with quotient field K,
is the functor UK /U (defined in § 1), together with the monomorphic con-
necting map of Amitsur cohomology H'(S/R, UK/U) — H*(S/R, U) arising
from a (commutative) flat R-algebra .S and the unit functor U. This map was
first considered in [10, Chapter IV, Theorem 1.6], where it was proved to be
an isomorphism for certain étale faithfully flat algebras .S in case R is an alge-
braic number ring with trivial Brauer group. In Corollary 1.5 it is shown, in
the case of a module-finite faithful projective S over a regular domain R, that
the connecting map is the kernel of the canonical homomorphism [8] from
H*(S/R, U) to the split Brauer group B(S/R). As the latter map is often
injective [8, Corollary 7.7], one might expect instances of vanishing of
H'(S/R, UK/U) without assuming both R Noetherian and S module-finite
R-projective. Much of § 1 (viz. (1.7)—(1.9)) is devoted to such examples.

Section 2 deals with the inflation map inf: H2(S/R, U) —» H2(T'/R, U)
arising from an R-algebra homomorphism S — 7". Using the techniques of
Grothendieck topologies and spectral sequences, we obtain for arbitrary
commutative R (in Theorem 2.2 and the remark following) sufficient con-
ditions for inf to be injective. Our general approach for a domain R is to con-
sider annihilators of elements of the kernel of inf. For flat .S and 7", Proposition
2.1 reduces the problem to analyzing the kernel of

H'(S/R, UK/U) — H(T'/R, UK/ U).

Some multiplicative functions (including the norms of Amitsur homology [2])
are used in (2.5)—(2.7) to show: if S and T are the integral closures of R in
finite field extensions L C F of K then, with additional hypotheses, an appro-
priate power of [F:L] annihilates the kernel of inf. An analogous result for
group cohomology is given in Theorem 2.9.

Section 3 is concerned with diverse applications to U and UK /U of a spectral
sequence of Silver [17] that connects Amitsur cohomology and group coho-
mology. In particular, (3.6)-(3.8) are the only general results known to the
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author concerning torsion of two-dimensional Amitsur cohomology in U for
algebras not assumed to be both module-finite and projective.

1. Amitsur cohomology and UK/U. Throughout the paper, rings and
algebras are commutative with unit elements and algebra homomorphisms are
unitary. We assume familiarity with the Amitsur cohomology, Brauer group,
and Pic functors (see [2;7], [4], and [5], respectively) and with R-Dhased
topologies (see [10, Chapter I1]).

We begin by defining some coefficient functors for Amitsur cohomology.
Let R be a ring and U the functor thatassigns toan R-algebra S its multiplicative
group of invertible elements U(S). If K is an R-algebra, the functor UK is
defined by (UK)(S) = U(S ®& K). Now assume that K is R-faithful. By
restricting U and UK to the full subcategory of flat R-algebras, we obtain a
monomorphism of functors U — UK; let UK/U be its cokernel. As usual
[8, (3.3)], there is a natural long exact sequence of Amitsur cohomology groups

.— H"(S/R, U) —» H*(S/R, UK) — H*(S/R, UK/U) —
HY*1(S/R, U) — ...
for any flat R-algebra S. Identify H"(S/R, UK) and H"(S ®z K/K, U) via

the standard isomorphism of the corresponding complexes [15, footnote, p. 224].

Consider the above connecting homomorphism for n = 1. If S ®z K is
faithfully flat over K and Pic(K) = 0 (e.g., if K is a field), then [8, Corollary
4.6] shows H'(S Qz K/K, U) = 0, whence H'(S/R, UK/U) — H2(S/R, U)
is a monomorphism. Conditions that this map also be surjective are studied
below.

First, some notation: if R is a Dedekind domain with quotient field K and &
is a maximal ideal of R, let Kg be the completion of K in the §-adic valuation
and Rg the closure of R in Kg. In general, let Intp 4 denote the integral closure
of 4 in B.

THEOREM 1.1. Let K be either an algebraic number field with at most one real
place or a finite field extension of k(X') for some finite field k. Let R be the integral
closure in K of either Z. or k[X], as the case may be. Let S be a faithfully flut
R-algebra such that S Qg K s finite dimensional over K and: for every maximal
wdeal § of R, there exist a finite unramified (Galois) field extension L of K3 and
an Rs-algebra homomorphism S Qg RS — Inty (Rg). Then the connecting homo-
morphism H'(S/R, UK/U) — H2(S/R, U) is an isomorphism.

Proof. See [10, Chapter 1V, Theorem 1.6, Theorem 3.3 and Remark (b)
following, and supplement on p. 176].

Remark 1.2. Let R be as in the preceding theorem. It follows from [10,
Chapter IV, Theorem 1.3] that the hypotheses of Theorem 1.1 hold for R-
algebras which are projective, separable and faithful over I1IR,, where the x;
are non-zerodivisors satisfying (xi, ..., x,) = R. Although such algebras are
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seldom module-finite over R, it is of interest to study the connecting homo-
morphism in the module-finite case. An appropriate tool is the theorem of
Chase-Rosenberg quoted below. For motivation, we note that global class
field theory and [4, Theorem 6.5, Propositions 7.4 and 8.2] imply that the
rings R of Theorem 1.1 have trivial Brauer group.

TaEOREM 1.3 (Chase-Rosenberg). Let S be a module-finite faithful and pro-
jective R-algebra. Then there is an exact sequence natural in R and S:

0 — H'(S/R, U) — Pic(R) —» H°(S/R, Pic) —» H*(S/R, U) —
B(S/R) — H'(S/R, Pic) — H3*(S/R, U).

Proof. Exactness and naturality in .S are proved in [8, Theorem 7.6]. Natur-
ality in R follows from the explicit calculation of the maps in [12, Appendix].

CoOROLLARY 1.4. Let R be a domain with quotient field K and S a flat R-algebra
such that S Qg K 1s finite dimensional over K and B(S @z K/K) = 0. Then the
connecting homomorphism H'(S/R, UK/U) — H?(S/R, U) is an isomorphism.

Proof. As we noted earlier, H'(S/R, UK/U) — H*(S/R, U) is a mono-
morphism. By the cohomology long exact sequence arising from

0—->U—>UK—-UK/U—DO,

it is enough to prove H2(S ®x K/K, U) = 0. But S ®z K is artinian, hence
semilocal, and so Pic(S ®z K) = 0 [5, Proposition 5, p. 143]. Therefore,
H°(S ®z K/K, Pic) = 0 and Theorem 1.3 applies to complete the proof.

We recall that a Noetherian domain R is called regular if R, is a regular
local ring for every maximal ideal M of R. Any Dedekind domain is regular.
If R is regular with quotient field K, [4, Theorem 7.2] states that the map on
Brauer groups, B(R) — B(K), is a monomorphism. In particular, if R is
regular and S is an R-algebra, the induced map on split Brauer groups,
B(S/R) — B(S ®z K/K), is a monomorphism.

CoRrOLLARY 1.5. Let R be a regular domain with quotient field K and S a
module-finite faithful and projective R-algebra. Then H'(S/R, UK/U), viewed
as a subgroup of H2(S/R, U) via the connecting homomorphism, is the kernel of the
canonical map H?(S/R, U) — B(S/R).

Proof. This is immediate from a chase of the exact commutative diagram

0
l
0 — H'(S/R, UK/U) — H*(S/R, U) = H*(S ®= K/K, U)

l
0— B(S/R) = B(S @z K/K).

Remark 1.6. Let R be a Dedekind domain with quotient field K, L a finite
separable field extension of K, and S = Int; R. Then S is a module-finite
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faithful R-projective such that .S ®z K = L {18, Chapter V, Theorem 7] and
H*(S Qz K/K, U) = B(L/K) (Theorem 1.3).

Corollary 1.5 shows that H'(S/R, UK/U) — H*(S/R, U) is an isomorphism
if B(S/R) = 0. In case K is an algebraic number field, this holds if K has at
most one real place or if [L:K] is odd. Note that Theorem 1.1 and Remark 1.2
handle the special case in which K has at most one real place and L/K is
unramified.

THEOREM 1.7. Let R be an algebraic number ring with quotient field K and let A
be the ring of all algebraic integers. Then H'(A/R, UK/U) = 0 and there is an
exact sequence

0— H2(A/R, U) > B(K) - H*(A/R, UK/U) — H*(A/R, U).

Proof. Let F be an algebraic closure of Q containing K; we may take
A = Inty R. Let S range over the inclusion-directed collection of algebraic
number overrings of R contained in 4, with L the quotient field of S. By
working with the Hopf algebra R[X, X~'] in the finite topology as in [11,
Corollary 4.4], we obtain isomorphisms

lim H'(S/R, U) =5 H"(A /R, U)
—

and
lim H'(L/K,U) = H"(F/K, U).
—_

Although UK /U does not arise from a Hopf algebra (indeed UK /U is not
a sheaf; see Remark 1.11 below), the same reasoning applies to it. In fact the
n-th cochain group of the Amitsur complex C(S/R, UK/U) is (UK/U) (S*1),
which is isomorphic to UL/ US™* ' since S ®r K = L. Similarly, 4 ®,K = F,
whence
C"(A/R, UK/U) == UF+'/UA"™,
As

lim S=4
—

and tensor products commute with direct limit, there is an isomorphism of
complexes

lim C'(S/R, UK/D) =, CMA /R, UK,

and hence
lim H'(S/R,UK/U) —=> H"(4 /R, UK /U)
—_

(6, Ch. V, Proposition 9.3*, p. 100].
By the above discussion, there are isomorphisms

H*(A/R, UK) =~ H*(F/K, U)gﬁgHz(L/K, U) = lim B(L/K) = B(K).
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Applying
lim
—_—

S

to the cohomology sequence therefore leads to an exact sequence

0 — H'(4/R, UK/U) — H*(4/R, U) L B(K)

—H*(4/R, UK/U) — H*(A/R, U).
To complete the proof, we need only to prove f is a monomorphism. However,
f is factored into the product of a monomorphism g:H?(A/R, U) — B(R)
[11, Corollary 4.4] and the canonical monomorphism B(R) — B(K). Indeed,

since g is also obtained via direct limit, the verification reduces to checking
commutativity of diagrams of the form

H2(S/R, U) — B(S/R)
l !
H(L/K, U) — B(L/K),

and this is handled by the naturality assertion of Theorem 1.3.

We now provide two more examples of vanishing one-dimensional UK /U-
cohomology. In view of Corollary 1.5 (and the fact that B(Z) = 0), Proposi-
tions 1.8 and 1.9 may each be regarded as generalizations of the result that
H2(Z[:]/Z, U) = 0 [14, Theorem 6.3.2].

ProposiTiON 1.8. Let R be an integrally closed domain with ordered quotient
field K. Let L = K (\/m) for some negative nonsquare m in R; assume S = Inty R
is R-flat. If U(R) = {1, —1}, then H'(S/R, UK/U) = 0.

Note. The assumption that .S is R-flat is used to guarantee that

H'(S/R, UK/U)
is defined.

Proof. By means of the usual identifications
C*(S/R, UK/U) = UL™)/US™),

the problem becomes: given ¢ € UL? such that the Amitsur coboundary
d'¢ € US* C UL3, find ! € UL such that § = I7! ® / mod (US?).

Let ¢ = Ya;, ®B; and G = gal(L/K) = {1, g}. Under the isomorphism
UL - 1I,U@) = L X L, let £ be sent to (a,b); i.e.

a = YaB;and b = YFag(B:).
Now under the algebra isomorphism L? — [I2L = L X L X L X L,
d'¢) = 1 ®a; ®B:)(Xa: @1 @B (Xa: ®B: ®1)

corresponds to (a, b, g(a), g())(a, b, b, a)(a, a, b, b). Since G maps .S into
itself, it follows that (a, a, g(a), a='bg(d)) € I1U(S).
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Let N = Nyx. Then N() = bg(d) € aUS)NK = US)N\K = {+1};
similarly, N(a) € N(U(S)) = {=£1}.

Case 1: N(a) = N(b). Then Hilbert's Theorem 90 proves [ € L with
ab=! = [g(lI"1). Since ¢ @ 1 € U(S?) corresponds to (a,a) = (a, big(™')) =
(a,b0)(1,1lg(I"1)) € L X L, we conclude ¢(¢(l ® ') =a ®1, to finish the
proof of this case.

Case 2: N(a) = —N(b). We shall prove that this case cannot actually arise.
Express £ as

£=kul @1+ kil @ vVm+ kavVm Q14 keov/m ® /m,
for elements k;; € K. Since g(+/m) = —+/m, the hypothesis of Case 2 implies
(after a simple computation) that (k11)? = m[(k12)? + (k21)? — (ke2)?m]. As m

is negative, we conclude (k11)? =0 = (k12)2 + (k21)®? — (ko2)?m. Then
ki = kyo = koy = kg = 0and 0 = ¢ € U(L?), the desired contradiction.

ProrositioN 1.9. Let R be an integrally closed domain with quotient field K of
characteristic #2, 3. Let L be a quadratic field extension of K; then L = K (v/m)
for some m € R. Let S be the free R-subalgebra of L with basis {1, /m}. If
UR) = {1, —1}, then H'(S/R, UK/U) = 0.

Proof. With the notation and argument of Proposition 1.8, we are reduced to
showing that N(¢) = —N(b) leads to a contradiction. There exist elements
g; € R such that

A@) =@l @11+ ¢lRLIVR+ ¢l ®@vm @1
Tl @Vm @Vm+gvm @1 Q1+ gevm ® 1 @V
+ avm @Vm @1+ gsvm @ Vm @ Vm.
Viewed in .S X § X S X .S, this gives rise to the following equations (recall
g(Vm) = —v/m):
(1) a = (g1 + gum + gem + gm) + v/m(gs + g5 + ¢5 + gsm),
(I1) @ = (g1 — gom — gem + gm) + vVm(—q2 + g5 + g5 — gsm),
(II1) g(a) = (g1 + gum — gom — gm) + Vm(—q2 — ¢ + ¢s + qsm),
(IV) a=tbg(b) = (g1 — qum + qem — qzm) + v/m(qs — qs + g5 — gsm).
Since g(g(a)) = a and a=bg(b) = —g(a), we may rewrite (I11) and (IV) as:

(IIl") @ = g1 + gem — gem — qzm) + V/m (g2 + ¢s — g5 — gsm),
(IVYa = (—q1 + gum — gem + gm) + V/m(qe — ¢3 + g5 — gsm).

Since S is R-free on {1, /m}, a comparison of (I) with (II) shows gs = —g¢s
and ¢ = —gsm. A similar comparison of (111") with (IV’) implies ¢; = gim
and ¢3 = ¢s. Hence a = 2mq, — 2mgsn/m and =41 = N(a) = ag(a) =
4m?(qs)? — 4m2(gs)?m; then 2 € U(R) = {1, —1}, contradicting the hypo-
thesis that char(K) s 3. This completes the proof.
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Remark 1.10. (a) It is perhaps interesting to note that the hypotheses of
Propositions 1.8 and 1.9 do not imply that R is Priifer. For example, R = Z[X)
is not Priifer; its quotient field K = Q(X) is ordered by defining a nonzero
fraction f/g in lowest terms to be positive if and only if the leading coefficients
of f and g have the same sign. If L = K(1/—1), then S = Int; R is R-free on
{1, /—1} and the preceding propositions each imply H'(S/R, UK/U) = 0.

(b) If § is any quadratic algebraic number ring, it is known that
H2(S/Z, U) = 0 [14, Theorems 6.4.2 and 6.4.3]. Another proof could proceed
as follows. The quotient field of .S is Q(+/m), for some nonzero squarefree
rational integer m # 1. If m =2 or 3 (mod4), Proposition 1.9 shows
H(S/Z, UQ/U) = 0and, by Corollary 1.5, H2(S/Z, U) = Osince B(S/Z) =0.
In case m = 1 (mod 4), then {1, (1 + +/m)/2} is a Z-basis of S. With the
notation of Proposition 1.9, we are reduced to deriving a contradiction if
N(a) = —N(©®). If d'(¢) is expressed in terms of the induced Z-basis of S3,
several different descriptions of @ are obtained, and a basis argument similar
to that of Proposition 1.9 shows 4 € mZ, the desired contradiction.

Remark 1.11. Let R be an algebraic number ring with quotient field K. Let
T (R) be the R-based topology whose underlying category is that of all module-
finite flat R-algebras and whose covers are singleton sets consisting of faith-
fully flat R-algebra maps. The purpose of this remark is to show that UK /U is
not a 7/(R)-sheaf in case Pic(R) # 0 (e.g., R = Z[+/—5]).

As in [9, Theorem 20.14], there exists a finite field extension L of K such
that the canonical map Pic(R) — Pic(S) is zero, where S = Int; R. Now S
is a module-finite faithful R-projective, hence faithfully flat (8, p. 67]; i.e.,
{R — S} is a T'(R)-cover. If UK/U were a sheaf, then the map UK/UR —
UL/ US would induce an isomorphism

UK /UR __g_) (UK/U)(R) =~ H'(S/R, UK/U).
However, [8 Proposition 3.9(a)] shows
H°(S/R, UK) =~ UK and H°(S/R, U) = UR;
the cohomology sequence and 8, Corollary 4.6] then provide an exact sequence
0— UR — UK — H°(S/R, UK/U) — Pic(R) — 0,

thus proving UK /U is not a sheaf.

By adapting the argument of [10, supplement on p. 176] to 7°(R), one may
construct 7'(R)-sheaves which are not 7'(R)-additive. In the case just con-
sidered, UK /U is T (R)-additive but is not a T (R)-sheaf; additivity may be
established by the five lemma since U and UK are each additive.

2. Inflation and norms. Let f: S — 7" be an R-algebra homomorphism and
J an Ab-valued functor defined on a full subcategory of R-algebras containing
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all the tensor products S* and 7. The homomorphisms

J®...N):JES")—=JIT™)

induce a map of Amitsur complexes C(S/R,J) — C(T/R,J) which yields
inflation homomorphisms

inf = inf, (S, T, R, J): H*(S/R, J) — H"(I'/R, J).

In this section, we study the kernel of inf {or the case # = 2and J = U. Our
work is motivated by the role played in Theorem 1.7 by direct limits of systems
of Amitsur cohomology groups, where the maps of the directed sets are given
by inflation. In addition to the background material for §1, we assume famili-
arity with the rudiments of group cohomology.

ProrosITION 2.1. Let R be a domain with quotient field K, I' a finite extension
field of K, and S and 1T flat R-subalgebras of I such that there exists an R-algebra
homomorphism S — T'. Then ker (inf, (S, T, R, UK/U)) = ker(inf:(S, T, R, U)).

Proof. S Qg K (respectively, " ®z K) is a K-subspace of F @ K = Fand,
hence, is finite dimensional. Theorem 1.3 then supplies a commutative diagram
H*(S @z K/K, U) — B(S ®@z K/K)

! !
HX(I' @z K/K, U) = B(I' @z K/K)

in which the horizontal maps are isomorphisms, the left vertical map is inf and
the right vertical map is inclusion of subgroups of B(K). We then have an
exact commutative diagram

0

l
0 — HI(S/R, UK/U) — H2(S/R, U) — B(S ®r K/K)

l 1 1
0—->H (T/R, UK/U) - H*(T'/R, U) - B(I QrK/K)
in which the left and middle vertical maps are the infs in question. A diagram
chase completes the proof.

TarEOREM 2.2 (cf. Morris [14, Theorem 3.2.1]). Let S be an R-algebra and T o
SJaithfully flat S-algebra such that 12 is S*faithfully flat. If Pic(1?) = 0 =
Pic(S?), then inf, (S, T, R, U) is a monomorphism.

Proof. Consider the R-based topology X, the objects of whose underlying
category are all R-algebras 4 whose cardinality satisfies

card(4) = max(card(S), card (T, Ro),

with Cov(X) consisting of all singleton sets containing a faithfully flat
morphism in Cat(X). As X is dual to a Grothendieck topology, [3, Chapter II,
1.8 (i)] shows that the category of X-sheaves has enough injectives.
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Now U is an X-sheaf [8, Proposition 3.9 (a)]; let
0->U—->U*>U -0

be an exact sequence in the category of X-sheaves with U* injective.
There is a commutative diagram
0— U(S) = U*S) = U'(S) = Hx'(S, U)
l ! !
0— U(S?) — U*(S?) — U'(S*) — Hx'($%, U)
1 ! !
0— U(S?) — U*(S?) — U'(S?)
! l !
0— U — U*(SY) - U'(SY)

whose rows are exact and whose columns are the initial segments of C(S/R, U),
C(S/R, U*) and C(S/R, U’), respectively. The Grothendieck cohomology
group Hy'(S2, U) is isomorphic to the Cech cohomology group Hy!(S?, U)
[3, Chapter II, Corollary 3.6] which, [8, Corollary 4.6] shows, can be embedded
in Pic(S?) = 0; hence H1(S2, U) = 0. Similarly, H¢' (S, U) embeds in Pic(S),
which is easily seen to vanish (cf. [11, Corollary 4.2]). A standard chase of the
above diagram (cf. [6, p. 40]) then yields an exact sequence

H'(S/R, U*) — H'(S/R, U') — H*(S/R, U) — H2(S/R, U*).
However, H' (S/R, U*) = 0 = H2(S/R, U*) since U* is injective [3, Chapter I,

Corollary 3.1 and Chapter II, 1.8 (ii)], and the connecting map is therefore an
isomorphism
H'(S/R,U") —5 H*(S/R, U).

We may deal with 7" similarly, to obtain an isomorphism

H'(T/R,U) =5 H*(T/R, U).
It follows {rom the commutativity of the diagram
H'(S/R, U') — H*(S/R, U)
1 |
HYT/R, U') — H>(T/R, U)

that we need only to establish that inf, (S, 7, R, U’) is a monomorphism. Since
{S — T} and {S? — 72} are in Cov(X) and U’ is an X -sheaf, the argument of
[14, Theorem 3.1.3] may be adapted to show that inf;(S, 7', R, U’) is indeed a
monomorphism, thus completing the proof.

Remark. 1t is interesting to compare Theorem 2.2 with the following con-
sequence of [11, Corollary 3.2]. Let S be an R-algebra and 7" an S-algebra which
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is faithfully flat over R. If the canonical map Pic(S) — Pic(T ®z9) is a
monomorphism, then infy(S, 7', R, U) is also a monomorphism.

We pause to recall a connection between Amitsur cohomology and group
cohomology {7]. If G is a finite group of automorphisms of a ring 7" with fixed
ring R = 79 and J is an additive Ab-valued functor defined on a full sub-
category of R-algebras containing all 7™, then there exist canonical homo-
morphisms H*(T'/R, J) — H*(G, JT). (The precise definition of these maps,
apart from their naturality, will not be needed in what follows.) These maps
are isomorphisms if 7°/R is Galois with respect to G [7, Theorem 5.4].

ProrosITION 2.3. Let G be a finite group of automorphisms of a ring T, H a
normal subgroup of G, R = T¢ and S = TH. Assume S/R 1is Galois with respect
to the camonical G/H-structure (this holds if T /R is Galois with respect to G
(7, Theorem 2.2]). If H'(H, UT) = 0, then infs(S, T, R, U) is a monomorphism.

Proof. [10, Chapter I, Theorem 2.5] provides a commutative diagram
H*(S/R, U) — H*(I'/R, U)

l !
H*(G/H, US) — H*(G, UT)

in which the left vertical map is an isomorphism (since U is additive and S/R is
Galois). As (UT)# = US, the inflation-restriction theorem of group cohomo-
logy {16, Chapter VII, Proposition 5] shows the lower horizontal map is a
monomorphism. By commutativity of the diagram, so is the upper horizontal
map, namely infy(S, 7', R, U).

Remark 2.4. The preceding theorem, remark, and proposition generally fail
to apply in case R C S C T is a tower of domains. Indeed, for algebraic
number rings, the hypotheses of Theorem 2.2 imply that .S and 7" are principal
ideal domains, while Proposition 2.3 requires that the quotient field of S is
unramified over the quotient field of R [7, Remark 1.5(d)]. A more useful
result for algebraic number rings may be deduced from [11, Remark 3.3]. With
the goal of an eventual generalization of this result (cf. Corollary 3.9 below),
we devote the remainder of this section to exploiting Proposition 2.1. As a
first application, we re-prove Proposition 2.3 in the special case that R is a
Priifer domain with quotient field K, K C L C F a tower of finite Galois field
extensions, G = gal(F/K), H = gal(F/L), S = Int, R is Galois over R with
respect to G/H, T" = Intgy R and H'(H, UT) = 0.

Since R is Priifer, S and 7" are R-flat and it therefore suffices (by Proposition
2.1) to prove ini((S, 7', R, UK/U) is a monomorphism. This will follow (cf.
[14, Theorem 3.1.3]) in case:

(@) (UK/U)(S?) —» (UK/U)(T?) is a monomorphism;

(b) (UK/U)(S) maps onto the difference kernel of

(UK/U)(T) S (UK/UNT ®sT).
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Since R is integrally closed, multiplication induces isomorphisms

S@nK-—5L and T @zK -5 F.
Therefore, (a) reduces to proving (UL?)/(US?) — (UF?)/(UT?) is a mono-

morphism. As.S/R is Galois, the canonical map .S? — 114,45 is an isomorphism
[7, Theorem 1.3]. Since U(T") M U(L) = U(S), the conclusion then follows
easily from the commutative diagrams

0 0
il l
0—S° S—0,
— —+£/IH - L2 F2
l l l )
0-L*—-[[L—0, 0-][L-—]]L-]]F
G/H G/H G G
and
0
i)
A= B A

!
0— F' > F—0.

0
!
I
!
II

As for (b), it is enough to show that (UL)/(US) maps onto the difference
kernel of

(UF)/(UT) 3 (WUK/U)(T @5 T) =TT WK/0)(T) =TT WA/ WD);
i.e., that (UF/UT)¥ = (UL)/(US). We have an exact commutative diagram

00— (UT)Y?— (UF)* - (UF/UT)"—-H'(H,UT) =0

I I T I
0— US — UL — UL/US —— 0

from which the conclusion follows by the five lemma, thus completing the proof.

THEOREM 2.5. Let R be a Priifer domain with quotient field K, K C L C F a
tower of finite Galois field extensions, G = gal(F/K) and H = gal(F/L) such
that S = Inty R is Galois over R with respect to G/H. Let T" be an S-subalgebra
of Inty R such that multiplication induces an isomorphism

T @uK-=5F.
Then ker (inf: (S, T, R, U)) is [F: L]-torsion.

Proof. We shall construct a group homomorphism N: U(F?) — U(L?) such
that the following three conditions hold:
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(a) N(&) = £ forall £ € ULY);

(b) N(f®1) = Nep(f) @land N(1 ®f) = 1 @ Ner(f) forall f € U(F);

(¢) N(UT?) C U(S);
where we are viewing the standard monomorphisms L? — F?, 72 — F? and
S? — L? as inclusions.

Explicitly, since L/K and F/K are Galois, there are canonical R-algebra
isomorphisms

L* = J]lL and FF=T]] F,

G/H G
which give rise to group isomorphisms
UL =TI U@ and UEF) =TT UE).
G/H G

To construct N, it therefore suffices to define a group homomorphism
[H;uF) = 1lggUL). 1f {g1, ..., gu ...} is a fixed set of coset representa-
tives for H in G, we need only define group homomorphisms N;: I1,U(F) —
U(L); take N to be the composition of the g-th projection map 11,U(F) —
U(F) with the usual field norm Nz,,: U(F) — U(L).

To establish (a), let ¢ =2 a; ®b,; € UL?). Fix 1 £1 £ [L:K]. The
Hyg-th component of N (¢) (viewed in Ilg,xU(L)) is Np (¥ 0,8:(b,)), which
we must show equal to (X ,a,g:(0,)" ™. For h € H, let h* = g hy (EH).
Since H fixes each «; and b;, we compute

NF/L(Z a;gib;)) = g (Zajgih*(bj))
= H (Za]—gi(bj))

neH
= (Z ajgi(bj))lm
= X ag.0;)",
as required.

The first assertion of (b) is trivial. As for the second, we must prove (for
ﬁxed 1/) that NF'/L(g1<f)) = g'LNF/L(f)y le that

,,IJ, hg(f) = I1 gh(f).

h€H

This is immediate since the function & — &* defined above is clearly a bijection.
As for (c), the isomorphism

U(sh =, IT U(s)

reduces the problem to showing Nz, (U1") C US. Now

and so IV has the stated properties.
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Since R is Priifer, S and 7" are R-flat and Proposition 2.1 reduces the theorem
to proving ker(infi(S, T, R, UK/U)) is [F:L]-torsion. As R is integrally
closed,

S®zK =L
and there are identifications of the cochains C"(S/R, UK/U) = (UL*?')/
(US™1); similarly C*(T'/R, UK/U) = (UF*)/(UT™"'). We must therefore
prove that, if £ € U(L?) and f € UF satisfy §(f ® f~!) € U(7?), then there
exists | € UL with ¢FH ([ @ [71) € U(S?).
The homomorphism N and properties (a)-(c) were made to order for this
formulation of the problem. If I = Nz, (f) then

Nf@fH)=Nf@L -N1NH =1
Hence ¢ 5 @17') = NEON(f @) = NE(S @) € N(UT*) C US?)

and the proof is complete.

Remark. The hypothesis that R is Priifer was used in the preceding proof only
to guarantee that S and 7" are R-flat and that

S @K = L.

COROLLARY 2.6. With the hypotheses of Theorem 2.5, we assume also that K
is perfect of characteristic p > 0 and that [F:L] is a power of p. Then
infy (S, T', R, U) s a monomorphism.

Proof. As above, we must prove that, if £ € U(L?) and f € UF satisfy
§(f ®f1) € U(T?), then there exists [ € UL with ¢ ®I71) € U(S?). Let
g = [F:L] and m = Ny ,x(f); then applying N vyields £&2(m Q@ m~1) € U(S?).
Choose I € UL with 19 = m. Then [§(I ® [71)]? € U(S?), and the result will
follow once we prove that U(S?) is closed under g-th roots in U(L?). This, in
turn, follows from the exact commutative diagram

0

!
0— U(S2)—>GI/;II U(S)—0

!
0> UL - I/l{ UL)—0

since US is closed under ¢-th roots in UL.

THEOREM 2.7. Let R be a domain with quotient field K, K C L C F a tower
of finite field extensions, and S and T flat R-subalgebras of F such that multi-
plication induces isomorphisms

S®pK-—=>L and T ®zK-—>»F.
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Assume also that S C T and that T? is a module-finite S-projective. Then
ker (infy (S, T, R, U)) is [F:L]*-torsion.

Proof. As in the proof of Theorem 2.5, it suffices to construct a group homo-
morphism N: U(F?) — U(L?) such that the following three conditions hold:
(a) N() = g1 for all £ € U(L?);
b) N(f ®1) = Nep(H¥H @Lland N(1 @f) = 1 @ N (f)FH for all
fe U,
(c) N(UT?) C U(S?).
Since F? is L*-ree of rank [F:L]?, we may define N by

N(n) = Norm (F2/L?; 3),

the determinant of the L2-linear endomorphism of F? effected by multiplication
by 5. Then it is standard that N is a homomorphism. If £ € U(L?) then N (§)
is the determinant of the scalar matrix £7, and (a) is immediate.

As for (b), we need only prove the assertion about N(f ® 1) (apply [2,
Proposition 2(a)] to the “switch’” map F? — F?). Assume that multiplication
by f on F is represented by the matrix 4 = (a;;) with respect to an L-basis
{x1, X3, . . .}; 1.e., fx; = Da;x; for all 2. Then multiplication by f ® 1 in F?
is represented, with respect to the L2-basis

{xl ®x1, ce ey X1 ®OC[F:L],QC2 ®x1, ey X2 ®X[F:L], ey
Xrinl @ X1y« vy Xppiz) @ Xppes))

by the matrix B whose entry at the (z,7)-th row and (&, [)-th column is
(e ® 1)6;,;. (For example, if [F:L] = 3, then

B ==

0/11®10 0 0/12®10 0 (113®10 0

0 011®10 0 67,12@10 0 013®10

0 0 Ll31®10 0 a32®10 0 d33®1.
It is easy to see that, if we regard B as representing a transformation ¢ with
respect to an ordered basis {71, . . ., vr:1)2}, then ¢ is represented with respect
to the basis

{V1, Vtrinieny -« o ezl (il —1) 41 U2, Vipizi42, - - - Vipin)?)
by the [F:L]-square block matrix
C=14®1
A®1
A®1
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Hence

N(f ®1) = det(B) = det(t) = det(C) = det(4)F:H @1 =
No(H)FH @1,
thus proving (b).
The flatness assumptions permit us to view S? as a subalgebra of 72 and thus
to define N; = Norm(72%/S?) in the sense of Goldman-Amitsur [13; 2].
Explicitly, let A € T2, If

h@SH = v @t

is an isomorphism exhibiting 72 as an S?-summand of a direct sum of finitely
many copies of S? and if g = multiplication by \ on 72, then

Ni(\) = det(A~'(1y @ g)h).
Since

S®rK-—L and T @zxK —F,

we may view i ® lg as an L?-isomorphism

oL’ =, (¥ 9K) @ P~
Now g ® 1k is just multiplication by X on F? and so [13, Proposition 1.2]
implies
NQ) = det([h ® 1x] [lygx @ (g ® 1x)][h ® 1k])
which, by [13, Proposition 1.4], equals det(A1(ly @ g)k) = N:(\). Hence
N(\) € image(IV;) C S2. As N(1) = 1 € 82, itisclear that N(UT?) C U(S?),
to establish (c) and complete the proof.

Remark. 1t is perhaps worthwhile to note that the preceding proof actually
yielded a commutative diagram

7?— 8?

U
Fr— 12

where the horizontal maps are the norms, Ny and N, and the vertical maps are
the canonical inclusions.

Remark 2.8. We should note that the conclusion of Theorem 2.7 may be
strengthened in the following case. Let R be a Dedekind domain with quotient
field K, K C L C F a tower of finite separable field extensions, S = Int; R
and T = Inty R. Then (by [2, Theorem 6] and [11, Remark 3.3]) we may
conclude ker(inf;(S, T, R, U)) is ([F:L], [L:K])-torsion. This is the result
alluded to in Remark 2.4, and generalizations of it will appear in Proposition
3.7 and Corollary 3.9. For the present, it is interesting to observe the following
group cohomological analogue.
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THEOREM 2.9. Let R be a domain with quotient field K, K C L C F a tower of
fintte Galois field extensions with groups G = gal(F/K) and H = gal(F/L),
S =1IntyRand T = Inty R. Then ([L:K], [F:L]) annihilates the kernel of the
group cohomology homomorphism H*(G/H, US) — H2(G, UT") induced by the
maps G — G/H and US — UT.

Note. If T/R is Galois with respect to G, then the homomorphism in question
may be identified with inf, (S, 7, R, U).

Proof of Theorem. (7, Theorem 5.4] implies H'(G, UF) is isomorphic to
H'(F/K, U) which vanishes by [8, Corollary 4.6]; similarly, H'(G/H, UL)=0.
With the aid of the classical natural isomorphisms H%(G, UF) = B(F/K) and

H*(G/H, UL) = B(L/K), the long cohomology sequences provide an exact
commutative diagram

0 0
l @ l
H'(G/H, UL/US) — H'(G, UF/UT)
l g l
H*(G/H,US)  —H(G, UT)
l l
0— B(L/K) — B(F/K)

A diagram chase shows ker(a) = ker(8). Moreover, a factors through group
cohomological inflation H'(G/H, (UF/UT)?) — H'(G, UF/UT), which is a
monomorphism by the usual inflation-restriction result for group cohomology
[16, Chapter VII, Proposition 5]. Hence we need only to consider ker(y),
where y: H'(G/H, UL/US) — H' (G/H, (UF/UT)?). As[G:H] = [L:K] anni-
hilates H'(G/H, UL/US), it remains only to prove that ker(y) is [H| =
[F: L]-torsion.

We use the standard nonhomogeneous complex (the ‘‘bar resolution’) for
group cohomology. If & € Hg/HUL/ US is a 1l-cocycle which becomes a
1-coboundary in Il 4, (UF/UT)¥ (i.e., liesin ker (v)), then there exists n € UF
such that §(Hg) = (gn)y*(UT) for all g € G. In other words, if a, € UL
satisfies £ (Hg) = a,(US), then

a, = (gn)y~* mod (UT).
Let I = Ng;(n). Then (writing gh = h*g as before) we compute

@r = || / |1 p00] = I senr™

= I1 #(a,) = ()" mod (UT).
new
Hence
)it = (a,)"! mod(UL M UT); i.e., mod (US).

The 1-coboundary of I(US) is therefore ¢/¥!, completing the proof.
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Remark 2.10. Let R be a domain with quotient field K, K C L C F a tower
of finite field extensions with F/K Galois, and 7" a flat R-subalgebra of Int R.
In Theorems 2.5 and 2.7, we had reason to consider elements ¢ € U(L?) for
which there exist f € UF such that ¢(f ® f~1) € U(7?). We conclude this
section by proving that such elements always satisfy

Norm (L2, K; ¢) € U(Intg R).

Let N = Norm(F?, K), N; = Norm(L? K), N, = Norm(F?, L?),
k = Npx(f) and n = [F:L]. As in the proof of Theorem 2.7, we have
N =NfFfODN1f)™*= (k)™ =1 and N.(¢) = ¢*. By
[2, Corollary 3], N(¢§) = N1 (V2 (¢)) = (N:£)"™. Since U(Intg R) is closed under
roots in UK, and N is a homomorphism, it therefore suffices to show
N(U(T?*) C U(Intg R).

Let G = gal(F/K), I = Inty R and A € U(7?). By means of the standard

isomorphism
FSI]F
G
we may identify A with (..., \,,...) € II,U(). Then
NQ) = ILNe k() € UWe k(D)) C Ullntg R),

completing the proof.

3. Relations with group cohomology. In this final section we study some
connections between Amitsur and group cohomology. The following result will
prove to be basic.

TaeEoREM 3.1 (Silver). Let G be a finite group of automorphisms of an (respec-
tively, a flat; respectively, a module-free; respectively, a projective) R-algebra S. Let J
be an additive Ab-valued functor defined on the category of all (respectively, flat;
respectively, module-free; respectively, projective) R-algebras. For q¢ > 0, define
the functor J* by J9(A) = HY(G,J(A ® gS)). Then there exists a first quadrant
spectral sequence H?(S/R, J?) = H"*t1(G, J(S)).

Proof. One may adapt the arguments leading to [17, Theorem 2.3, p. 31] to
the category of all (respectively, flat; respectively, module-free; respectively,
projective) R-algebras and thus derive a double complex for which the above is
an associated spectral sequence.

We pause to record the exact sequence of low terms of the above spectral
sequence. (Note that an apparent error in [17] identifies J° with J in stating this
result.)

CoOROLLARY 3.2. Under the conditions of the theorem, there is an exact sequence
0 — H'(S/R, J%) — H' (G, J(S)) — H°(S/R, J")
— H2(S/R, J%) — ker[H*(G, J(S)) — H*(G, J(S?))]
— HY(S/R, J') — H3*(S/R, J°).
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CorOLLARY 3.3. If S 1s the ring of algebraic integers of a quadratic number field
Land G = gal(L/Q), then H' (G, US) is nonzero and is the difference kernel of the
two homomorphisms from H'(G, US?) to H (G, US?) induced by the face maps

€0, €1° S?— S8,

Proof. Since S¢ = Z, it is easy to see that the canonical map U(4) —
U(A ®grS)?% is an isomorphism for any module-free R-algebra A. Then the
natural transformation U — U° is an equivalence, and the preceding corollary
yields an exact sequence

HY(S/Z, U) — H'(G, US) —» H*(S/Z, U') — H*(S/Z, U).

However, Theorem 1.3 shows H(S/Z, U) = 0 (since Pic(Z) = 0) and, as
noted in Remark 1.10 (b), H2(S/Z, U) = 0; hence, H (G, US) = H'(S/Z, U"),
the difference kernel in question. It remains only to prove that H'(G, US) # 0.
If N is the restriction of Ny, viewed as an endomorphism of US and if g is the
nontrivial element of G, then H (G, US) = [ker (N)]/{s 'g(s): s € US}.

Case 1: S is real. By the Dirichlet unit theorem, US is the direct product of
{1, —1} with the free multiplicative abelian group generated by a ‘‘funda-
mental unit”, u. Since g? = 1, freeness implies g(u) = *u*!; of course
g(u) # u because u ¢ Z.

Subcase (¢1): g(u) = —u. Then, for all s € US, one checks easily that
s7lg(s) € {1, —1}. Since N@?) = Nu)? = (1) =1 and u? s =41, the
proof of this subcase is complete.

Subcase (11): g(u) = tu~?, where t = 1. If ¥ = =1 and j € Z then
Fu?)"tg((u?) = tu=¥ # —1 € ker (V).

Case 2: S is complex. Express L = Q(+/m) for some negative squarefree
rational integer m. If m = —1, then US = {1, —1, ¢, —¢} where 1* = —1;
note 72 ¢ {s7'g(s): s € US} although N(z) = 1. If m = —3, then

US = {1, =1, (=1++v=3)/2, (=1 = v/=3)/2,1 = v/=3)/2,
(I + +v/—3)/2};

note —1 ¢ {s7'g(s): s € US} although N(—1) = 1. For other values of m,
US = {1, —1} and the assertion is clear.

ProrosiTION 3.4. Let R be a domain with ordered quotient field K. Let
L = K(\/m) for some megative nonsquare m € K. Let G = gal(L/K) and
S = Int, R. If UR) = {1, —1}, then H' (G, UL/US) = 0.

Proof. As in the preceding argument, the usual formula {or the cohomology
of a cyclic group shows H (G, UL/US) = ker(N)/Io(UL/US) where I is
the augmentation ideal of G and N is the endomorphism of UL/US induced
by the field norm Ny ,x. Note that [US € ker(N) if and only if Ny ,x(}) = =£1;
if G = {1, g}, then Io(UL/US) is just the collection of cosets of elements of

https://doi.org/10.4153/CJM-1972-019-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1972-019-2

AMITSUR COHOMOLOGY 257

the form g(I)I=1. By Hilbert's Theorem 90, it is enough to show thatnol € L
cansatisfy Npx(l) = —1.1lf! = a 4+ bv/m (withe,b € K)and Ny ,x(I) =—1
then (since g(+/m) = —+/m) we obtain a® — mb* = —1, contradicting
negativity of m.

Remark 3.5. (a) Corollary 3.3 provides an example in which corresponding
one-dimensional Amitsur and group cohomology groups (in U) differ. For
another example, let G = {1, g} acton.S = Z[X]/(X?) = Z[x] by g(m + nx)=
m — nx; then S is Z-free on {1, x} and S¢ = Z. The existence of ring maps,
Z — S and S — Z, implies H*(S/Z, U) = H*(Z/Z, U) = 0 for all » > 1, by
the fundamental homotopy property of Amitsur cohomology [1, Lemma 2.7].
However, H?+1(G, US) = Z/2Z ® Z/2Z and H*»(G, US) = Z/2Z for all
n > 0. Of course, S/Z is not Galois since (1, —1) is not in the image of the
canonical map S? — S5 X S.

(b) Remark 1.10 (b) and Proposition 3.4 show that the corresponding
connecting homomorphisms, H'(G, UL/ US) — H*(G, US) and

H'(S/Z, UQ/U) — H*(S/Z, U),

are both zero maps if .S is the ring of algebraic integers of a complex quadratic
number field L. However, the former map is not epimorphic (it is 0 — Z/2Z),
while the latter map is the trivial isomorphism. In particular, the connecting
homomorphism of group cohomology is not the kernel of a map into the split
Brauer group (cf. Corollary 1.5).

We next show that certain (not necessarily module-finite) R-algebras have
torsion Amitsur cohomology groups.

PRrROPOSITION 3.6. Let S be a faithful projective R-algebra and G a finite group of
R-algebra automorphisms of S such that S® = R. If G has exactly n elements, then
H2(S/R, U) is n*-torsion.

Proof. For each R-module, 4, letf4: A — (4 ®z&S)€ be the canonical homo-
morphism. By a standard argument, fiq s is an isomorphism if and only if
fa and fp are each isomorphisms. However, fr is an isomorphism for any free
R-module F, and hence also for any R-projective. It is then easy to show that
the natural transformation U — U° is an equivalence on the category of
projective R-algebras, and an analysis of the spectral sequence of Theorem 3.1
leads to the exact sequence H°(S/R, U') — H%(S/R, U) — H*(G, US). Since
H'(S/R, U') is a subgroup of H(G, U(S?)) and group cohomology in G is
annihilated by |G| = =, the conclusion is immediate.

ProprosITION 3.7. Let R be a Priifer domain with quotient field K, L a finite field
extension of K, and S an R-subalgebra of Inty R. Then [L:K] annihilates
H"(S/R, U) for all n > 0.

Proof. Let M range over the inclusion-directed collection of finitely generated
R-subalgebras of S. Each M is a module-finite R-flat, hence R-projective of
rank dividing [L:K]. (One uses [5, Théoréme 1, p. 138], noting that R is con-
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nected, to see the rank of M exists and is the K-dimension of the subspace
M ®r K of L). Hence [2, Theorem 6] shows [L:K] annihilates each
H*(M/R, U). Since

lim M =S,

—

we may argue as in Theorem 1.7 to show

lim H'(M/R, U) —=» H'(S/R, U),
—

which readily yields the desired result.

THEOREM 3.8. Let R be a domain with quotient field K, L a finite Galois field
extension of K, and S = Inty R. Assume that S is R-flat and that multiplication
induces an 1isomorphism

S ®rK =5 L.
If n = [L:K], then H'(S/R, UK/U) 1is n*-torsion and hence H*(S/R, U) 1is
nd-torsion.

Proof. The last statement follows from the exact sequence
H'(S/R, UK/U) — H*(S/R, U) —» H*(L/K, U)

since n - H2(L/K, U) = 0 [2, Theorem 6].

For the first statement, let J = UK /U. Since Theorem 3.1 supplies a mono-
morphism H'(S/R, J°) — H'(G, J(S)), it follows that H'(S/R, J°) is anni-
hilated by |G| = n. If X is the kernel of the homomorphism H'(S/R, J) —
H'(S/R, J°) induced by the natural transformation J — J?, it suffices to prove
n-X =0.

Consider the commutative diagram

N
J(S) TI(S?) =TS
al B8l !
—>
JO(S) S T0(S?) =3 TO(S?).
Under the usual identifications, 8 may be regarded as the face map
J(e2): J(S?) = UL?/US? — J(S?) = UL3/US?, with image restricted to lie in
J(S?)¢. Hence B is a monomorphism and it therefore suffices to prove that
n-J°(S) C im(a); i.e., that the n-th power of any element £ of (UL2/US?)¢
is in the image of UL/US.

Let £ = > a; ® b; be a coset representative of £. Since G acts on L? via the
second factor, we have

2a; ®b;= 2a; ®gb:) mod(US?)
for all g € G. Multiplying the congruences yields

== I;I X a: @ g(6:))mod (US”).
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Evidently, N € (L?)¢ = L ® 1. Viewing A\ € UL, we see & = a(\ - US), and
the proof is complete.

Combining Theorems 2.7 and 3.8 leads to the following result.

COROLLARY 3.9. Let R be a domain with quotient field K, K C L C F a tower
of finite field extensions with L/K Galois, S = Inty R, and T a flat R-subalgebra
of F containing S such that multiplication induces isomorphisms

S®K 5L and T @xK-—5F.

Assume also that S is R-flat and that T? is @ module-finite S*-projective. 1Then
([F:L]?, [L:K]*) annihilates ker (inf» (S, T', R, U)).

Remark. Although we have dealt exclusively with UK /U, we close by stating
a result that indicates the usefulness of a new coefficient functor (proof via
standard techniques). If R is a domain with quotient field K and S is a flat
R-subalgebra of a field extension L of K, then the canonical map

H'(S/R, UL/U) — H*(S/R, U)
is an isomorphism.
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