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Abstract
This article is devoted to the analysis of the parabolic–parabolic chemotaxis system with multi-components over
R2. The optimal small initial condition on the global existence of solutions for multi-species chemotaxis model in
the fully parabolic situation had not been attained as far as the author knows. In this paper, we prove that under the
sub-critical mass condition, any solutions to conflict-free system exist globally. Moreover, the global existence of
solutions to system with strong self-repelling effect has been discussed even for large initial data. The proof is based
on the modified free energy functional and the Moser–Trudinger inequality for system.

1. Introduction

The well-known classical parabolic–parabolic Keller–Segel model reads as [24]⎧⎨⎩∂tu =�u − α∇ · (u∇v), x ∈R2, t> 0,

τ∂tv =�v − βv + γ u, x ∈R2, t> 0,
(1.1)

where u = u(x, t) and v = v(x, t) denote the cell density and the concentration of the chemical substance,
respectively. α and γ are positive constants. The constants τ and β are non-negative. The system (1.1) can
be regarded as one of the simplest models to describe the overall behaviour of cells under the influence
of chemotaxis, that is the motion of cells partially orient their movement towards higher concentration
of a certain chemical substance produced by cells themselves. A striking feature of the Keller–Segel
system is that the behaviour of solutions is determined by the total mass of cells which remains constant
over time, see [5, 16, 31, 34] for instance. Namely, given a non-negative and suitable smooth initial
data u0, any solution with m = ‖u0‖L1(R2) < 8π/(αγ ) exists globally, while blow-up solution appears if
m> 8π/(αγ ). Note that the main idea to prove the global existence is based on the following free energy
functional,

FKS =
∫
R2

u log udx + α

2γ

∫
R2

(|∇v|2 + βv2
)

dx − α

∫
R2

uvdx,

which is a monotonic non-increasing function with respect to time variable. In view of this fact, Calvez
and Corrias use a minimisation principle for entropy functionals and Onofri’s inequality to derive a
priori estimates under the sub-critical mass m< 8π/(αγ ), where the assumptions u0 log

(
1 + |x|2

) ∈
L1(R2) and u0 log u0 ∈ L1(R2) are necessary [5], while these extra assumptions have been removed
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by applying a modified free energy functional with the Moser–Trudinger inequality in unbounded
domain [31].

For the parabolic–elliptic Keller–Segel system (i.e. taking τ = 0 in (1.1)2)

0 =�v − βv + γ u,

the above two-dimensional mass threshold phenomenon also exists. See [4, 8, 33] for the global well-
posedness results and [3, 4] for the blow-up arguments. The main feature to prove the global existence of
solutions in this simplified chemotaxis system over (1.1) is that v could be expressed by the fundamental
solution of the elliptic equation, then it leads to a single parabolic problem for u. For example, if β = 0,
an explicit expression for v takes form like v = γK ∗ u, so (1.1)1 becomes

∂tu =�u − αγ∇ · (u∇K ∗ u), x ∈R2, t> 0,

where K = −(1/2π ) log | · |. A direct application of the logarithmic Hardy–Littlewood–Sobolev
inequality (see [2]) on the corresponding free energy yields the global existence of solutions if m<
8π/(αγ ) [4].

Compared with the one-population chemotaxis system (1.1), an interesting and complex question
is to derive sharp conditions to recognise global existence and blow-up of solutions for the following
multi-species chemotaxis model in R2,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tui =�ui −
m∑

j=1

αi,j∇ · (ui∇vj), i ∈ I = {1, · · · , n},

τj∂tvj =�vj − βjvj +
n∑

i=1

γi,jui, j ∈J = {1, · · · , m},
(1.2)

where τj ≥ 0, j ∈J . This model was first proposed by Wolansky in [42] to describe the chemotactic
movement of n populations with respect to m chemical substances. Here, ui = ui(x, t) denotes the density
of i-th population, and vj = vj(x, t) represents the concentration of j-th chemical signal. The total num-
ber of species |I| = n ≥ 1 is assumed to be finite. α = (αi,j)n×m and γ = (γi,j)n×m define a pair of n × m
matrices for the sensitivity parameter and the production/consumption rate, respectively. βj ∈R, j ∈J ,
presents the growth/degradation rate for chemical substance. We introduce β = (βj,l)m×m with βj,l = βjδj,l

as a m × m diagonal matrix for convenience, where δj,l satisfies

δj,l =
⎧⎨⎩1, if j = l,

0, if j �= l.

It is very important to understand the multi-species chemotaxis in biology, and this phenomenon has
been observed in numerous experiments. We take the following two examples. First one is that a system
with two different species, reacting on one common chemical, appears in the cell sorting process during
the early aggregation state of mound formation [40]. And a two-species chemotaxis system with two
chemicals has been proposed in [25] to imitate the breast cancer metastatic process. The readers could
see [20, 21] for other biological motivations.

Just recently, some authors have started to look more closely at the parabolic–elliptic case of (1.2)
(i.e. τj = 0) for n-populations interacting via a self-produced chemical agent. Consider (1.2) with |I| =
|J | = n is subject to symmetric sensitivity coefficients matrix α = (αi,j)n×n with non-negative entries,
zero matrix β and unit matrix γ , that is,⎧⎪⎨⎪⎩

∂tui =�ui −
n∑

j=1

αi,j∇ · (ui∇vj),

−�vj = uj, i, j ∈ I = {1, · · · , n}.
(1.3)
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Karmakar and Wolansky [22] had derived the global well-posedness of weak solutions with respect to
time in the sub-critical regime


K(m) := 8π
∑
i∈K

mi −
∑
i,k∈K

αi,kmimk > 0, ∀ ∅ �=K ⊂ I, (1.4)

where mi = ‖u0‖L1(R2). Furthermore, the borderline case of critical mass 
I(m) = 0, and 
K(m)> 0,
∀ ∅ �=K� I, has been considered in [23]. It shows that a free energy solution exists globally in
time. According to analogous results about (1.1) mentioned above, it is expected that if the condition

K(m) ≥ 0 for some ∅ �=K ⊂ I is violated, a finite-time blow-up solution appears. Using the second-
moment techniques in [15], some solutions of (1.3) blow-up in finite time provided 
I(m)< 0. While
the basic strategy to prove global existence is the logarithmic Hardy–Littlewood–Sobolev inequality for
system, see [38] for details. In particular, in the case of parabolic–elliptic system (1.2) with |I| = 2,
|J | = 1, Espejo et al. [7, 12] discovered a threshold curve to help us to determine whether the solu-
tions of system are blow-up or global in time. See related works for parabolic–elliptic system (1.2) with
|I| = |J | = 2 in [18, 19]. Moreover, [9–11, 13] could be refereed to characterise the simultaneous or
non-simultaneous blow-up results in two-species model.

However, it should be noted that fewer papers have been considered on Cauchy problem of the fully
parabolic multi-species (i.e. τj > 0 in (1.2)) than the parabolic–elliptic case. For a two-dimensional
bounded domain, the author and coauthors have researched the initial boundary problems of (1.2),
and we have tried to find optimal conditions on the global existence or blow-up in [27–30]. In this
article, under a conflict-free situation given by Definition 1 (ii), a sufficient (or possibly optimal) condi-
tion on the global solvability of the Cauchy problem for parabolic–parabolic system (1.2) with arbitrary
|I| = n ≥ 1 and |J | = m ≥ 1 has been obtained. For simplicity, we assume τj = 1 for all j ∈J in (1.2) and
consider ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂tui =�ui −
m∑

j=1

αi,j∇ · (ui∇vj), i ∈ I,

∂tvj =�vj − βjvj +
n∑

i=1

γi,jui, j ∈J ,

ui0(x) = ui(x, 0), vj0(x) = vj(x, 0), i ∈ I, j ∈J ,

(1.5)

with initial data u0 = (u10, · · · , un0) and v0 = (v10, · · · , vm0) satisfying⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui0(x) ∈ C0(R2) ∩ L1(R2) ∩ L1

(
R2, log

(
1 + |x|2

)
dx
)∩ L∞(R2),

ui0 ≥ 0 and ui0 �≡ 0, i ∈ I,

vj0(x) ∈ W1,p(R2) ∩ W1,1(R2) with some p> 2, j ∈J .

(1.6)

Before stating our main results, let us go over some notations and definitions in [42].

λi,k :=
m∑

j=1

αi,jγk,j = αT
i · γ k, i, k ∈ I,

is the number to quantify the tendency of a population i towards a population k by taking an accounting of
the action of all the agents, where αi = (αi,1, · · · , αi,m)T and γ i = (γi,1, · · · , γi,m)T . The condition λi,k > 0
means that a population i is attracted by a population k; otherwise, the population i is repelled from
the population k if λi,k < 0. Especially, a population is self-attracting (resp. self-repelling) if λi,i > 0
(resp. λi,i < 0). A pair (i, k) of populations i, k ∈ I is said to be in a conflict if λi,k × λk,i < 0. In general,
λ = (λi,k)i,k∈I is not symmetric. We assume that there exist nonzero constants a1, · · · , an satisfying

aiλi,k = akλk,i, i, k ∈ I, (1.7)
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then Daλ is symmetric, where Da = Diag{a1, · · · , an}. If λ is non-singular, there exists a m × m
symmetric matrix B which transforms γ i into aiαi for all i ∈ I, i.e.

Bγ i = aiαi, i ∈ I. (1.8)

In fact, denote

α = (αi,j)n×m =

⎡⎢⎢⎣
αT

1

...

αT
n

⎤⎥⎥⎦ , γ = (γi,j)n×m =

⎡⎢⎢⎣
γ T

1

...

γ T
n

⎤⎥⎥⎦ .

First, we observe that the ranks R(α) = R(γ ) = n due to λ = αγ T is non-singular. Then, there exists a
solution X = (xi,j)m×m to a linear system of equations γ X = Daα since both the ranks of its coefficient
matrix and augmented matrix equal to n. Finally, the choice B = XT fulfils (1.8). Moreover, using the
symmetry of Daλ, one is able to show that γ BTγ T = γ Bγ T . This implies that B can be symmetric.

Now we give the following definitions throughout this paper.

Definition 1. (i) A pair (i, k) of populations i, k ∈ I is said to be in a conflict if λi,k × λk,i < 0. All
populations are mutually attractive if λi,k > 0, ∀ i, k ∈ I.

(ii) System (1.5) is called a conflict-free system if λi,k × λk,i > 0, ∀ i, k ∈ I, and if there exist positive
constants a1, · · · , an such that (1.7) is valid.

The main result of this article is stated as follows.

Theorem 1.1. Let γ = (γi,j)n×m, λ = (λi,k)n×n, α = (αi,j)n×m with full column rank R(α) = m, and β =
(βj,l)m×m with βj,l = βjδj,l, βj ∈R, j, l ∈J . Assume that (1.5) is a conflict-free system with initial data
(u0, v0) satisfying (1.6). Suppose that there exist positive constants a1, · · · , an and a positive definite
matrix R = (ri,k)n×n with ri,k ≥ 0, i, k ∈ I, such that

αTR−1αγ i = aiαi, ∀ i ∈ I. (1.9)

Then for any initial data satisfying


a
K(m) =: 8π

∑
i∈K

aimi −
∑
i,k∈K

aiakri,kmimk > 0, ∀ ∅ �=K ⊂ I, (1.10)

the corresponding initial boundary value problem (1.5) possesses a unique smooth global solution.

We would like to give an explanation for assumptions in Theorem 1.1. First, since α = (αi,j)n×m is
required to be full column rank, it ensures that B = (bj,l)m×m = αTR−1α is a positive definite matrix if R
is chosen to be positive definition. Condition (1.9) can probably be viewed as one of necessary condition
for the existence of energy functional for the conflict-free system (1.5) (see [20, 30, 42]). In order to
handle the whole domain case better in this paper, we use a modified free energy functional F as

F[u, v] =
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx + 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx

−
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx.

Second, condition (1.10) can be regarded as an optimality condition to guarantee the global existence of
solution to (1.5). This is because if Daλ is a positive definite matrix with λi,k ≥ 0, ∀ i, k ∈ I, then (1.10)
is actually equivalent to the following sub-critical mass condition obtained in [30, 42]

8π
∑
i∈K

aimi −
∑
i,k∈K

aiλi,kmimk > 0, ∀ ∅ �=K ⊂ I.
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Indeed, let R = (ri,k)n×n = D−1
a λT . Then in terms of λi,k = αT

i · γ k and R(α) = m, B = αTR−1α is a positive
definite matrix which satisfies Bγ i = aiαi, ∀ i ∈ I. Moreover, we obtain

8π
∑
i∈K

aimi −
∑
i,k∈K

aiλi,kmimk = 8π
∑
i∈K

aimi −
∑
i,k∈K

aiakri,kmimk > 0, ∀ ∅ �=K ⊂ I,

from ri,k = λk,i/ai ≥ 0, i, k ∈ I.
Theorem 1.1 gives a sharp criterion on the global existence of the general chemotaxis system (1.5).

Hence, a large amount of known global existence results are particular cases in our paper. We give
several typical examples here. It is obvious that the sub-critical mass condition (1.10) recovers the thresh-
old condition, i.e. m< 8π/(αγ ), for global regularity of the Keller–Segel model (1.1). When |I| = 2,
|J | = 1, consider a chemotaxis system involving two species that interact via one-single chemical
signal [40] {

∂tui =�ui − αi,1∇ · (ui∇v1), i ∈ I = {1, 2},
∂tv1 =�v1 − v1 + γ1,1u1 + γ2,1u2,

(1.11)

with αi,1 > 0, γi,1 = 1, i = 1, 2. Note that λi,k = αi,1 > 0, i, k = 1, 2. Then, (1.9) can be satisfied if one takes
ai = 1/αi,1 and chooses a positive definite matrix

R =
[

α2
1,1(1 + ε) α1,1α2,1(1 − ε)

α1,1α2,1(1 − ε) α2
2,1(1 + ε)

]
for some small ε ∈ (0, 1). Then, (1.10) reads as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

8π > α1,1(1 + ε)m1,

8π > α2,1(1 + ε)m2,

8π

(
m1

α1,1

+ m2

α2,1

)
> (m1 + m2)2 + ε(m1 − m2)2.

(1.12)

However, (1.12) can be simplified as m1 < 8π/α1,1, m2 < 8π/α2,1 and (m1 + m2)2 <

8π
(
m1/α1,1 + m2/α2,1

)
by letting ε→ 0, which coincides with global existence condition for (1.11) in

a bounded domain ([27, Theorem 1.1]).
Now suppose that |I| = |J | = n, β = 0, α = (αi,j)n×n with αi,j ≥ 0 is positive definite, and γ is an unit

matrix. Then, (1.5) becomes ⎧⎪⎨⎪⎩
∂tui =�ui −

n∑
j=1

αi,j∇ · (ui∇vj),

∂tvj =�vj + uj, i, j ∈ I = {1, · · · , n}.
(1.13)

Taking ai = 1 and λi,k = αi,k, i, k ∈ I, one can find that Cauchy problem (1.13) has a global solution if
(1.4) is valid. This global result is similar to that of the parabolic–elliptic system (1.3) [15, 22].

The idea to show the global existence is to derive an a prior estimate for modified total entropy

S[u] =
n∑

i=1

‖(ui + 1) log(ui + 1)‖L1(R2).

For this purpose, we need to give a lower bound for F . In this situation, the last term consisting of ui and
vj in F could be controlled by S and the last second term under (1.10). For the case of single variable, a
common approach to achieve this goal is to use the well-known Moser–Trudinger inequality [32, 39]

1

2

∫


|∇ρ|2dx − 8π log

(∫


eρdx

)
≥ −C, ∀ ρ ∈ H1

0(), (1.14)
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where ⊂R2 is a bounded domain. For initial Neumann boundary value problem (1.1), Nagai et al.
[36] had used a version of (1.14) in the Sobolev space W1,2 (see also [6]) to obtain the global existence of
solution if m< 8π/(αγ ). Later, Mizoguchi [31] applies (1.14) to get a similar global result for Cauchy
problem (1.1) in R2. Hence, we expect the Moser–Trudinger inequality for vector is valid for our prob-
lem. Shafrir and Wolansky [38] had proved the following Moser–Trudinger inequality for system. For
∀ ρi ∈ H1(S2) satisfying

∫
S2 ρi = 0, i ∈ I, there exists a constant C> 0 such that

�S2 (ρ) = 1

2

∑
i,k∈I

si,k

∫
S2

∇ρi · ∇ρk −
∑
i∈I

Mi log

(
1

4π

∫
S2

exp

(∑
k∈I

si,kρk

))
≥ −C

if and only if {

S

K(M) ≥ 0, ∀ ∅ �=K ⊂ I,

if 
S
K(M) = 0 for some K, then si,i +
S

K\{i}(M)> 0, ∀ i ∈K,

where S2 ⊂R3 is the unit sphere, I = {1, 2, · · · , n}, M := {M1, · · · , Mn} ∈ (R+)n, S := (si,k)n×n is a
positive definite matrix with si,k ≥ 0, i, k ∈ I, and 
S

K is given by


S
K(M) = 8π

∑
i∈K

Mi −
∑
i,k∈K

si,kMiMk, ∀ ∅ �=K ⊂ I.

We will firstly transform the above Moser–Trudinger inequality for system to R2 via the stereographic
projection and next use it to show that S is bounded under the assumption (1.10). Then, one invokes
the Moser iterative to obtain the global existence of solutions to (1.5). Finally, we should point out that
such idea has been used to establish the global well-posedness of solutions to initial Neumann boundary
value problem for multi-species and chemicals in a two-dimensional bounded domain [30].

Our second object is to show certain conflict-free parabolic system admits a global solution for any
initial data. More precisely,

Theorem 1.2. Let α = (αi,j)n×m, γ = (γi,j)n×m, λ = (λi,k)n×n and β = (βj,l)m×m with βj,l = βjδj,l, βj ∈R, j, l ∈
J . Assume that (1.5) is a conflict-free system with initial data (u0, v0) satisfying (1.6). Suppose that there
exist positive constants a1, · · · , an and a positive definite matrix B = (bj,l)m×m such that

Bγ i = −aiαi, ∀ i ∈ I,

then Cauchy problem (1.5) possesses a unique smooth global solution.

Remark 1. In addition, if βj > 0 for all j ∈J in Theorem 1.2, then the solution to (1.5) is uniformly
bounded with respect to time.

Remark 2. As mentioned above, the existence of B in Theorem 1.2 can be ensured if Daλ is negative
definite and R(α) = m. Hence, one may assert that there exists a unique global smooth solution, provided
that the self-repelling effects are strong enough in the sense that λii < 0, i ∈ I, is negative sufficiently
large. Following are two prototypical examples. Consider (1.1) with α < 0, γ > 0, the local solution
can in fact be extended for all times. As an application of Theorem 1.2 on two-species system (1.11)
with αi,1 < 0, γi,1 > 0, i = 1, 2, one would derive the global stability by choosing a1 = −1/(α1,1γ2,1), a2 =
−1/(α2,1γ1,1) and B = (1/(γ1,1γ2,1))1×1.

Compared with the proof of Theorem 1.1, the main difference to prove Theorem 1.2 is to
derive a prior estimates for the modified total entropy S through the following modified free energy
functional

G[u, v] =
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx + 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792523000372
Downloaded from https://www.cambridge.org/core. IP address: 3.139.81.23, on 10 Nov 2024 at 12:21:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792523000372
https://www.cambridge.org/core


European Journal of Applied Mathematics 681

This paper is organised as follows. In Section 2, we would like to establish the local existence of
smooth solutions and present some basic inequalities. Theorem 1.1 will be proved in Section 3. The
existence of modified free energy functional F will be shown firstly, then the stepwise bounds on the
total entropy, L2 and L∞ norms under the condition (1.10) will end the proof of this theorem. In Section 4,
we will prove Theorem 1.2 by making use of G. In appendix, the proof of Lemma 2.1 will be contained.

We introduce some notations which will be used later. Let |I| = n ≥ 1 denote the total number of
species, and |J | = m ≥ 1 represent the total number of chemical substances. || is the Lebesgue measure
of ⊂R2. For αi,j, γi,j, bi,j, ri,k, ti,j, ai, βj ∈R, i, k ∈ I, j ∈J , we define

α∗ = max
i∈I,j∈J

{|αi,j|}, γ ∗ = max
i∈I,j∈J

{|γi,j|}, b∗ = max
i∈I,j∈J

{|bi,j|}, r∗ = max
i,k∈I

{|ri,k|},
t∗ = max

i∈I,j∈J
{|ti,j|}, a∗ = max

i∈I
{|ai|}, β∗ = max

j∈J
{|βj|}, β∗ = min

j∈J
{βj} if βj > 0.

2. Preliminaries

In this section, we list some lemmas which will be frequently used throughout this paper. Under some
certain assumption on the initial data, we assert that Cauchy problem (1.5) admits a local classical
solution. A number of fundamental properties, such as uniqueness, positivity, and regularity, have also
been obtained in the following lemma.

Lemma 2.1. Suppose that u0 ∈ [C0(R2) ∩ L1(R2) ∩ L∞(R2)]n and v0 ∈ [W1,p(R2) ∩ W1,1(R2)]m for some
p> 2. Then, there exists a positive constant Tmax ∈ (0, ∞] such that the Cauchy problem (1.5) has a
unique solution (u, v) satisfying⎧⎨⎩u ∈ [C0([0, Tmax]; L1(R2)) ∩ C2,1(R2 × (0, Tmax))

]n
,

v ∈ [C0([0, Tmax]; W1,p(R2) ∩ W1,1(R2)) ∩ C2,1(R2 × (0, Tmax))
]m

.
(2.1)

Moreover, it holds that

(i) (u, v) solves (1.5) classically in R2 × (0, Tmax);
(ii) If Tmax <∞, then

lim sup
t→Tmax

(
n∑

i=1

‖ui(·, t)‖L∞(R2)

)
= ∞;

(iii) ui > 0 in R2 × (0, Tmax), i ∈ I;
(iv) For t ∈ (0, Tmax), ‖ui(·, t)‖L1(R2) = ‖ui0‖L1(R2) = mi, i ∈ I;
(v) For q ≥ 1, T ∈ (0, Tmax), then there exists a constant Aq = Aq(q, β∗, γ ∗, ‖u0‖L1(R2), ‖v0‖Lq(R2), T)> 0

such that
m∑

j=1

‖vj(·, t)‖Lq(R2) ≤ Aq, t ∈ (0, T).

Moreover, Aq is independent of T if βj > 0 for all j ∈J .

Proof. For the case |I| = |J | = 1 to system (1.5) in Rn (n ≥ 3), Winkler has proved these properties
in [41, Proposition 1.1]. One can apply similar arguments to obtain the desired results. Please see the
proof in appendix.

The following inequalities are very important to derive a prior estimates for solutions.

Lemma 2.2. Let η ∈ (0, 1). Then for any non-negative function f ∈ L1(R2) ∩ H1(R2), one has∫
R2

(f + 1) log(f + 1)dx ≤ η
(∫

R2

fdx

)(∫
R2

|∇f |2

f + 1
dx

)
+ c

∫
R2

fdx, (2.2)
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∫
R2

f 2dx ≤ 1 + η

4π

(∫
R2

fdx

)(∫
R2

|∇f |2

f + 1
dx

)
+ 2

η

∫
R2

fdx, (2.3)

∫
R2

f 3dx ≤ η
(∫

R2

(f + 1) log(f + 1)dx

)(∫
R2

|∇f |2dx

)
+ c

∫
R2

fdx, (2.4)

where c = c(η) → ∞ as η→ 0.

Proof. Inequality (2.2) has been shown in [43, Lemma 2.3], and (2.3)–(2.4) have been proved in [37,
Lemmas 2.3–2.4].

Now, the Gagliardo–Nirenberg inequality will be given as follows.

Lemma 2.3. Let 1 ≤ p<∞, 1 ≤ q, r ≤ ∞ and θ ∈ [0, 1] such that

1

p
= θ

(
1

r
− 1

2

)
+ (1 − θ )

1

q
.

Then for any u(x) ∈ W1,r(R2) ∩ Lq(R2), there exists a constant c = c(p, q, r)> 0 such that

‖u‖Lp(R2) ≤ c‖u‖1−θ
Lq(R2)‖∇u‖θLr (R2).

Proof. The proof of this lemma has been given in [14, Theorem 6.1.1].

3. Proof of Theorem 1.1

In this section, the proof of Theorem 1.1 will be divided into several steps.
Now we would like to give an equality for the modified free energy functional F . Notice that the

equality for one-single variable can be found in [34, Proposition 4.1].

Lemma 3.1. Let αi,j, βj, γi,j ∈R, i ∈ I, j ∈J and T > 0. Let (u, v) be a local solution of (1.5) with initial
data (u0, v0). Assume that there exist positive constants a1, · · · , an and a positive definite matrix B =
(bj,l)m×m such that

Bγ i = aiαi, ∀ i ∈ I. (3.1)

Then,

d

dt
F[u, v] +

∫
R2

(∂tv)T B (∂tv) dx +
n∑

i=1

ai

∫
R2

{
ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

+
∣∣∣∣∣∇
(

log(ui + 1) − 1

2

m∑
j=1

αi,jvj

)∣∣∣∣∣
2 }

dx (3.2)

=1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx + 1

4

n∑
i=1

ai

∫
R2

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx

for t ∈ (0, T), where F is given by

F[u, v] =
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx −
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx.
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Moreover, there exists a constant c> 0 such that

d

dt
F[u, v] + 1

2

∫
R2

(∂tv)T B(∂tv) dx

+
n∑

i=1

ai

∫
R2

{
ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

+
∣∣∣∣∣∇
(

log(ui + 1) − 1

2

m∑
j=1

αi,jvj

)∣∣∣∣∣
2 }

dx (3.3)

≤1

4

n∑
i=1

ai

∫
R2

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx + c, t ∈ (0, T).

Proof. Multiplying both sides of i-th equation in (1.5) by ai log(ui + 1), integrating by parts and
summing them with respect to i, we have

d

dt

[
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

]

= −
n∑

i=1

ai

∫
R2

|∇ui|2

ui + 1
dx +

n∑
i=1

m∑
j=1

aiαi,j

∫
R2

ui

ui + 1
∇ui · ∇vjdx. (3.4)

By the symmetry of B, it is clear that

d

dt

[
1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx

]

=1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

[∇(∂tvj

) · ∇vl + ∇vj · ∇(∂tvl)
]

dx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vl∂tvj + vj∂tvl

)
dx

=
m∑

j=1

m∑
l=1

bj,l

∫
R2

∇(∂tvj

) · ∇vldx + 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vl∂tvj + vj∂tvl

)
dx

= −
m∑

j=1

m∑
l=1

bj,l

∫
R2

(
∂tvj

)
(�vl − βlvl) dx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx,
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and then using (3.1) and the j-th equation in (1.5), it implies that

d

dt

[
1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx

]

= −
m∑

j=1

m∑
l=1

bj,l

∫
R2

∂tvj∂tvldx +
n∑

i=1

m∑
j=1

m∑
l=1

bj,lγi,l

∫
R2

ui∂tvjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx

= −
∫
R2

(∂tv)T B (∂tv) dx +
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

ui∂tvjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx.

Since

d

dt

(
−

n∑
i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx

)
= −

n∑
i=1

m∑
j=1

aiαi,j

∫
R2

vj∂tuidx

−
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

ui∂tvjdx

and

−
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

vj∂tuidx = −
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

(
�ui −

m∑
l=1

αi,l∇ · (ui∇vl)

)
vjdx

=
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

∇ui · ∇vjdx

−
n∑

i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx,

one can obtain

d

dt

[
1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx −

n∑
i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx

]

= −
∫
R2

(∂tv)T B(∂tv) dx +
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

∇ui · ∇vjdx

−
n∑

i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx,
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which together with (3.4) yields that

d

dt
F[u, v] = −

∫
R2

(∂tv)T B(∂tv) dx −
n∑

i=1

ai

∫
R2

|∇ui|2

ui + 1
dx

+
n∑

i=1

ai

∫
R2

2ui + 1

ui + 1
∇ui · ∇

(
m∑

j=1

αi,jvj

)
dx −

n∑
i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx

= −
∫
R2

(∂tv)T B(∂tv) dx −
n∑

i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

dx

−
n∑

i=1

ai

∫
R2

∣∣∣∣∣∇
(

log(ui + 1) − 1

2

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx

+ 1

4

n∑
i=1

ai

∫
R2

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx + 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx.

Hence, we have proved (3.2).
By means of the positivity of B, there exists a constant c1 > 0 such that

c1

m∑
j=1

m∑
l=1

bj,l

∫
R2

∂tvj∂tvldx ≥
m∑

j=1

∫
R2

∣∣∂tvj

∣∣2 dx,

then we have
1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(
vj∂tvl − vl∂tvj

)
dx

≤ β∗
m∑

j=1

m∑
l=1

|bj,l|
∫
R2

∣∣∂tvj

∣∣ |vl|dx

≤ 1

2c1

m∑
j=1

∫
R2

∣∣∂tvj

∣∣2 dx + c1(b∗β∗|J |)2

2

m∑
j=1

∫
R2

v2
j dx

≤ 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

∂tvj∂tvldx + c1(b∗β∗|J |)2

2

m∑
j=1

∫
R2

v2
j dx

due to Young’s inequality. Employing (3.2) and the boundedness of vj in L2 space, we can obtain a
constant c> 0 such that (3.3) holds for all t ∈ (0, T).

Remark 3. Let us define

E[u, v] =
n∑

i=1

ai

∫
R2

ui log uidx −
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx.

Then, dE[u, v]/dt ≤ 0 for t ∈ (0, T) if one has (3.1) and BDβ is symmetric.
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We list the Moser–Trudinger inequality for system on the two-dimensional unit sphere [38, Theorem
2 (ii)].

Lemma 3.2. Let S2 ⊂R3 be the unit sphere. Assume S = (si,k)n×n is a positive definite matrix with si,k ≥ 0,
i, k ∈ I, and M ∈ (R+)n. Then for ρi ∈ H1(S2) satisfying

∫
S2 ρi = 0, i ∈ I,{


S
K(M) ≥ 0, ∀ ∅ �=K ⊂ I,

if 
S
K(M) = 0 for some K, then si,i +
S

K\{i}(M)> 0, ∀ i ∈K,
(3.5)

is the necessary and sufficient condition for the existence of a constant B> 0 such that

�S2 (ρ) = 1

2

∑
i,k∈I

si,k

∫
S2

∇ρi · ∇ρk −
∑
i∈I

Mi log

(
1

4π

∫
S2

exp

(∑
k∈I

si,kρk

))
≥ −B. (3.6)

Now we use the stereographic projection S to transform the inequality for system in Lemma 3.2 to
R2. In fact, we associate with each ρi : S2 →R2 a function ρ̃i : R2 → S2 via the transformation⎧⎨⎩ρ̃i ↔ ρi = ρ̃i ◦ S ,

ρi ↔ ρ̃i = ρi ◦ S−1, i ∈ I.
(3.7)

By a simple calculation, we have

Lemma 3.3. Let S = (si,k)n×n be a positive definite matrix with si,k ≥ 0, i, k ∈ I. Then for ρ̃i ∈ H1(R2),
i ∈ I, condition (3.5) is the necessary and sufficient condition for the existence of a constant B> 0 such
that

1

2

∑
i,k∈I

si,k

∫
R2

∇ρ̃i · ∇ρ̃kdx −
∑
i∈I

Mi log

(
1

4π

∫
R2

exp

(∑
k∈I

si,kρ̃k

)
H(x)dx

)

+ 1

4π

∑
i,k∈I

Misi,k

∫
R2

ρ̃kH(x)dx ≥ −B, (3.8)

where H(x) = 4/
(
1 + |x|2

)2.

Proof. Let ρi ∈ H1(S2), i ∈ I. Then, we take

ρi − 1

4π

∫
S2

ρi, i ∈ I,

for ρi in (3.6), and obtain that

1

2

∑
i,k∈I

si,k

∫
S2

∇ρi · ∇ρk −
∑
i∈I

Mi log

(
1

4π

∫
S2

exp

(∑
k∈I

si,kρk

))

+ 1

4π

∑
i,k∈I

Misi,k

∫
S2

ρk ≥ −B (3.9)

with some constant B> 0 if and only if (3.5) is valid. Using the transformation (3.7), one derives that∫
S2 ρk = ∫

R2 ρ̃kH(x)dx, and ∫
S2

∇ρi · ∇ρk =
∫
R2

∇ρ̃i · ∇ρ̃kdx,

as well as ∫
S2

exp

(∑
k∈I

si,kρk

)
=
∫
R2

exp

(∑
k∈I

si,kρ̃k

)
H(x)dx.

Hence, we obtain (3.8) from (3.9).
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Under the condition (1.10), utilising the above Moser–Trudinger inequality for system in the whole
space, we can give an estimate on the interaction term consisting of ui and vj in F at the first step. The
idea is mainly combined with some of the work in [5] and [31] and has been applied to one-species or
two-species chemotaxis system with two chemicals [19, 35].

Lemma 3.4. Suppose α = (αi,j)n×m with R(α) = m, βj ∈R, j ∈J , γ = (γi,j)n×m and T > 0. Assume that
(u, v) is a local solution of Cauchy problem (1.5) with initial data (u0, v0). Suppose that there exist
positive constants a1, · · · , an and a positive definite matrix R = (ri,k)n×n with ri,k ≥ 0, i, k ∈ I, such
that

αTR−1αγ i = aiαi, ∀ i ∈ I.

Then for any

8π
∑
i∈K

aimi >
∑
i,k∈K

aiakri,kmimk, ∀ ∅ �=K ⊂ I, (3.10)

there exist a small ε > 0 and a constant c> 0 such that
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx ≤ 1

2(1 + ε)

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx

+ 1

1 + ε

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

− 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + c,

where B = (bj,l)m×m = αTR−1α and H(x) = 4/
(
1 + |x|2

)2.

Proof. From our assumption, B is a positive definite matrix satisfying Bγ i = aiαi, ∀ i ∈ I. Define T :=
(ti,j)n×m = R−1α. Then it is easy to find that

αi,j =
n∑

k=1

ri,ktk,j

and

bj,l =
n∑

i=1

n∑
k=1

ti,jri,ktk,l.

Moreover, one can pick a positive definite matrix S = (si,k)n×n with si,k = (1 + ε)ri,k ≥ 0, i, k ∈ I, such
that

n∑
k=1

si,ktk,j = (1 + ε)αi,j

and
n∑

i=1

n∑
k=1

ti,jsi,ktk,l = (1 + ε)bj,l.

Note that Lemma 2.1 (v) will help us to find a constant A1 > 0 such that
m∑

j=1

‖vj(·, t)‖L1(R2) ≤ A1 for t ∈ (0, T).
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Chosen ε > 0 small enough, (3.10) implies∑
i∈K

aimi

[
8π − (1 + ε)2

∑
k∈K

akri,kmk

]
> 0, ∀ ∅ �=K ⊂ I. (3.11)

Let

ρ i(t) :=
(

m∑
j=1

αi,jvj(t) − s
n∑

k=1

ri,k

)
+

, ρ̃i(t) :=
(

m∑
j=1

ti,jvj(t) − s

)
+

, i ∈ I,

i(t) :=
{

x ∈R2 :
m∑

j=1

αi,jvj(t)> s
n∑

k=1

ri,k

}
, ̃i(t) :=

{
x ∈R2:

m∑
j=1

ti,jvj(t)> s

}
, i ∈ I,

and

(t) :=
n⋃

i=1

̃i(t), mi(t) :=
∫
i(t)

uidx ≤ mi, i ∈ I.

We claim some facts in the following. First, since ρ̃i(t) ∈ H1
0 (̃i(t)) and ∇ρ̃i(t) =

m∑
j=1

ti,j∇vj(t) in(t), then

ρ̃i(t) ∈ H1
0 ((t)) for all i ∈ I. Second, the Lebesgue measure of (t), denoted by |(t)|, is finite. This is

because

s · |(t)| ≤ s
n∑

i=1

|̃i(t)| ≤
n∑

i=1

∥∥∥∥∥
m∑

j=1

ti,jvj(·, t)

∥∥∥∥∥
L1(R2)

≤ c1

implies that |(t)| ≤ c1/s. Third, |i(t)| ≤ c1/s holds out due to

i(t) ⊂(t), ∀ i ∈ I.

Finally, without loss of generality, we assume |(t)| ≥ 1 and |i(t)|> 0 for all i ∈ I. If |i(t)| = 0 for
some i ∈ I, classical techniques are sufficient to analyse this case.

Fixing i ∈ I, it is obvious that

ai

m∑
j=1

αi,j

∫
R2

uivjdx = ai

∫
i(t)

ui

(
m∑

j=1

αi,jvj

)
dx + ai

∫
R2\i(t)

ui

(
m∑

j=1

αi,jvj

)
dx

≤ ai

∫
i(t)

uiρ idx + saimi

(
n∑

k=1

ri,k

)

≤ ai

∫
R2

uiρ idx + saimi

(
n∑

k=1

ri,k

)
.

Denote u∗
i = mi exp ((1 + ε)ρ i(x, t))H(x)

(∫
R2 exp ((1 + ε)ρ i(x, t))H(x)dx

)−1. Then, ‖u∗
i ‖1 = mi and a

classical entropy minimisation in [5, Lemma 2.1] implies that the function

E(ui;ψ) =
∫
R2

(ui(x) log ui(x) − ui(x)ψ(x))dx with any exp (ψ) ∈ L1(R2),

satisfies

E(ui; (1 + ε)ρ i + log H)≥ E(u∗
i ; (1 + ε)ρ i + log H

)
= mi log mi − mi log

(
1

4π

∫
R2

exp ((1 + ε)ρ i(x, t))H(x)dx

)
− mi log(4π ).
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Combining the aforementioned findings, we arrive at the following

(1 + ε)ai

m∑
j=1

αi,j

∫
R2

uivjdx − ai

∫
R2

(ui + 1) log(ui + 1)dx

≤ (1 + ε)ai

∫
R2

uiρ idx − ai

∫
R2

ui log uidx + (1 + ε)saimi

(
n∑

k=1

ri,k

)

≤ aimi log

{
1

4π

∫
R2

exp
[
(1 + ε)ρ i(x, t)

]
H(x)dx

}
− ai

∫
R2

ui(x) log H(x)dx

+ (1 + ε)saimi

(
n∑

k=1

ri,k

)
+ aimi log

4π

mi

≤ aimi log

⎧⎨⎩ 1

4π

∫
R2

exp

⎡⎣(1 + ε)

(
m∑

j=1

αi,jvj(t) − s
n∑

k=1

ri,k

)
+

⎤⎦H(x)dx

⎫⎬⎭
− ai

∫
R2

ui(x) log H(x)dx + (1 + ε)saimi

(
n∑

k=1

ri,k

)
+ aimi log

4π

mi

,

where the choice of matrix S allows one to conclude that

(1 + ε)ai

m∑
j=1

αi,j

∫
R2

uivjdx − ai

∫
R2

(ui + 1) log(ui + 1)dx

≤ aimi log

⎧⎨⎩ 1

4π

∫
R2

exp

⎡⎣ n∑
k=1

si,k

(
m∑

j=1

tk,jvj − s

)
+

⎤⎦H(x)dx

⎫⎬⎭
− ai

∫
R2

ui(x) log H(x)dx + c2i

= aimi log

[
1

4π

∫
R2

exp

(
n∑

k=1

si,kρ̃k

)
H(x)dx

]
− ai

∫
R2

ui(x) log H(x)dx + c2i,

where c2i = (1 + ε)saimi

(
n∑

k=1

ri,k

)
+ aimi log(4π/mi), i ∈ I. Then, summing it with respect to i from

i = 1 to i = n, we get
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx ≤ 1

1 + ε

n∑
i=1

aimi log

[
1

4π

∫
R2

exp

(
n∑

k=1

si,kρ̃k

)
H(x)dx

]

+ 1

1 + ε

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx (3.12)

− 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + 1

1 + ε

n∑
i=1

c2i.

Choose

Mi = aimi(1 + ε), i ∈ I.
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Since (3.11) implies that


S
K(M) = 8π

∑
i∈K

Mi −
∑
i,k∈K

si,kMiMk

= (1 + ε)

[
8π

∑
i∈K

aimi − (1 + ε)2
∑
i,k∈K

aiakri,kmimk

]

> 0, ∀ ∅ �=K ⊂ I,

then the Moser–Trudinger inequality for system in Lemma 3.3 helps us to get that
n∑

i=1

Mi log

[
1

4π

∫
R2

exp

(
n∑

k=1

si,kρ̃k

)
H(x)dx

]

= (1 + ε)
n∑

i=1

aimi log

[
1

4π

∫
R2

exp

(
n∑

k=1

si,kρ̃k

)
H(x)dx

]

≤ 1

2

n∑
i=1

n∑
k=1

si,k

∫
R2

∇ρ̃i · ∇ρ̃kdx + 1

4π

∑
i,k∈I

Misi,k

∫
R2

ρ̃kH(x)dx + B

≤ 1

2
(1 + ε)

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx + c3,

where we have used the bound of ‖vj‖L1(R2), j ∈J , and
∫
R2 H(x)dx = 4π . This together with (3.12) and

the positivity of B implies that
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx ≤ 1

2(1 + ε)

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx

+ 1

1 + ε

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

− 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + 1

1 + ε

n∑
i=1

c2i + c3

(1 + ε)2
.

Therefore, we have finished the proof of this lemma.

As a consequence of Lemma 3.4, the bound on modified total entropy S could be obtained.

Lemma 3.5. Let T > 0. Under the same assumptions in Lemma 3.4, there exists a constant c = c(T)> 0
such that

n∑
i=1

∫
R2

(ui(x, t) + 1) log(ui(x, t) + 1)dx ≤ c (3.13)

and
m∑

j=1

∫ t

0

∫
R2

∣∣∂tvj

∣∣2 dxdτ ≤ c (3.14)

hold out for t ∈ (0, T).

Proof. Notice that positive definite matrix B = (bj,l)m×m = αTR−1α satisfies

Bγ i = aiαi, ∀ i ∈ I.
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Then thanks to Lemma 3.1, there exists a modified free energy functional F given by

F[u, v] =
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx −
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx (3.15)

satisfying

d

dt
F[u, v] + 1

2

∫
R2

(∂tv)T B(∂tv) dx +
n∑

i=1

ai

∫
R2

{
ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

+
∣∣∣∣∣∇
(

log(ui + 1) − 1

2

m∑
j=1

αi,jvj

)∣∣∣∣∣
2 }

dx

≤ 1

4

n∑
i=1

ai

∫
R2

∣∣∣∣∣∇
(

m∑
j=1

αi,jvj

)∣∣∣∣∣
2

dx + c1 (3.16)

≤ a∗α∗|I||J |
4

m∑
j=1

∫
R2

∣∣∇vj

∣∣2 dx + c1

with some constant c1 > 0. Moreover, Lemma 3.4 implies the existence of small ε > 0 such that

n∑
i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx ≤ 1

2(1 + ε)

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx

+ 1

1 + ε

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx (3.17)

− 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + c2

is true with some c2 > 0. On the one hand, one has

F[u, v] ≥ ε

1 + ε

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx + ε

2(1 + ε)

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

vjvldx + 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx − c2 (3.18)

from (3.15) and (3.17). On the other hand, we have

1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx =F[u, v] −
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

− 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

vjvldx +
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

uivjdx,
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which together with (3.17) ensures that

1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

∇vj · ∇vldx ≤1 + ε

ε
F[u, v] −

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

− 1 + ε

2ε

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

vjvldx

− 1

ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + (1 + ε)c2

ε
.

Further, using the positivity of B and the bound on the ‖vj‖L2(R2) by Lemma 2.1 (v), there exists a constant
c3 > 0 such that

m∑
j=1

∫
R2

|∇vj|2dx ≤ (1 + ε)c3

ε

(
F[u, v] − 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + 1

)
.

Applying above inequalities and from (3.16), it follows that

d

dt
F[u, v] + 1

2

∫
R2

(∂tv)T B(∂tv) dx +
n∑

i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

dx

≤ (1 + ε)c3a∗α∗|I||J |
4ε

(
F[u, v] − 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx + 1

)
+ c1 (3.19)

for t ∈ (0, T). To estimate the second term on the right side of (3.19), we first observe that

− 1

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log H(x)dx = 2

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log
(
1 + |x|2

)
dx

− 2 log 2

1 + ε

n∑
i=1

aimi

≤ 2

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log
(
1 + |x|2

)
dx,

where we take the derivative of the right term to see that

d

dt

(
2

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log
(
1 + |x|2

)
dx

)

= − 2

1 + ε

n∑
i=1

ai

∫
R2

ui∇
[

log(ui + 1) −
m∑

j=1

αi,jvj

]
· ∇ log

(
1 + |x|2

)
dx

− 2

1 + ε

n∑
i=1

ai

∫
R2

∇ui

ui + 1
· ∇ log

(
1 + |x|2

)
dx
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≤1

2

n∑
i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

dx

+ 2

(1 + ε)2

n∑
i=1

ai

∫
R2

ui

∣∣∇ log
(
1 + |x|2

)∣∣2dx

+ 2

1 + ε

n∑
i=1

ai

∫
R2

log(ui + 1)� log
(
1 + |x|2

)
dx

≤1

2

n∑
i=1

ai

∫
R2

ui

∣∣∣∣∣∇
(

log(ui + 1) −
m∑

j=1

αi,jvj

)∣∣∣∣∣
2

dx + 10
n∑

i=1

aimi for t ∈ (0, T),

by Young’s inequality, since

∣∣∇ log
(
1 + |x|2

)∣∣= ∣∣∣∣ 2x

1 + |x|2

∣∣∣∣≤ 1,
∣∣� log

(
1 + |x|2

)∣∣= ∣∣∣∣∣ 4(
1 + |x|2

)2

∣∣∣∣∣≤ 4,

and log(s + 1) ≤ s for all s> 0. Thereby, denoting

y(t) := F[u, v] + 2

1 + ε

n∑
i=1

ai

∫
R2

ui(x) log
(
1 + |x|2

)
dx for t ∈ (0, T),

one derives that

y′(t) + 1

2

∫
R2

(∂tv)T B(∂tv) dx ≤ (1 + ε)c3a∗α∗|I||J |
4ε

(y(t) + 1)+ c4 for t ∈ (0, T),

with c4 = 10
n∑

i=1

aimi + c1, where the Gronwall argument means that

y(t)+1

2

∫ t

0

∫
R2

(∂tv)T B(∂tv) dxdτ ≤ (y(0) + 1) e
(1+ε)c3a∗α∗|I||J |

4ε T + c4 for t ∈ (0, T).

Hence, we have proved (3.13)–(3.14) due to (3.18), the choices of positive ai, i ∈ I, the positivity of B
and the bound on the ‖vj‖L2(R2), j ∈J .

A straightforward argument [36, Lemma 3.6] could be indeed used to obtain L2 estimates for the
solutions by the bound on S .

Lemma 3.6. For T > 0, there exists a constant c = c(T)> 0 such that
n∑

i=1

‖ui(·, t)‖L2(R2) ≤ c for t ∈ (0, T).

Proof. From Lemma 3.5, there exists a constant c1 = c1(T)> 0 such that
n∑

i=1

∫
R2

(ui + 1) log(ui + 1)dx ≤ c1

and
m∑

j=1

∫ T

0

∫
R2

∣∣∂tvj

∣∣2 dxdτ ≤ c1. (3.20)
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We multiply the i-the equation in (1.5) by ui and integrate them over R2 to have

1

2

d

dt

(
n∑

i=1

∫
R2

u2
i dx

)
= −

n∑
i=1

∫
R2

|∇ui|2dx − 1

2

n∑
i=1

m∑
j=1

αi,j

∫
R2

u2
i�vjdx

= −
n∑

i=1

∫
R2

|∇ui|2dx − 1

2

n∑
i=1

m∑
j=1

αi,j

∫
R2

u2
i

(
∂tvj + βjvj −

n∑
k=1

γk,juk

)
dx

= −
n∑

i=1

∫
R2

|∇ui|2dx + 1

2

n∑
i=1

n∑
k=1

m∑
j=1

αi,jγk,j

∫
R2

u2
i ukdx

− 1

2

n∑
i=1

m∑
j=1

αi,jβj

∫
R2

u2
i vjdx − 1

2

n∑
i=1

m∑
j=1

αi,j

∫
R2

u2
i ∂tvjdx (3.21)

for t ∈ (0, T). It is clear that

1

2

n∑
i=1

n∑
k=1

m∑
j=1

αi,jγk,j

∫
R2

u2
i ukdx − 1

2

n∑
i=1

m∑
j=1

αi,jβj

∫
R2

u2
i vjdx

≤ 1

2

n∑
i=1

n∑
k=1

m∑
j=1

|αi,j||γk,j|
∫
R2

(
u3

i + u3
k

)
dx + 1

2

n∑
i=1

m∑
j=1

|αi,j||βj|
∫
R2

(
u3

i + v3
j

)
dx

≤ α∗ (β∗ + 2γ ∗|I|) |J |
2

n∑
i=1

∫
R2

u3
i dx + α∗β∗|I|A3

3

2

≤ c1α
∗ (β∗ + 2γ ∗|I|) |J |

2

n∑
i=1

ηi

∫
R2

|∇ui|2dx

+ α∗ (β∗ + 2γ ∗|I|) |J |
2

n∑
i=1

c2imi + α∗β∗|I|A3
3

2
,

where we have used Young’s inequality and the following facts
m∑

j=1

‖vj‖L3(R2) ≤ A3 hold due to Lemma 2.1

(v), and for any ηi ∈ (0, 1), i ∈ I,∫
R2

u3
i dx ≤ ηi

(∫
R2

(ui + 1) log(ui + 1)dx

)(∫
R2

|∇ui|2dx

)
+ c2i

∫
R2

uidx

≤ c1ηi

∫
R2

|∇ui|2dx + c2imi, i ∈ I,

exists with c2i = c2i(ηi)> 0 from (2.4). As for the rightmost integral of (3.21), we first use Hölder’s
inequality to find that

−1

2

n∑
i=1

m∑
j=1

αi,j

∫
R2

u2
i ∂tvjdx ≤ 1

2

n∑
i=1

m∑
j=1

|αi,j|‖ui‖2
L4(R2)‖∂tvj‖L2(R2).

Applying the Gagliardo–Nirenberg inequality with c3 > 0 to have

‖ui‖2
L4(R2) ≤ c3‖∇ui‖L2(R2)‖ui‖L2(R2),
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and it infers that

−1

2

n∑
i=1

m∑
j=1

αi,j

∫
R2

u2
i ∂tvjdx

≤c3

2

n∑
i=1

m∑
j=1

|αi,j|‖∇ui‖L2(R2)‖ui‖L2(R2)‖∂tvj‖L2(R2)

≤c3α
∗|J |
2

n∑
i=1

ηi‖∇ui‖2
L2(R2) +

c3α
∗

8

(
n∑

i=1

1

ηi

‖ui‖2
L2(R2)

)
·
(

m∑
j=1

‖∂tvj‖2
L2(R2)

)
by Young’s inequality. Hence, (3.21) gives us that

d

dt

(
n∑

i=1

∫
R2

u2
i dx

)
+

n∑
i=1

{
2 − α∗ [c1 (β

∗ + 2γ ∗|I|)+ c3

] |J |ηi

} ∫
R2

|∇ui|2dx

≤ c3α
∗

4

(
n∑

i=1

1

ηi

‖ui‖2
L2(R2)

)(
m∑

j=1

‖∂tvj‖2
L2(R2)

)

+ α∗ (β∗ + 2γ ∗|I|) |J |
n∑

i=1

c2imi + α∗β∗|I|A3
3 for t ∈ (0, T). (3.22)

Because

‖ui‖2
L2(R2) ≤ c4‖∇ui‖L2(R2)‖ui‖L1(R2) = c4mi‖∇ui‖L2(R2)

≤ ‖∇ui‖2
L2(R2) +

c2
4m2

i

4

is right for some c4 > 0, we take ηi = 1/{α∗ [c1(β
∗ + 2γ ∗|I|)+ c3

] |J |}> 0, i ∈ I, small enough in
(3.22) to arrive at

y′(t) +
[

1 − c3(α∗)2
[
c1(β

∗ + 2γ ∗|I|)+ c3

] |J |
4

(
m∑

j=1

‖∂tvj‖2
L2(R2)

)]
y(t)

≤ α∗ (β∗ + 2γ ∗|I|) |J |
n∑

i=1

c2imi + c2
4

4

n∑
i=1

m2
i + α∗β∗|I|A3

3

for t ∈ (0, T), where y(t) :=
n∑

i=1

∫
R2 u2

i dx. Together with (3.20), the L2 estimates for the solutions can be

obtained by solving this ODE.

Proof of Theorem 1.1. Let 0< T ≤ ∞. Once one has L2 estimates on ui, i ∈ I, then Lp-Lq estimates for
the heat semigroup in Lemma 5.1 ensure that for r ∈ (1, ∞), we have

m∑
j=1

‖∇vj(·, t)‖Lr (R2) ≤ c for t ∈ (0, T) (3.23)

with some c> 0. Consequently, applying the Moser iteration technique [1] with (3.23), it means that
n∑

i=1

‖ui(·, t)‖L∞(R2) <∞ for t ∈ (0, T).

Therefore, the global result in Theorem 1.1 is an immediate consequence of the extensibility criterion
in Lemma 2.1.
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4. Proof of Theorem 1.2

Under strong self-repelling effect, the global existence of the Cauchy problem (1.5) with arbitrary initial
data will be established in this section. As with the above treatment of the proof of Theorem 1.1, the
main approach is to give a bound on the modified total entropy S . For this purpose, we would like to
create a differential inequality for G.

Lemma 4.1. Assume that there exist positive constants a1, · · · , an and a positive definite matrix B =
(bj,l)m×m such that

Bγ i = −aiαi, ∀ i ∈ I. (4.1)

Let

D1ξ
T
ξ ≤ ξ

TBξ ≤ D2ξ
T
ξ , ∀ ξ = (ξ1, · · · , ξm)T ∈Rm,

with some D1, D2 > 0. Then, there exist a constant c1 = c1(a∗, b∗, α∗, β∗, A2, D1, D2, ‖u0‖L1(R2), |I|,
|J |)> 0 such that

d

dt
G[u, v] + 1

2

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx ≤c1 for t ∈ (0, T),

where G is given by

G[u, v] =
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx + 1

2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx.

Moreover, if βj > 0 for all j ∈J , then there exist a constant c2 > 0 independent of T such that

d

dt
G[u, v] + D1

D2

β∗G[u, v] ≤ c2 for t ∈ (0, T).

Proof. Given ai > 0, testing the i-th equation in (1.5) by ai log(ui + 1) and summing the results with
respect to i, we get

d

dt

[
n∑

i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

]
+

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx

=
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

ui

ui + 1
∇ui · ∇vjdx

=
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

∇ui · ∇vjdx +
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

�vj log(ui + 1)dx for t ∈ (0, T). (4.2)

Moreover, we observe that

1

2

d

dt

[
m∑

j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)]
dx

= −
m∑

j=1

m∑
l=1

bj,l

∫
R2

(�vl − βlvl)∂tvjdx + 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(vj∂tvl − vl∂tvj)dx
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= −
m∑

j=1

m∑
l=1

bj,l

∫
R2

(
�vj − βjvj

)
(�vl − βlvl) dx

+
n∑

i=1

m∑
j=1

m∑
l=1

bj,lγi,j

∫
R2

∇ui · ∇vldx +
n∑

i=1

m∑
j=1

m∑
l=1

bj,lγi,jβl

∫
R2

uivldx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(vj∂tvl − vl∂tvj)dx for t ∈ (0, T) (4.3)

and that

D1

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx ≤
m∑

j=1

m∑
l=1

bj,l

∫
R2

(
�vj − βjvj

)
(�vl − βlvl) dx

≤D2

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx. (4.4)

Then employing
m∑

j=1

bj,lγi,j = −aiαi,l by (4.1), it is obvious that

d

dt
G[u, v] +

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx + D1

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx

≤
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

�vj log(ui + 1)dx −
n∑

i=1

m∑
j=1

aiαi,jβj

∫
R2

uivjdx

+ 1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(vj∂tvl − vl∂tvj)dx for t ∈ (0, T) (4.5)

due to (4.2) and (4.3). Since log(ui + 1) ≤ √
ui, ‖ui‖L1(R2) = mi, i ∈ I, and

m∑
j=1

‖vj‖L2(R2) ≤ A2

hold out, an application of Young’s inequality gives that
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

�vj log(ui + 1)dx

=
n∑

i=1

m∑
j=1

aiαi,j

∫
R2

(�vj − βjvj) log(ui + 1)dx +
n∑

i=1

m∑
j=1

aiαi,jβj

∫
R2

vj log(ui + 1)dx

≤
n∑

i=1

m∑
j=1

ai|αi,j|
∫
R2

|�vj − βjvj|√uidx +
n∑

i=1

m∑
j=1

ai|αi,j||βj|
∫
R2

|vj|√uidx

≤ D1

4

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx + (a∗α∗)2|I||J |
D1

n∑
i=1

mi + a∗α∗β∗A2

n∑
i=1

m1/2
i . (4.6)

Note that A2 is uniformly bounded with respect to time variable if βj > 0 for all j ∈J . However,
Lemma 2.2 tells us ∫

R2

u2
i dx ≤ 1

2π

(∫
R2

uidx

)(∫
R2

|∇ui|2

ui + 1
dx

)
+ 2

∫
R2

uidx.
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Then, one has

−
n∑

i=1

m∑
j=1

aiαi,jβj

∫
R2

uivjdx ≤
n∑

i=1

πai

2mi

∫
R2

u2
i dx + (α∗β∗)2|J |

2π

(
n∑

i=1

aimi

)(
m∑

j=1

∫
R2

v2
j dx

)

≤1

4

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx + π

n∑
i=1

ai + (α∗β∗A2|J |)2

2π

(
n∑

i=1

aimi

)
(4.7)

and

1

2

m∑
j=1

m∑
l=1

bj,lβl

∫
R2

(vj∂tvl − vl∂tvj)dx

≤β∗
m∑

j=1

m∑
l=1

|bj,l|
∫
R2

|vj||∂tvl|dx

≤β∗
m∑

j=1

m∑
l=1

|bj,l|
∫
R2

|vj||�vl − βlvl|dx + β∗
m∑

j=1

m∑
l=1

|bj,l|
∫
R2

|vj|
∣∣∣∣∣

n∑
i=1

αi,lui

∣∣∣∣∣ dx (4.8)

≤1

4

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx + D1

4

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx

+
(
α∗b∗β∗A2|J |2

)2

2π

n∑
i=1

mi

ai

+ π

n∑
i=1

ai + (b∗β∗A2|J |)2

D1

for t ∈ (0, T).

Putting (4.5)–(4.8) together, then there exists a constant c1 > 0 such that G satisfies

d

dt
G[u, v] + 1

2

n∑
i=1

ai

∫
R2

|∇ui|2

ui + 1
dx + D1

2

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx ≤c1 for t ∈ (0, T).

Now if βj > 0 for all j ∈J , combining (2.2) with (4.4) yields that

D1

2

m∑
j=1

∫
R2

∣∣�vj − βjvj

∣∣2 dx ≥ D1

2D2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(�vj − βjvj)(�vl − βlvl)dx

≥ D1β∗
2D2

m∑
j=1

m∑
l=1

bj,l

∫
R2

(∇vj · ∇vl + βlvjvl

)
dx

= D1β∗
D2

G[u, v] − D1β∗
D2

n∑
i=1

ai

∫
R2

(ui + 1) log(ui + 1)dx

≥ D1β∗
D2

G[u, v] − D1β∗
D2

n∑
i=1

aimiηi

∫
R2

|∇ui|2

ui + 1
dx − c2β∗

n∑
i=1

aimi,

where ηi ∈ (0, 1), i ∈ I and c2 > 0 are constants. Taking ηi = D2
2D1miβ∗ , i ∈ I, we collect the above two

inequalities to obtain

d

dt
G[u, v] + D1β∗

D2

G[u, v] ≤ c1 + c2β∗

n∑
i=1

aimi for t ∈ (0, T).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0956792523000372
Downloaded from https://www.cambridge.org/core. IP address: 3.139.81.23, on 10 Nov 2024 at 12:21:59, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0956792523000372
https://www.cambridge.org/core


European Journal of Applied Mathematics 699

Proof of Theorem 1.2. Thanks to Lemma 4.1, we conclude that G is bounded. Therefore, there exists a
constant c> 0 such that

n∑
i=1

‖(u(·, t) + 1) log(u(·, t) + 1)‖L1(R2) ≤ c for t ∈ (0, T),

m∑
j=1

‖∇vj(·, t)‖L2(R2) ≤ c for t ∈ (0, T).

Similar to the proof of Theorem 1.1, the global result can be obtained through a classic and standard
method.
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Appendix

In this section, we will prove Lemma 2.1. The following lemma collects some basic facts on the
asymptotics of the heat semigroup (et�)t≥0, given by

(et�φ)(x) :=
∫
R2

G(x − y, t)φ(y)dy, x ∈R2, t> 0,

where φ ∈ C0(R2) ∩ L∞(R2) and the Gaussian heat kernel is denoted by G(z, t) := (4π t)−1e− |z|2
4t , z ∈R2,

t> 0.

Lemma 5.1. Let (et�)t≥0 be the heat semigroup in R2. Then, the following properties are true.
(i) Let ω ∈Nn

0. Then

Dω

x et�φ = et�Dω

x φ for all t> 0

is valid for all φ ∈ C|ω|(R2) ∩ W |ω|,∞(R2).
(ii) If 1 ≤ r1 ≤ r2 ≤ ∞ and ω ∈Nn

0, then there exist a constant c(r1, r2, |ω|)> 0 such that

‖Dω

x et�φ‖Lr2 (R2) ≤ c(r1, r2,ω)t−
|ω|
2 −( 1

r1
− 1

r2
)‖φ‖Lr1 (R2) for all t> 0
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holds for all φ ∈ Lr1 (R2). In particular, c(r1, r2, |ω|) = 1 if |ω| = 0 and r1 = r2.

Proof. Please see [41, Lemma 2.1] and [14] for details.

Proof of Lemma 2.1. The proof of Lemma 2.1 will be divided into several steps.
First Step: local existence. The contraction mapping theorem will be used to prove the local existence

of mild solutions. Let

R :=
n∑

i=1

(‖ui0‖L∞(R2) + ‖ui0‖L1(R2)

)+
m∑

j=1

(‖vj0‖L1(R2) + ‖∇vj0‖Lp(R2) + ‖∇vj0‖L1(R2)

)+ 1,

and let T be a fixed positive number below. Set

X := C0
(
[0, T];

(
C0(R2) ∩ L1(R2) ∩ L∞(R2)

)n × (
W1,p(R2) ∩ W1,1(R2)

)m)
equipped with the norm

‖(u, v)‖X = max
0≤t≤T

{ n∑
i=1

[‖ui(·, t)‖L∞(R2) + ‖ui(·, t)‖L1(R2)

]
+

m∑
j=1

[‖vj(·, t)‖L1(R2) + ‖∇vj(·, t)‖Lp(R2) + ‖∇vj(·, t)‖L1(R2)

] }
for t ∈ [0, T]. Moreover, define

E :=
{

(u, v) ∈ X
∣∣∣(u, v)(·, 0) = (u0, v0) and ‖(u, v)‖X ≤ R

}
.

Then, it is easy to see that E is a closed convex subset of X. Consider a nonlinear mapping � : E �→ X
such that for any (̃u, ṽ) ∈ E,

(u, v) =�(̃u, ṽ),

where u = (u1, · · · , un) and v = (v1, · · · , vm) satisfy

ui(·, t) = et�ui0 −
m∑

j=1

αi,j

∫ t

0

∇ · e(t−s)� [̃ui(·, s)∇ ṽj(·, s)]ds, i ∈ I, t ∈ [0, T], (A1)

and

vj(·, t) = et(�−βj)vj0 +
n∑

i=1

γi,j

∫ t

0

e(t−s)(�−βj)ũi(·, s)ds, j ∈J , t ∈ [0, T], (A2)

respectively. By the estimates for the heat semigroup in Lemma 5.1 (ii) to (A1), there exists a constant
c1 = c1(p)> 0 such that

n∑
i=1

‖ui(·, t)‖L∞(R2) ≤
n∑

i=1

‖et�ui0‖L∞(R2) + c1

n∑
i=1

m∑
j=1

|αi,j|
∫ t

0

(t − s)− 1
2 − 1

p ‖̃ui(·, s)∇ ṽj(·, s)‖Lp(R2)ds,

≤
n∑

i=1

‖ui0‖L∞(R2) + c1α
∗
∫ t

0

(t − s)− 1
2 − 1

p

(
n∑

i=1

‖̃ui(·, s)‖L∞(R2)

)

·
(

m∑
j=1

‖∇ ṽj(·, s)‖Lp(R2)

)
ds

≤
n∑

i=1

‖ui0‖L∞(R2) + 2c1pα∗R2

p − 2
T

1
2 − 1

p , t ∈ [0, T].
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Similarly, one also has
n∑

i=1

‖ui(·, t)‖L1(R2) ≤
n∑

i=1

‖ui0‖L1(R2) + c2α
∗
∫ t

0

(t − s)− 1
2

(
n∑

i=1

‖̃ui(·, s)‖L∞(R2)

)

·
(

m∑
j=1

‖∇ ṽj(·, s)‖L1(R2)

)
ds

≤
n∑

i=1

‖ui0‖L1(R2) + 2c2α
∗R2T

1
2 , t ∈ [0, T],

with some c2 > 0. Moreover, one can apply Lemma 5.1 (ii) to find constants c3, c4 > 0 such that
m∑

j=1

‖vj(·, t)‖L1(R2) ≤
m∑

j=1

e|βj|t‖vj0‖L1(R2) + γ ∗
m∑

j=1

e|βj|t
∫ t

0

∥∥∥∥∥
n∑

i=1

ũi(·, s)

∥∥∥∥∥
L1(R2)

ds

≤ eβ
∗T

m∑
j=1

‖vj0‖L1(R2) + γ ∗eβ
∗TR|J |T , t ∈ [0, T],

m∑
j=1

‖∇vj(·, t)‖Lp(R2) ≤
m∑

j=1

e|βj|t‖∇vj0‖Lp(R2) + c3

n∑
i=1

m∑
j=1

|γi,j|e|βj|t
∫ t

0

(t − s)− 1
2 ‖̃ui(·, s)‖Lp(R2)ds

≤ eβ
∗T

m∑
j=1

‖∇vj0‖Lp(R2) + c3γ
∗eβ

∗ t|J |
n∑

i=1

∫ t

0

(t − s)− 1
2

· ‖̃ui(·, s)‖
p−1

p

L∞(R2)‖̃ui(·, s)‖ 1
p

L1(R2)ds

≤ eβ
∗T

m∑
j=1

‖∇vj0‖Lp(R2) + 2c3γ
∗eβ

∗TR|J |T 1
2 , t ∈ [0, T], (A3)

m∑
j=1

‖∇vj(·, t)‖L1(R2) ≤ eβ
∗T

m∑
j=1

‖∇vj0‖L1(R2) + 2c4γ
∗eβ

∗TR|J |T 1
2 , t ∈ [0, T]. (A4)

Hence, � maps E into E if we choose T small enough.
We now show that the mapping is a contraction. Indeed, for (u, v) ∈ E, (̃u, ṽ) ∈ E, we have

‖�(u, v) −�(̃u, ṽ)‖X = max
0≤t≤T

{I1(t) + I2(t) + I3(t) + I4(t) + I5(t)} ,

where Ii, i = 1, 2, · · · , 5 is introduced as follows,

I1(t) =
n∑

i=1

∥∥∥∥∥
∫ t

0

∇ · e(t−s)�
[
(ui(·, s) − ũi(·, s))

( m∑
j=1

αi,j∇vj(·, s)
)

+ ũi(·, s)
m∑

j=1

αi,j

(
∇vj(·, s) − ṽj(·, s)

)]
ds

∥∥∥∥∥
L∞(R2)

≤ c1

n∑
i=1

∫ t

0

(t − s)− 1
2 − 1

p ‖ui(·, s) − ũi(·, s)‖L∞(R2)

∥∥∥∥∥
m∑

j=1

αi,j∇vj(·, s)

∥∥∥∥∥
Lp(R2)

ds

+ c1

n∑
i=1

∫ t

0

(t − s)− 1
2 − 1

p ‖̃ui(·, s)‖L∞(R2)

∥∥∥∥∥
m∑

j=1

αi,j∇
(

vj(·, s) − ṽj(·, s)
)∥∥∥∥∥

Lp(R2)

ds

≤ 4c1pα∗R

p − 2
‖(u, v) − (̃u, ṽ)‖X , t ∈ [0, T],
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I2(t) =
n∑

i=1

∥∥∥∥∥
∫ t

0

∇ · e(t−s)�
[
(ui(·, s) − ũi(·, s))

( m∑
j=1

αi,j∇vj(·, s)
)

+ ũi(·, s)
m∑

j=1

αi,j

(
∇vj(·, s) − ṽj(·, s)

)]
ds

∥∥∥∥∥
L1(R2)

≤ c2

n∑
i=1

∫ t

0

(t − s)− 1
2 ‖ui(·, s) − ũi(·, s)‖L∞(R2)

∥∥∥∥∥
m∑

j=1

αi,j∇vj(·, s)

∥∥∥∥∥
L1(R2)

ds

+ c2

n∑
i=1

∫ t

0

(t − s)− 1
2 ‖̃ui(·, s)‖L∞(R2)

∥∥∥∥∥
m∑

j=1

αi,j∇
(

vj(·, s) − ṽj(·, s)
)∥∥∥∥∥

L1(R2)

ds

≤ 4c2α
∗RT

1
2 ‖(u, v) − (̃u, ṽ)‖X , t ∈ [0, T],

I3(t) =
m∑

j=1

∥∥∥∥∥
∫ t

0

e(t−s)(�−βj)

(
n∑

i=1

γi,j (ui(·, s) − ũi(·, s))

)
ds

∥∥∥∥∥
L1(R2)

≤ γ ∗e|β∗|T |J |
n∑

i=1

∫ t

0

‖ui(·, s) − ũi(·, s)‖L1(R2) ds

≤ γ ∗e|β∗|T |J |T‖(u, v) − (̃u, ṽ)‖X , t ∈ [0, T],

I4(t) =
m∑

j=1

∥∥∥∥∥∇
[∫ t

0

e(t−s)(�−βj)

(
n∑

i=1

γi,j (ui(·, s) − ũi(·, s))

)]∥∥∥∥∥
Lp(R2)

≤ 2c3γ
∗eβ

∗T |J |RT
1
2 ‖(u, v) − (̃u, ṽ)‖X , t ∈ [0, T],

I5(t) =
m∑

j=1

∥∥∥∥∥∇
[∫ t

0

e(t−s)(�−βj)

(
n∑

i=1

γi,j (ui(·, s) − ũi(·, s))

)]∥∥∥∥∥
L1(R2)

≤ 2c4γ
∗eβ

∗T |J |RT
1
2 ‖(u, v) − (̃u, ṽ)‖X , t ∈ [0, T].

So � is a contraction if T is sufficiently small. Thus from Banach’s fixed point theorem, � has a fixed
point in the sense that (u, v) =�(u, v). Since the choice of above T depends only on R, α∗, β∗, γ ∗, p and
|I|, |J |, a standard argument implies that (u, v) can be extended up to some Tmax, and

lim sup
t→Tmax

{
n∑

i=1

[‖ui(·, t)‖L∞(R2) + ‖ui(·, t)‖L1(R2)

]

+
m∑

j=1

[‖vj(·, t)‖L1(R2) + ‖∇vj(·, t)‖Lp(R2) + ‖∇vj(·, t)‖L1(R2)

]}= ∞ (A5)

holds if Tmax <∞.
Second Step: Regularity. Since et� and ∇· commute on C1(R2; R2) ∩ L1(R2; R2), a straightforward

regularity argument in [17, Lemma 3.3] which includes standard semigroup techniques and bootstrap
procedure, and the parabolic Schauder estimates [26] imply that (u, v) ∈ [C2,1(R2 × (0, Tmax))

]m+n. In

fact, abbreviating Fi(x, t) =
m∑

j=1

αi,jui(x, t)∇vj(x, t) for some i ∈ I and from the regularity for the mild
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solution, we rewritten (1.5)i as

∂tui =�ui − ∇ · Fi in R2 × (0, T) (A6)

with continuous and bounded Fi in R2 × [0, T]. Then the Step 2 in [17, Lemma 3.3] tells that ui is a very
weak solution to (A6), i.e.

−
∫ T

0

∫
R2

uiφt −
∫
R2

ui0φ(·, 0) =
∫ T

0

∫
R2

ui�φ

+
∫ T

0

∫
R2

Fi · ∇φ for all φ ∈ C∞
0 (R2 × [0, T)).

Moreover, one can improve the regularity of very weak solution by introducing another solution ui to
the following initial boundary problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tui =�ui − ∇ · Fi, x ∈ BR, t ∈ (τ , T),

ui|∂BR = ui, t ∈ (τ , T),

u(x, τ ) = u(x, τ ), x ∈ BR,

where 0< τ < T , R> 0. Then a similar way in the Step 3 in [17, Lemma 3.3] makes sure that ∇ui ∈
L2

loc(R
2 × (τ , T)) and

−
∫ T

τ

∫
R2

uiφt −
∫
R2

ui(·, τ )φ(·, τ ) = −
∫ T

τ

∫
R2

∇ui · ∇φ

+
∫ T

τ

∫
R2

Fi · ∇φ for all φ ∈ C∞
0 (R2 × [τ , T)).

Hence, ∇ · Fi ∈ L2
loc(R

2 × [τ , T]), which together with parabolic regularity theory [25] asserts that
ui ∈ L2((τ , T);W2,2

loc (R2)) and ui ∈ Lp((τ , T);W2,p
loc (R2)) for all p ∈ (1, ∞) by the embedding theorem. Then

invoking parabolic Schauder theory, we have ui ∈ C
2+γ ,1+ γ

2
loc (R2 × (τ , T)) with some γ ∈ (0, 1), and ui

solves the i-th equation in (1.5) classically in R2 × (τ , T). The proof is complete due to the arbitrary
choice of τ .

Third Step: Uniqueness, positivity and mass conservation. Construct a non-increasing cut-off func-
tion h(x) ∈ C∞(R) to fulfil h(x) ≡ 1 in (−∞, 0] and h(x) ≡ 0 in [1, ∞). And for K > 0, set ξK(x) :=
h(|x| − K), x ∈R2. Under the help of cut-off function ξK , one can utilise localisation arguments to prove
uniqueness, positivity and mass conservation of solutions to (1.5). Let us point out that such results
were already obtained by Winkler in single-species case. We just describe the following main steps of
the proof and refer to [41, Lemmas 2.4–2.7] for more details.

Now we prove the uniqueness. Proceeding as in [41, Lemma 2.4], given T > 0 and two solutions
(u, v) and (̃u, ṽ) in R2 × (0, T), we let w = u − ũ and z = v − ṽ and obtain by applying straightforward
procedure to (1.5) that

∂twi =�wi −
m∑

j=1

αi,j∇ · (wi∇vj) −
m∑

j=1

αi,j∇ · (̃ui∇zj), i ∈ I, t ∈ [0, T],

∂tzj =�zj − βjzj +
n∑

i=1

γi,jwi, j ∈J , t ∈ [0, T].
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With the help of cut-off function ξK and Young’s inequality, we have
1

2

d

dt

∫
R2

ξ 2
Kw2

i dx ≤ − 1

4

∫
R2

ξ 2
K|∇wi|2dx + 4

∫
R2

|∇ξK|2w2
i dx

+ (α∗)2|J |
∫
R2

ξ 2
Kw2

i

(
m∑

j=1

|∇vj|2

)
dx

+ (α∗)2|J |
∫
R2

ξ 2
K (̃ui)

2

(
m∑

j=1

|∇zj|2

)
dx

+ 2
m∑

j=1

αi,j

∫
R2

ξkw
2
i ∇ξK · ∇vjdx

+ 2
m∑

j=1

αi,j

∫
R2

ξKũiwi∇ξK · ∇zjdx

1

2

d

dt

∫
R2

ξ 2
K|∇zj|2dx ≤

∫
R2

|∇ξK|2‖∇zj|2dx + (β∗ + (γ ∗)2)
∫
R2

ξ 2
K|∇zj|2dx

+ |I|
4

∫
R2

ξ 2
K

(
n∑

i=1

|∇wi|2

)
dx.

By Hölder’s, Young’s and the Gagliardo–Nirenberg inequalities,

(α∗)2|J |
∫
R2

ξ 2
Kw2

i

(
m∑

j=1

|∇vj|2

)
dx ≤c5(α∗)2|J |‖ξKwi‖2

L
2q

q−2 (R2)

≤c5c6(α∗)2|J |‖∇(ξKwi)‖
4
q

L2(R2)‖ξKwi‖
2(q−2)

q

L2(R2)

≤1

8

∫
R2

ξ 2
K|∇wi|2dx + 1

8

∫
R2

|∇ξK|2w2
i dx

+ c7

∫
R2

ξ 2
Kw2

i dx, (A7)

(α∗)2|J |
∫
R2

ξ 2
K (̃ui)

2

(
m∑

j=1

|∇zj|2

)
dx ≤c2

8(α∗)2|J |
m∑

j=1

∫
R2

ξ 2
K|∇zj|2dx,

where we set c5 = supt∈(0,T)

m∑
j=1

‖∇vj(·, t)‖2
Lq(R2) and c8 = supt∈(0,T)

n∑
i=1

‖̃ui‖L∞(R2). By the finiteness

‖(∇vj, ∇zj)‖Lq(R2) for j ∈J , ‖(̃ui, wi)‖L∞(R2) for i ∈ I and supp ξK ⊂ (−K, K), we find that yK(t) :=
1
2

n∑
i=1

∫
R2 ξ

2
Kw2

i dx + 1
4|I|

m∑
j=1

∫
R2 ξ

2
K|∇zj|2dx satisfies

y′
K(t) ≤c9yK(t) + c9

n∑
i=1

‖wi‖
q−1

q

L1(BR+1\BR) + c9

n∑
i=1

‖wi‖L1(BR+1\BR)

+ c9

m∑
j=1

‖∇zj‖
q−2
q−1

L1(BR+1\BR) for t ∈ (0, T),

where due to yK(0) = 0 and (2.1), an integration over (0, T) shows that yK(t) → 0 as K → ∞. Hence
u = ũ and v = ṽ in R2 × (0, T).
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To prove the positivity of ui, i ∈ I, it is sufficient to make sure that ui is non-negative in R2 × (0, T)
for each T ∈ (0, Tmax) by the strong maximum principle and (1.6). Denote u−

i = max{−ui, 0}. A direct
computation shows that

1

2

d

dt

∫
R2

ξ 2
K(u−

i )2dx ≤ − 1

2

∫
R2

ξ 2
K|∇u−

i |2dx + (α∗)2|J |
∫
R2

ξ 2
K|u−

i |2

(
m∑

j=1

|∇vj|2

)
dx

+ 4
∫
R2

|u−
i |2|∇ξK|2dx + 2

m∑
j=1

αi,j

∫
R2

ξK(u−
i )2∇ξK · ∇vjdx.

Since ∇vj ∈ L∞((0, T); Lp(R2)) with p> 2, using a similar approach in (A7) shows the existence of c10 >

0 such that

(α∗)2|J |
∫
R2

ξ 2
K|u−

i |2

(
m∑

j=1

|∇vj|2

)
dx

≤c5(α
∗)2|J |‖ξKu−

i ‖2

L
2q

q−2 (R2)

≤1

2

∫
R2

ξ 2
K|∇u−

i |2dx + 1

2

∫
R2

|∇ξK|2(u−
i )2dx + c10

∫
R2

ξ 2
K(u−

i )2dx.

On the other hand, we follow a procedure in proving uniqueness and conclude that gK(t) := ∫
R2 ξ

2
K(u−

i )2dx
fulfils gK(t) → 0 as K → ∞. Hence non-negativity of ui, i ∈ I, has been proved.

Fourth Step: Lq estimates for vj, j ∈J . Integrating j-th equation in (1.5) over R2 × (0, T) directly, it
results in

‖vj(·, t)‖L1(R2) ≤

⎧⎪⎨⎪⎩
‖vj0‖L1(R2) + t

n∑
i=1

|γi,j|‖ui0‖L1(R2), if βj = 0,

e−βj t‖vj0‖L1(R2) + 1
|βj|
∣∣1 − e−βj t

∣∣ n∑
i=1

|γi,j|‖ui0‖L1(R2), if βj �= 0.

For q> 1, applying Lemma 5.1 to (A2) we infer that

‖vj(·, t)‖Lq(R2) ≤e|βj|t‖vj0‖Lq(R2) + e|βj|t
n∑

i=1

|γi,j|
∫ t

0

(t − s)−1+ 1
q ‖̃ui(·, s)‖L1(R2) ds

≤eβ
∗T‖vj0‖Lq(R2) + qγ ∗eβ

∗TT
1
q

n∑
i=1

‖ui0‖L1(R2), j ∈J , t ∈ [0, T].

Hence, we have obtained Lq estimates for vj, j ∈J , and found that the upper bound is independent of
time variable if βj > 0, ∀ j ∈J .

Fifth Step: Criterion. If Tmax <∞ and there exists a constant c11 > 0 such that
n∑

i=1

‖ui(·, t)‖L∞(R2) ≤ c11.

Then from the mass conservation ‖ui(·, t)‖L1(R2) = ‖ui0‖L1(R2), i ∈ I, and the boundedness of L1 estimate
for vj(·, t), j ∈J , for all t ∈ (0, Tmax) and the following fact

m∑
j=1

(‖∇vj(·, t)‖Lp(R2) + ‖∇vj(·, t)‖L1(R2)

)≤ c12, t ∈ (0, Tmax),

is right with some c12 > 0 because of (A3)–(A4), we claim that (A5) implies Tmax cannot be finite.
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