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KEISLER’S THEOREM AND CARDINAL INVARIANTS

TATSUYA GOTO

Abstract. We consider several variants of Keisler’s isomorphism theorem. We separate these variants
by showing implications between them and cardinal invariants hypotheses. We characterize saturation
hypotheses that are stronger than Keisler’s theorem with respect to models of size ℵ1 and ℵ0 by CH and
cov(meager) = c ∧ 2<c = c respectively. We prove that Keisler’s theorem for models of size ℵ1 and ℵ0

implies b = ℵ1 and cov(null) ≤ d respectively. As a consequence, Keisler’s theorem for models of size ℵ0

fails in the random model. We also show that for Keisler’s theorem for models of size ℵ1 to hold it is not
necessary that cov(meager) equals c.

§1. Introduction. The method of ultrapowers is one of the most important ways
to construct models. Ultrapowers are models obtained by properly equating the
elements of product sets of the models using ultrafilters. We consider the problem
of when there exists an ultrafilter U on � such that for two models A,B in a
countable languageL, the respective ultrapowersA�/U ,B�/U are isomorphic. Since
ultrapowers are elementary extensions of original models, if A�/U and B�/U are
isomorphic, then A and B must be elementarily equivalent. Keisler showed, under
CH, conversely if A and B are elementarily equivalent and have size ≤ c, then for
every ultrafilter U over �, A�/U and B�/U are isomorphic. The purpose of this
paper is to give necessary conditions and sufficient conditions for when Keisler’s
theorem holds in a model where CH does not hold, and to separate the variants of
Keisler’s theorem using those conditions.

Convention. All ultrafilters considered in this paper are nonprincipal.

Definition 1.1. Let κ be a cardinal.
(1) We say KT(κ) holds if for every countable language L and L-structures A,B

of size ≤ κ which are elementarily equivalent, there exists an ultrafilter U over
� such that A�/U � B�/U .

(2) We say SAT(κ) holds if there exists an ultrafilter U over � such that for every
countable language L and every sequence of L-structures (Ai)i∈� with each
Ai of size ≤ κ,

∏
i∈� Ai /U is saturated.

SAT(κ) implies KT(κ) for every κ ≤ c by the fact that two saturated structures
which are elementarily equivalent and have the same size are isomorphic. Golshani
and Shelah [6] proved ¬KT(ℵ2) and later we will prove ¬SAT(ℵ2) in Theorem 2.2.
So this implication SAT(κ) ⇒ KT(κ) holds formally for every κ.

Keisler [7] proved CH ⇒ SAT(c). The result ¬KT(ℵ2) of Golshani and Shelah
implies KT(c) ⇒ CH. So CH, SAT(c), and KT(c) are equivalent. Golshani and
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b = ℵ1 cov(null) ≤ d
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cov(meager) = c

∧ cf(c) = ℵ1

Figure 1. Implications; thick arrows indicate our results.

Shelah also proved that cov(meager) = c ∧ cf(c) = ℵ1 implies KT(ℵ1). Another clas-
sical result is the theorem by Ellentuck–Rucker [5] which shows that MA(�-centered)
implies SAT(ℵ0). Moreover, Shelah [9] showed Con(¬KT(ℵ0)) by showing that
d < v∀ implies ¬KT(ℵ0) and that the former is consistent.

In this paper, we prove the implications indicated by thick lines in Figure 1.
In the rest of this section, we recall basic notions related to cardinal invariants.

Definition 1.2. (1) IfX,Y are sets and R is a subset ofX × Y , we call a triple
(X,Y,R) a relational system.

(2) For a relational system A = (X,Y,R), define A⊥ = (Y,X, R̂), where R̂ =
{(y, x) ∈ Y × X : ¬(x R y)}).

(3) For a relational system A = (X,Y,R), define ‖A‖ = min{|B | : B ⊆ Y ∧
(∀x ∈ X )(∃y ∈ B)(x R y)}.

(4) For relational systems A = (X,Y,R),B = (X ′, Y ′, S), we call a pair (ϕ,�)
a Galois–Tukey morphism from A to B if ϕ : X → X ′, � : Y ′ → Y and
(∀x ∈ X )(∀y ∈ Y ′)(ϕ(x) S y =⇒ x R �(y)) hold.

Fact 1.3 [4, Theorem 4.9]. If there is a Galois–Tukey morphism (ϕ,�) from A to
B, then ‖A‖ ≤ ‖B‖ and ‖B⊥‖ ≤ ‖A⊥‖ hold.

Definition 1.4. (1) For f, g ∈ �� , define f <∗ g iff (∀∞n)(f(n) < g(n)).
(2) For c ∈ (� + 1)� and h ∈ �� , define

∏
c =

∏
n∈� c(n) and S(c, h) =∏

n∈�[c(n)]≤h(n).
(3) For x ∈

∏
c and ϕ ∈ S(c, h), define x ∈∗ ϕ iff (∀∞n)(x(n) ∈ ϕ(n)) and

define x ∈∞ ϕ iff (∃∞n)(x(n) ∈ ϕ(n)).

Definition 1.5. (1) Define D = (��,��,<∗), d = ‖D‖ and b = ‖D⊥‖.
(2) For a poset (P,<), define a relational system Cof(P,<) by Cof(P,<) =

(P,P,<). Then we have cf(P,<) = ‖Cof(P,<)‖.
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(3) For c ∈ (� + 1)�, h ∈ �� , define Lc(c, h) = (
∏
c, S(c, h),∈∗), c∀c,h =

‖Lc(c, h)‖ and v∀c,h = ‖Lc(c, h)⊥‖.
(4) Define wLc(c, h) = (

∏
c, S(c, h),∈∞), c∃c,h = ‖wLc(c, h)‖, and v∃c,h =

‖wLc(c, h)⊥‖.
(5) For an ideal I on X, define Cov(I ) = (X, I,∈), cov(I ) = ‖Cov(I )‖, and

non(I ) = ‖Cov(I )⊥‖.

By the definition of the norm ‖·‖, the next lemma is obvious.

Lemma 1.6. (1) c∀c,h = min{|S| : S ⊆ S(c, h), (∀x ∈
∏
c)(∃ϕ ∈ S)(∀∞n)

(x(n) ∈ ϕ(n))}.
(2) c∃c,h = min{|S| : S ⊆ S(c, h), (∀x ∈

∏
c)(∃ϕ ∈ S)(∃∞n)(x(n) ∈ ϕ(n))}.

(3) v∀c,h = min{|X | : X ⊆
∏
c, (∀ϕ ∈ S(c, h))(∃x ∈ X )(∃∞n)(x(n) ∈ ϕ(n))}.

(4) v∃c,h = min{|X | : X ⊆
∏
c, (∀ϕ ∈ S(c, h))(∃x ∈ X )(∀∞n)(x(n) ∈ ϕ(n))}.

Definition 1.7. (1) Define v∀ = min{v∀c,h : c, h ∈ ��, limn→∞ h(n) = ∞}.
(2) Define c∃ = min{c∃c,h : c, h ∈ ��,

∑
n∈� h(n)/c(n) <∞}.

Fact 1.8 [3, Lemma 3.5 and Theorem 3.12]. Let 〈Ai : i ∈ �〉 be a sequence of
structures in a language L such that each Ai has size ≤ c. Let U be an ultrafilter over
�. Then the ultraproduct

∏
i∈� Ai /U has size either finite or c.

§2. SAT(ℵ1) and KT(ℵ1). In this section, we prove that SAT(ℵ1) is equivalent to
CH and that KT(ℵ1) implies b = ℵ1.

Theorem 2.1. SAT(ℵ1) implies CH.

Proof. Assume SAT(ℵ1) and ¬CH. Take an ultrafilter U over � that witnesses
SAT(ℵ1). Let A∗ = (�1, <)�/U . For α < �1, put α∗ = [〈α, α, α, ... 〉]. Define a set
p of formulas with a free variable x by

p = {�α∗ < x� : α < �1}.

This p is finitely satisfiable and the number of parameters occurring in p is
ℵ1 < c = |A∗| by ¬CH. Thus, by SAT(ℵ1), we can take f : � → �1 such that [f]
realizes p. Put � = supn∈� f(n). Now we have {n ∈ � : � < f(n)} ∈ U and this
contradicts the definition of � . �

Theorem 2.2. ¬SAT(ℵ2) holds.

Proof. Take an ultrafilter U over � that witnesses SAT(ℵ2). Let A∗ = (�2,
<)�/U . For α < �1, put α∗ = [〈α, α, α, ... 〉]. Define a set p of formulas with a free
variable x by

p = {�α∗ < x < (�1)∗� : α < �1}.

The remaining argument is the same as Theorem 2.1. �

Definition 2.3. Let mcf = min{cf(��/U) : U an ultrafilter over �}.

The order of ��/U is the almost domination order modulo U and cf(��/U) is
the dominating number of this relation. So it is clear that b ≤ mcf ≤ d.
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Lemma 2.4 [6, Claim 2.2]. Let A be a structure in a language L = {<}. Suppose
that a ∈ A has cofinality �1. Let U be an ultrafilter over �. Then a∗ = [〈a, a, a, ... 〉]
has cofinality �1 in A�/U .

Proof. Take an increasing cofinal sequence 〈xα : α < �1〉 of points in A
below a. Then 〈x∗α : α < �1〉 is an increasing cofinal sequence in A∗, where
x∗α = [〈xα, xα, xα, ... 〉] for each α < �1. This can be shown by regularity of �1. �

Lemma 2.5 [6, Claim 2.4]. Let U be an ultrafilter over � and B∗ = (Q, <)�/U .
Then for every a, b ∈ B∗, there is an automorphism on B∗ that sends a to b.

Proof. Consider the map F : Q3 → Q defined by F (x, y, z) = x – y + z. Then
we have

(∀y, z ∈ Q)(the map x �→ F (x, y, z) is an automorphism on (Q, <) that sends y to z).

This statement can be written by a first-order formula in the language L′ = {<,F }.
Thus the same statement is true in (Q, <, F )�/U . The map F∗ : B3

∗ → B∗ induced
by F satisfies that

(∀y, z ∈ B∗)

(the map x �→ F (x, y, z) is an automorphism on (B∗, <) that sends y to z). �

Theorem 2.6. KT(ℵ1) implies mcf = ℵ1.

Proof. This proof is based on [6, Theorem 2.1]. Assume that mcf ≥ ℵ2. We shall
show ¬KT(ℵ1).

Let L = {<}, A = (Q, <) and B = (Q + ((�1 + 1) ×Q≥0), <B). Here <B is
defined by a lexicographical order and a disjoint union order. A and B are dense
linear ordered sets, so by completeness of DLO, we have A ≡ B. Take an ultrafilter
U over �. Put A∗ = A�/U ,B∗ = B�/U .

There is a point a in B such that cf(Ba) = ℵ1, where Ba = {x ∈ B : x < a}. Then
a∗ ∈ B∗ has cofinality ℵ1 by Lemma 2.4. Here a∗ = [〈a, a, a, ... 〉]. On the other
hand, we shall show every point in A∗ has cofinality ≥ mcf. If we do this, since we
assumed mcf ≥ ℵ2, we will have A∗ � B∗.

By Lemma 2.5, it suffices to consider the point 0∗ = [〈0, 0, 0, ... 〉]. Since Q is
symmetrical, we consider cf((Q>0)�/U , >U ).

Now we construct a Galois–Tukey morphism (ϕ,�) : Cof(��/U)→Cof((Q>0)�/
U , >U ) by

ϕ : ��/U → (Q>0)�/U ; [f] �→ [〈1/(f(n) + 1) : n ∈ �〉],
� : (Q>0)�/U → ��/U ; [g] �→ [〈�1/g(n) – 1� : n ∈ �〉].

So we have cf((Q>0)�/U , >U ) ≥ cf(��/U , <U ).
Thus we have cf((Q>0)�/U , >U ) ≥ mcf. We are done. �
Corollary 2.7. KT(ℵ1) implies b = ℵ1.

Proof. This follows from Theorem 2.6 and the fact that b ≤ mcf. �

§3. SAT(ℵ0) and KT(ℵ0). In this section, we first briefly mention consistency of
KT(ℵ0) + ¬KT(ℵ1). And we prove that SAT(ℵ0) is equivalent to cov(meager) =
c ∧ 2<c = c.
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Fact 3.1 [4, Theorem 7.13]. The statement cov(meager) = c is equivalent to
MA(countable), that is for every countable poset P and a family of dense sets D
with |D| < c there is a filter G of P that intersects all D ∈ D.

Theorem 3.2. cov(meager) = c implies KT(ℵ0).

Proof. [6, Theorem 3.3] shows that cov(meager) = c ∧ cf(c) > ℵ1 implies
KT(ℵ1) and the exact same proof works for KT(ℵ0) without the assumption
cf(c) > ℵ1.

Here we sketch the proof.
Let L be a countable language and A0 and A1 are countable L-structures which

are elementarily equivalent.
Enumerate (Ai)� for i = 0, 1 as

(Ai)� = {fiα : α < c}.

By a back-and-forth method, we construct a sequence of triples 〈(Uα, g0
α, g

1
α) : α < c〉

satisfying:
(1) g0

α ∈ A0.
(2) g1

α ∈ A1.
(3) Uα is a filter over � generated by ℵ0 + |α| sets.
(4) (Uα : α < c) is an increasing continuous sequence.
(5) If ϕ(x0, ... , xn–1 is an L-formula and �0, ... , �n ≤ α, then the set

{k ∈ � : M0 |= ϕ(g0
�0

(k), ... , g0
�n–1

(k)) ⇐⇒ M1 |= ϕ(g1
�0

(k), ... , g1
�n–1

(k))}
belongs to Uα+1.

In the construction, when α is even, we put g0
α = f0

	 where 	 is the least ordinal
f0
	 ∈ {g0

� : � < α}. And P is the poset of finite partial functions from � to A1. Take
a generating set F of Uα of size ℵ0 + |α|. Then by using MA(countable), take a
P-generic filter G with respect to the following family of dense sets of P:

Dn = {p ∈ P : n ∈ domp} (for n ∈ �)

and

EX,〈ϕ
 :
∈I 〉,〈	
1,...,	


n
 :
∈I 〉 ={p ∈ P : (∃k ∈ dom(p) ∩ X )(∀
 ∈ I )

(M 0 |= ϕ
(g0
	
1

(k), ... g0
	
n


(k), g0
α(k)) ⇔

M 1 |= ϕ
(g1
	
1

(k), ... g1
	
n


(k), p(k))}),

where X ∈ F , 〈ϕ
 : 
 ∈ I 〉 is a finite sequence of L-formulas and 	
1, ... , 	


n
 for 
 ∈ I

are ordinals less than α. Then putting g1
α =

⋃
G satisfies the induction hypothesis.

Then the appropriate construction guarantees that U =
⋃
α<c Uα is an ultrafilter

and that the function

〈([g0
α]U , [g1

α]U ) : α < c〉

is isomorphic from (M 0)�/U to (M 1)�/U . �
Corollary 3.3. Assume Con(ZFC). Then Con(ZFC + KT(ℵ0) + ¬KT(ℵ1)).

Proof. MA + ¬CH implies KT(ℵ0) ∧ ¬KT(ℵ1) by Theorems 2.6 and 3.2. �

https://doi.org/10.1017/jsl.2022.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.77


910 TATSUYA GOTO

Fact 3.4 [2, Lemma 2.4.2]. cov(meager) = v∃〈�:n∈�〉,id. In other words,
cov(meager) ≥ κ holds iff (∀X ⊆ �� of size < κ)(∃S ∈

∏
i∈�[�]≤i)(∀x ∈ X )

(∃∞n)(x(n) ∈ S(n)) holds.

Theorem 3.5. SAT(ℵ0) implies cov(meager) = c.

Proof. Take an ultrafilter U that witnesses SAT(ℵ0). Fix X ⊆ �� of size < c.
Define a language L by L = {⊆} and for each i ∈ �, define an L-structure Ai by
Ai = ([�]≤i ,⊆). For each x ∈ �� , let Sx = 〈{x(i)} : i ∈ �〉. In the ultraproduct
A∗ =

∏
i∈� Ai /U , define a set p of formulas of one free variable S by

p = {�[Sx ] ⊆ S� : x ∈ X}.
This p is finitely satisfiable. In order to check this, let x0, ... , xn be finitely many
members of X. Define S by S(m) = {x0(m), ... , xn(m)} form ≥ n. We don’t need to
care about S(m) form < n. Then this S satisfies [Sxi ] ⊆ [S] for all i ≤ n. Moreover,
the number of parameters of p is < c.

So by SAT(ℵ0), we can take [S] ∈ A∗ that realizes p. Then S fulfills (∀x ∈ X )({n ∈
� : x(n) ∈ S(n)} ∈ U). Thus (∀x ∈ X )(∃∞n)(x(n) ∈ S(n)). �

Theorem 3.6. SAT(ℵ0) implies 2<c = c.

Proof. Take an ultrafilter U over � that witnesses SAT(ℵ0). Fix κ < c.
Put L = {⊆} and define an L-structure A by A = ([�]<�,⊆). Put A∗ = A�/U .
Define a map 
 : ��/U → A∗ by 
([x]) = [〈{x(n)} : n ∈ �〉]. By Fact 1.8, we have

|��/U| = c. Take a subset F of ��/U of size κ.
For each X ⊆ F , let pX be a set of formulas with a free variable z defined by

pX = {�
(y) ⊆ z� : y ∈ X} ∪ {�
(y) ⊆ z� : y ∈ F \ X}.
Each pX is finitely satisfiable. In order to check this, take [x0], ... , [xn] ∈ X and

[y0], ... , [ym] ∈ F \ X . Put z(i) = {x0(i), ... , xn(i)}. Then 
([x0]), ... , 
([xn]) ⊆U [z].
In order to prove 
([yj ]) ⊆U [z] for each j ≤ m, suppose that {i ∈ � : yj(i) ∈
z(i)} ∈ U . Then for each i ∈ �, there is a ki ≤ n such that {i ∈ � : yj(i) =
xki (i)} ∈ U . Then there is a k ≤ n such that {i ∈ � : yj(i) = xk(i)} ∈ U . This
implies [yj ] = [xk], which is a contradiction.

By SAT(ℵ0), for eachX ⊆ F , take [zX ] ∈ A∗ that realizes pX . ForX,Y ⊆ F with
X = Y , we have [zX ] = [zY ]. So 2κ = |{[zX ] : X ⊆ F }| ≤ |A∗| = c. Therefore we
have proved 2<c = c. �

Theorem 3.7. cov(meager) = c ∧ 2<c = c implies SAT(ℵ0).

Proof. This proof is based on [5, Theorem 1].
Let 〈bα : α < c〉 be an enumeration of �� . Let 〈(L�,B�,Δ�) : � < c〉 be an

enumeration of triples (L,B,Δ) such that L is a countable language, B =
〈Ai : i ∈ �〉 is a sequence of L-structures with universe �, and Δ is a subset of
Fml(L+) with |Δ| < c. Here L+ = L ∪ {cα : α < c} where the cα ’s are new constant
symbols and Fml(L+) is the set of all L+ formulas with one free variable. Here
we used the assumption 2<c = c. And ensure each (L,B,Δ) occurs cofinally in this
sequence.

For B� = 〈A�i : i ∈ �〉, put B�(i) = (A�i , b0(i), b1(i), ... ), which is an L+-
structure.
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Let 〈X� : � < c〉 be an enumeration of P(�).
We construct a sequence 〈F� : � < c〉 of filters inductively so that the following

properties hold:

(1) F0 is the filter consisting of all cofinite subsets of �.
(2) F� ⊆ F�+1 and F� =

⋃
α<� Fα for � limit.

(3) X� ∈ F�+1 or � \ X� ∈ F�+1.
(4) F� is generated by < c members.
(5) If

for all Γ ⊆ Δ� finite, {i ∈ � : Γ is satisfiable in B�(i)} ∈ F�, (∗)

then there is an f ∈ �� such that for all ϕ ∈ Δ� , {i ∈ � : f(i) satisfies ϕ
in B�(i)} ∈ F�+1.

Suppose we have constructedF� . We constructF�+1. LetF ′
� be a generating subset

of F� with
∣∣∣F ′
�

∣∣∣ < c. If (∗) is false, let F�+1 be the filter generated by F ′
� ∪ {X�} or

F ′
� ∪ {� \ X�}. Suppose (∗).
Put P = Fn(�,�) = {p : p is a finite partial function from � to �}. For n ∈ �,

put

Dn = {p ∈ P : n ∈ domp}.
For A ∈ F ′

� and ϕ1, ... , ϕn ∈ Δ� , put

EA,ϕ1,...,ϕn = {p ∈ P : (∃i ∈ domp ∩ A)(p(i) satisfies ϕ1, ... , ϕn in B�(i))}.
Each Dn is clearly dense. In order to show that each EA,ϕ1,...,ϕn is dense, take p ∈ P.
By (*) and the property A ∈ F� , we can take i ∈ A \ domp and k ∈ � such that
k satisfies ϕ1, ... , ϕn in B�(i). Put q = p ∪ {(i, k)}. This is an extension of p in
EA,ϕ1,...,ϕn .

By using MA(countable), take a generic filter G ⊆ P with respect to above
dense sets. Putf =

⋃
G . ThenF ′′

� := F ′
� ∪ {Yϕ : ϕ ∈ Δ�} satisfies finite intersection

property, where Yϕ = {i ∈ � : f(i) satisfies ϕ in B�(i)}. In order to check this, let
A ∈ F ′

� and ϕ1, ... , ϕn ∈ Δ� . Then by genericity, we can take p ∈ G ∩ EA,ϕ1,...,ϕn . So
we can take i ∈ domp ∩ A such that p(i) satisfies ϕ1, ... , ϕn in B�(i). Then we have
i ∈ A ∩ Yϕ1 ∩ ··· ∩ Yϕn .

Let F�+1 be the filter generated by F ′′
� ∪ {X�} or F ′′

� ∪ {� \ X�}.
We have constructed 〈F� : � < c〉. In order to check that the resulting ultrafilter

F =
⋃
�<c F� witnesses SAT(ℵ0), let L and B = 〈Ai : i ∈ �〉 satisfy the assumption

of the theorem. Let Δ be a subset of Fml(L+) with |Δ| < c. Assume that for all
Γ ⊆ Δ finite, XΓ := {i ∈ � : Γ is satisfiable in B�(i)} ∈ F . By the regularity of c,
we have α < c such that for all Γ ⊆ Δ finite, XΓ ∈ Fα . Let � ≥ α be satisfying
(L�,B�,Δ�) = (L,B,Δ). Then by (5), there is an f ∈ � such that for all ϕ ∈ Δ,
{i ∈ � : f(i) satisfies ϕ in B(i)} ∈ F . Thus

∏
i∈� Ai /F is saturated. �

§4. KT(ℵ0) implies c∃ ≤ d. In this section, we will show the following theorem.
This proof is based on [9, Theorem 1.1] and [1, Theorem 3.7].

Theorem 4.1. KT(ℵ0) implies c∃ ≤ d.
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Definition 4.2. Define a language L by L = {E,U,V }, where E is a
binary predicate and U,V are unary predicates. We say an L-structure M =
(|M | , EM ,UM ,VM ) is a bipartite directed graph if the following conditions hold:

(1) UM ∪ VM = |M |.
(2) UM ∩ VM = ∅.
(3) (∀x, y ∈ |M |)(x EM y → (x ∈ UM and y ∈ VM )).

Definition 4.3. For n, k ∈ � with k ≤ n, define a bipartite directed graph Δn,k
as follows:

(1) UΔn,k = {1, 2, 3, ... , n}.
(2) V Δn,k = [{1, 2, 3, ... , n}]≤k \ {∅}.
(3) For u ∈ UΔn,k , v ∈ V Δn,k , u EΔn,k v iff u ∈ v.

Definition 4.4. For n ∈ �, let Gn = Δn3,n. Let Γ be the disjoint union of (Gn :
n ≥ 2).

We define a natural order � on Γ by x � y if m < n for x ∈ Gm, y ∈ Gn. Then Γ
is a bipartite directed graph with an order �. Put L′ = L ∪ {�}. From now on, we
consider L′-structures which are elementarily equivalent to Γ.

Definition 4.5. Let ΓNS be a countable non-standard elementary extension of Γ.

When we say connected components, we mean the connected components when
we ignore the orientation of the edges.

Lemma 4.6. Let M be an L′-structure that is elementarily equivalent to Γ. Then
the connected components of M are precisely the maximal antichains of M with
respect to �.

Proof. Suppose that A ⊆M is connected but not an antichain. Then we can
find elements a0, ... , an ∈M such that

M |=(a0Ea1 ∨ a1Ea0) ∧ ··· ∧ (an–1Ean ∨ anEan–1)∧
(a0 and an are comparable with respect to �).

By elementarity, we have n + 1 many elements in Γ that satisfies the same formula.
This is a contradiction. So every connected subset in M is an antichain.

Note that any two connected vertexes in Γ have a path of length at most 4. Thus
we have

Γ |= (∀a, b)((a and b are incomparable with respect to �)

→ (there is a path between a and b with length at most 4)).

By elementarity, the same formula holds in M. So every antichain in M is connected.
Therefore the connected components of M are precisely the maximal antichains

of M with respect to �. �

Therefore, � induces an order on the connected components of M and it is
denoted also by �.

Lemma 4.7. Every infinite connected component C of ΓNS satisfies the following:

(∀F ⊆ C ∩U finite)(∃v ∈ C ∩ V )(v has an edge to each point in F ).
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Proof. Let F = {u1, ... , un}. Observe that

Γ |= (∀x1) ... (∀xn)[x1, ... , xn are points in U and belong to

the same connected component and

the index of this connected component is ≥ n
→ (∃y)[y belongs to this component, y ∈ V and x1, ... , xn E y]].

By elementarity, ΓNS satisfies the same formula. �
Lemma 4.8. Let 〈Δn : n ∈ �〉 be a sequence of bipartite directed graphs with∣∣UΔn

∣∣ =
∣∣V Δn

∣∣ = ℵ0. Suppose that for each n ∈ �,

(∀F ⊆ UΔn finite)(∃v ∈ V Δn )(v has an edge to each point in F ).

Then for every ultraproduct R :=
∏
n∈� Δn/V , we have

(∃〈vi : i < d〉 with each vi ∈ VR)(∀u ∈ UR)(∃i < d)(u ER vi).

Proof. We may assume that each UΔn = �. Let {fi : i < d} be a cofinal subset
of (��,<∗). For each n,m ∈ �, take vn,m ∈ V Δn that is connected with first m points
in UΔn . For i < d, put

vi = [〈vn,fi (n) : n ∈ �〉].

Let [u] ∈ UR. Consider u as an element of �� . Take fi that dominates u. Then we
have

{n ∈ � : u(n) EΔn vn,fi (n)} ∈ V .

Therefore [u] ER vi . �
Lemma 4.9. Let V be an ultrafilter over� and putQ = (ΓNS)�/V . Then there exist

cofinally many connected components C with respect to � such that

(∃〈vi : i < d〉 with each vi ∈ C ∩ VQ)(∀u ∈ C ∩UQ)(∃i < d)(u EQ vi).

Proof. Fix a connected componentC0 of Q and [x0] ∈ C0. Then for each n ∈ �,
there is an infinite component Cn above x0(n). Now

C = {[x] ∈ Q : x ∈ (ΓNS)� and (∀n ∈ �)(x(n) ∈ Cn)}
is a connected component of Q aboveC0. Since C can be viewed asC =

∏
n∈� Cn/V ,

the conclusion of the lemma holds for C by Lemmas 4.7 and 4.8. �
Lemma 4.10. Let κ < c∃ and U be an ultrafilter over � and put P = Γ�/U . Then

for every C in a final segment of connected components of P, we have

(∀〈vi : i < κ〉 with each vi ∈ C ∩ VP)(∃u ∈ C ∩UP)(∀i < κ)(u EP vi).
Proof. Let f : � → Γ satisfy f(n) ∈ Gn for all n. Let C0 be the connected

component that [f] belongs to. Take a connected component C such that C0 �C
and an element [g] ∈ C . Take a function h : � → � such that {n ∈ � : g(n) ∈
Gh(n)} ∈ U . Then A := {n ∈ � : h(n) ≥ n} ∈ U . Put h′(n) = max{h(n), n}.

Take 〈[vi ] : i < κ〉 with each [vi ] ∈ C ∩ VP . Then we have

Bi := {n ∈ � : vi(n) ∈ Gh(n) ∩ V Γ} ∈ U .
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Take v′i such that v′i (n) = vi(n) for n ∈ A ∩ Bi and v′i (n) ∈ [h′(n)3]≤h
′(n) for n ∈ �.

The assumption κ < c∃ and the calculation∑
n≥1

h′(n)
h′(n)3

=
∑
n≥1

1
h′(n)2

≤
∑
n≥1

1
n2 <∞

give an x ∈
∏
h′ such that for all i < κ, (∀∞n)(x(n) ∈ v′i (n)). For each i < κ, take

ni such that (∀n ≥ ni)(x(n) ∈ v′i (n)).
Take a point [u] ∈ C ∩UP such that u(n) = x(n) for all n ∈ A. Then for all i < κ

we have

{n ∈ � : u(n) EΓ vi(n)} ⊇ A ∩ Bi ∩ [ni , �) ∈ U .

Therefore [u] EP [vi ] for all i < κ. �
Assume that d < c∃. Then by Lemmas 4.10 and 4.9, for any two ultrafilters

U ,V over �, we have Γ�/U � (ΓNS)�/V . So ¬KT(ℵ0) holds. We have proved
Theorem 4.1.

Fact 4.11 [8, Lemma 2.3]. cov(null) ≤ c∃.

Corollary 4.12. In the random model, ¬KT(ℵ0) holds.

Proof. This corollary holds since ℵ1 = d < cov(null) = c in the random
model. �

Remark 4.13. v∀ ≤ c∃ follows from [8, Lemma 2.6]. So the implication
KT(ℵ0) =⇒ d ≥ c∃ strengthens the implication KT(ℵ0) =⇒ d ≥ v∀.

Remark 4.14. In [9], Shelah constructed a creature forcing that forces the
following statements:

(1) There are a finite language L and countable L-structures A,B with A ≡ B
such that for all ultrafilters U ,V over �, we have A�/U � B�/V .

(2) There is an ultrafilter U over � such that for every countable language
L and any sequence 〈(An,Bn) : n ∈ �〉 of pairs of finite L-structures, if∏
n∈� An/U ≡

∏
n∈� Bn/U , then these ultraproducts are isomorphic.

Shelah himself pointed out in [9, Remark 2.2] item 2 holds in the random model. On
the other hand, we have proved item 1 also holds in the random model. Therefore
both of above two statements hold in the random model.

§5. KT(ℵ1) in forcing extensions. A theorem by Golshani and Shelah [6] states
that cov(meager) = c ∧ cf(c) = ℵ1 implies KT(ℵ1). In [6], it was also proved that
cf(c) = ℵ1 is not necessary for KT(ℵ1). In this section, we prove that cov(meager) = c

is also not necessary for KT(ℵ1).

Theorem 5.1. Let > ℵ1 be a regular cardinal with< = . Let 〈Pα, Q̇α : α < �1〉
be a finite support forcing iteration. Suppose that for all α < �1, �α “Q̇α is ccc and∣∣Q̇α∣∣ ≤ ”. And suppose that for all even α < �1, �α Q̇α = C. Here C denotes the
Cohen forcing adjoining  many Cohen reals. Then, ��1 KT(ℵ1).

Proof. This proof is based on [6, Theorem 3.3].
Let G be a (V,P�1 )-generic filter.
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Let L be a countable language andM 0 ≡M 1 be two L-structures of size ≤ ℵ1 in
V [G ]. Take sequences 〈Mli : i < �1〉 for l = 0, 1 that are increasing and continuous
such that eachMli is countable elementary substructure ofMl andMl =

⋃
i<�1
Mli .

We can take an increasing sequence 〈αi : i < �1〉 of even ordinals such that Mli ∈
V [Gαi+1] for every l < 2 and i < �1.

For i < �1 and � < , let ci� be the �-th Cohen real added by Q̇αi .
Take an enumeration 〈X	 : 	 <  · �1〉 of P(�) such that 〈X	 : 	 <  · (i + 1)〉 ∈

V [Gαi+1] for every i < �1. We can take such a sequence. The reason for this is that
we can take 〈Ẋ	 :  · i ≤ 	 <  · (i + 1)〉 as an enumeration of Pαi+1 nice names for
subsets of � and put X	 = (Ẋ	)G .

For each l < 2, take an enumeration 〈fl	 : 	 <  · �1〉 of (Ml )� such thatfl·i+� ∈
(Mli )

� for every i < �1 and � <  and 〈fl	 : 	 <  · (i + 1)〉 ∈ V [Gαi+1].
For ′ < , let Gαi ,′ denote G ∩ (Pαi ∗ C′).
Now we construct a sequence of quadruples 〈(U	 , g0

	 , g
1
	 , 	) : 	 <  · �1〉 by

induction so that the following properties hold.

(1) Each U	 is a filter over �.
(2) For every l < 2, i < �1, � < , and 	 =  · i + � , gl	 ∈ (Mli )

� ∩ V [Gαi ,	 ].
(3) For every l < 2 and i < �1, 〈gl	 : 	 <  · (i + 1)〉 ∈ V [Gαi+1].
(4) Each 	 is an ordinal below . For  · i ≤ 	 ≤ 	 ′ <  · (i + 1), we have
	 ≤ 	′ .

(5) For i < �1 and l < 2, {gl	 : 	 <  · i} = {fl	 : 	 <  · i}.
(6) If  · i ≤ 	 <  · (i + 1), then U	 ∈ V [Gαi , 	 ].
(7) If 	 < � <  · �1, then U	 ⊆ U� .
(8) If 	 <  · �1 is a limit ordinal, then U	 =

⋃
�<	 U� .

(9) X	 ∈ U	+1 or � \ X	 ∈ U	+1.
(10) If ϕ(x1, ... , xn) is an L-formula, 	 =  · i + � , and 	1, ... , 	n ≤ 	, then

Yϕ,	1,...,	n defined below belongs to U	+1:

Yϕ,	1,...,	n = {k ∈ � :M 0
i |= ϕ(g0

	1
(k), ... , g0

	n (k))

⇔M 1
i |= ϕ(g1

	1
(k), ... , g1

	n (k))}.

(Construction) First we let U0 be the set of cofinite subsets of �.
Suppose that 〈U� : � ≤ 	〉 and 〈g0

� , g
1
� , � : � < 	〉 are defined. Now we will define

g0
	 , g

1
	 , 	 and U	+1. Take i and � such that 	 =  · i + � .

Suppose that 	 is even.
Let g0

	 = f0
ε	 , where ε	 is the minimum ordinal such that f0

ε	 does not belong to
{g0
� : � < 	}.
Take ′ <  such that M 0

i ,M
1
i , 〈g0

� : � ≤ 	〉, 〈g1
� : � < 	〉 ∈ V [Gαi ,′ ]. Put 	 =

′ + 1. Take a bijection �1
i : � →M 1

i in V [Gαi ,′ ]. Define g1
	 by g1

	 = �1
i ◦ ci′ .

Put Y = {Yϕ,	1,...,	n : ϕ(x1, ... , xn) is an L-formula and 	1, ... , 	n ≤ 	}. Now we
show U	 ∪ Y has the finite intersection property. In order to show it, let X ∈ U	 ,
〈ϕ
 : 
 ∈ I 〉 is a finite sequence of L-formulas and 	
1, ... , 	



n
 for 
 ∈ I are ordinals

that are less than 	. It suffices to show that the set D ∈ V [Gαi ,′ ] defined below is a
dense subset of C:

https://doi.org/10.1017/jsl.2022.77 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2022.77


916 TATSUYA GOTO

D = {p ∈ C : (∃k ∈ dom(p) ∩ X )(∀
 ∈ I )
M 0
i |= ϕ
(g0

	
1
(k), ... g0

	
n

(k), g0

	 (k)) ⇔M 1
i |= ϕ
(g1

	
1
(k), ... g1

	
n

(k), �1

i (p(k)))}.

We now prove this. Let p ∈ C.
For each k ∈ � and 
 ∈ I , put

v(k, 
) =

{
1, ifM 0

i |= ϕ
(g0
	
1

(k), ... , g0
	
n


(k), g0
	 (k)),

0, otherwise.

And for each k ∈ � put

v(k) = 〈v(k, 
) : 
 ∈ I 〉.

Then by finiteness of I 2, for some v0 ∈ I 2, we have � \ v–1(v0) ∈ U	 .
For each 
 ∈ I , put

ϕ+

 (x
1, ... , x



n
 , y) ≡

{
ϕ
(x
1, ... , x



n
 , y), if v0(
) = 1,

¬ϕ
(x
1, ... , x
n
 , y), otherwise.

Put

� ≡ ∃y
∧

∈I
ϕ+

 (x
1, ... , x



n
 , y).

Then by the induction hypothesis (10), Y�,〈	
1,...	
n
 :
∈I 〉 ∈ U	 . So take k ∈ X ∩
v–1(v0) ∩ Y�,〈	
1,...	
n
 :
∈I 〉 \ dom(p).

Since M 0
i |= �(〈g0

	
1
(k), ... g0

	
n

(k) : 
 ∈ I 〉), we have M 1

i |= �(〈g1
	
1

(k), ... g1
	
n


(k) :


 ∈ I 〉).
By the definition of �, we can take y ∈M 1

i such that M 1
i |= ϕ+


 (g1
	
1

(k), ... ,

g1
	
n


(k), y) for every 
 ∈ I . We now put q = p ∪ {(k, (�1
i )

–1(y))} ∈ C. This witnesses
denseness of D.

Now we defineU	+1 as the filter generated by U	 ∪ Y ∪ {X	} or the filter generated
by U	 ∪ Y ∪ {� \ X	}.

When 	 is odd, do the same construction above except for swapping 0 and 1. Since
the above construction below  · (i + 1) can be performed in V [Gαi+1], (3) in the
induction hypothesis holds. (End of Construction.)

Now we put U =
⋃
	<·�1

U	 , which is an ultrafilter over �. Then the function

〈([g0
	 ]U , [g

1
	 ]U ) : 	 <  · �1〉

witnesses (M 0)�/U � (M 1)�/U . �

Corollary 5.2. Con(ZFC) → Con(ZFC + cof(null) = ℵ1 < c + KT(ℵ1)).

Proof. Let A denote the amoeba forcing. Let  > ℵ1 be a regular cardinal with
< = . Let 〈Pα, Q̇α : α < �1〉 be a finite support forcing iteration such that for all
even α < �1 we have �α Q̇α = C and for all odd α < �1 we have �α Q̇α = A.

Then P�1 � KT(ℵ1) by Theorem 5.1.
Moreover, we have cof(null) = ℵ1 since the amoeba forcing A adds a null set

containing all null sets coded in the ground model (see [2, p. 106]). �
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§6. Open questions. The following three questions remain.

Question 6.1. (1) Does KT(ℵ1) imply a stronger hypothesis than mcf = ℵ1? In
particular does KT(ℵ1) imply non(meager) = ℵ1?

(2) Does KT(ℵ0) imply a stronger hypothesis than c∃ ≤ d? In particular does
KT(ℵ0) imply non(meager) ≤ cov(meager)?

(3) In the Sacks model, does KT(ℵ0) hold? (If in this model ¬KT(ℵ0) holds, we
can separate KT(ℵ0) and c∃ ≤ d.)
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