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In this study, we analyse ‘magneto-Stokes’ flow, a fundamental magnetohydrodynamic
(MHD) flow that shares the cylindrical-annular geometry of the Taylor–Couette cell
but uses applied electromagnetic forces to circulate a free-surface layer of electrolyte
at low Reynolds numbers. The first complete, analytical solution for time-dependent
magneto-Stokes flow is presented and validated with coupled laboratory and numerical
experiments. Three regimes are distinguished (shallow-layer, transitional and deep-layer
flow regimes), and their influence on the efficiency of microscale mixing is clarified. The
solution in the shallow-layer limit belongs to a newly identified class of MHD potential
flows, and thus induces mixing without the aid of axial vorticity. We show that these
shallow-layer magneto-Stokes flows can still augment mixing in distinct Taylor dispersion
and advection-dominated mixing regimes. The existence of enhanced mixing across all
three distinguished flow regimes is predicted by asymptotic scaling laws and supported
by three-dimensional numerical simulations. Mixing enhancement is initiated with the
least electromagnetic forcing in channels with order-unity depth-to-gap-width ratios. If the
strength of the electromagnetic forcing is not a constraint, then shallow-layer flows can still
yield the shortest mixing times in the advection-dominated limit. Our robust description
of momentum evolution and mixing of passive tracers makes the annular magneto-Stokes
system fit for use as an MHD reference flow.

Key words: mixing enhancement

1. Introduction

The year 2023 marked the 100th anniversary of G.I. Taylor’s seminal publication (Taylor
1923) on flow confined between two rotating concentric cylinders (Taylor–Couette flow)
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and the 70th anniversary of his work (Taylor 1953) on enhanced mixing in shear
flows (Taylor dispersion). With these two landmark papers in mind, we develop a
magnetohydrodynamic (MHD) reference flow inspired by the Taylor–Couette system that
enhances mixing at low Reynolds numbers via Taylor dispersion.

Our MHD modification of the Taylor–Couette cell uses electromagnetic body forces
rather than viscous traction to drive motion; the usually rotating sidewalls of the cylindrical
annulus are fixed and made electrically conducting. The base is kept electrically insulating,
while the lid is removed to allow free-surface flow. An applied axial magnetic field and
radial electric current drive azimuthal flow of an electrolyte, for which (i) magnetic
induction is small compared with magnetic diffusion (low magnetic Reynolds number,
Rm), (ii) magnetic drag is small relative to viscous forces (low Hartmann number, Ha),
and (iii) inertia is small compared with viscous forces (low Reynolds number, Re). Under
these conditions, the azimuthal momentum balance is dominated by the Lorentz force
and viscous drag due to the channel sidewalls and base. We term the resulting circulatory
motion ‘annular magneto-Stokes flow’.

Similar MHD flows through cylindrical-annular ducts with conducting sidewalls and
axial magnetic field have been considered since the works of Early & Dow (1950),
Anderson et al. (1959) and Braginsky (1959). Early modelling efforts focus on the
high-Hartmann-number limit for analytical convenience (Hunt & Stewartson 1965) and
relevance to liquid metal flows (Baylis & Hunt 1971). Later numerical and laboratory
works have surveyed a broader range of Hartmann numbers in closed annular ducts (Poyé
et al. 2020; Vernet et al. 2021), analysed the stability of Hartmann layers (Moresco &
Alboussire 2004) and studied the effects of modified electric boundary conditions (Stelzer
et al. 2015a,b) in cylindrical-annular MHD flows. Recently, liquid metal experiments
(Vernet, Fauve & Gissinger 2022) in a similar geometry have accessed a regime of
Keplerian turbulence representative of flows in astrophysical disks.

In contrast to the above studies involving large-scale liquid metal systems, applications
of MHD to microfluidic mixing devices have generated interest in low-Hartmann-number
flows (West et al. 2003; Khal’zov & Smolyakov 2006) appropriate for electrolytes. Initial
efforts to model annular magneto-Stokes flow (Gleeson & West 2002; Gleeson et al.
2004; Digilov 2007) assumed an infinitely deep layer, arriving at a two-dimensional (2-D)
asymptotic solution. Pérez-Barrera et al. (2015) and Pérez-Barrera, Ortiz & Cuevas (2016)
later considered channels of finite depth, solving specifically for the vertically averaged
velocity profile 〈uθ 〉z(r). Following this, Ortiz-Pérez et al. (2017) and Valenzuela-Delgado
et al. (2018a,b) used a (semi-analytical) Galerkin approximation to predict steady,
axisymmetric flow over radius and depth, uθ (r, z). A fully analytical solution uθ (r, z, t)
for time-dependent annular magneto-Stokes flow does not exist in the literature, to
our knowledge, despite the simplicity of the governing equation. Further, there is little
discussion of the range of channel geometries for which the deep-layer approximation
is valid. Yet, the assumption of infinite depth has been made for engineering problems
involving shallow-layer flows (e.g. West et al. 2003) with strong vertical shear that depart
greatly from the 2-D deep-layer solution.

In this study, we unify and extend these previous efforts by: (i) providing the
first complete analytical solution for time-dependent flow uθ (r, z, t) in a channel
of arbitrary depth (§ 2), which we validate with laboratory experiments and direct
numerical simulations (DNS) (§§ 3, 4); (ii) correctly distinguishing deep, transitional and
shallow-layer flow regimes in terms of the appropriate geometric parameter (§ 2); (iii)
deriving the shallow-layer asymptotic solution (§ 2); (iv) applying these findings to the
design of a microfluidic mixer (§ 5); and (v) showing that the onset of shear-enhanced
mixing occurs with the least electromagnetic forcing in the transitional flow regime (§ 5).
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Magneto-Stokes flow in a shallow free-surface annulus
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Figure 1. (a) Diagram of the magneto-Stokes system. A power supply controls the electric current I through
the fluid layer. Radially outwards (+er) current density J and downwards (−ez) magnetic field B produce an
azimuthal (+eθ ) Lorentz force F on the fluid. (b) Photograph of the channel used in laboratory experiments,
with flow visualised by blue dye. The channel rests atop a wooden case of permanent magnets, which is replaced
by a solenoid electromagnet (not pictured) for cases I–IV discussed in § 3.

2. Theory

2.1. Axisymmetric governing equations
We consider a free-surface layer of conducting fluid of depth h in the annular gap between
two cylindrical electrodes of radius ri and ro (ri < ro). A controlled current I runs through
the fluid from inner to outer electrode, and the entire annulus is subject to a vertical,
imposed magnetic field B = −B0ez. Figure 1(a) shows a schematic of the annular channel
with the imposed magnetic field and current. For a low-conductivity fluid like saltwater
and small B0, the magnetic field is quasi-static (e.g. Knaepen & Moreau 2008; Favier
et al. 2011; Davidson 2016; Verma 2017) and the total Lorentz force on the fluid may be
expressed as the sum of the applied driving force and magnetic drag,

F = J × B = σ(E × B) − σB2
0(urer + uθeθ ), (2.1)

after using Ohm’s law to express the current density J in terms of the electrical
conductivity of the fluid σ , the imposed electric field E and the fluid velocity u.

Letting U denote a characteristic velocity scale, the magnitude of the magnetic drag
(∼σB2

0U) may be compared with that of the viscous drag (∼�νU/h2) by means of the
Hartmann number,

Ha =
√

σB2
0U

�νU/h2 = B0h
√

σ

�ν
, (2.2)

where � and ν are the density and kinematic viscosity of the fluid, respectively.
In our experiments, Ha � 10−2 and thus the only component of current density J that

makes a significant contribution to the Lorentz force is σE, which may be determined
purely from the electric boundary conditions. A DC power supply can control the voltage
across the sidewalls such that the total current I is set to a desired value at each time t. In
this case, current rather than voltage is used as a control parameter, and the Lorentz force
is appropriately expressed as

F = σ(E × B) = B0I(t)
2πrh

eθ , (2.3)

neglecting any fringing of electric field lines due to the finite fluid depth (i.e. assuming
that ∂zE = 0).
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The resulting circulatory flow is governed by the incompressible equations of motion,

∂tu + u · ∇u = − 1
�

∇p + ν∇2u + 1
�

F , ∇ · u = 0, (2.4a,b)

where p is the deviation in pressure from the static pressure field �g(h − z).
We scale radial distances r by the outer sidewall radius ro, vertical distances z by the

fluid depth h and electric current I by its maximum value I0, defining the non-dimensional
quantities ρ = r/ro, ζ = z/h and Υ = I/I0. A velocity scale U may be found by balancing
the basal viscous drag (∼2νU/h2) and Lorentz forces (∼B0I0/[πh�(ri + ro)]) at the
surface mid-gap, z = h, r = (ri + ro)/2:

U = B0I0h
2πν�(ri + ro)

. (2.5)

This scale is used to produce the non-dimensional velocity υ = υρer + υθeθ +
(h/ro)υζ ez, with components υρ = ur/U, υθ = uθ /U and υζ = (ro/h)uz/U. An inertial
scale �U2 is used to non-dimensionalise reduced pressure as Π = p/(�U2). Time is
non-dimensionalised as τ = t/T by a surface mid-gap advective time scale:

T = ri + ro

U
. (2.6)

In sum, our non-dimensionalisation makes the mapping

(u, p, I)(r, θ, z, t) �→ (υ, Π, Υ )(ρ, θ, ζ, τ ). (2.7)

We introduce an a priori control Reynolds number Re and a magnetic Reynolds number
Rm,

Re = h2/ν

T
= B0I0h3

2πν2�(ri + ro)2 and Rm = h2/η

T
= ν

η
Re, (2.8a,b)

where η = (μ0σ)−1 is the fluid’s magnetic diffusivity and μ0 is the magnetic permeability
of free space. For Rm � 1, magnetic diffusion dominates over advection, and the
quasi-static description of the Lorentz force (2.3) is valid (e.g. Knaepen & Moreau
2008; Favier et al. 2011; Davidson 2016; Verma 2017). As defined, Rm � 10−10 for our
experiments.

Also relevant are the radius ratio R, aspect ratio H and depth-to-gap-width ratio Γ :

R = ri/ro, H = h/ro, and Γ = h/(ro − ri) = H/(1 − R). (2.9a–c)

Symbols for all dimensional parameters are listed in table 1. Definitions of scales
and non-dimensional parameters are collected in table 2. The full non-dimensional
axisymmetric equations in scaled cylindrical coordinates (ρ, θ, ζ ) may be found in
Appendix A.

We assume vertical hydrostasy, 0 = ∂ζΠ , and cyclostrophic balance, υ2
θ /ρ = ∂ρΠ ,

achieved via deflection of the free surface. Under these conditions, the meridional flow
υ⊥ = υρer + Hυζ ez vanishes, leaving a linear equation for azimuthal magneto-Stokes
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Magneto-Stokes flow in a shallow free-surface annulus

Symbol Description

ri, ro Inner and outer sidewall radii (m)
h Depth of fluid (m)
g Gravitational acceleration (m s−2)
ν Kinematic viscosity (m2 s−1)
� Density (kg m−3)
σ Electrical conductivity (S m−1)
γ Surface tension (N m−1)
κc Tracer diffusivity (m2 s−1)
μ0 Magnetic permeability of free space (kg m s−2 A−2)
I0 Maximum electric current amplitude (A)
B0 Magnetic flux density (magnitude) (T)
δi, δo, δb 95 % thickness of inner, outer, and basal boundary layers (m),

defined in (2.23a,b), (2.28)

Table 1. Dimensional parameter definitions. Values are given in § 3.

Symbol Definition Eq. Description

U B0hI0/[2πν�(ri + ro)] (2.5) Shallow-layer velocity scale (m s−1)
Udeep B0I0(ro − ri)

2/[8πhν�(ri + ro)] (2.25) Deep-layer velocity scale (m s−1)
uθ,mid-gap Uῡθ (ρ = (1 + R)/2, ζ = 1) (2.24) Surface mid-gap value

of steady solution (2.16) (m s−1)
T (ri + ro)/U (2.6) Advective time scale (s)
Tsu 4h2/(π2ν) (2.19) Spin-up time scale (s)
Tcirc π(ri + ro)/uθ,mid-gap (5.19) Surface mid-gap

circulation time (s)

Ha B0h
√

σ0/(�ν) (2.2) Hartmann number
Re h2/(νT) = B0I0h3/[2π�ν2(ri + ro)

2] (2.8a) Control Reynolds number
Rm νμ0σ0Re (2.8b) Magnetic Reynolds number
Fr U/

√
gh (2.13) Froude number

Bo �gh2/γ (2.14) Bond number
R ri/ro (2.9a) Sidewall radius ratio
H h/ro (2.9b) Aspect ratio
Γ h/(ro − ri) (2.9c) Depth-to-gap-width ratio
Δi, Δo, Δb δi/(ro − ri), δo/(ro − ri), δb/h (2.23a,b), (2.28) Inner, outer and basal

boundary layer thicknesses
Sc ν/κc (5.9a) Schmidt number
Pe ScRe = h2/(κcT) (5.9b) Péclet number
Pecirc uθ,mid-gapr2

o/(Uπh2) Pe = r2
o/(κcTcirc) (5.20) Circulation Péclet number

P̃e (2π(1 + R)2/H3) Pe = B0I0ro/(�νκc) (5.21) Electromagnetic forcing
Péclet number

Table 2. Scales and non-dimensional parameters. All quantities below the dashed line are non-dimensional.

flow,

Re ∂τυθ = ∇2
⊥υθ − H2 υθ

ρ2 + R + 1
ρ

Υ (τ), (2.10)

where we have defined the operator

∇2
⊥(·) =

[
H2ρ−1∂ρρ∂ρ + ∂2

ζ

]
(·). (2.11)
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We consider the rectangular domain (ρ, ζ ) ∈ (R, 1) × (0, 1) with boundary conditions

υθ(R, ζ, τ ) = υθ(1, ζ, τ ) = υθ(ρ, 0, τ ) = [
∂ζ υθ

]
ζ=1 = 0. (2.12)

This approximation to the free-surface boundary conditions is appropriate as long as
the deflection due to capillary action and centrifugation is negligible (e.g. Greenspan &
Howard 1963). The Froude number Fr compares the deflection of the free surface due to
centrifugation (∼U2g−1) with the depth of the fluid (h):

Fr =
√

U2g−1/h. (2.13)

Surface deflection due to capillary rise or dewetting is characterised by the capillary
length (e.g. Martino et al. 2006), l = √

γ /(�g). The Bond number Bo compares this length
scale with the fluid depth:

Bo = (h/l)2 = �gh2/γ. (2.14)

In our validation experiments, Fr � 10−2 and Bo � 4.4, so we adopt (2.12).

2.2. Spin up from rest
Solutions to (2.10), (2.12) that develop from an initially quiescent fluid (υθ = 0 at τ = 0)
once constant electric current is applied (Υ = 1 for τ > 0) may be expressed as

υθ(ρ, ζ, τ ) = ῡθ (ρ, ζ ) + υ ′
θ (ρ, ζ, τ ). (2.15)

The stationary component is

ῡθ (ρ, ζ ) =
(R + 1

2

)
2ζ − ζ 2

ρ

−
∞∑

n=1

2(R + 1)

k2
nH

[
AnI1

(
kn

Hρ

)
+ BnK1

(
kn

Hρ

)]
sin(knζ ), (2.16)

with

An = H
knR

[ RK1 (knR/H) − K1 (kn/H)

I1 (kn/H) K1 (knR/H) − K1 (kn/H) I1 (knR/H)

]
, (2.17a)

Bn = I1 (kn/H) − RI1 (knR/H)

RK1 (knR/H) − K1 (kn/H)
An, (2.17b)

where I1 and K1 denote modified Bessel functions of the first and second kind,
respectively, and kn = π(n − 1/2).

The exact form of the time-dependent component υ ′
θ (ρ, ζ, τ ) is provided in

Appendix A, but is well approximated for shallow layers (Γ � 1) by

υ ′
θ (ρ, ζ, τ ) ≈ −ῡθ (ρ, ζ ) exp

(
− Tτ

Tsu

)
, (2.18)

where the characteristic time scale for spin up from rest is

Tsu = 4Re
π2 T = 4h2

π2ν
. (2.19)
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Magneto-Stokes flow in a shallow free-surface annulus
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Figure 2. (a) Stationary magneto-Stokes flow solution given by (2.16) for a channel with geometric ratios H =
0.05 and R = 0.25. Labelled contours trace the solution profile at different heights ζ above the channel base.
A dash-dotted grey line shows the solution in the shallow limit (Γ → 0), and yellow dashed lines correspond
to the 95 % thicknesses of the sidewall boundary layers. (b) Magnitude of the surface mid-gap velocity as a
function of depth-to-gap-width ratio Γ for a channel with R = 0.9. The exact solution (black) is computed
using (2.16). The curves corresponding to shallow- (teal) and deep-layer (pink) asymptotic solutions are plotted
using (2.20) and (2.26), respectively.

2.3. Shallow- and deep-layer regimes
The first term in (2.16) is equal to the asymptotic solution in the shallow-layer limit Γ → 0:

lim
Γ →0

ῡθ =
(R + 1

2

)
2ζ − ζ 2

ρ
, (2.20)

which inherits the inverse dependence on radius of the Lorentz force (since ‖J‖ ∝ 1/r).
The surface velocity profile is then identical to Taylor–Couette flow with inner and outer
sidewall rotation rates given by

Ωi = B0I(t)h

4π�νr2
i

and Ωo = B0I(t)h
4π�νr2

o
, (2.21a,b)

and naturally shares Taylor–Couette flow’s kinematic reversibility for Re � 1 (Taylor
1967).

For H > 0, the series in (2.16) produces boundary layers at both sidewalls with 95 %
thicknesses δi, δo defined such that

ῡθ = 0.95 lim
Γ →0

ῡθ at ρ = (ri + δi)/ro, (ro − δo)/ro, ζ = 1. (2.22)

Figure 2(a) shows the stationary solution given by (2.16) for a channel with geometric
ratios H = 0.05 and R = 0.25. Contours correspond to different vertical positions ζ

within the fluid, and dashed yellow lines indicate the 95 % thicknesses of the sidewall
boundary layers. The size of each boundary layer relative to the channel width scales as

Δi ≡ δi

ro − ri
≈ 2.51Γ 1.08, Δo ≡ δo

ro − ri
≈ 2.11Γ 1.06. (2.23a,b)

All numerical factors and powers in (2.23a,b) are fit to values of Δi, Δo computed from
(2.16) for 0.01 � H � 0.3 and 0.01 � R � 0.99.
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The scalings (2.23a,b) predict a shallow-layer regime in which sidewall boundary layers
are distinct (i.e. Δi + Δo < 1) for Γ � 0.24. This regime is also characterised by the
growth of the mid-gap velocity magnitude

uθ,mid-gap = Uῡθ (ρ = R/2 + 1/2, ζ = 1), (2.24)

with layer depth h necessary for the basal viscous drag (∼2νU/h2 ∝ Uh−2) to balance the
Lorentz force (∼B0I0/[πh�(ri + ro)] ∝ h−1). Figure 2(b) shows the growth of uθ,mid-gap
(black curve) with layer depth closely following the linear dependence predicted by the
asymptotic shallow-layer solution (2.20) (teal curve) for Γ � 0.24.

If the layer depth is increased (while still keeping inertial forces small, Re � 1), the
dominant balance of Lorentz and sidewall viscous drag forces (∼8νUdeep/[ro − ri]2) leads
to an alternate velocity scale

Udeep = B0I0(ro − ri)
2

8πhν�(ri + ro)
= U

4Γ 2 . (2.25)

Using Udeep to non-dimensionalise velocity as wθ = uθ /Udeep, the steady solution for an
infinitely deep channel is

lim
Γ →∞

w̄θ = 2
(
1 − ρ2)R2 log(R) − 2

(
1 − R2) ρ2 log (ρ)

(1 − R)3ρ
. (2.26)

See Gleeson et al. (2004) for the dimensional form of (2.26).
For deep channels of finite depth (0.24 � Γ < ∞), flow is invariant with height outside

of a basal boundary layer with 95 % thickness δb defined such that

w̄θ = 0.95 lim
Γ →∞

w̄θ at ρ = (1 + R)/2, ζ = δb/h. (2.27)

The relative thickness scales as

Δb ≡ δb/h ≈ 0.831Γ −0.961. (2.28)

The numerical factor and power in (2.28) are fit to values of Δb computed from (2.16) for
1 � H � 20 and 0.01 � R � 0.99.

We may then define a deep-layer regime with the condition Δb < 0.2, satisfied for
Γ � 4.4. This regime is also characterised by the decrease of uθ,mid-gap with layer depth,
since the dependence of uθ,mid-gap on h is mainly controlled by the Lorentz force (∝ h−1).
Figure 2(b) shows the change in uθ,mid-gap (black curve) with layer depth closely following
the inverse dependence predicted by the asymptotic deep-layer solution (2.26) (pink curve)
for Γ > 1.

Figure 3(a) uses the conditions Δi + Δo < 1 and Δb < 0.2 with the scalings (2.23a,b),
(2.28) to demarcate shallow- and deep-layer regimes in the space of aspect and radius
ratios. Teal, purple and pink dots in figure 3(a) correspond to shallow-layer, transitional
and deep-layer flows in channels of the same radius ratio R = 0.9, whose predicted radial
and vertical profiles are plotted in panels (b,c), respectively. Asymptotic shallow- and
deep-layer solutions (2.20), (2.26) are plotted as dashed curves.

3. Experimental methods

We validate the approximate solution (2.15) via four laboratory experiments (cases
I–IV), matched with DNS of the nonlinear axisymmetric flow governed by (A1), (A2).
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Magneto-Stokes flow in a shallow free-surface annulus
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Figure 3. (a) Regime diagram for annular magneto-Stokes flow in the space of radius ratiosR and aspect ratios
H. Renderings of cylindrical annuli correspond to axes values. Background tones grade from cool to warm
with increasing Γ . A solid grey line indicates the boundary Δi + Δo ≈ 1 (predicted by (2.23a,b)) between
shallow-layer and transitional regimes, while a dashed grey line indicates the boundary Δb ≈ 0.2 (predicted
by (2.28)) between transitional and deep-layer regimes. Points labelled with roman numerals correspond to
laboratory cases discussed in §§ 3, 4. Open markers correspond to DNS cases discussed in § 5.2. (b) A
comparison of magneto-Stokes flows in channels of varying depth-to-gap-width ratio Γ at a fixed radius ratio
R = 0.9. Plotted are radial profiles of surface azimuthal velocity predicted from theory (2.16) and scaled by
surface values at the channel centre, uθ,mid-gap. Solid curves correspond to open markers of the same colour in
the regime diagram (panel a). Dashed teal and pink curves show the corresponding shallow (2.20) and deep
(2.26) asymptotic solutions, respectively.

This complementary approach permits us to test various physical effects not accounted
for in our model: the DNS test the impact of meridional flow alone, while the laboratory
experiments add the effects of surface tension and a dynamic free surface. The results of
these validation cases are discussed in § 4. An additional laboratory experiment (case HS)
is detailed in § 5.

3.1. Laboratory experiments
Validation experiments (cases I–IV) are performed using an open-top annular channel
consisting of a 17.5 cm-radius steel outer cylindrical sidewall, acrylic base and a removable
stainless steel inner cylindrical sidewall, which may be replaced with cylinders of different
radii. The channel is placed inside the solenoidal electromagnet bore of UCLA’s RoMag
device (Xu, Horn & Aurnou 2022), and a DC bench power supply provides a controlled
current I between the channel sidewalls. An 80.0 ± 0.05 g l−1 NaCl : H2O solution is used
as the working fluid for all cases; 0.1 ml of dish detergent is added for every litre of solution
to reduce surface tension, which is measured as γ = 38 ± 4 mN m−1 using the capillary
rise method (e.g. Martino et al. 2006). The fluid is estimated to have electrical conductivity
σ = 12.3 ± 0.1 S m−1, kinematic viscosity ν = (1.10 ± 0.05) × 10−6 m2 s−1 and density
� = 1059.1 ± 0.7 kg m−3, using the salinity-based models of Park (1964), Isdale, Spence
& Tudhope (1972) and Isdale & Morris (1972), respectively.

Inner radius, fluid height, electric current and magnetic field strength are varied across
cases I–IV; values of these dimensional parameters are reported in table 3. Cases I–IV
span three different radius ratios R = 0.25, 0.44, 0.58 and two different aspect ratios H =
0.023, 0.046; these values correspond to the solid points in figure 3(a). Fluid depth is kept
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Case I0 (a) B0 (mT) h (cm) ri (cm) ro (cm) U (cm s−1)
(±0.003 A) (±0.05 cm) (±0.03 cm) (±0.03 cm)

I 0.081 30.0 ± 0.2 0.4 4.44 17.52 0.56 ± 0.08
II 0.099 30.0 ± 0.6 0.4 7.62 17.52 0.63 ± 0.09
III 0.039 20.0 ± 0.4 0.8 7.62 17.52 0.36 ± 0.04
IV 0.099 35 ± 1 0.4 10.14 17.52 0.7 ± 0.1
HS 0.060 190 ± 1 0.2 3.75 9.84 0.24 ± 0.06

Table 3. Dimensional experimental parameters and predicted velocity U at surface mid-gap (z = h, r = [ri +
ro]/2), computed using (2.5). Error in values of U reflect the propagation of measurement uncertainty of the
control parameters.

Case R H Re Fr Bo Ha Rm

I 0.25 0.023 0.38 0.030 4.4 0.012 6.6 × 10−12

II 0.44 0.023 0.36 0.032 4.4 0.012 6.3 × 10−12

III 0.44 0.046 0.78 0.012 18 0.016 1.3 × 10−11

IV 0.58 0.023 0.35 0.034 4.4 0.014 6.1 × 10−12

HS 0.38 0.020 0.058 0.016 1.1 3.8 × 10−3 1.0 × 10−12

Table 4. Non-dimensional experimental parameters. The radius ratio R, aspect ratio H, control Reynolds
number Re, Froude number Fr, Bond number Bo, Hartmann number Ha and magnetic Reynolds number Rm
are defined in § 2.

above the capillary length l = 0.19 ± 0.01 cm (Bo > 1) to minimise relative differences
in depth due to capillary action. Voltage across the electrodes is maintained under ∼1.5 V
to prevent electrolysis of water. Under this constraint, electric current and magnetic field
strength are held between 0.04 and 0.1 A and 20 and 35 mT, respectively, to keep Re < 1
and Fr2 � 1. Values of these non-dimensional control parameters are reported in table 4.

Before the start of each case (I–IV), a streak of buoyant blue dye is drawn across
the quiescent fluid surface. From t = 0 to t = 0.5πT , the power supply drives a
constant current I0, and an overhead camera records the dye advection. Blue-channel
thresholding and Canny edge detection (Canny 1986; Bradski 2000) are applied to the
perspective-corrected video in order to track the (Lagrangian) angular position θ(r, t) of
the leading dye streak edge. Uncertainty in θ(r, t) is computed as the change in estimated
position under a 10 % adjustment of colour threshold values. At every �t = 0.5Tsu, θ is
determined at 15 points across the channel (in r), excluding the menisci at the sidewalls
where dye spreads rapidly via adhesion instead of advection. A time series of surface
velocity uθ (r) is then estimated via second-order central difference of θ(r, t) over time.

3.2. Direct numerical simulations
Cases I–IV are matched with DNS of nonlinear, axisymmetric flow governed by (A1), (A2)
with initially quiescent flow (υ = 0 at τ = 0, Υ = 1 for τ > 0) and no-slip conditions on
all boundaries except for the surface, which is treated as a free-slip rigid lid: υ(R, ζ, τ ) =
υ(1, ζ, τ ) = υ(ρ, 0, τ ) = 0, [∂ζ υρ]ζ=1 = [∂ζ υθ ]ζ=1 = υζ (ρ, 1, τ ) = 0. We employ the
Dedalus pseudospectral framework (Burns et al. 2020), expanding υζ in 512 sine modes
in ζ and all other fields in 512 cosine modes in ζ ; all fields are expanded in ρ with 256
Chebyshev modes. The no-slip condition is enforced at ζ = 0 using the volume-penalty
method (Hester, Vasil & Burns 2021), which adds spatially masked linear damping terms
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t/T = 0, t/Tsu = 0, t/T = 0.25π, t/Tsu = 5.1 t/T = 0.5π, t/Tsu = 10.2

Theory DNS Boundary layersLab dye

(a) (b) (c)

Figure 4. Snapshots of a free-surface dye track (blue) from laboratory case I, (a) when power is turned on,
(b) after ∼5 spin up times and (c) after ∼10 spin up times. Time integrations of the approximate analytical
solution (2.15) and DNS result are overlain as magenta and grey curves, respectively. Dotted yellow circles
correspond to the 95 % thickness of each sidewall boundary layer as predicted from (2.15). The red cord near
the 12 o’clock position in each photograph is the electrical wire leading from the power supply to the inner
electrode.

−G(ζ/δ)υρ/τVP, −G(ζ/δ)υθ/τVP, −G(ζ/δ)υζ /τVP to the corresponding components
of the axisymmetric momentum equation (A1), where G(x) = [1 − erf(

√
πx)]/2 is a

masking function and τVP is the volume-penalty damping time scale non-dimensionalised
by T . The masking function is smoothed over a vertical length scale δ (set here to
δ = 0.01), which is used to determine an appropriate value for τVP. This is effected by
requiring the damping length scale

√
τVP/Re to be proportional to the smoothing scale:√

τVP/Re = δ/δ∗. The proportionality constant δ∗ is set to the optimal value found by
Hester et al. (2021), δ∗ = 3.11346786; this choice of δ∗ eliminates the displacement length
error associated with the mask, G(x). See Hester et al. (2021) for details on optimising the
volume-penalty method.

In all simulations, the system is integrated from τ = 0 to τ = 1.1π over 104 time steps
using the second-order semi-implicit backwards difference (SBDF2) scheme (Wang &
Ruuth 2008, (2.8)). Acceleration, pressure and rectilinear viscous terms are time integrated
implicitly; the remaining terms are treated explicitly.

Reported results match those obtained at half their spatial resolution as well as
the analytical solution at t = 3Tsu. The code used for these simulations and for
the dye-tracking described in § 3.1 is available online (https://github.com/cysdavid/
magnetoStokes).

4. Results

Figure 4 shows three photographs of laboratory case I, taken when power is turned on
(a), after 0.25 circulation times (b) and after 0.5 circulation times (c). The time-integrated
analytical solution (2.15) and DNS results are overlain in magenta and grey, respectively.
Laboratory, analytical and numerical results match well in the bulk, differing most within
the boundary layers (dashed yellow lines). A close up (b, inset) of the inner boundary layer
shows the laboratory dye streak and DNS curve trailing behind the analytical solution,
resulting from the parasitic effect of meridional circulation on the steady-state azimuthal
flow and from a lag in spin-up. The bulk flow also exhibits finite spin-up time effects. In

996 A33-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/cysdavid/magnetoStokes
https://github.com/cysdavid/magnetoStokes
https://doi.org/10.1017/jfm.2024.674


C.S. David, E.W. Hester, Y. Xu and J.M. Aurnou

0.25

3

t/Tsu = 1 t/Tsu = 2 t/Tsu = 3
(a) (b) (c)

2 1/ρ 1/ρ 1/ρ

1

0

3

Lab data
DNS
Theory

2

1

0

3

2 0.50

2

1

0
0.50 0.75

ρ
1.00

Case I Case II Case III Case IV

0.25 0.50 0.75
ρ

1.00 0.25 0.50 0.75
ρ

1.00

u θ
/
U

 a
t 
ζ 

=
 1

2

R  
+

 1

Figure 5. Radial profiles of scaled azimuthal velocity at the free surface for cases I–IV at (a) 1 spin-up time
after rest, (b) 2 spin-up times and (c) 3 spin-up times. Solid theoretical curves are computed using (2.15). The
DNS are shown via dashed curves. Also plotted is the 1/ρ profile (dash-dotted grey curve) corresponding to the
shallow (Γ → 0), long-time solution (2.20) at ζ = 1. Error bars represent ±1 standard deviation propagated
from uncertainty in the dye-tracking velocimetry algorithm and from uncertainty in the predicted velocity scale
U used to normalise the data. Rendered cylindrical annuli in the lower legend depict the channel geometry of
each case.

each panel of figure 4, a magenta dot is placed on the analytical curve at r = (ri + ro)/2.
For flow that has fully spun up, πT is the time it takes for this dot to make one revolution.
In figure 4(b), the magenta dot has travelled slightly less than a quarter revolution from
t = 0 to t = 0.25πT , a product of the finite Re value in our experiments.

Figure 5 plots radial profiles of scaled azimuthal velocity for all four cases. Included
are laboratory data (points), DNS results (dashed curves) and the approximate analytical
solution given by (2.15) (solid curves) after 1 spin-up time (a), 2 spin-up times (b)
and 3 spin-up times (c). Bars on the data points correspond to error introduced by
the dye-tracking algorithm and from measurement uncertainty propagated through the
computed velocity scale U. The scaled velocity profiles evolve towards the 1/ρ curve
(grey dash-dotted line) over time, apart from the boundary layers. A close up of the inner
boundary layer for the two cases with R = 0.44 (panel c, inset) shows a clear separation
between the profiles for H = 0.023 (case II) and H = 0.046 (case III) and excellent
agreement with theory.

A slight separation between data, DNS, and theory at case I’s peak in velocity (near
ρ = 0.3) for t/Tsu � 2 can be seen in figure 5(a,b). The laboratory flow (blue points) spins
up slower than the approximate solution (solid blue line), while the DNS result (dashed
blue line) spins up faster. The gap between laboratory data and theory may be related to
the dynamic adjustment of the free surface or the reduction of current density at sidewall
menisci. In contrast, the gap between theory and DNS is largely the result of the sidewall
viscous drag’s effect on spin-up. As evident in the full solution in Appendix A, features
with higher spatial frequency in the radial direction (e.g. the sharp peak near ρ = 0.3)
spin up faster than lower frequency features. This effect is neglected in the approximate
solution (2.15) but is retained in the DNS.

These finite-Re simulations also retain nonlinear advection, and each DNS case exhibits
a steady (for t � Tsu) clockwise vortex in the ρ, ζ -plane near the inner sidewall where
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Magneto-Stokes flow in a shallow free-surface annulus

centrifugal forces are strongest (cf. Norouzi & Biglari 2013). This meridional circulation
has a parasitic effect on the azimuthal flow, resulting in the slight gap between DNS and
theory in figure 5(c). The largest root mean square error between theory and DNS (case
I) is 3.3 % of the average DNS azimuthal velocity at t = 3Tsu. This difference is smaller
than the error bars on the laboratory data and is expected to vanish with decreasing Re.

5. Low-Re mixing in magneto-Stokes flow

The expansion of ‘lab on a chip’ technology across a range of industrial and biomedical
fields has increased demand for microfluidic devices that can efficiently mix chemical
species at low Re (Pamme 2006; Mansur et al. 2008; Jeong et al. 2010). Magneto-Stokes
systems (Yi, Qian & Bau 2002; West et al. 2003; Gleeson et al. 2004) are particularly
well suited to this purpose because they have no moving components that require
miniaturisation and they work in simple, easily fabricated channel geometries (cf. Ehrfeld
et al. 1999; Bertsch et al. 2001).

In the following subsections, we analyse the properties of magneto-Stokes flow relevant
to low-Re mixing. The design of efficient micromixers often focuses on the generation
of vortices (Sudarsan & Ugaz 2006; Chang & Yang 2007 and reference therein),
which tend to augment mixing (e.g. Cetegen & Mohamad 1993). Therefore, in § 5.1,
we determine the conditions under which the Lorentz force can produce vorticity in
shallow-layer magneto-Stokes flows in arbitrary (2-D) channel geometry. In micromixers
that drive flow via electroosmosis rather than MHD, the generation of vorticity hinges
on breaking the similitude between velocity and the electric field (Cummings et al.
2000). An analogous similitude property exists for many magneto-Stokes flows, including
our annular configuration, for which the 2-D velocity field and the Lorentz force are
everywhere proportional by the same amount. In contrast to electroosmotic flows, annular
magneto-Stokes flow is irrotational even when obstacles are placed in the channel to break
similitude (cf. the obstacle-induced electroosmotic vortices in Dukhin 1991; Ben & Chang
2002).

We show in § 5.2 that, despite the lack of significant axial vorticity, shallow-layer
annular magneto-Stokes flow enhances mixing via Taylor dispersion (Taylor 1953; Aris
1956) or through an advectively dominated mechanism similar to that of a point-vortex
flow (Rhines & Young 1983; Flohr & Vassilicos 1997). Our results extend to transitional
and deep-layer flows, and they demonstrate that shear enhancement of mixing is initiated
for the least electromagnetic effort (B0I0) in Γ ≈ 1 channels.

5.1. Irrotationality in shallow-layer magneto-Stokes systems
We consider a magneto-Stokes micromixer of uniform depth h and arbitrary planform
(i.e. lateral boundary geometry) placed in a vertical magnetic field B = Bzez. The
governing equation (2.10) generalises to

Re (∂τυ + υ · ∇2Dυ) = −∇2DP + H2∇2
2Dυ + ∂2

ζ υ + f , ∇2D · υ = 0, (5.1a,b)

where we now permit non-axisymmetry and lateral pressure gradients but retain vertical
hydrostasy (υ · ez = 0). Here, we have altered the non-dimensionalisation in § 2.1 to
use a generic horizontal length scale L in place of ro, ri, and defined ∇2D such that
∇(·) = h−1[H∇2D + ez∂ζ ](·). Dimensionless pressure P and horizontal Lorentz force f
have been scaled with �νULh−2 and �νUh−2, respectively.

In the limits Re,H → 0, appropriate for lab-on-a-chip systems, we make a Hele-Shaw
approximation (Hele-Shaw 1898) motivated by the form of the annular shallow-layer
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solution (2.20): υ = (2ζ − ζ 2)υ2D where ∂ζυ2D = 0. Applying these assumptions to
(5.1a,b) yields

υ2D = 1
2 ( f − ∇2DP) , n · υ2D = 0 on ∂D, (5.2a,b)

where n denotes the unit vector normal to the lateral boundaries ∂D. Then, the quasi-2-D
flow is irrotational if and only if

ez · (∇2D × f ) = h2σ

�νU

[
Bz∂zEz − (E · ∇) Bz

] = 0, (5.3)

where we have used Gauss’s law (∂zBz = 0) and neglected free charges (∇ · E = 0). Thus,
vorticity can be generated in a magneto-Stokes micromixer given strong vertical gradients
in Ez or horizontal gradients in Bz.

Since the quasistatic electromagnetic fields can be prescribed, the resulting 2-D flow
may be readily predicted using (5.2a,b) after solving the pressure equation,

∇2
2DP = ∇2D · f , n · ∇2DP = n · f on ∂D. (5.4a,b)

This problem is greatly simplified if the Lorentz force is non-divergent:

∇2D · f = h2σ

�νU
E · (∇ × B) = 0, (5.5)

and if the boundaries are perfectly conducting:

n × E = 0 on ∂D, (5.6)

such that n · f = 0 on ∂D. The relations (5.4a,b)–(5.6) imply ∇2DP = 0 identically,
which results in similitude between the prescribed Lorentz force and the resultant velocity
field: υ2D = 1

2 f .
An analogous similitude exists for some electrokinetic flows, where the velocity is

proportional to the applied electric field instead of the Lorentz force (Cummings et al.
2000). These electrokinetic flows are necessarily irrotational by nature of the quasistatic
electric fields used to drive them, and thus the key to generating vorticity lies in breaking
similitude (Dukhin 1991; Ben & Chang 2002). In contrast, 2-D magneto-Stokes flows are
only irrotational if (5.3) is satisfied, which is independent of the similitude conditions
(5.5), (5.6). Thus, magneto-Stokes micromixers can benefit simultaneously from the
presence of vorticity and the analytical convenience of similitude between the velocity
and imposed Lorentz force.

If (5.3), (5.5) and (5.6) are all satisfied, as is the case for the annular device considered in
this work, then the Lorentz force and velocity are proportional to the gradient of a potential
Φ that is possibly multi-valued (like that of a point vortex; Lamb 1906). Potential flow is
maintained even when similitude is broken (e.g. by the addition of an electrically insulating
obstacle to the flow). The only change is the contribution of pressure to the total potential:

υ2D = 1
2∇2D (Φ − P) . (5.7)

The pressure field P may be constructed to enforce the no-flux condition on the lateral
boundaries using potential theory (e.g. Lamb 1906; Milne-Thomson 1938).

In practice, these magneto-Stokes potential flows readily arise even with moderate
gradients in magnetic field strength and fringing of electric field lines near menisci.
Figure 6 shows magneto-Stokes flow around an electrically insulating plastic obstacle in
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Figure 6. Dye-visualised laboratory flow (case HS) around a circular, electrically insulating obstacle (white
disk). Overlain in black are approximate potential flow streamlines obtained using the Milne-Thomson circle
theorem (Milne-Thomson 1938). Grey curves indicate the potential flow doublet that produces the circular
obstacle streamline.

the annular device (case HS), resting on an array of permanent magnets with moderate
horizontal variability in field strength (with 1 standard deviation equal to 27 % of the
mean). Despite these gradients in Bz and the presence of non-negligible surface tension
effects (Bo = 1.1), the dye streaks coincide with approximate potential flow streamlines
(black overlay) obtained using the Milne-Thomson circle theorem (Milne-Thomson 1938).
Thus, we expect magneto-Stokes micromixers to be robust to surface tension effects and
moderate variations in magnetic field strength.

5.2. Enhanced mixing in annular magneto-Stokes flow
Although annular magneto-Stokes flows are vorticity free in the shallow limit, they make
for robust, easily fabricated micromixing systems. Further, they exhibit multiple regimes of
enhanced mixing, which we characterise here. Mixing effects in annular magneto-Stokes
flows were first studied by Gleeson & West (2002) and Gleeson et al. (2004). The authors
focused on the deep limit (Γ → ∞), which renders the flow two-dimensional and enabled
them to derive analytical asymptotic predictions for mixing time. These scaling laws
are extensively supported by 2-D DNS (Gleeson et al. 2004), but exhibit large errors
when compared with experimental results for the shallow-layer systems most relevant to
compact, lab-on-a-chip applications (West et al. 2003). To address this gap, we generalise
the scaling laws of Gleeson et al. (2004) to finite Γ systems, using the analytical solution
developed in § 2 and validated in § 4.

The homogenisation of solute concentration c is governed by

Pe [∂τ c + (1 + R)ω∂θc] = H2

ρ2 ∂2
θ c + ∇2

⊥c, (5.8)

where ω is the angular velocity field. The dominance of advection over diffusion is
controlled by the Péclet number (Pe), defined via the Reynolds and Schmidt (Sc) numbers
as

Pe = ScRe, Sc = ν/κc, (5.9a,b)

where κc denotes the molecular diffusivity of the solute. So long as Re � min(Pe, 1), the
spin-up period Tsu is the shortest time scale, and we consider the flow to be quasi-steady
such that the angular velocity in (5.8) may be computed as ω = ῡθ (ρ, ζ )/ρ using the
stationary solution (2.16).
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We consider a simple non-axisymmetric initial condition

c(ρ, θ, ζ, 0) = c0(θ) =
{

0, −π/2 < θ � π/2
1, π/2 < θ � 3π/2

, (5.10)

and define a mixing norm m, following Gleeson et al. (2004), as the normalised root mean
square deviation of the concentration field from its average value, c̄:

m(t/T) = ‖c − c̄‖
‖c0 − c̄‖ , ‖·‖2 = 1

π(1 − R2)

∫ 1

0

∫ 2π

0

∫ 1

R
(·)2ρ dρ dθ dζ, (5.11a,b)

such that m(0) = 1. The mixing time tM is then defined as the time it takes for m to shrink
to some value M < 1. Although other metrics exist (e.g. the eigenvalue-base approach of
Cerbelli et al. 2009), tM benefits from its clear physical meaning and applicability to all
mixing regimes. In each of these regimes, predictions for tM/T as a function of Pe, Γ , R
follow from the appropriate asymptotic reduction of (5.8).

5.2.1. Diffusion-dominated regime
For Pe � 1, lateral diffusion occurs before advection can effectively shear the tracer
concentration front. Solving (5.8), (5.10) in the absence of advection and retaining the
effect of the fundamental mode yields the scaling law

tM/T ∼ 1
H2λ2

11
ln

(
2
√

2
πM

)
Pe, (5.12)

where λ11 is the smallest positive root of J′
1(λR)Y′

1(λ) − Y′
1(λR)J′

1(λ) = 0. We assume
R � 0.1 in (5.12) so that we may approximate an additional numerical factor arising
from the average of the first radial eigenfunction with unity. Dimensionally, tM ∼
λ−2

11 ln[2
√

2/(πM)]r2
o/κc and the mixing time is independent of depth h, as the problem is

essentially two-dimensional.

5.2.2. Taylor dispersion regime
Depth is important at intermediate values of Pe, where vertical and radial shear enables
rapid transverse diffusion in narrow channels. A centre-manifold reduction (Mercer &
Roberts 1994; Roberts 1996; Ding & McLaughlin 2022; Ding 2024) of (5.8) yields the
scaling law

tM/T ∼ (1 + R)2

4 CD
ln

(
2
√

2
πM

)
Pe−1. (5.13)

See Appendix B for the details of this derivation. This inverse Péclet number dependence,
typical of Taylor dispersion (Taylor 1953), results from an effective diffusivity κe =
CD(Pe/H)2κc that actually increases with the vigour of advection (Pe). The dispersion
coefficient CD is given by

CD = −(1 + R)2

2
〈(ω − 〈ω〉)a1〉, 〈·〉 = 2

1 − R2

∫ 1

0

∫ 1

R
(·)ρ dρ dζ, (5.14a,b)

where the function a1(ρ, ζ ) is found by solving

∇2
⊥a1 = (1 + R)2

2
(ω − 〈ω〉), (5.15)

subject to no-flux boundary conditions.
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Magneto-Stokes flow in a shallow free-surface annulus

The transition between diffusion-dominated and Taylor dispersion regimes marks the
onset of mixing enhancement, which occurs near the Péclet number Pe0 at which scalings
(5.12) and (5.13) are equal:

Pe0 ∼ λ11H(1 + R)

2
√CD

. (5.16)

5.2.3. Advection-dominated regime
At much higher values of Pe, advection occurs rapidly enough to shear the tracer
concentration front into radially and vertically interleaved lamellae. Accordingly, we
transform (5.8) into the Lagrangian frame following the flow. For Pe � 1, we recover
the advection-dominated scaling

τM ∼ F−1
(

πM

2
√

2

)
Pe1/3, (5.17)

which contains the one third dependence on Péclet number found in vortex flows (Rhines
& Young 1983; Flohr & Vassilicos 1997). The function

F(x) =
∥∥∥e− 1

3 (1+R)2(∇⊥ω · ∇⊥ω)x3
∥∥∥ , where ∇⊥(·) = [

erH∂ρ + ez∂ζ

]
(·), (5.18)

captures the effect of shear (∇⊥ω) on advection-dominated mixing. (For details of the
derivation, see Appendix B.)

A Mathematica notebook, available at https://github.com/cysdavid/magnetoStokes,
implements all three scaling laws (5.12), (5.13), (5.17) as a tool for practitioners, inverting
(5.18) numerically and solving (5.15) with finite elements.

5.2.4. Comparison with 3-D DNS
We compare the asymptotic scaling predictions above with 3-D DNS of (5.8), (5.10)
over five orders of magnitude in Pe. Three surveys in shallow, transitional and deep
magneto-Stokes regimes (Γ = 0.12, 0.85, 6) are explored for a channel with R = 0.9;
an additional survey with R = 0.5 and Γ = 0.12 is included for comparison. All four
surveys are indicated with open markers on the regime map in figure 3(a) (colour scheme
is maintained between figures 3, 7, 8), and the three R = 0.9 flow profiles are plotted in
figure 3(b,c). The details of the numerical method are included in Appendix C.

Figure 7 plots the dimensionless mixing times tM/T corresponding to M =
0.5, 0.3, 0.15 against Pe for each DNS survey (points). The asymptotic scaling laws (5.12),
(5.13), (5.17) are plotted as solid lines for each value of M (both the exponent and
coefficient are predicted for these curves). The data in all four surveys follow diffusive
and advection-dominated scalings. Taylor dispersion following (5.13) only appears in the
shallow (Γ = 0.12) and transitional (Γ = 0.85) surveys in the narrow channel (R = 0.9)
(figure 7a,b). In the shallow (Γ = 0.12) survey, we find a fourth regime characterised
by weak dispersion located between Pe−1 and Pe1/3 regimes, that was not observed by
Gleeson et al. (2004) in Γ → ∞ flows. For the deeper and wider channels (figure 7c,d),
behaviour at intermediate Pe is more complex (in the R = 0.5 survey, Taylor dispersion
disappears entirely), and we do not plot (5.13) for these surveys. Nonetheless, the transition
from diffusive mixing to intermediate-Pe behaviour is accurately predicted by Pe0 (5.16)
in all four surveys (vertical dashed lines in figure 7).

996 A33-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

67
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://github.com/cysdavid/magnetoStokes
https://doi.org/10.1017/jfm.2024.674


C.S. David, E.W. Hester, Y. Xu and J.M. Aurnou

102

(a) (b) (c) (d )
R = 0.9, Γ = 0.12 R = 0.9, Γ = 0.85 R = 0.9, Γ = 6.00 R = 0.5, Γ = 0.12

M = 0.15
M = 0.3
M = 0.5 102

101

100

103

103

100

10–1

DNS

Predicted
scaling

Pe = Pe0
102

101

10–2 100

Pe
102 10–1 101

Pe
103 103 105

Pe
107 10–2 100

Pe
102

t M
/T

Figure 7. Mixing time tM vs Péclet number Pe for four DNS surveys in different channel geometries (R, Γ ).
Results for mixing levels M = 0.5, 0.3, 0.15 are indicated with darker to lighter tones. For each M, solid lines
in the corresponding shade indicate predicted scaling exponents and coefficients using (5.12), (5.13), (5.17).
The Taylor dispersion prediction (5.13) is omitted in panels (c,d), although the predicted onset of mixing
enhancement Pe0 (5.16) is plotted as a vertical dashed line for all four surveys.
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Figure 8. (a) The DNS results and asymptotic predictions for all four surveys rescaled using Tcirc to show
the effects of flow morphology (rather than flow magnitude) on mixing enhancement. Predicted scalings are
extrapolated to the highest value of Pecirc investigated. (b) Mixing enhancement from a practical standpoint.
The data and predictions in the previous panel are rescaled such that the fluid properties and channel radius ro
may be regarded as fixed while the electromagnetic forcing B0I0 is varied. Predicted scalings are extrapolated
to the highest value of P̃e investigated. (c) Asymptotic predictions for the onset of mixing enhancement P̃e0
(using (5.16), (5.21)) as a function of depth-to-gap-width ratio Γ at different values of R (contour labels).
Coloured points correspond to vertical dashed lines in the previous panel.

All four surveys are compared in figure 8 (for M = 0.3) to elucidate the effects of
channel geometry (R, Γ ) on enhanced mixing. In figure 8(a), mixing times are scaled
by the surface mid-gap circulation time,

Tcirc = π(ri + ro)/uθ,mid-gap, (5.19)
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Magneto-Stokes flow in a shallow free-surface annulus

and the Péclet number is rescaled as

Pecirc = uθ,mid-gapr2
o

Uπh2 Pe = r2
o/κc

Tcirc
. (5.20)

This rescaling is equivalent to considering the circulation time and outer radius to be
equal for all surveys, and allowing only the height, inner radius and diffusivity to vary;
this isolates the effect of the flow’s morphology (e.g. the size of boundary layers) from its
magnitude.

Focusing on the R = 0.9 surveys (pink, purple and teal points), we observe two trends in
figure 8(a) as depth-to-gap-width ratio Γ is decreased: (i) the onset of mixing enhancement
is delayed (Pecirc,0 increases; the dashed teal line lies to the right of the dashed pink
line), and (ii) mixing efficiency in the advection-dominated regime increases (tM/Tcirc
decreases; the solid teal line lies below the solid pink line on the right side of 8a). The onset
of mixing enhancement Pe0 is controlled by Taylor dispersion, which depends strongly
on shear in the radial direction. Thus, as Γ is decreased, the sidewall boundary layers
shrink (2.23a,b), Taylor dispersion is reduced and diffusion-dominated mixing persists to
higher Pe. Mixing in the advection-dominated regime occurs via diffusion across lamellar
structures in the tracer concentration field, which become vertically interleaved in flows
dominated by vertical shear (large basal boundary layers). As Γ is decreased, the basal
boundary layer grows (2.28), the tracer concentration front is vertically sheared into a
spiralling interface, and tM/Tcirc decreases. Finally, we observe that the onset of mixing
enhancement occurs earlier in the wider channel R = 0.5 (chartreuse points) than in the
narrow channel with the same depth-to-gap-width ratio (pink points). The same trends in
figure 8(a) are present for M = 0.15 and M = 0.5.

The effects of flow morphology alone would seem to advocate for the use of deeper
channels, since the onset of mixing enhancement occurs sooner (holding Tcirc constant).
However, achieving flow speeds in deep channels that are comparable to those in shallow
channels is difficult in practice, as stronger magnetic fields or applied currents are required
to counteract the drop in current density with depth. Thus, a practical representation of
our mixing results requires one to combine the influence of flow morphology on mixing
(figure 8a) with the influence of depth-to-gap-width ratio on flow magnitude (figure 2).

To this end, figure 8(b) plots mixing times scaled by the diffusive time scale r2
o/κc vs

the Péclet number rescaled as

P̃e = 2π(1 + R)2

H3 Pe = B0I0

�νκc/ro
. (5.21)

This rescaling allows us to observe the change in mixing time vs Γ , R, and the
electromagnetic forcing (B0I0) for a chosen solution (constant �, ν, κc) and fixed outer
radius (ro). In the advection-dominated limit, the shallowest channels still induce the
fastest mixing; in the lower right portion of figure 8(b), the extrapolated mixing time
prediction decreases by more than fivefold between the survey with Γ = 0.6, R = 0.9
(solid pink line) and the survey with Γ = 0.12, R = 0.9 (solid teal line). However, the
enhancement of mixing is initiated with the least effort (smallest B0I0) for the transitional
flow (Γ = 0.85; purple dashed line), out of the three R = 0.9 surveys (pink, purple and
teal dashed lines).

Figure 8(c) plots the predicted onset value P̃e0 as a function of Γ for different values
of R. This shows that the transitional flow (purple point) in fact lies at a minimum in
P̃e0 for R = 0.9. These optima, located between Γ = 0.66 for R = 0.5 and Γ = 0.85
for R = 0.9, result from the competing effects of sidewall boundary layer size and
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flow speed as Γ is varied and the electromagnetic parameters are kept constant. Thus,
magneto-Stokes annuli with near-unity depth-to-gap-width ratios enhance mixing for the
least electromagnetic forcing.

Specific mixing applications include DNA hybridisation assays (e.g. Heule & Manz
2004), which are hindered by the extremely low chemical diffusivities typical of
macromolecules in aqueous solutions (Gregory et al. 2016). For example, it takes more
than 5 days (r2

o/κc) for 20-bp DNA fragments (κc = 5.7 × 10−11 m2 s−1; Lukacs et al.
2000) to diffuse through a microfabricated annulus with ro = 5 mm, ri = 4 mm and
h = 425 μm (cf. West et al. 2003). In contrast, applying a modest electromagnetic
forcing (I0 = 0.1 A, B0 = 25 mT) to this system results in advection-dominated mixing
(P̃e = 2.2 × 108) with predicted mixing time tM=0.3 = 14 s.

Actual mixing times may be further reduced by the effects of surface tension. Deflection
of the free surface at inner and outer menisci may locally reduce current density, thus
enlarging the sidewall boundary layers and augmenting Taylor dispersion. Although
potentially useful, these complications may be avoided by placing a no-slip upper
boundary at z = 2h. If the total current is doubled (I = 2I0), then the equations for
momentum (2.10) and advection–diffusion (5.8), (5.10) are unchanged, and their solutions
are simply extensions of the free-surface solutions mirrored across the z = h plane. Thus,
the asymptotic mixing time predictions (5.12), (5.13), (5.17) for the free-surface system
also apply to a closed system with half-height h and half-current I0.

6. Discussion

In this study, we provide the first fully analytical solution for a fundamental MHD
flow: magneto-Stokes flow in a cylindrical annulus. Three flow regimes (shallow-layer,
transitional and deep-layer) are distinguished based on a single geometric parameter: the
depth-to-gap-width ratio Γ .

We characterise the effect of Γ on the homogenisation of a diffusing tracer, relevant to
the design of microscale mixing devices (West et al. 2003; Gleeson et al. 2004). Mixing
in infinitesimally thin layers (Γ → 0) proceeds without the benefit of axial vorticity.
In fact, we show that the shallow-layer asymptotic solution belongs to a class of MHD
potential flows. These findings have already generated interest in analytical solutions for
magneto-Stokes flow in other multiply connected channels of vanishing depth (McKee
2024).

In finite-depth channels, mixing efficiency depends strongly on the value of Γ . Using
asymptotic reductions of the advection–diffusion equation validated with 3-D DNS, we
show that Γ ≈ 1 annuli are optimal for initiating mixing enhancement with the least
electromagnetic effort (B0I0). If the magnitude of B0I0 is not a constraint, then the shortest
mixing times may be achieved via strongly forced, advection-dominated mixing in shallow
channels (Γ � 1).

The extensive characterisation of both momentum and tracer evolution provided here
makes the annular magneto-Stokes system an excellent MHD reference flow. Among
other applications, its promise as a calibration tool for particle-tracking velocimetry (e.g.
Valenzuela-Delgado et al. 2018a) and particle image velocimetry draws on the simplicity
of the device and robustness of the analytical solution.

Supplementary data. A supplementary Python package and accompanying Jupyter notebook that implement
our theoretical predictions are available at https://github.com/cysdavid/magnetoStokes.
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Appendix A. Full axisymmetric equations and solution

The 3-D axisymmetric equations under the non-dimensionalisation in §2.1 are

Re

{
∂τυρ + (R + 1)

[
1
H (υ⊥ · ∇⊥)υρ − υ2

θ

ρ
+ ∂ρΠ

]}
= ∇2

⊥υρ − H2 υρ

ρ2 , (A1a)

Re
{
∂τυθ + (R + 1)

[
1
H (υ⊥ · ∇⊥)υθ + υρυθ

ρ

]}
= ∇2

⊥υθ − H2 υθ

ρ2 + R + 1
ρ

Υ (τ),

(A1b)

Re
{
∂τυζ + (R + 1)

[
1
H (υ⊥ · ∇⊥)υζ + 1

H2 ∂ζΠ

]}
= ∇2

⊥υζ , (A1c)

∂ρ(ρυρ) + ρ∂ζυζ = 0, (A2)

where we define υ⊥ = υρer + Hυζ ez, ∇⊥(·) = [erH∂ρ + ez∂ζ ](·), and ∇2
⊥(·) =

[H2ρ−1∂ρρ∂ρ + ∂2
ζ ](·). For vanishing meridional flow υ⊥, (A1) reduces to (2.10).

In § 2.1, we provide an expression for υθ found by approximating the full solution to
(2.10)

υθ(ρ, ζ, τ ) =
∞∑

n=1

{
2(R + 1)

k2
nH

[ H
knρ

− AnI1

(
kn

Hρ

)
− BnK1

(
kn

Hρ

)]

+
∞∑

m=1

Cmn

(
J1 (μmρ)

J1(μm)
− Y1 (μmρ)

Y1(μm)

)
exp

(
−H2μ2

m + k2
n

Re
τ

)}
sin (knζ ) ,

(A3)

where J1 and Y1 are first-order Bessel functions of first and second kind and each
eigenvalue μm is the mth smallest positive root of

Y1(μ)J1(μR) − J1(μ)Y1(μR) = 0. (A4)
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Setting H2μ2
m + k2

n ≈ k2
1 in the exponential term above reduces (A3) to the approximate

solution (2.15). The roots of (A4) and analytical expressions for coefficients Cmn
are provided in a Mathematica notebook available at https://github.com/cysdavid/
magnetoStokes.

Appendix B. Derivation of mixing time predictions

Derivation of both the diffusion-dominated (5.12) and advection-dominated (5.17) scaling
laws is facilitated by transforming (5.8) into the Lagrangian reference frame (ρ, θ̃, ζ )
according to θ = θ̃ + (1 + R)ω(ρ, ζ )τ . We assume that the mixing time scales with some
power α of the Péclet number, and we let τ = Peατ̃ so that (5.8) becomes

∂τ̃ c = Peα−1
(H2

ρ2 ∂2
θ̃

+ ∇2
⊥

)
c − Pe2α−1(1 + R)τ̃

[
∇2

⊥ω + 2(∇⊥ω · ∇⊥)
]
∂θ̃c

+ Pe3α−1(1 + R)2τ̃ 2 (∇⊥ω · ∇⊥ω) ∂2
θ̃

c. (B1)

In the limit Pe → 0, a dominant balance exists if α = 1. This results in the classical
diffusion equation, which yields (5.12) upon solution. On the other hand, two-term
dominant balance in the limit Pe → ∞ requires that α = 1/3, yielding a diffusion-like
equation,

∂τ̃ c = (1 + R)2τ̃ 2 (∇⊥ω · ∇⊥ω) ∂2
θ̃

c, (B2)

whose solution,

c(ρ, θ̃, ζ, τ̃ ) = c̄ +
∞∑

m=1

Cm
√

2 cos mθ̃ exp
(

−1
3
(1 + R)2 (∇⊥ω · ∇⊥ω) m2τ̃ 3

)
, (B3)

depends on ρ and ζ parametrically through the angular velocity ω. The advection-
dominated scaling law (5.17) follows from retaining only the fundamental (m = 1) mode
in (B3).

The Taylor dispersion scaling prediction is derived using a separate procedure. We
transform (5.8) according to θ = ϑ + (1 + R)〈ω〉τ into the frame (ρ, ϑ, ζ ) rotating with
the average angular velocity 〈ω〉. In this frame, we assume that mixing smooths out the
cross-sectional averaged tracer concentration field 〈c〉 such that

〈c〉 � ∂ϑ 〈c〉 � ∂2
ϑ 〈c〉 � ∂3

ϑ 〈c〉 � . . . , (B4)

as τ → ∞. Given this ordering, we may effect a centre-manifold reduction (Mercer &
Roberts 1994; Roberts 1996; Ding & McLaughlin 2022) of the 3-D advection–diffusion
equation by adopting an asymptotic expansion for c similar to that of Ding (2024),

c = 〈c〉 + Pe a1(ρ, ζ )
1
ρ0

∂ϑ 〈c〉 + Pe a2(ρ, ζ )
1
ρ2

0
∂2
ϑ 〈c〉 + O(∂3

ϑ 〈c〉), (B5)

where ρ0 = (1 + R)/2 is the mid-gap radius. The functions a1, a2 vanish upon
cross-sectional averaging (〈a1〉 = 〈a2〉 = 0) and must satisfy the same no-flux boundary
conditions as does c (such that 〈∇2

⊥a1〉 = 〈∇2
⊥a2〉 = 0).
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Substituting (B5) into the transformed advection–diffusion equation yields

∂τ

(
〈c〉 + Pe

a1

ρ0
∂ϑ 〈c〉 + Pe

a2

ρ2
0
∂2
ϑ 〈c〉

)
+ (1 + R)(ω − 〈ω〉)

(
∂ϑ 〈c〉 + Pe

a1

ρ0
∂2
ϑ 〈c〉

)

= ∂ϑ 〈c〉
ρ0

∇2
⊥a1 + ∂2

ϑ 〈c〉
ρ2

0
∇2

⊥a2 + O(∂3
ϑ 〈c〉), (B6)

which, after cross-sectional averaging 〈·〉 and neglecting O(∂3
ϑ 〈c〉) terms, leaves a 1-D

diffusion equation for 〈c〉(ϑ, τ ),

∂τ 〈c〉 = CDPe
1
ρ2

0
∂2
ϑ 〈c〉, (B7)

where CD depends on ω and a1 through (5.14a,b). To determine a1 and obtain closure,
we first observe from (B7) that ∂τ 〈c〉 = O(∂2

ϑ 〈c〉). Then, collecting O(∂ϑ 〈c〉) terms
in (B6) yields the Poisson equation (5.15), which may be solved for a1. Finally, the
advection-dominated scaling law (5.17) follows from solving (B7) and retaining only the
m = 1 mode.

Appendix C. Numerical method for 3-D mixing DNS

The 3-D simulations of the advection–diffusion equation (5.8) were performed using the
pseudospectral code Dedalus. The flow field uθ was computed using the first N vertical
modes of the steady analytical flow solution (2.16), truncated such that the N + 1st mode
changes the value of uθ,mid-gap by <0.5 %. The tracer concentration c and velocity uθ

fields were discretised using Chebyshev modes in the ρ, ζ directions and real Fourier
modes in the θ direction. The azimuthally discontinuous initial condition for c (5.10) was
approximated by a smooth bump function to avoid Gibbs oscillations:

c0(ρ, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
π

2
+ �θ

2ρ

)2

� (θ − π)2

S
(

θ − π; π

2
− �θ

2ρ
,
�θ

ρ

)
,

(
π

2
− �θ

2ρ

)2

< (θ − π)2 <

(
π

2
+ �θ

2ρ

)2

1, (θ − π)2 �
(

π

2
− �θ

2ρ

)2

,

(C1)
where S is a transition function constructed following Tu (2011),

S(x; w, �w) =
{

1 + exp

[
�w(�w + 2w)

(
w2 + (�w + w)2 − 2x2)(

x2 − w2
) (

x2 − (�w + w)2
) ]}−1

, (C2)

and the ramp width �θ is set to �θ = 2π(12/256) across all cases.
For efficiency reasons, we used different timestepping schemes in cases dominated

by diffusion vs those with stronger advection (see Ascher, Ruuth & Spiteri 1997). The
empirically determined cutoff value Pe∗ between these two groups roughly coincides with
Pe0, the predicted transition between diffusion-dominated and Taylor dispersion mixing
regimes. The strongly diffusive cases (Pe < Pe∗) used the SBDF2 scheme (Wang & Ruuth
2008), while the remainder (Pe � Pe∗) used the four-stage, third-order implicit–explicit
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C.S. David, E.W. Hester, Y. Xu and J.M. Aurnou

Γ R N Pe∗ (Nρ, Nθ , Nζ ) for Pe � Pe∗ �τ (Pe � Pe∗) �τ (Pe < Pe∗)

0.12 0.5 3 0.1 (128, 256, 64) 0.0039 0.0033
0.12 0.9 3 0.14 (128, 256, 64) 0.0057 0.0057
0.85 0.9 6 10 (128, 256, 64) 0.02 0.02
6 0.9 46 104 (64, 256, 128) 0.84 0.84

Table 5. Numerical parameters used for the 3-D DNS discussed in § 5.2, including the threshold Péclet number
Pe∗ below which SBDF2 timestepping is used instead of RK443. Spatial resolution (Nρ, Nθ , Nζ ) for cases with
Pe < Pe∗ is half that of the values shown here for each survey.

Runge–Kutta (RK443) scheme (Ascher et al. 1997, § 2.8) and twice the spatial resolution
(Nρ, Nθ , Nζ ) of the diffusive cases. These values, in addition to Pe∗, N and the timestep
�τ for each survey are collected in table 5. The code used for these simulations is available
online (https://github.com/cysdavid/magnetoStokes).
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