
TPLP 24 (4): 790–804, 2025. c© The Author(s), 2025. Published by Cambridge University

Press. This is an Open Access article, distributed under the terms of the Creative Commons

Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted

re-use, distribution and reproduction, provided the original article is properly cited.

doi:10.1017/S1471068424000383

790

Reasoning About Study Regulations in Answer Set
Programming∗

SUSANA HAHN and TORSTEN SCHAUB
University of Potsdam, Germany

Potassco Solutions, Germany

(e-mail: torsten@cs.uni-potsdam.de)

CEDRIC MARTENS , AMADE NEMES , HENRY OTUNUYA ,
JAVIER ROMERO and SEBASTIAN SCHELLHORN

University of Potsdam, Germany

submitted 8 August 2024; accepted 13 September 2024

Abstract

We are interested in automating reasoning with and about study regulations, catering to various
stakeholders, ranging from administrators, over faculty, to students at different stages. Our
work builds on an extensive analysis of various study programs at the University of Potsdam.
The conceptualization of the underlying principles provides us with a formal account of study
regulations. In particular, the formalization reveals the properties of admissible study plans.
With these at end, we propose an encoding of study regulations in Answer Set Programming
that produces corresponding study plans. Finally, we show how this approach can be extended
to a generic user interface for exploring study plans.

KEYWORDS: answer set programming, study regulations and plans

1 Introduction

Study regulations govern our teaching at universities by specifying requirements to be met

by students to earn a degree. Creating a study program involves different stakeholders:

faculty members designing study programs, administrative and legal staff warranting

criteria, like studyability, faculty members teaching the corresponding programs as well

as supervising their execution on examination boards, study advisors consulting students,

and of course, students studying accordingly.

Given this impressive spectrum of use-cases, it is quite remarkable that study reg-

ulations are usually rather sparse and leave many aspects to the commonsense of the

respective users. This is needed to cope with their inherent incomplete, inconsistent, and

evolving nature. For instance, often study regulations leave open minor dependencies

∗ A preliminary version of this article appeared in Hahn et al. (2023).

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383
https://orcid.org/0000-0003-2622-2632
https://orcid.org/0000-0002-7456-041X
mailto:torsten@cs.uni-potsdam.de
https://orcid.org/0000-0001-5546-9939
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068424000383&domain=pdf
https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 791

among modules. Sometimes associated courses overlap and certain modules cannot be

taken in the same semester. And finally, studying happens over time, students’ perspec-

tives may change and faculty may rotate. Often these phenomena are compensated by

changes, preferences, recommendations, defaults, etc. In fact, this richness in issues and

notions from Knowledge Representation and Reasoning (KRR) makes study regulations

a prime candidate for a comprehensive benchmark for KRR formalisms.

Our approach is adaptable, though not universally applicable. Its foundations lie in the

principles of Europe’s Bologna Process, designed to harmonize higher education across

the continent. European curricula, for example, are structured around credit points,

often allocated to individual modules. The European Credit Transfer and Accumulation

System provides guidance on program design and credit allocation. Similarly, our

approach utilizes modules and credit points as fundamental building blocks. Our goal

is to encompass all study regulations at the University of Potsdam, which share addi-

tional key principles. However, adaptation or even redesign may be necessary for other

institutions with differing structures or requirements.

In fact, this work is part of a project conducted at the University of Potsdam to

assist different users by automatizing study regulations. These users range from study

administrators, over faculty in different functions, to prospective and advanced students.

We started by analyzing more than a dozen different study regulations in order to identify

their underlying principles. The conceptualization of the basic principles led us to a formal

account of basic study regulations, presented in Section 2. For illustration, we provide the

formalization of the master program Cognitive Systems . We refine this in Section 3 by

showing how modules are passed by accomplishing their associated examination tasks.

The formalization of study regulations reveals the properties of admissible study plans.

To automatize reasoning about study regulations and their study plans, we capture their

properties in Answer Set Programming (ASP; Lifschitz (2002)), a declarative problem

solving paradigm, tailored for knowledge representation and reasoning. The ASP-based

encoding of basic study regulations is discussed in Section 4. Moreover, we show in

Section 5 how this encoding can be used together with an ASP-driven user interface to

browse through study plans of given study regulations. We conclude in Section 7.

2 Conceptualizing study regulations

The basic concept of our study regulations are modules. Accordingly, a semester is com-

posed of a set of modules and a study plan is a finite sequence of semesters. More formally,

given a set M of modules, a study plan of n semesters is a sequence (Si)
n
i=1 where Si ⊆M

for 1≤ i≤ n. Study regulations specify legal study plans. To capture this, we propose

an abstract characterization of study regulations and show how they induce legal study

plans.

A basic study regulation is a tuple (M,G, c, s, l, u, Rg, Rt), where

1. M is a set of modules,

2. G⊆ 2M distinguishes certain groups of modules,

3. c :M →N gives the credits of each module,

4. s :M →{w, s, e} assigns a regular semester to a module,

5. l :G→N returns the lower bound of the credits of a module group,

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.792

6. u :G→N returns the upper bound of the credits of a module group,

7. Rg ⊆ 2(2
M)n is a set of global constraints expressing study regulations, and

8. Rt ⊆ 2(2
M)n is a set of temporal constraints expressing study regulations.

The module groups in G allow us to structure the modules and to express group-wise

regulations. Functions c and s give the credit points of a module and its turnus,1 viz. in

winter, summer, or each semester (indicated by w , s , e), respectively. The elements l and

u are partial functions delineating the number of credits obtained per module group; a

specific number of credits is captured by an equal lower and upper bound. The regulation

constraints in Rg and Rt are represented extensionally: each constraint r in Rg ∪Rt is

represented by the sequences of sets of modules r⊆ (2M)n satisfying it. While the sets

of constraints Rg and Rt share the same mathematical structure, they differ in purpose

and are therefore separated for clarity’s sake. Rt expresses temporal constraints over the

sequence of semesters, while Rg does not make use of this sequential structure, and rather

expresses global constraints over the entire set of modules.

A study plan for a basic study regulation is a finite sequence of sets of modules

satisfying all regulation constraints. More precisely, a sequence (Si)
n
i=1 of modules of

length n such that Si ⊆M for 1≤ i≤ n is a study plan for (M,G, c, s, l, u, Rg, Rt) if

(Si)
n
i=1 ∈

⋂
r∈Rg∪Rt

r.

Finally, we call modules exogenous if they are imposed by external means, for example

by an examination board. The specific choice of these modules is determined case by

case.

Example 1 (Cognitive systems).

As an example, consider the study regulations of the international master program

Cognitive Systems offered at the University of Potsdam.2 This program offers a com-

bination of modules in Natural language processing, Machine learning, and Knowledge

representation and reasoning.

These subjects are reflected by the three mandatory base modules, joined in B in

equation (3). Since each module yields 9 credits, their obligation is achieved by requiring

that the modules stemming from B must account for 27 credits.3 While the amount is

specified in equations (12) and (13), the actual constraint is imposed in equation (15).

The same constraint is used for choosing two among three possible project modules from

P . The optional modules in group O are handled similarly, just that only 24 credits from

36 possible credits are admissible. That is, four out of nine modules must be taken. The

freedom of which four the student may choose is restricted by the examination board by

imposing the study of up to two foundational modules E ⊆ F , which must be the only

modules taken from module group F , as formalized in constraint (14). The total num-

ber of credits over all modules must equal 120. Finally, an internship, im, and a thesis,

msc, are imposed in equation (16). This brings us to the temporal regulation in equa-

tion (20) requiring that at least 90 credits are accumulated before conducting a thesis.

The temporal regulations in equations (18) and (19) ensure that modules are taken in

1 Winter and summer semesters are associated with odd and even positions in a sequence, respectively
(see below).

2 Available at https://www.uni-potsdam.de/fileadmin/projects/studium/docs/03 studium konkret/07
rechtsgrundlagen/studienordnungen/StO CogSys EN.pdf.

3 This is not our way of modeling mandatory courses but rather reflects the actual regulation.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://www.uni-potsdam.de/fileadmin/projects/studium/docs/03_studium_konkret/07_rechtsgrundlagen/studienordnungen/StO_CogSys_EN.pdf
https://www.uni-potsdam.de/fileadmin/projects/studium/docs/03_studium_konkret/07_rechtsgrundlagen/studienordnungen/StO_CogSys_EN.pdf
https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 793

the right season. And finally equation (17) makes sure that modules are chosen at most

once.

Let E ⊆ F be some exogenous set of modules in the following example; and let S

stand for
⋃n

i=1 Si, and Mw = {m∈M | s(m) =w} and Ms = {m∈M | s(m) = s}. Then,
the study regulations of the master program Cognitive Systems with respect to E can

be formalized as follows.

M =B ∪ F ∪A∪ P ∪ {im,msc} (1)

G= {B, F, A, O, P,M} (2)

B = {bmi | i= 1..3} (3)

F = {fmi | i= 1..3} (4)

A= {ami,j | i= 1..3, j = 1, 2} (5)

O= F ∪A (6)

P = {pmi | i= 1..3} (7)

c= {bmi �→ 9 | i= 1..3} ∪ {ami,j �→ 6 | i= 1..3, j = 1, 2} ∪ (8)

{fmi �→ 6 | i= 1..3} ∪ {pmi �→ 12 | i= 1..3} ∪ {im �→ 15,msc �→ 30} (9)

s= {bm1 �→w, bm2 �→ s, bm3 �→w} ∪ {ami,j �→ e | i= 1..3, j = 1, 2} ∪ (10)

{fmi �→w | i= 1..3} ∪ {pmi �→ e | i= 1..3} ∪ {im �→ e,msc �→ e} (11)

l= {B �→ 27, O �→ 24, P �→ 24, M �→ 120} (12)

u= {B �→ 27, O �→ 24, P �→ 24, M �→ 120} (13)

Rg = { {(Si)
n
i=1 ⊆Mn | |E| ≤ 2, S ∩ F =E}, (14)

{(Si)
n
i=1 ⊆Mn | l(H)≤∑

m∈H∩S c(m)≤ u(H)} for all H ∈ {B, O, P,M}, (15)

{(Si)
n
i=1 ⊆Mn | {im,msc} ⊆ S} } (16)

Rt = { {(Si)
n
i=1 ⊆Mn | Si ∩ Sj = ∅, 1≤ i < j ≤ n} (17)

{(Si)
n
i=1 ⊆Mn |Mw ∩ S2k = ∅, 1≤ 2k≤ n, k ∈N} (18)

{(Si)
n
i=1 ⊆Mn |Ms ∩ S2k−1 = ∅, 1≤ 2k− 1≤ n, k ∈N} (19)

{(Si)
n
i=1 ⊆Mn |msc ∈ Sk,

∑
1≤i<k

∑
m∈Si

c(m)≥ 90, k ∈N} } (20)

If the set of exogenous modules given by the examination board is, for example, E =

{fm1}, one admissible study plan spanning four semesters is S = (Si)
4
i=1, where

S1 = {bm1, bm3, fm1, am1,2} (21)

S2 = {bm2, am2,1, pm1} (22)

S3 = {im, pm3, am3,1} (23)

S4 = {msc} (24)

This plan comprises 120 credits, although the load per semester varies.

For illustration, let us verify that our study plan belongs to the ones in equations (14)

and (15) for H =O. Indeed constraint (14) is satisfied as we have F ∩ S = {fm1}=E,

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.794

and thus S is an element of constraint (14). With regards to equation (15), we have

O ∩ S = {fm1, am1,2, am2,1, am3,1} (25)

which makes us check whether our study plan satisfies

l(O) = 24≤∑
m∈{fm1,am1,2,am2,1,am3,1} c(m)≤ 24 = u(O) (26)

This is indeed the case since c(fm1) + c(am1,2) + c(am2,1) + c(am3,1) = 24. Hence, our

study plan is an element of constraint (15).

Although the above specification reflects the legal study regulation, it leaves many

ambiguities behind. For instance, the number of credits per semester is left open, as is

the order of the modules. The guideline is usually to take around 30 credits per semesters

but this is not enforced. Similarly, basic modules in B should be taken before advanced

ones in A, again this is neither enforced nor always possible. Since these constraints are

usually soft, they are left to the students and/or their study advisors.

Our previous preliminary work (Hahn et al., 2023) outlined further extensions to

basic study regulations (subarea specializations, module dependencies, blocking mod-

ules). The following section delves into a more novel aspect: how modules are passed by

accomplishing their associated examination tasks.

3 Examination tasks

Modules have specific examination tasks that define the criteria for successful completion.

Students typically complete these tasks within courses, where they are carefully designed

to align with the requirements of specific modules.

Study regulations focus on modules and their associated examination tasks. It is the

responsibility of each department to provide a course selection that enables students to

complete the modules required by their study program. Therefore, we concentrate in

what follows on modules and their associated examinations, rather than courses.

Each module has at least one examination task4 and these tasks are unique to each

module. We distinguish between primary examinations (e.g. written or oral exams) and

secondary examinations (e.g. weekly exercises), and denote them by Ep and Es, respec-

tively. In analogy to study plans, examination plans are sequences of form (Ei)
n
i=1 ⊆

(Ep ∪Es)
n.

Interestingly, a single module can offer flexibility through different combinations of

primary and secondary examination tasks. Given a set of modules M and sets Ep and

Es of primary and secondary examinations, we define the functions ep :M → 22
Ep

and

es :M → 22
Es

to associate a module with different combinations of primary and secondary

examination tasks, respectively.

For illustration, suppose module bm1 requires as primary examination task either a

written exam or a final project report, identified by epbm1,1 and epbm1,2. Also, two

secondary examination tasks, a lecture attendance of 50% and the successful completion

4 All this follows the general regulations for study examinations for BSc and MSc degrees at
http://www.uni-potsdam.de/am-up/2013/ambek-2013-03-035-055.pdf (last accessed on 30th of April
2024).

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 795

of all weekly exercises, viz. esbm1,1 and esbm1,2, are required by the module. This is

captured as ep(bm1) = {{epbm1,1}, {epbm1,2}} and es(bm1) = {{esbm1,1, esbm1,2}}.
Next, we define the completion of modules in terms of examinations.

To this end, we define a function a associating examination plans with sequences of

modules as a : (Ei)
n
i=1 �→ (Si)

n
i=1 where for 1≤ i≤ n we have

Si = {m∈M | V ∪W ⊆⋃i
j=1 Ej , V ∪W �⊆⋃i−1

j=1 Ej for some V ∈ es(m), W ∈ ep(m)}
The idea is to complete modules as early as possible. Once a module is completed for

a specific V and W combination, it cannot be repeated for credit in later semesters.

A module may appear multiple times in a module sequence if it offers several valid

combinations of primary and secondary examination tasks, and these combinations are

spread across different semesters within the examination plan. However, study plans

become invalid if they include the same module in multiple semesters, as this violates a

core regulation (see also (17)). Also, different examination plans may result in the same

module sequence, especially if some examination tasks do not immediately contribute to

completing a module.

For illustration, let us continue our example with ep(bm1) and es(bm1) as above.

Furthermore, suppose we have the primary examination tasks

ep(m) = {{epm,1}} for m∈ {bm3, fm1, am1,2, bm2, am2,1, pm1, im, pm3, am3,1,msc}
along with the following secondary examination tasks es(bm2) = {{esbm2,1}}, es(bm3) =

{{esbm3,1, esbm3,2}}, es(fm1) = {{esfm1,1}}, and
es(m) = {∅} for m∈ {am1,2, am2,1, pm1, im, pm3, am3,1,msc}.

Now, consider the examination plan (Ei)
4
i=1 where

E1 = {epbm1,1, esbm1,1, esbm1,2, epbm3,1, esbm3,1, esbm3,2, epfm1,1, esfm1,1, epam1,2,1}
E2 = {epbm2,1, esbm2,1, epam2,1,1, eppm1,1}
E3 = {epim,1, eppm3,1, epam3,1,1}
E4 = {epmsc}.

In fact, this examination plan induces the study plan given in Section 2, that is,

a((Ei)
4
i=1) = (Si)

4
i=1 as given in equations (21)–(24).

Similarly, the examination plan E′ = (E1, E2 ∪ {epbm1,2}, E3, E4) induces a(E′) =
(S1, S2 ∪ {bm1}, S3, S4). Since epbm1,1 ∈E1 and ep(bm1) = {{epbm1,1}, {epbm1,2}} indi-

cates that only one primary examination tasks is needed to accomplish module bm1, the

occurrence of epbm1,2 in the second semester of E′ is redundant and reflected by the

second occurrence of module bm1 in a(E′).
The relation between primary and secondary examinations tasks is even more intricate

since secondary tasks may need to be accomplished before primary ones. We represent

such dependencies by a relation D⊆ 22
Es × 2Ep between alternative sets of secondary

examination tasks and sets of primary ones.5 More precisely, any such dependency in

5 For simplicity, we refrain here from defining these relations in a module dependent way. Without loss
of generality, we can thus assume that only examination tasks associated with the same module are
put in correspondence.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.796

D expresses a temporal constraint requiring that one of the sets of secondary examina-

tion tasks must be accomplished before or in the same semester as the set of primary

constraints.

For example, the dependencies ({{esbm1,2}}, {epbm1,1}) and ({{esbm1,2}}, {epbm1,2})
express that weekly exercises of module bm1 (viz. esbm1,2) must be successfully completed

before a student can take a written exam (epbm1,1) or hand in the final project report

(epbm1,2). None of the primary examinations depend on secondary examination task

esbm1,1, which is only needed to accomplish the module itself.

We are now ready to formalize the concept of an admissible examination plan.

A basic study regulation problem with examination tasks is a pair (B, E), where

B is a basic study regulation problem and E = (Ep, Es, ep, es, D, Reg, Ret) where

Ep, Es, ep, es, D are as defined above, and Reg ⊆ 2(2
Ep∪Es)n and Ret ⊆ 2(2

Ep∪Es)n are sets

of global and temporal constraints on examination plans, respectively, as given next.

In doing so, we extend the above abbreviation of (Ei)ni=1 by E to sets of sets, that is,

X =
⋃

x∈X x for any set X of sets. Now, given a set of modules M along with primary

and secondary examination tasks Ep ∪Es, we define the following constraints:

Reg = {{(Ei)
n
i=1 ⊆ (Ep ∪Es)

n |E ∩ ep(m)∪ es(m) �= ∅ implies (27)

E ∩ ep(m)∈ ep(m) for all m∈M}, (28)

{(Ei)
n
i=1 ⊆ (Ep ∪Es)

n |E ∩ ep(m)∪ es(m) �= ∅ implies (29)

E ∩ es(m)∈ es(m) for all m∈M}} (30)

Ret = {{(Ei)
n
i=1 ⊆ (Ep ∪Es)

n |Ei ∩Ej = ∅, 1≤ i < j ≤ n}, (31)

{(Ei)
n
i=1 ⊆ (Ep ∪Es)

n | for all (X,W)∈D, (32)

W ⊆E implies there is some V ∈X such that (33)

V ⊆E and max({i | V ∩Ei �= ∅})≤min({i |W ∩Ei �= ∅})}} (34)

The two global constraints in Reg, ranging from equation (27) to (30), ensure that if

an examination task associated with a module m is part of an examination plan, then

a valid combination of primary and secondary examination achieving module m must

also be a part of the examination plan, with no further unnecessary examination tasks

associated with the module being taken. The first temporal constraint in Ret, given in

equation (31), forbids the same examination task from being completed in two distinct

semesters. Finally, the second temporal constraint in equations (32)–(34), implements

the meaning of dependencies as presented when introducing the concept.

Last but not least, an examination plan (Ei)
n
i=1 ⊆ (Ep∪Es)n for a basic study regu-

lations problem with examination tasks (B, E) is admissible if a((Ei)
n
i=1) is a study plan

for B and (Ei)
n
i=1 ∈

⋂
r∈Reg∪Ret

r.

For illustration, let us return to examination plan (Ei)
4
i=1. We have already seen in

Section 2 that a((Ei)
4
i=1) constitutes a valid study plan for the Cognitive Systems pro-

gram. Similarly, the actual examination plan (Ei)
4
i=1 satisfies all constraints in equation

(27)–(34), which warrants its admissibility. Unlike this, the aforementioned modified

examination plan E′ fails to be admissible. This is because, first, Rt, or more specifically

(17), forces modules to occur at most once in a study plan and, second, Reg forbids to

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 797

Fig. 1. Relations between partial and total study and examination plans.

have both epbm1,1 and epbm1,2 in E′. Hence, both a(E′) and E′ violate constraints on

study and examination plans, respectively.

Although we focused so far on total study and examination plans, in practice, a com-

mon use-case consists in completing partial ones. The above formalization directly carries

over to partial plans. Even though we do not formally elaborate this, we can show the

relationships among partial and total study and examination plans given in Figure 1.

4 Encoding study regulations

In this section, we present an ASP-based approach to represent study regulations and gen-

erate valid study plans. We explain in detail the representation of basic study regulations,

and we discuss briefly its extension to examination tasks.6 As usual, the representation is

divided in two parts: a specific instance and a general encoding. The instance represents

the elements of a specific study regulation by a set of facts, while the encoding provides

the semantics associated with study regulations. Given an instance that represents one

study regulation, the answer sets of the encoding together with the instance correspond

to the study plans for that study regulation.

We try to keep the notation as close as possible to the formalizations of the previ-

ous sections. We use the same symbols as before for sets and functions, but always in

lowercase, to adapt to the conventions of ASP. For example, the sets S, Si and Mw are

denoted by the terms s, s(i) and m(w), respectively. In what follows, we may use the

logic programing notation to refer to those sets and functions.

Listing 1 shows the first part of the instance cogsys.lp for the Cognitive Systems

master, that specifies the sets and functions of the study plan (without examination

tasks). Sets are defined using atoms of the form in(e,a) that represent that the element e

belongs to the set a. For example, the atom in(bm1,b) expresses that bm1 ∈ b. Functions

are defined similarly, using atoms of the form map(f,e,v) that represent that the value

of the function f applied to the element e is v. For example, map(c,bm1,9) expresses that

c(bm1) =9). To define the facts more compactly, we make extensive use of pooling using

the operator ‘;’. For example, the three facts in(bm1,b)., in(bm2,b)., and in(bm3,b).

defining the set b are captured by the single rule in((bm1;bm2;bm3),b). in Line 2.

6 The complete encoding for study regulations with examination tasks is available at
https://github.com/potassco/study-regulations/tree/v1.0.0.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.798

1 % b, f, a, o and p % c
2 in ((bm1 ; bm2 ; bm3) ,b). map (c, (bm1 ; bm2 ; bm3) ,9).
3 in ((fm1 ; fm2 ; fm3) ,f). map (c, (fm1 ; fm2 ; fm3) ,6).
4 in ((am11 ; am12 ; am21) ,a). map (c, (am11 ; am12 ; am21) ,6).
5 in ((am22 ; am31 ; am32) ,a). map (c, (am22 ; am31 ; am32) ,6).
6 in (E,o) :- in (E, (f;a)). map (c, (pm1 ; pm2 ; pm3) ,12).
7 in ((pm1 ; pm2 ; pm3) ,p). map (c,im,15).
8 map (c,msc,30).

10 % m % s
11 in (E,m) :- in (E, (b;f;a;p)). map (s,bm1,w ; s,bm2,s ; s,bm3,w).
12 .)w,)3mf;2mf;1mf(,s(pam.)m,)csm;mi((ni
13 map (s, (am11 ; am12 ; am21) ,e).
14 map (s, (am22 ; am31 ; am32) ,e).
15 map (s, (pm1 ; pm2 ; pm3) ,e).
16 map (s, (im1 ; msc1) ,e).

18 % e % l and u
19 .)021,m,l;42,p,l;42,o,l;72,b,l(pam.)e,1mf(ni
20 map (u,b,27 ; u,o,24 ; u,p,24 ; u,m,120).

Listing 1. First part of the instance of the Cognitive Systems master in cogsys.lp.

22 % global constraints
23 card (e,leq,2). equal (int (s,f) ,e).
24 sum (int (H,s) ,c,bw, (L,U)) :- H = (b;o;p;m), map (l,H,L), map (u,H,U).
25 in (im,gc3). in (msc,gc3). subseteq (gc3,s).

27 % temporal constraints
28 empty (int (s(I) ,s (J))) :- I = 1.. n, J = 1.. n, I < J.
29 empty (int (m(w) ,s (2* K))) :- K = 1.. n, 1 <= 2* K, 2* K <= n.
30 empty (int (m(s) ,s (2* K -1))) :- K = 1.. n, 1 <= 2* K -1 , 2* K -1 <= n.
31 in (msc,tc4). sum (before (tc4) ,c,geq,90).

Listing 2. Second part of the instance of the Cognitive Systems master in cogsys.lp.

The definitions of the constraints in equation (14)–(20) provide the conditions that

every study plan (Si)
n
i=1 ⊆Mn must satisfy. These conditions usually refer to operations

over sets, that we represent in ASP using prefix notation. For example, the condition

of equation (14) refers to the intersection of the sets S and F , that is denoted in the

logic program by the term int(s,f). Other terms can be used to denote the union,

substraction and complement of sets. The regulation constraints could in principle be

very diverse, but in our investigation of various study regulations we have found that

they can be captured by a few types of general constraints, that we represent in ASP

by different predicates. The general encoding gives their semantics, while the specific

instance of each study regulation provides facts over those predicates to represent the

corresponding constraints. Listing 2 shows the second part of our example instance, that

specifies the constraints of the Cognitive Systems master. It uses atoms of the following

form, with the associated meaning (where A and B denote sets, F denotes a function, and

L and U are integers):

• empty(A) means that A = ∅,
• equal(A,B) means that A = B,

• subseteq(A,B) means that A ⊆ B,

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 799

• card(A,leq,U) means that |A| ≤ U,

• sum(A,F,bw,(L,U)) means that L≤∑
e∈AF(e)≤ U, and

• sum(A,F,geq,L) means that L≤∑
e∈AF(e).

The general encoding includes more predicates to represent other relations among sets,

like proper subset or superset, and it also allows other types of comparisons within atoms

of the predicates card/3 and sum/4. Using these predicates, the global constraints (14)–

(16) are captured in Lines 23–25. The first constraint consists of two conditions, and this

is accordingly represented by two facts. Line 24 uses pooling to refer to all the sets in

{b, o, p, m}, and atoms over map/3 to capture the values L and U of the functions l and

u applied to those sets. The last rule of the block defines a new set gc3 that consists of

im and msc, and compares it via subseteq with s. Temporal constraints are represented

in Lines 28 to 31. The first three use atoms of the predicate empty/1 that refer to m(w),

m(s), and the specific sets of modules s(i) of each semester i. The last one defines the

set tc4 that consists of msc, applies to it a new kind of temporal operator called before,

and uses the resulting term in an atom of predicate sum/4. The term before(tc4)

denotes the set of modules that occur in the study plan before some element of tc4;

in this case, before the module msc. Using our previous mathematical notation, the set

before(tc4) is {m∈M | m∈ Si and there is some m′ ∈ tc4∩ Sk such that i < k}. The
general encoding includes other similar operators like after or between.

Listing 3 shows the general encoding in encoding.lp. It takes as input the constant

n that gives the length of the study plan. This constant is used by the choice rule in

Line 2 to generate the possible study plans, represented by the sets s(i) for i between

1 and n. Then, Line 5 defines the set s as the union of all s(i)’s, and Line 8 defines the

sets m(w) and m(s). After this, Lines 11–20 handle the additional sets that may occur

in the constraints. The first block of rules identifies the sets that occur as arguments in

the constraints. Then, the rules in Lines 16 and 17 recursively look for the sets occurring

inside the operators int and before. The encoding contains other similar rules for the

other operators, but we do not show them here. Once all the new sets have been identified,

additional rules provide their definition. Line 19 defines the intersection of two sets, and

Line 20 defines the modules occurring before some module of another set. The complete

encoding includes further rules for the other operators. The next part of the encoding,

in Lines 23-33, enforces the constraints. The first ones about empty/1, subseteq/2 and

equal/2, use the predicate in/2 to eliminate the cases that are not consistent with the

constraints, while those about card/3 and sum/4 rely on cardinality and aggregate atoms

for that task. For example, the condition |A| ≤ U for card(A,leq,U) is captured by the

cardinality atom in(E,A) U, and the condition L≤∑
e∈AF(e)≤ U for sum(A,F,bw,(L,U))

is captured by the aggregate atom L #sum{ V,E : in(E,A), map(F,E,V) } U. Finally,

the last block of statements in Lines 36 and 37 displays the sets s(i).

We can now run the ASP solver clingo with the instance for the Cognitive Systems

master and the general encoding. For n= 4 we obtain, among others, an answer set that

corresponds to the admissible study plan S of Example 1:

clingo -c n= 4 cogsys.lp encoding.lp

. . .

Answer: 1

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.800

1 % generate
2 { in (E,s (I)) } :- in (E,m), I =1.. n.

4 % s = s (1) U ... U s(n)
5 in (E,s) :- in (E,s (I)).

7 % m(w) and m(s)
8 in (E,m (X)) :- X = (s;w), in (E,m), map (s,E,X).

10 % additional sets
11 set (A) :- empty (A).
12 set (A) :- subseteq (A,B). set (A) :- equal (A,B).
13 set (B) :- subseteq (A,B). set (B) :- equal (A,B).
14 set (A) :- card (A,R,L). set (A) :- sum (A,M,R,L).
15 %
16 set (A) :- set (int (A,B)). set (B) :- set (int (A,B)).
17 set (A) :- set (before (A)).
18 %
19 in (E, int (A,B)) :- set (int (A,B)) , in (E,A), in (E,B).
20 in (E1,before (A)) :- set (before (A)) , in (E1,s (I)) , in (E2,A), in (E2,s (J)) , I < J.

22 % constraints
23 :- empty (A), in (E,A).
24 %
25 :- subseteq (A,B), in (E,A), not in (E,B).
26 %
27 :- equal (A,B), in (E,A), not in (E,B).
28 :- equal (A,B), not in (E,A), in (E,B).
29 %
30 :- card (A,leq,U), not { in (E,A) } U.
31 %
32 :- sum (A,F,bw, (L,U)) , not L #sum { V,E : in (E,A), map (F,E,V) } U.
33 :- sum (A,F,geq, L), not L #sum { V,E : in (E,A), map (F,E,V) }.

35 % display
36 #show .
37 #show (M,I) : in (M,s (I)).

Listing 3. Encoding for all study regulations in encoding.lp.

(bm1,1) (bm3,1) (fm1,1) (am12,1) (bm2,2) (am21,2) (pm1,2)

(im,3) (am31,3) (pm3,3) (msc,4)

This problem is solved in less than a second, but we have not evaluated the scalability of

our approach yet. Note also that our current encodings are designed for readability, but

we foresee that they can be made more efficient.

The extension to handle examination tasks is not involved. The first part of the instance

is extended by the specification of the sets Ep, Es and D using predicate in/2, and of

the functions ep and es using predicate map/3. The second part specifies the constraints

in Reg and Reg. As an example, the first global constraint is represented by the rule

implies(

neg(empty(int(ee,expand(union(EP,ES))))),

in’(int(ee,expand(EP)),EP)

) :- in(M,m), map(ep,M,EP), map(es,M,ES).

Looking at the body, variable M represents a module, EP denotes ep(M), and ES denotes

es(M). In the second line, the term ee refers to the set E, defined in the extended general

encoding, while the set operator expand takes one set of sets and returns the union of

the elements of that set. In the third line, relation in’ is a version of in where the first

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 801

argument is a set and the second is a set of sets. With this, the second line refers to the

set E ∩ ep(M)∪ es(M) and checks whether that set is not empty, and the third line checks

if E ∩ ep(M)∈ ep(M). All together, the rule states that for every module M the condition of

the second line implies the condition of the third one, just like the constraint (27)–(28).

The general encoding for examination tasks is extended accordingly to accomodate the

new set operations, like expand, and the logical connectives, like implies or neg. The

main change of the encoding takes place at the generation part, where the choice rule

of Line 2 is replaced by another choice rule that generates possible examination plans

together with a normal rule that implements function a and defines the corresponding

possible study plans.

5 ASP-driven user interface

In this section, we sketch our interactive prototypical User Interface (UI) for creating

study plans in accordance with study regulations. Notably, the UI is generated and

driven by ASP, more precisely the clinguin system.7

A detailed description of the UI can be found in our preliminary publication, where

tkinter is used for rendering. For a complement, we concentrate in what follows on the

modern web-based front-end Angular .8,9 To this end, clinguin uses a few dedicated pred-

icates to define UIs and the treatment of user-triggered events. This simple design greatly

facilitates the specification of continuous user interactions with an ASP system, in our

case clingo (Kaminski et al., 2023). More precisely, the UI is defined by predicates elem/3,

attr/3 and when/4, for specifying the UI’s layout, style and functionality, respectively.

We show in Listing 4 the relevant sections of the encoding used to generate the UI

snapshots in Figure 2.10 This encoding is passed along with our study regulations encod-

ing from Section 4 to clinguin, which allows for browsing and completing (partial) study

plans.

Line 1 creates a window element. Line 3 creates a container for each semester, which is

placed in the window. Lines 5 and 6 define the title container for each semester, assigning

values to the attribute class to define the blue background, bold font, padding and

margin. Lines 9 and 10 define a dropdown menu with the text “Assign module.”

The possible modules to be assigned are defined in predicate possible module/1 on

Line 12, using the assignments that appear in any model (union) but are not in all models

(intersection), via predicates any/1 and all/1, respectively. This predicate is used in

Lines 13 to 15 for defining the items in the dropdown menu.

In the second snapshot of Figure 2, we notice that module bm2 does not appear in

the options since there is no model where this module is assigned to the third semester.

When the module bm3 is clicked, Line 15 adds the corresponding atom as an assumption

(Andres et al., 2012; Alviano et al., 2023). Lines 18 and 19 define the modules that

are assigned to a semester (gray boxes). These can be the ones appearing in all models

7 https://clinguin.readthedocs.io/en/latest.
8 https://angular.io.
9 A detailed account of clinguin has also been submitted to ICLP’24.
10 The full encoding can be found in https://github.com/potassco/study-regulations/tree/v1.0.0.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.802

1 elem(w, window, root).

3 elem(s(I), container, w) :- semester(I).

5 elem(s t(I), container, s(I)) :- semester(I).

6 attr(s t(I), class, ("bg-primary";"bg-opacity -50";

7 "fw-bold";"p-2";"m-1")) :- semester(I).

9 elem(s dd(I), dropdown menu, s t(I)) :- semester(I).

10 attr(s dd(I), selected, "Assign module") :- semester(I).

12 possible module(I,E) :- any(in(E,s(I))), not all(in(E,s(I))).

13 elem(s ddi(I,E), dropdown menu item, s dd(I)) :- possible module(I,E).

14 attr(s ddi(I,E), label, E) :- possible module(I,E).

15 when(s ddi(I,E), click, call, add assumption(in(E,s(I)))) :-

16 possible module(I,E).

18 assigned module(I,E) :- all(in(E,s(I))).

19 assigned module(I,E) :- in(E,s(I)), clinguin browsing.

20 elem(s module(I,E), container, s modules(I)) :- assigned module(I,E).

21 attr(s module(I,E), height, C*10) :- assigned module(I,E), map(c,E,C).

Listing 4. An encoding for the prototype UI (ui.lp)

Fig. 2. User interaction via mouse actions in clinguin.

(Line 18) due to a user selection or inference, or the ones in the current model when the

user is browsing solutions, as indicated by atom clinguin browsing.

Predicate assigned modules/2 is then used in Lines 20 and 21 to create the corre-

sponding container, using the number of credits of the module to define the height in

Line 21. The third snapshot shows module “bm3” assigned to the third semester after

the previous click. Modules selected by the user include a button marked with “x” to

remove the selection; unlike assignments forced by the encoding, such as module “msc”

in the fourth semester. Upon clicking in the “Next” button, the last snapshot shows one

full study plan consistent with the user’s selections.

6 Related work

ASP, event calculus and process mining techniques were already used in (Wagner et al.,

2023) for solving study regulation problems. However, (Wagner et al., 2023) presents

an overview of the AIStudyBuddy project, and contains neither a formalization of study

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

Reasoning about Study Regulations in ASP 803

regulations nor any implementation details. Unlike this, (Samaranayake et al., 2023)

presents a web-based Decision Support System for a degree planning problem along with

a mathematical formalization. Degree requirements are mentioned but not formalized.

Also, (Baldazo et al. 2023) considers educational planning problems. This includes stress

and learning effects on students in a personalized study plan generation. It aims at

reducing the duration of student plans and is implemented via integer linear program-

ing. (Schneider et al., 2018) present a curriculum timetable validation tool by modeling

constraints in language B . Finally, (Shen et al., 2022) present a data-driven approach for

implementing a course recommendation algorithm. A traditional collaborative filtering

algorithm is extended to consider additional course path data.

7 Summary

We have introduced a conceptualization of study regulations based on set-based con-

straints. This formalization is both simple and general to capture a wide range of study

regulations. We indicated how the basic formulation easily extends to more complex

constructions. This will be further elaborated in future work. The identification of basic

principles in study regulations also allowed us to obtain a very general ASP encoding.

The building blocks of each study regulation are captured in terms of facts so that the

actual encoding is also applicable to a large range of study programs. Finally, we have

described an ASP-driven user interface for interactive elaboration of study plans. Again,

the interface is designed in a generic way and broadly applicable. Moreover, this case

study serves as a nice illustration of clinguin and how it can be used for interactive ASP

applications.

Finally, study regulations offer a very rich playground for applications of knowledge

representation and reasoning techniques. Study plans have a light temporal flavor and

resemble finite traces in linear temporal logic (De Giacomo and Vardi, 2013). The creation

of a study plans amounts to a configuration task, which also brings about interaction

and explainability. Finally, we have so far only been concerned with the hard constraints

emerging from study regulations but there is so much commonsense knowledge involved,

like defaults, preferences, deontic laws, updates, etc.

Acknowledgments

This work was partly funded by DFG grant SCHA 550/15 and BMBF project CAVAS+

(16DHBKI024).

References

Alviano, M., Dodaro, C., Fiorentino, S., Previti, A. and Ricca, F. 2023. ASP and subset
minimality: Enumeration, cautious reasoning and MUSes. Artificial Intelligence 320, 103931.

Andres, B., Kaufmann, B., Matheis, O. and Schaub, T. 2012. Unsatisfiability-based
optimization in clasp. In Technical Communications of the Twenty-eighth International
Conference on Logic Programming (ICLP’12), A. Dovier and V., Santos Costa, Eds., vol.
17. Leibniz International Proceedings in Informatics (LIPIcs), 212–221.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

S. Hahn et al.804

Baldazo, J., Yasḿın, R. and Nigenda, R. 2023. Scheduling personalized study plans
considering the stress factor. Interactive Learning Environments, 1–20.

De Giacomo, G. and Vardi, M. 2013. Linear temporal logic and linear dynamic logic on
finite traces. Proceedings of the Twenty-third International Joint Conference on Artificial
Intelligence (IJCAI‘13), F. Rossi, Ed. IJCAI/AAAI Press, 854–860.

Hahn, S., Martens, C., Nemes, A., Otunuya, H., Romero, J., Schaub, T. and Schellhorn,
S. 2023. Reasoning about study regulations in answer set programming (preliminary report).
In Proceedings of the International Conference on Logic Programming Workshops 2023, J.
Arias, S. Batsakis, W. Faber, G. Gupta, F. Pacenza, E. Papadakis, L. Robaldo, K. Rückschloß,
E. Salazar, Z. Saribatur, I. Tachmazidis, F. Weitkämper and A. Wyner, Eds. CEUR Workshop
Proceedings, CEUR-WS.org. 3437.

Kaminski, R., Romero, J., Schaub, T. and Wanko, P. 2023. How to build your own ASP-based
system?! Theory and Practice of Logic Programming 23, 1, 299–361.

Lifschitz, V. 2002. Answer set programming and plan generation. Artificial Intelligence 138,
1-2, 1–2,39–54.

Samaranayake, S., Gunawardena, A. and Meyer, R. 2023. An interactive decision support
system for college degree planning. Athens Journal of Education 10, 1, 101–116.

Schneider, D., Leuschel, M. and Witt, T. 2018. Model-based problem solving for university
timetable validation and improvement. Formal Aspects of Computing 30, 5, 545–569.

Shen, Y., Li, H. and Liao, Z. 2022. Online education course recommendation algorithm based
on path factors. In Proceedings of the Fifth International Conference on Information Systems
and Computer Aided Education (ICISCAE’22). IEEE Computer Society Press, 257–260.

Wagner, M., Helal, H., Roepke, R., Judel, S., Doveren, J., Goerzen, S., Soudmand, P.,
Lakemeyer, G., Schroeder, U. and van der Aalst, W. 2023. A combined approach of
process mining and rule-based AI for study planning and monitoring in higher education. In
Proceedings of the International Conference on Process Mining (ICPM’22): Process Mining
Workshops, Springer-Verlag, 513–525.

https://doi.org/10.1017/S1471068424000383 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068424000383

	Introduction
	2 Conceptualizing study regulations
	3 Examination tasks
	4 Encoding study regulations
	5 ASP-driven user interface
	6 Related work
	7 Summary
	References

