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Singular matrices and pairwise-tangent circles

A. F. BEARDON

1.  Introduction
The idea of using the generalised inverse of a singular matrix  to solve

the matrix equation  has been discussed in the earlier papers [1, 2, 3,
4] in the Gazette. Here we discuss three simple geometric questions which
are of interest in their own right, and which illustrate the use of the
generalised inverse of a matrix. The three questions are about polygons and
circles in the Euclidean plane. We need not assume that a polygon is a
simple closed curve, nor that it is convex: indeed, abstractly, a polygon is
just a finite sequence  of its distinct, consecutive, vertices. It is
convenient to let  and (later) .

A
Ax = b

(v1, … , vn)
vn + 1 = v1 Cn + 1 = C1

Question 1: Given a polygon  with vertex sequence , is it
possible to construct circles  centred at , such that each  is externally
tangent to  and ?

P (v1, … , vn)
Cj vj Cj

Cj − 1 Cj + 1

Question 2: Given positive numbers , is it possible to construct a
polygon  whose vertex sequence  has sides  of length

, and circles  centred at , such that each  is externally tangent to
and ?

� 1, … � n
P (v1, … , vn) [vj, vj + 1]

� j Cj vj Cj Cj − 1

Cj + 1

Question 3: Given positive numbers , is it possible to construct a
polygon with vertex sequence , and circles  of radius  and
centred at , such that each  is externally tangent to  and ?

r1, … , rn
(v1, … , vn) Cj rj

vj Cj Cj − 1 Cj + 1

In Question I we are given the polygon ; in Question 2 we are given
the lengths  of the sides of , but not its vertices. In Question 3 we are
given the desired radii  of the circles, and place no constraints on : in this
case the reader can experiment by sliding plates of different sizes (turned
upside down) around on a table top. We shall consider the (easy) case

, and the more interesting case , and leave the cases  for
readers to explore. We shall take an algebraic, and a geometric, point of
view but as algebraic arguments are not, in general, sensitive to the
geometric constraint that radii and lengths must be positive, we must pay
particular attention to this aspect.

P
� j P

rj P

n = 3 n = 4 n ≥ 5

2.  Triangles: the case n = 3
In Questions 1 and 2 we are given the ,   and it is clear from a diagram

that we can solve these problems by solving the linear equation
� j
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( ) ( ) = ( ) . (1)
1 1 0

0 1 1

1 0 1

r1

r2

r3

� 1

� 2

� 3

As this matrix is non-singular, its inverse exists and we find that (1) is
equivalent to the system

( ) ( ) = 2 ( ) . (2)
1 −1 1
1 1 −1

−1 1 1

� 1

� 2

� 3

r1

r2

r3

In order to solve the geometric questions, we must ensure that the , and the
, are positive, and that the  satisfy the triangle inequalities

rj
� j � j

� i < � j + � k. {i, j, k} = {1,  2,  3} . (3)
Now it is clear from (2) that since the  are positive and satisfy (3) in
Questions I and II, then the corresponding  are also positive. Conversely, it
is clear from (1) that since the given  are positive in Question 3, then so are
the  and, moreover, that the  do satisfy (3). In conclusion (and this is
intuitively obvious), providing that the condition (3) is assumed in
Question 2, then, when , the answer to all three questions is ‘yes’.
Moreover, in all of these cases  determines, and is determined by,

. As we shall see, this is not the case when .

� j
rj

rj
� j � j

n = 3
(� 1, � 2, � 3)

(r1, r2, r3) n = 4

3.  The generalised triangle inequality
Before we study the case , we comment on an extension of the

triangle inequality (3). First, the real numbers ,  and  are the lengths of
the sides of some triangle in the plane if, and only if, they are positive and
satisfy (3). Now consider a polygon with  sides of lengths
arranged in this order around the polygon. Then, obviously, the  satisfy the
generalised triangle inequality

n = 4
� 1 � 2 � 3

n � 1, … , � n
� j

� k < ∑
n

i = 1,i ≠ k
� j,  k = 1, … , n. (4)

In fact, the converse is also true, and we can even insist that the vertices of
the polygon are concyclic. This result (which seems plausible after sliding
plates around a table, but which does not seem to be as well known as the
case ), can be stated as follows.n = 3

Theorem 1: Let , , be positive numbers which satisfy (4).
Then there exists a Euclidean -gon with consecutive sides of lengths , and
whose vertices lie on a circle.

� 1, … , � n n ≥ 3
n � j

Theorem 1 occurs as [5, Theorem 6.2], and then later as [6, Theorem 1]
and [7, Theorem 1.1], and is perhaps a little more subtle than one might
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expect at first sight. Therefore, in order not to disrupt our main line of
enquiry, we defer our proof of it until the last section (Section 8) of the
paper.

4.  Quadrilaterals: the case n = 4
The case  is much more interesting than the case , and we

shall prove the following results.
n = 4 n = 3

Theorem 2: Let  be a quadrilateral with vertex sequence  and
sides  of length . Then it is possible to construct circles  centred
at , with each  externally tangent to  and to  if, and only if,
has an inscribed circle and if, and only if, .

P (v1, v2, v3, v4)
[vj, vj + 1] � j Cj

vj Cj Cj − 1 Cj + 1 P
� 1 + � 3 = � 2 + � 4

Theorem 3: Let  and  be any positive numbers. Then there is a
cyclic quadrilateral  with vertices , and circles  of radius  and centre

, such that each  is externally tangent to  and to .

r1, r2, r3 r4
P vj Cj rj

vj Cj Cj − 1 Cj + 1

Figure 1 provides a ‘proof without words’ of Theorem 2, and we omit
the details. In fact, Theorem 2 (and its proof) are closely related to Pitot's
theorem, namely that a quadrilateral with side lengths , , and  (in
this order) has an inscribed circle if, and only if, . For a
discussion of Pitot's theorem, see [8].

� 1 � 2 � 3 � 4
� 1 + � 3 = � 2 + � 4

FIGURE 1: A quadrilateral with an inscribed circle

Let us now consider the case  from the perspective of linear
algebra. First, given a quadrilateral  with side lengths , we can solve
Questions 1 and 2 if there is a positive solution  of the linear
system

n = 4
P � j

(r1, r2, r3, r4)

A ( ) = ( ) ( ) = ( ) . (5)

r1

r2

r3

r4

1 1 0 0

0 1 1 0

0 0 1 1
1 0 0 1

r1

r2

r3

r4

� 1

� 2

� 3

� 4

In contrast to the case , the matrix  is singular so, disregarding (forn = 3 A
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the moment) the signs of the , we see that given a quadrilateral , either (i)
there is no solution, or (ii) there are infinitely many solutions. In any event,
there is definitely not a unique solution . Now for any solution  we have

rj P

(rj) rj

� 1 − � 2 + � 3 − � 4 = (r1 + r2) − (r2 + r3) + (r3 + r4) − (r4 + r1) = 0,
so that

� 1 + � 3 = � 2 + � 4 (6)
is a necessary condition for the existence of some real solution .(rj)

We shall now show that the condition (6) is also sufficient. Given that
(6) holds, the general (real) solution to the equation (5) is given, for any real
parameter , byt

r1 = t;

r2 = � 1 − t;

r3 = � 2 − � 1 + t;

r4 = � 4 − t = � 3 − � 2 + � 1 − t.
Now we shall leave the case  (when  is a square) to
the reader. In all other cases we may assume that we have relabelled the
polygon so that , and it follows from this that if  then
and . Further if , then  and , so
if (6) holds, and if  is positive and sufficiently small, then we do have a
solution  with each  positive.

� 1 = � 2 = � 3 = � 4 P

� 2 > � 1 t > 0 r1 > 0
r3 > 0 0 < t < max {� 1, � 4} r2 > 0 r4 > 0

t
(r1, r2, r3, r4) rj

Let us now consider the non-uniqueness of the solution. Geometrically,
the non-uniqueness is obvious from Figure 1, for it is clear that given any
solution, we can increase the radii of two opposite circles, and decrease the
radii of the other two by the same amount. From the perspective of linear
algebra, this happens because the kernel  of the transformation  is the set
of real vectors  (where  denotes the transpose of the row
vector ). We conclude that if  is any solution to our question
then, at least for sufficiently small , the vector
is also a solution.

K A
(t, −t, t, −t)t xt

x (r1, r2, r3, r4)t

|t| (r1 + t, r2 − t, r3 + t, r4 − t)t

Finally, we comment on Question 3. If we start with with positive
numbers , we can use (5) to define the , and then these are obviously
positive. Moreover, it is clear from (5) that these  also satisfy (4) so, by
Theorem 1, there does indeed exist a polygon with sides of lengths .

rj � j
� j

� j

5.  The generalised inverse of a matrix
A second solution to a problem always enhances our understanding of

it, and with this in mind we consider the case  from the perspective of
the generalised inverse of a non-singular matrix. Briefly, if a square matrix

 is non-singular, then the inverse matrix  immediately provides a unique
solution of the equation . However, if  is singular, or if  is not a

n = 4

A A−1

Ax = b A A

https://doi.org/10.1017/mag.2024.3 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2024.3


16 THE MATHEMATICAL GAZETTE

square matrix, then no such inverse exists. However, we can always find a
matrix  (called the generalised inverse of ) which satisfies  and

, and which is such that  has a solution if, and only if,
 (that is,  is an eigenvector of  with eigenvalue 1). In

particular, if we are given , and can compute , then we have a necessary
and sufficient condition on  for the existence of a solution of .

B A ABA = B
BAB = B Ax = b

ABb = b b AB
A B
b Ax = b

Now we have a singular matrix  in (5) and, according to the results in
[2], the generalised inverse of  is the matrix , where

A
A B

B = ( ) ,  AB = ( ) .

1 −1 1 0
0 1 −1 0
0 0 1 0
0 0 0 0

1 0 0 0
0 1 0 0
0 0 1 0
1 −1 1 0

Now, by the result stated above, the matrix equation (5) has a solution if and
only if  is an eigenvector of  with eigenvalue 1, and an easy
calculation shows that this is so if, and only if, (6) holds.

(� 1, � 2, � 3, � 4)t AB

6.  The cases n ≥ 5
We now encourage readers to pursue the cases  and  or,

better still, show that, in the general case, the relevant matrix is non-singular
when  is odd, and singular when  is even. For example, if we consider the
case  (a hexagon) we obtain a  matrix , where

n = 5 n = 6

n n
n = 6 6 × 6 A

A = ( ) .

1 1 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0
0 0 0 0 1 1
1 0 0 0 0 1

Now  is singular, and a straightforward application of the ideas in [2] then
shows that

A

B = ( ) , AB = ( ) ,

1 −1 1 −1 1 0
0 1 −1 1 −1 0
0 0 1 −1 1 0
0 0 0 1 −1 0
0 0 0 0 1 0
0 0 0 0 0 0

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 −1 1 −1 1 0

and we arrive at the (expected) sufficient condition

� 1 + � 3 + � 5 = � 2 + � 4 + � 6

for the existence of a solution. In some sense, we may regard this as a
generalisation of Pitot's theorem, although the notion of an inscribed circle
has disappeared and has been replaced by circles at the vertices!
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7.  Higher dimensions
As an alternative to generalising the results on plane triangles to plane

quadrilaterals, we can consider generalising the results on plane triangles to
tetrahedra in  (and then on to , and so on). In this case, for a given
tetrahedron we can construct mutually tangent spheres at the four vertices if
and only if we can solve a system of six linear equations (coming from the
six edge lengths) in four variables (the radii of the spheres). Obvious
questions now arise, and we leave this for the interested readers to pursue.

�3 �4

8.  The proof of Theorem 1
We end the paper with our proof of Theorem 1 (which is an expanded

version of the proof in [5]).

Proof: Without loss of generality we may assume that .
Then, as the inequalities (4) hold, we find that  (in
fact, this single inequality is obviously equivalent to the collection of
inequalities in (4)). Next, we select a (sufficiently large) positive , and then
for each  we construct the Euclidean triangle  illustrated in Figure 2.

� 1 = max{� 1, … , � n}
� 1 < � 2 +  …  + � n

r
j Tj

0

r

r

θ j (r)
θj (r)

� j

FIGURE 2: The isosceles triangle Tj

The plan is to show that we can choose  so that , for then
it is obvious that we can fit the triangles together, each with its vertex at the
origin, and thereby construct a polygon and complete the proof of Theorem
1. Unfortunately, the proof is not this simple because such a polygon would
necessarily have the origin in its interior, and this need not be the case. The
case we have just described is illustrated (with ) in the second circle
in Figure 3, but we also have to allow for the possibility that the polygon is
as illustrated in the first circle in Figure 3, and in this case we have

. We therefore have to prove the existence
of some  such that one of the following two equations hold:

r ∑j θj (r) = π

n = 4

θ1 (r) = θ2 (r) +  …  + θn (r)
r

θ2 (r) +  …  + θn(r) = π − θ1 (r),  θ2 (r) +  …  + θn(r) = θ1 (r).
As is so often the case, the existence of such an  will follow from an
application of the intermediate value theorem.

r
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FIGURE 3: The two possibilities

This construction of the triangles  is possible if  and, for
each ,  so that  is a continuous strictly decreasing
function on the interval  with

Tj r ≥ � 1 / 2
j θj (r) = sin−1 (� 1 / 2r) θj

[� 1 / 2, +∞)
lim

r → � 1/2
θj(r) = θj (� 1 /2) = sin−1( � j

� 1
) ≤ 1

2π, θj(� 1 /2) = 1
2π, lim

r → ∞
θj(r) = 0. (7)

We now consider each of the following inclusive, but mutually
exclusive, possibilities (which correspond to the two cases in Figure 3):
Case 1: ;θ2 (� 1 / 2) +  …  + θn (� 1 / 2) < π / 2
Case 2: .θ2 (� 1 / 2) +  …  + θn (� 1 / 2) ≥ π / 2

In Case 1 we recall that , so thatθ1 (� 1 / 2) = π / 2

θ2 (� 1 / 2) +  …  + θn (� 1 / 2) < θ1 (� 1 / 2) . (8)
Now as  we see that . Thusr → +∞ θj (r) = sin−1 (� 1 / 2r)  � � 1 / 2r

lim
r → +∞

θ1 (r)
θ2 (r) + …  + θn (r)

=
� 1

� 2 +  …  + � n
< 1, (9)

and this shows that, for some sufficiently large , we haveR

θ1 (R) < θ2 (R) +  … +θn (R) . (10)
The inequalities (8) and (10), combined with the intermediate value
theorem, now show that for some  with , we haveR1 R1 > � 1 / 2

θ2 (R1) +  … +θn (R1) = θ1 (R1) . (11)
Again, as , in Case 2 we haveθ1 (� 1 / 2) = π / 2

θ2 (� 1 / 2) +  …  + θn (� 1 / 2) ≥ π − θ1 (� 1 / 2) . (12)
Now (7) and (9) show that

lim
r → +∞

π − θ1 (r)
θ2 (r) +  …  + θn (r)

= +∞, (13)

and this with (12) shows that, for some sufficiently large , we haveR 2

θ2 (R2) +  …  + θn (R2) = π − θ1 (R2) . (14)
The proof is now complete.
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The answers to the Nemo page from November 2023 on friction were:
1. Thomas Hardy Far from the Madding Crowd Chapter 3
2. Charles Dickens Bleak House Chapter 66
3. George Eliot Middlemarch Chapter 15
4. Virginia Woolf The Voyage Out Chapter 1
5. HG Wells The New Accelerator
6. Ambrose Bierce The Devil’s Dictionary

Congratulations to Bryan Thwaites and Martin Lukarevski on tracking
all of these down. This issue, Nemo gathers momentum.  Quotations are to
be identified by reference to author and work. Solutions are invited to the
Editor by 23rd May 2024.
1. The old dog got off his haunches, and his tail, close-curled over his

back, began a feeble, excited fluttering; he came waddling forward,
gathered momentum, and disappeared over the edge of the fernery.

2. They might have been moving a good deal by a momentum that had
begun far back, but they were still brave and personable, still warranted
for continuance as long again, and they gave her, in especial
collectivity, a sense of pleasant voices, pleasanter than those of actors,
of friendly empty words and kind lingerings.

Continued on page 26.
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