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The accuracy of speed prediction error to the next waypoint is a key factor in maintaining lon-
gitudinal separation on oceanic routes. This estimation is often used by air traffic control to
estimate the future position of aircraft, and the estimation errors result in potential separation
infringement. While most aircraft can calculate the estimated time at each future waypoint using
the onboard Flight Management System, the factors affecting the inaccuracy of the estimation
require more clarification. This paper investigates the accuracy of the speed prediction error on
oceanic routes and examines the main factor of error using airline flight data. The results show
that wind prediction error is a main source of speed prediction error, and significant differences
of the speed prediction error among airlines and aircraft types were observed.
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1. INTRODUCTION. Air traffic growth is expected to continue over the next sev-
eral decades. This growth requires more efficient aircraft operations, including increased
airspace capacity, (including reduced required separation between aircraft) while main-
taining safety. To set an appropriate separation standard, a collision risk model has been
developed for three dimensions: (longitudinal (along-track) separation, lateral separation,
and vertical separation). The first collision risk model in aviation was proposed by Reich
(1966). Although this model is stationary, it can calculate the risk of collision in a very
simple form. However, such a stationary model cannot describe the detailed dynamics of
aircraft, so a non-stationary, that is, time-dependent model was developed by Hsu (1981).
Currently, vertical and lateral separation standards are determined based on the Reich
model, while the longitudinal separation standard is based on the Hsu model (International
Civil Aviation Organization (ICAO), 2010; 2017). This paper focuses on longitudinal sep-
aration. Although the current longitudinal collision risk model is based on the Hsu model,
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it has undergone many modifications to reflect actual Air Traffic Control (ATC) and pilot
operations. Recently, Observed Navigation Performance (ONP) has come into use instead
of the Required Navigation Performance (RNP) value to estimate more accurate risk of
collision (Barry and Aldis, 2013). The author also proposed a new calculation method by
considering dependent parameters (Mori, 2014).

Under the longitudinal separation model, a key factor is the accuracy of the speed pre-
diction error. The speed prediction error indicates the accuracy of the Estimated Time of
Arrival (ETA) at a downstream point in the unit of knots (kt). This value has been obtained
for various places (Nagaoka et al., 2002; Fujita, 2007; Falk, 2013), and the value of 5-82 kt
is currently being used to determine the current 30 NM separation standard. (ICAO, 2017)
However, this value actually varies with the airspace, and the factors which affect it have
not yet been revealed. If the main error source is identified, further actions will be possi-
ble to reduce the speed prediction error and introduce a shorter separation standard. In this
paper, detailed flight data have been obtained from an airline, and the source of the speed
prediction error is analysed.

2. DETAILS OF SPEED PREDICTION ERROR AND DATA USED.

2.1.  Definition of speed prediction error. This paper is focused on the speed predic-
tion error, defined as explained below. On oceanic flights, a position report is usually sent
to ATC as an Automatic Dependent Surveillance — Contract (ADS-C) message. ADS-C
is a system through which an aircraft sends data automatically to the ATC and is usu-
ally operated via a satellite connection. The data sent includes the current aircraft position,
the ETA at a given point (predicted aircraft position and time), and other current basic
data (for example, Mach number and track angle). Since the ADS-C message is usually
sent every 10 minutes in Japanese airspace, the real-time aircraft position is estimated
from the current position and future estimated position. Figure 1 shows an illustration of
speed prediction error. Assume an aircraft sends a position report at ¢ = ;. The correspond-
ing longitudinal position is x = x;. At the same time, the aircraft sends a future position
(x1_est at £ =1 est). After about 10 minutes, the same aircraft sends a position report x = x;
again at f = t,. At ¢t = t,, according to the previous position report, the aircraft should have
been at the following position if linearly interpolated:

. X — X
X =+ =y — ) (1)
tl_est - tl

The position prediction error is defined as x, — xf;’ . Therefore, the speed prediction error
Av is defined by:
Xy — xf;’
Av=—2= 2
V=T )
2.2. Possible sources of speed prediction error. In the cruise phase, an aircraft usu-
ally flies tracking a target Mach. The target Mach is calculated by the Flight Management
System (FMS) considering the aircraft weight, wind speed, cost index, etc. The speed pre-
diction error is equal to the difference between the actual ground speed and the predicted
ground speed. The Ground Speed (GS) is the sum of the wind speed (w) and the True Air-
speed (TAS). TAS is the product of Mach (M) and sound speed (a). The sound speed is

the function of air Temperature (7). These relationships can be described by the following
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Figure 1. Calculation of speed prediction error.

equations. Here, Equation (3) considers only the longitudinal component:

GS = TAS +w (3)
TAS = aM “4)

a= JyRT 5)

where y is the adiabatic index of air, and R is the real gas constant. Therefore, the speed
prediction error can be affected by the following three factors: (1) wind prediction error,
(2) air temperature prediction error, and (3) target Mach tracking error. The wind prediction
error directly affects the speed prediction error. Considering air temperature error, since the
sound speed is a function of the air temperature, an inaccurate air temperature estimation
causes a speed prediction error. As for target Mach tracking error, an aircraft is usually
controlled to track a given target Mach, but the aircraft cannot follow the target exactly and
flies with a small deviation in Mach speed. Recent aircraft have a Required Time of Arrival
(RTA) function, which can control the target time to arrive a certain waypoint. Although
this RTA function is expected to improve the speed prediction error, oceanic airspace is
usually far from the destination airport, and it is rarely used. Therefore, here we assume
that the target Mach profile is not changed since the last position report.

2.3. Data used for analysis. To analyse speed prediction error in detail, flight data
are needed. For the purposes of this study, Quick Access Recorder (QAR) data have been
provided by an airline which includes precise data such as GS, TAS, Mach, real wind data,
etc, obtained every second. In total, data from 56 flights were used for the analysis, and all
aircraft flew over North Pacific (NOPAC) routes as shown in Figure 2. The three northern
NOPAC routes (R220, R580 and A590) were used for the analysis. Each NOPAC route
is 660 NM in length, and waypoints are set every 330 NM. The aircraft type was either
B777-300ER or B787-8. The corresponding ADS-C messages were also obtained, so the
corresponding speed prediction error by ADS-C can be calculated. Since QAR data does
not include the wind prediction data, instead meteorological data provided by the Japan
Meteorological Agency (JMA) were used as wind prediction data.
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Figure 2. NOPAC routes.

3. DATA ANALYSIS.

3.1. Distribution model. Previous work by ICAO (2017) has shown that speed errors,
and many other risk variables, are well modelled by Laplace distributions (assumed here as
the First Laplacian, and also called two sided, or double exponential distributions). These
have longer tails than Gaussian (Normal) distributions and are often used in safety anal-
ysis as they more conservatively model risk driven by unusual behaviour in the tails of a
distribution. The Laplace distribution with scale parameter A has equation:

L, 7) = 5 exp (— i “') (©)
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Laplace distribution has a log-linear tail, while the normal distribution has a log-quadric
tail. The Standard Deviation (SD) of a Laplace distribution is /21, so A is the important
parameter in this distribution.

3.2.  GS error caused by wind prediction error. The actual wind data was obtained in
QAR data every second. Since the predicted wind data in the estimation was not available,
six hours forecast wind data in the Global Spectral Model (GSM) provided by JMA was
used (JMA, 2013). In reality, the wind information can be updated on board via satellite
connection, but it depends on the pilot and, if not updated, the old wind data obtained on
the ground was used. Considering this fact, six hour forecast wind data was assumed to be
used.

The speed prediction error affects the GS error. If the wind speed, wind direction, TAS
and track angle are known in advance, GS can be calculated using the following form
considering the wind/GS/TAS triangle:

GS = —wcos (Q — ¢) + /w2 cos? (Q — ¢) + TAS? — w? (7)

where w is the wind magnitude, €2 is the aircraft track angle and ¢ is the wind direction. If
actual wind is assumed, the GS value is obtained. If estimated wind is assumed, another GS
value is obtained. The difference between these two GS values becomes the GS error caused
by speed prediction error. Since the QAR data is available every second, all parameters in
Equation (7) can be obtained every second. However, the position report interval is much
longer than a second, so the average prediction error for a certain time interval is more
important from the safety point of view. Therefore, a one minute average and ten minutes
average were calculated.

First, FMS wind prediction data was considered. FMS can usually only include the wind
prediction data at each waypoint, while GSM provides the wind data at each mesh (every
0-5° latitude and longitude). Such coarse wind data can degrade the prediction performance.

Figure 3 shows an example of time histories of along-track wind. Actual (measured)
wind was obtained via QAR data every second. GSM wind estimation data was also
calculated every second considering the corresponding QAR latitude and longitude data.
GSM coarse estimation means that the wind is linearly interpolated based on the wind at
each waypoint. As seen in the figure, GSM every-second estimation fits the actual wind
significantly better than GSM coarse estimation.

Next, one minute average and ten minutes average of GS error caused by wind pre-
diction error over NOPAC routes were calculated. In total, 4,566 minutes of QAR data
were analysed. Figure 4 shows the ten minutes average of GS error caused by wind predic-
tion error from a coarse GSM estimation. The Laplace distribution seems to be a good fit.
Table 1 summarises the scale parameter of GS error caused by wind prediction error among
average calculation intervals and every-second/coarse estimation. Figure 5 shows the SD
of GS error caused by wind prediction error for various time intervals for average calcula-
tion. As for the coarseness of the wind prediction, the scale parameter by coarse estimation
is about 20% larger than that by every-second estimation. If the FMS can include more
detailed wind information, the speed prediction error can potentially be improved. Thus, as
the average calculation time interval increases, the scale parameter/SD of GS error caused
by wind prediction error decreases, which means that the position prediction error does not
increase linearly with time.
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Figure 3. Example of time histories of along-track wind (waypoints are located at 0, 330, and 660 NM points).
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Figure 4. Distribution of GS error caused by wind prediction error by GSM coarse estimation for ten minute
averages.

Table 1. Scale parameter of GS error caused by wind prediction error in each
average calculation interval and every-second/coarse estimation.

One minute average  Ten minutes average

GSM every-second 436 383
GSM coarse 520 4.78

3.3. Temperature error. Temperature estimation is also obtained via GSM data as for
the wind analysis, and the results are summarised in Table 2. According to these results,
both the coarseness of the estimation data and the average calculation interval affect the
result, a trend observed in the wind prediction error analysis as well. The scale parameter
of air temperature is assumed to be 1-16°C, and the corresponding speed error is calculated.
The average air temperature during the cruise phase was —50-4°C.
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Figure 5. Relationship between standard deviation of GS error caused by wind prediction error and the time
interval for average calculation.

Table 2. Scale parameter [°C] of air temperature error in each average time
calculation.

One minute average  Ten minutes average

GSM every-second 1-07 0-95
GSM coarse 1.28 1-16

The effect on the speed of sound by a +/— 1-16°C change in air temperature error can
be estimated by calculation of the speed a(T) at a temperature near —50-4°C (a default
temperature for cruising aircraft), based on the Kelvin absolute temperate (T = 273-15
Kelvin = 0°C):

(27315 — 50-4 + 1-16) — a(273-15 — 50-4)|
+1a(273-15 — 50-4 — 1.16) — a(273-15 — 50-4)|

7 =0-779 [m/s] ®)

If the nominal Mach is assumed to be 0-85, the speed error is calculated by the following
formula:

0-779 x 0-85 x 1-94384 = 1-29[kt] where 1 m/s = 1-94384 kt )

If the air temperature error is assumed to follow a Laplace distribution with a scale
parameter of 1-16°C, the corresponding speed error follows a Laplace distribution with a
scale parameter of 1-29 kt.

3.4. Mach tracking error. QAR includes both the actual Mach number and the tar-
get Mach number, so the average Mach difference is calculated for several time intervals.
Figure 6 shows the SD of Mach error for various time intervals for average calculation.
The mean value of the Mach tracking error over ten minutes is about one third of that over
one minute. As for the ten minutes average, the SD of the Mach tracking error is 0-000849,
and the scale parameter of the Laplace distribution is 0-000644. The Mach tracking error
is assumed to follow a Laplace distribution with a scale parameter of 0-000644, and the
corresponding speed error is calculated. The same assumptions as used in air temperature
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Figure 6. Relationship between standard deviation of Mach tracking error and time interval for average
calculation.
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Figure 7. Distribution of speed prediction error via ADS-C messages.

calculation (the average air temperature is —50-4°C and the nominal Mach is 0-85) are
applied, and the corresponding speed error is calculated in the following equation:

a(273-15 — 50-4) x 0-000644 x 0-85 x 1.94384 = 0-32 [kt] (10)

This value is almost negligible compared to the scale parameter of wind prediction error
(4-5kt).

3.5. Speed prediction error by ADS-C. The corresponding speed prediction error
from ADS-C messages is also obtained. In total, 293 sets of data were available, all of
which apply to the ten minutes position report interval. The scale parameter of 3-97 is
obtained, and the Laplace distribution is well fitted as shown in Figure 7.

4. DISCUSSIONS AND FURTHER ANALYSIS.

4.1. Summary of the QAR data analysis. Based on the analysis in the previous
section, the scale parameters of each error source are summarised in Table 3. Here, all
errors are assumed to follow Laplace distributions. Also, current FMS use coarse estima-
tion of wind data, so the coarse estimation result of ten minutes average is shown here.
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Table 3. Summary of speed prediction error in each error source.

1) Wind prediction error 4.78 kt (see Table 1 in Section 3.2)

2) Temperature error 1-29 kt (see Equation (9) in Section 3.3)
3) Mach tracking error 0-32 kt (see Equation (9) in Section 3.4)
Total error v/wind? + Temp? + Mach?> ~ 4-96kt

Error calculated by ADS-C 3.97 kt (see Section 3.5)

According to the error analysis, the scale parameter of wind prediction error is higher than
those of others, so it is the error which mainly contributes to the speed prediction error.
The total speed error calculated by three error sources is calculated and nearly equal to
/wind? + Temp? + Mach?, though this equation is not strictly valid under the assumption
of a Laplace distribution. According to the calculation result, the speed prediction error
estimated by the three error sources (4-96 kt) and the speed prediction error obtained by
ADS-C (3-97 kt) have about 20% differences.

There are several possible reasons. First, the combination of the different errors (wind,
temperature, Mach) often do not combine independently. The ADS-C error seems to indi-
cate that the combination (total error) is a conservative (that is, higher) but reasonable
estimate of the wind prediction error, and hence may be used to approximate the relative
contribution of the error components. The second reason is that the onboard wind estima-
tion data and the wind data in this analysis are different. The onboard wind source and
the latest update time are unknown, so there should be a certain discrepancy. The third
reason is that the aircraft updates the wind estimation using its own flight data. The air-
craft can obtain wind data in real time, so the aircraft can know the difference of the actual
wind and the estimated wind. This difference can be used to improve the future estimation.
Unfortunately, the detailed algorithm is unknown, so this effect cannot be directly analysed.
However, if the above reasons are valid, the following assumptions can be made:

(1) Since the wind source in each airline is different, the speed prediction error varies
with airlines.

(2) Since the prediction update logic is different among aircraft types (FMSs), the speed
prediction error varies with aircraft types.

4.2. Data analysis of ADS-C. To investigate the above assumptions, further analysis
is conducted using ADS-C messages. The speed prediction error calculated by ADS-C is
examined among airlines and aircraft types. Using the ADS-C messages, the data of speed
prediction error is obtained in each airline and each aircraft type, and a scale parameter is
calculated when there are more than 500 data sets in each case.

Figure 8 shows the list of scale parameters for each airline (A~Z) and in each aircraft
type (a~h). The scale parameter is shown in yellow (small) and red (large). The black
colour indicates that less than 500 data sets are observed. This figure clearly shows that
the scale parameter differs among airlines and aircraft types. As for the airline, a scale
parameter of less than 4-0 kt was obtained for airlines L and Y, while a scale parameter of
more than 6 kt scale was obtained for airlines A, K, O, Q, R and U. Each airline applies a
similar scale parameter regardless of aircraft types, which infers that the major difference of
the speed prediction error among airlines could be due to the difference of the wind source.
As for aircraft types, aircraft type g performs the best, and aircraft type e is the second
best. However, there are only three operators flying aircraft type e, so this result is not
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Figure 8. Scale parameters of each airline and each aircraft type.

generalised. Since the same airline usually uses the same wind data regardless of aircraft
types, the difference of aircraft types should be discussed within the same airline. While
only two operators (M and Z) fly aircraft type h, both scale parameters are large. Since the
scale parameter of other aircraft types for airlines M and Z is smaller than that of aircraft
type h, the type h aircraft seems to perform worse than other aircraft types. In addition,
aircraft types f and g have in general the smallest scale parameters when compared to those
used by other aircraft types. The difference is 2—3 kt, which is significant.

In summary, the difference of scale parameters among airlines is significant, and this
could be due to the difference of wind prediction sources used by each airline. The differ-
ence of scale parameters is also observed among aircraft types. This difference could be
due to the difference of the estimation logic or update logic.

4.3. Discussion. To the best of the author’s knowledge, there have been no previ-
ous discussions regarding the difference of the scale parameter among airlines and aircraft
types, so the results presented in this paper were new to the author. In terms of the sepa-
ration standard, the large-scale parameter potentially increases the risk of collision, so an
effort to reduce the scale parameter is recommended. In general, newer aircraft are expected
to have a smaller scale parameter, so one solution is to replace aircraft with newer fleet. This
process will require time, but the scale parameter is expected to be improved over a long
time period. As for the wind source, if an airline uses a more accurate wind source, the
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speed prediction error could be improved. Currently, there is no standard for airline wind
source usage, so it is recommended that the speed prediction error is investigated in each
airline, and airlines with large scale parameters are encouraged to use more accurate wind
information. Another solution is to standardise the wind information used by airlines all
over the world. If wind is the main source of the prediction error and consecutive aircraft
use the same wind information, the risk of collision would be negligible.

The results presented in this paper also provides good feedback for future four-
dimensional trajectory operation and arrival management. The International Civil Aviation
Organization is aiming to introduce a four-dimension trajectory-based operation in the
future as well as a sophisticated arrival manager. (ICAO, 2016). In both concepts, the
accuracy of ETA significantly affects the system performance, and more accurate ETAs
are expected. (Bai et al., 2016; Lee et al., 2016). The ATC systems usually rely on each air-
craft’s ETA information, but this paper demonstrates that the accuracy of ETA depends on
the wind information each aircraft uses and aircraft type. Based on the results in this paper,
a unified wind information source could improve ETA accuracy. Since the difference of
ETA among airlines and aircraft types has not yet been considered, this could improve
the whole system performance. Although this paper only considers oceanic flights, similar
results will be expected under en-route flights as well if the main error source is the wind.
Further analysis is underway.

5. CONCLUSIONS. The speed prediction error, that is, ETA accuracy at downstream
points, is a key factor in determining longitudinal separation standards, but its detail has
not been clarified up until now. Therefore, this paper analysed speed prediction error using
airline QAR flight data. Data analysis revealed that the main factor of speed prediction
error was wind prediction error. As for the wind prediction error, since the predicted wind
information differs among airlines, the speed prediction error was further examined among
airlines and aircraft types using ADS-C data. The result showed that there was a differ-
ence of the speed prediction error among airlines, which could be due to the difference
of wind prediction data. Difference of the speed prediction error among aircraft types was
also observed. These characteristics have not yet been revealed by other researchers and
the results inferred that an improvement of ETA accuracy could easily be achieved by
using more accurate wind information. An improvement of ETA accuracy will support a
future four-dimensional trajectory-based operation as well as the introduction of a shorter
longitudinal separation standard.
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