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Isometric Dilations
of Non-Commuting Finite Rank n-Tuples
Kenneth R. Davidson, David W. Kribs and Miron E. Shpigel

Abstract. A contractive n-tuple A = (A1, . . . , An) has a minimal joint isometric dilation S =
(S1, . . . , Sn) where the Si ’s are isometries with pairwise orthogonal ranges. This determines a rep-
resentation of the Cuntz-Toeplitz algebra. When A acts on a finite dimensional space, the wot-closed
nonself-adjoint algebra S generated by S is completely described in terms of the properties of A. This
provides complete unitary invariants for the corresponding representations. In addition, we show that
the algebra S is always hyper-reflexive. In the last section, we describe similarity invariants. In partic-
ular, an n-tuple B of d × d matrices is similar to an irreducible n-tuple A if and only if a certain finite
set of polynomials vanish on B.

In [15, 16], the first author and David Pitts studied a class of algebras coined free
semigroup algebras. These are the wot-closed (nonself-adjoint) unital operator alge-
bras generated by an n-tuple of isometries with pairwise orthogonal ranges. When
these ranges span the whole space, the associated norm-closed self-adjoint algebra
is a representation of the Cuntz algebra. This nonself-adjoint algebra can contain
detailed information about fine unitary invariants of the corresponding C∗-algebra
representation. Indeed in [15] the set of atomic representations of the Cuntz algebra
is completely classified. On the other hand, when the ranges span a proper subspace,
the representation contains a multiple of the left regular representation of the free
semigroup on n letters. The wot-closed algebra of the left regular representation is
called the non-commutative analytic Toeplitz algebra. This nomenclature is justified
by a good analogue of Beurling’s Theorem [29, 1, 15], hyper-reflexivity [15] and the
relationship [16] between its automorphism group and the group of conformal au-
tomorphisms of the ball in Cn.

The connection with dilation theory derives from a theorem of Frahzo, Bunce
and Popescu [19, 11, 26]. If A = (A1, . . . , An) is an n-tuple of operators such that
AA∗ =

∑n
i=1 AiA∗

i ≤ I, then there is a unique minimal isometric dilation to isome-
tries Si on a larger space with pairwise orthogonal ranges. Popescu [26] establishes
the analogue of Wold’s decomposition which splits this into a direct sum of a multiple
of the left regular representation and a representation of the Cuntz algebra. Moreover,
Popescu [28] obtains the non-commutative analogue of von Neumann’s inequality
in this context. We mention in passing that there has been recent interest in dilating
commuting n-tuples as well [30, 3, 4].

On the other hand, representations of the Cuntz algebra correspond to endomor-
phisms of B(H) [31, 25, 8, 9]. This has created new interest in classifying these
representations up to unitary equivalence. The well-known theorem of Glimm [22]
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shows that this classification is non-smooth because On is anti-liminal (or NGCR).
Nevertheless, interesting classes of representations do lend themselves to a complete
analysis. In [10], Bratteli and Jorgensen introduced a class of representations which
turned out to be a special case of the atomic representations classified in [15] us-
ing nonself-adjoint techniques. In [9] they introduce a different class associated to
finitely correlated states. The reader will see a lot of parallels between their results
and ours, though the approach is quite different. In the end, they specialize to the
subclass of diagonalizable shifts in order to obtain a classification theorem. In this
paper, we obtain good unitary invariants for the class of all of these finitely correlated
representations.

The goal of this paper is two-fold. First we wish to understand the structure of the
free semigroup algebra generated by the dilation of an n-tuple A in terms of infor-
mation obtained from the n-tuple itself (and the algebra it generates). In particular,
we seek unitary invariants for the associated C∗-algebra representation. Secondly,
we wish to determine whether these algebras are reflexive and even hyper-reflexive.
In this paper, we focus on the case in which the n-tuple A acts on a finite dimen-
sional space. Here we obtain a complete description of the algebra. This enables
us to decompose the associated representation as a direct sum of irreducible repre-
sentations and obtain complete unitary invariants. These algebras all turn out to be
hyper-reflexive.

In the last section, we discuss similarity invariants. One of the surprising conse-
quences is a complete invariant for an irreducible n-tuple of d × d matrices up to
similarity. An algorithm for determining if two n-tuples of matrices are similar is
provided by Friedland [21]. But this method rapidly gets complicated. So it is not
clear whether it is superior to ours. We find that there is a finite set of no more than
1 + (n − 1)d2 polynomials p j so that another n-tuple B is similar to A if and only if
p j(B) = 0 for all j. These polynomials are obtained from a computable set of gen-
erators of an ideal of the left regular free semigroup algebra as a right ideal, which
amounts to computing an orthonormal basis for a certain subspace. In practice, one
only needs generators as a two-sided ideal, and hence the actual number needed is
normally smaller.

1 Background

Let F+
n denote the unital free semigroup on n letters {1, 2, . . . , n}, and let Kn =

�2(F+
n ) denote the Hilbert space with basis {ξw : w ∈ F+

n}, which is known as n-
variable Fock space. The left regular representation λ of F+

n is given by λ(v)ξw :=
Lvξw = ξvw. In particular, the generators of F+

n determine isometries Li for 1 ≤ i ≤ n
with orthogonal ranges such that

∑n
i=1 LiL∗

i = I − Pe where Pe = ξeξ
∗
e is the rank

one projection onto the basis vector for the empty word e, which is the identity of F+
n .

The algebra Ln is the wot-closed algebra generated by the n-tuple L = (L1, . . . , Ln).
See [15, 16, 17, 23, 27, 29] for detailed information about this algebra.

More generally if Si , 1 ≤ i ≤ n, are isometries with
∑n

i=1 SiS∗i ≤ I, let S denote
the unital wot-closed (nonself-adjoint) algebra generated by them. We denote by Sv

the isometry v(S) := v(S1, . . . , Sn) for each v ∈ F+
n . A subspace W is called wander-

ing for the n-tuple S = (S1, . . . , Sn) provided that the subspaces SvW are pairwise
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orthogonal for all v ∈ F+
n . Thus the smallest S-invariant subspace containing a wan-

dering space W is S[W] =
∑⊕

v∈F+
n

SvW. The restriction of S to this subspace is

evidently a multiple of the left regular representation algebra Ln, where the multi-
plicity is given by dim W. Popescu’s Wold decomposition [26] works as follows: the
subspace W = Ran(I − ∑n

i=1 SiS∗i ) is easily seen to be wandering. Moreover the
complement N = S[W]⊥ is also invariant for S, and the restriction to N yields
isometries Ti = Si|N satisfying

∑n
i=1 TiT∗

i = IN.

Suppose A = (A1, . . . , An) is an n-tuple of operators on a Hilbert space V such
that AA∗ =

∑n
i=1 AiA∗

i ≤ I. Frahzo [19] (for n = 2), Bunce [11] (for n < ∞) and
Popescu [26] (for n = ∞) show that there is a joint dilation of the Ai to isometries
Si on a Hilbert space H = V ⊕ K which have pairwise orthogonal ranges. Popescu
observes that if this dilation is minimal in the sense that H = span {SvV : v ∈ F+

n},
then the dilation is unique (up to a unitary equivalence which fixes V). We will always
work with this minimal isometric dilation.

Popescu also observes [28] that the norm-closed nonself-adjoint algebra An

spanned by {Lw : w ∈ F+
n} is the appropriate non-commutative analogue of the

disk algebra for a version of von Neumann’s inequality. Namely, if A is a contractive
n-tuple as above, then ‖p(A)‖ ≤ ‖p(L)‖ for every non-commuting polynomial in
n variables. This is immediate from the dilation theorem and the fact that there is
a contractive homomorphism of En onto On, the two possible C∗-algebras for the
dilation. However, it turns out that this quotient map is completely isometric on An.
So this norm estimate is an equality for any contractive n-tuple of isometries. This
shows that On is the C∗-envelope of An.

This presents a rather precise picture for the norm-closed algebra generated by an
n-tuple of isometries with orthogonal ranges. However, the wot-closed algebras can
be quite different. They can reflect the fine unitary invariants of the representation.
The case n = 1 is familiar, where the wot-closed algebra depends on the spectral
invariants of the unitary part and the multiplicity of the shift (from the Wold decom-
position).

When
∑n

i=1 SiS∗i = I, the C∗-algebra generated by the isometries Si is the Cuntz
algebra On; and when

∑n
i=1 SiS∗i < I, this C∗-algebra is ∗-isomorphic to the Cuntz-

Toeplitz algebra En generated by the left regular representation λ. This algebra is
an extension of the compact operators K by On. We associate to each n-tuple Si the
representation σ of En given by σ(si) = Si , where si are the canonical generators of En.
When

∑n
i=1 SiS∗i = I, we may consider this as a representation of On instead. Let Sσ

denote the wot-closed non-self-adjoint algebra determined by the representation σ.
One can view the Wold decomposition as the spatial view of the C∗-algebra fact that
every representation σ of En splits as a direct sum σ = λ(α) ⊕ τ of a representation
λ(α), which is faithful on K and thus is a multiple of the identity representation λ,
and a representation τ which factors through On.

A representation is called atomic if there is an orthonormal basis {ξ j} which are
permuted up to scalars by the generating isometries Si . That is, for each i there is an
endomorphism πi : N → N and scalars λi, j of modulus 1 such that Siξ j = λi, jξπi ( j).
These representations decompose as a direct integral of irreducible atomic represen-
tations [15], and these irreducible atomic representations are of three types. The first
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is just the left regular representation; which is the only one which does not factor
through On. The second type is a class of inductive limits of the left regular rep-
resentation, and are classified by an infinite word (up to shift-tail equivalence) that
describes the imbeddings. The third type fits into the context of this paper, and so we
describe it in more detail. See [15] for a complete description.

The third type is given by a word u = i1i2 · · · id in F+
n and a scalar λ of modulus

1. A finite dimensional space V of dimension d is formed with a basis e1, . . . , ed.
Operators A j , 1 ≤ j ≤ n, are partial isometries given by

A jek = δ jik ek+1 for 1 ≤ k < d

A jed = λδ jid e1.

The minimal isometric dilation of this n-tuple yields isometries S j acting on a space
H = V⊕K. The isometry Sik maps ek to ek+1 (or λe1 when k = d) and the other n−1
isometries send ek to pairwise orthogonal vectors which are all wandering vectors
for S. Thus K = V⊥ is determined by a wandering space W of dimension d(n −
1), and therefore K = S[W] � K(d(n−1))

n . The associated representation σu,λ is
irreducible precisely when the word u is primitive, meaning that it is not a power of
a smaller word. In this case, S can be completely described as the sum of B(H)PV

and a multiple of Ln acting on K via its identification with K(d(n−1))
n . The invariant

subspaces of this algebra are readily described, and it turns out to be hyper-reflexive.
(See below).

For the future, we wish to name the type of algebra which occurs here. Let Bn,d

denote the wot-closed algebra on a Hilbert space H = V⊕K(d(n−1))
n where dim V = d

given by
Bn,d = B(H)PV + (0V ⊕ L(d(n−1))

n ).

Another class of representations which have been studied are the finitely correlated
representations [9]. A representation of On is finitely correlated if there is a finite
dimensional cyclic subspace V which is invariant for each S∗i . Likewise, a finite corre-
lated state is a state ϕ such that in the GNS construction, the invariant subspace for
the S∗i ’s generated by the cyclic vector ξϕ is finite dimensional. It is evident that these
representations are exactly those which we will study from the viewpoint of dilation
theory. In this paper, we will obtain a complete classification of these representations
up to unitary equivalence. We will explain later how our classification relates to the
work of Bratteli and Jorgensen.

If A is an algebra of operators, Lat A denotes the lattice of all A-invariant sub-
spaces. And if L is a lattice of subspaces, Alg L denotes the wot-closed unital algebra
of all operators which leave each element of L invariant. The algebra A is reflexive if
it equals Alg Lat A. For each reflexive algebra, there is a quantitative measure of the
distance to A given by

βA(T) = sup
L∈L

‖P⊥
L TPL‖.

It is easily seen that βA(T) ≤ dist(T, A). The algebra is called hyper-reflexive if there
is a constant C such that dist(T, A) ≤ CβA(T). The optimal C , if it is finite, is called
the distance constant for A.
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The list of algebras known to be hyper-reflexive is rather short. Arveson [2]
showed that nest algebras have distance constant 1, so that equality is achieved. Chris-
tensen [12] showed that AF von Neumann algebras have distance constant at most 4.
Concerning the algebras studied in this paper, the first author [14] showed that the
analytic Toeplitz algebra has distance constant at most 19; and with Pitts [15], that
all atomic free semigroup algebras where shown to have distance constant at most
51. The worst case for these estimates was the algebra Ln. However a recent general
result of Bercovici [6] applies to show that Ln actually has a distance constant no
greater than 3.

2 Main Results

In this paper, we generally take n to be a finite integer with n ≥ 2. However, Popescu’s
version of the dilation theorem is valid for n = ∞, as are the results of [15, 16] on
the structure of Ln which we shall use. So the results of this paper go through for
n = ∞ with only a few minor changes in notation, not in substance. For ease of
presentation, we will write this paper as though n were finite, and let the interested
reader interpolate the n = ∞ case.

Consider a contractive n-tuple A = (A1, . . . , An) acting on a finite dimensional
space V of dimension d; i.e.

∑n
i=1 AiA∗

i ≤ I. The Frahzo-Bunce-Popescu minimal
dilation yields isometries Si acting on a larger space H. We let A denote the algebra
generated by the Ai ’s, and let S be the wot-closed algebra generated by the Si ’s. We
will make important use of an associated completely positive contractive map on
B(V) given by

Φ(X) =
n∑

i=1

AiXA∗
i .

The operator Φ∞(I) := limk→∞ Φk(I) will also be useful.

The first fairly easy observation is that the dilation is of Cuntz type (
∑n

i=1 SiS∗i =
I) if and only if

∑n
i=1 AiA∗

i = I; or equivalently Φ(I) = I. In general, we de-
fine the pure rank of S to be the multiplicity of the left regular representation in
the Wold decomposition of S. This is the dimension of the wandering space W =
Ran(I − ∑n

i=1 SiS∗i ). Simple examples show that this wandering space need not be
contained in V, and that even when this pure rank is one, the pure part may have
large intersection with V. Nevertheless, it turns out that this pure rank may be easily
computed as

pure rank(S) = rank
(

I − Φ(I)
)

= rank
(

I −
n∑

i=1

AiA
∗
i

)
.

The irreducible summands of Cuntz type are determined by the minimal A∗-
invariant subspaces M of V on which

∑n
i=1 AiA∗

i |M = IM. Such a subspace generates
an invariant subspace HM = S[M] for S which is necessarily reducing. The
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restriction S|HM
of S to this subspace is isomorphic to the algebra Bn,m, where

m = dim M, described in the Background section. A crucial feature is that the pro-
jection PM belongs to this algebra. This makes it possible to show that the restriction
of the n-tuple A to M is a unitary invariant for the dilation.

The subspace Ṽ spanned by all the minimal A∗-invariant subspaces of this type
completely determines the Cuntz part of the dilation. The restriction of A∗ to Ṽ is
a finite dimensional C∗-algebra. The well-known invariants for a finite dimensional
C∗-algebra allow one to compute the multiplicities of each irreducible subrepresen-
tation. In general, this information may be used to completely decompose the repre-
sentation into a direct sum of finitely many irreducible representations of the types
given above. This yields complete unitary invariants: the pure rank and the unitary
equivalence class of the restriction of A∗ to Ṽ.

For example, one can show that S is irreducible if and only if either

(1) rank
(

I − Φ(I)
)

= 1 and Φ∞(I) = 0, the pure case, or
(2) {X : Φ(X) = X} = CI, the Cuntz case.

The algebras Ln and Bn,d were shown to be hyper-reflexive in [15]. This analysis
can be used to show that all of these algebras S determined by a finite rank n-tuple
are hyper-reflexive. The constant 51 of that paper may be improved to 5 using recent
results of Bercovici [6] which show that the distance constant for Ln is at most 3.

Then we turn our attention to similarity. If two contractive n-tuples are similar,
it follows that their Cuntz parts are unitarily equivalent. However, the pure rank can
change. Indeed, this rank can be 0 in one case and non-zero in a similar n-tuple.

The major interest lies in the pure case. In this case, the algebra S is unitarily
equivalent to a multiple of Ln, and thus completely isometrically isomorphic and
weak-∗ homeomorphic to Ln. The compression ΦA of S to V is thus a weak-∗ con-
tinuous representation of Ln. The study of these representations was initiated in [16].
The kernel of such a representation is a wot-closed ideal. A wot-closed ideal J of Ln is
determined [16, Theorem 2.1] by its range M = JKn, which is a subspace invariant
for both Ln and its commutant Rn. Thus we consider the associated representation
of Ln obtained as restriction to M⊥. This has the same kernel J. In the case of an
irreducible n-tuple, the minimal L∗

n -invariant subspaces of M⊥ yield all of the n-
tuples similar to A which have pure rank 1. These are the extreme points of all such
representations in the sense that A can be recovered as a C∗-convex combination of
them.

In particular, it follows that two irreducible n-tuples of matrices are similar if and
only if the induced representations of Ln have the same kernel. The range space M

of J = ker ΦA has a wandering space of dimension 1 + (n − 1)d2. A basis for this
wandering space yields a finite set of generators for J as a wot-closed right ideal.
They determine a corresponding finite set of isometries X j in Ln with the property
that another contractive n-tuple of d × d matrices B is similar to A if and only if
ΦB(X j) = 0 for 1 ≤ j ≤ 1 + (n − 1)d2. Since one merely requires generators for J as
a two-sided ideal, normally this number of tests can be reduced. The set of isometries
are canonical, but they are generally not polynomials. A set of polynomial invariants
can be obtained by an approximation argument.
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3 Wandering Subspaces

Let V be a d-dimensional space (possibly infinite), and let A1, . . . , An be an n-tuple
of operators in B(V) such that

∑n
i=1 AiA∗

i ≤ I. The Frahzo-Bunce-Popescu minimal
dilation yields isometries Si on a larger space H. Let PV denote the projection of H

onto V. We let A denote the algebra generated by the Ai ’s and S be the wot-closed
algebra generated by the Si ’s. We first identify V⊥.

Lemma 3.1 The subspace W = (V +
∑n

i=1 SiV) � V is a wandering subspace for S,

and
∑⊕

v∈F+
n

SvW = V⊥.

Proof W is contained in V⊥, which is invariant for S. Thus SuW is orthogonal to V

for every word u ∈ F+
n . Consequently, when |u| ≥ 1, SuW is also orthogonal to S jV,

1 ≤ j ≤ n. It follows that SuW is orthogonal to V +
∑n

i=1 SiV, which contains W.
Therefore W is wandering. Minimality ensures that

H = span {SuV : u ∈ F+
n} = span {V, SuW : u ∈ F+

n}.

Since W lies in the invariant subspace V⊥, this can only occur because
∑⊕

v∈F+
n

SvW =
V⊥.

Thus K = V⊥ is unitarily equivalent to a multiple K(α)
n of Fock space, where

α = dim W, and Si |K � L(α)
i . Hence decomposing H = V ⊕ K, we may write each

Si as a matrix Si =
[

Ai 0

Xi L(α)
i

]
.

Remark 3.2 The range of
∑n

i=1 SiS∗i includes
∑n

i=1 SiV
⊥ = (V + W)⊥ as well as∑n

i=1 SiV. Hence
∑n

i=1 SiS∗i = I if and only if
∑n

i=1 SiV contains V. Since V is
invariant for S∗i and S∗i |V = A∗

i ,

n∑
i=1

AiA
∗
i =

n∑
i=1

PVSiPVS∗i |V = PV

n∑
i=1

SiS
∗
i |V.

Therefore
∑n

i=1 SiS∗i = I if and only if its range contains V if and only if
∑n

i=1 AiA∗
i =

IV.
Let d = dim V be finite, and let α = dim W. Then α can be as large as nd and

as small as (n − 1)d. This is easily seen since
∑n

i=1 SiV is an orthogonal direct sum
and thus has dimension nd, so that W = (V +

∑n
i=1 SiV) � V can have no larger

dimension than nd, and is at least (n − 1)d.
When

∑n
i=1 AiA∗

i = IV, we showed above that
∑n

i=1 SiS∗i = I. Then

V =
n∑

i=1

SiS
∗
i V =

n∑
i=1

SiA
∗
i V ⊂

n∑
i=1

SiV.

Hence W =
(∑n

i=1 SiV
) � V has dimension (n − 1)d.
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The case dim W = nd occurs, for example, if Ai = 0 for 1 ≤ i ≤ n. The minimal
dilation is just L(d)

i . Indeed, if x, y ∈ V, then

(Six, y) = (x, S∗i y) = (x, A∗
i y) = 0 for 1 ≤ i ≤ n.

Thus V is orthogonal to
∑n

i=1 SiV. Therefore W =
∑n

i=1 SiV has dimension nd.
It is easy to combine these examples to obtain any integer in between.

The n-tuple of isometries S is called pure if it is unitarily equivalent to a multiple
of the left regular representation. Bunce [11] shows that whenever ‖A‖ < 1, the
dilation S is pure. Popescu [26] shows that the dilation is pure if and only if wot-
limk→∞

∑
|v|=k AvA∗

v = 0.
Lemma 3.1 shows that beginning with an n-tuple, we will always obtain wandering

vectors except when the Ai ’s already are isometries and
∑n

i=1 AiA∗
i = I, in which

case the dilation is just the Ai ’s themselves. When there are wandering vectors, each
generates a subspace M on which the isometries Si are unitarily equivalent to the left
regular representation. In particular, the non-∗ algebra S that they generate is very
non-self-adjoint. In fact, a strong converse to this exists. Recall that an algebra is
reductive if all of its invariant subspaces have invariant (orthogonal) complements;
and it is transitive if it has no proper invariant subspaces at all. It is an open problem
equivalent to the transitive algebra variant of the invariant subspace problem [18]
whether every wot-closed reductive algebra is self-adjoint.

Lemma 3.3 Let S be a free semigroup algebra. Then either S has a wandering vector
or S is reductive. If the latter is possible, then transitive free semigroup algebras exist.

Proof Suppose that S has no wandering vectors. Let M be an invariant subspace for
S. Then

∑n
i=1 SiM must equal M; for otherwise M�∑n

i=1 SiM is wandering. Thus∑n
i=1 SiM

⊥ = M⊥, so that M⊥ is also invariant. Whence S is reductive.
Now we invoke the direct integral theory for non-self-adjoint operator algebras

due to Azoff, Fong and Gilfeather [5, Theorem 4.1]. Let M be any masa in the com-
mutant of S. They show that S may be decomposed with respect to M as an integral
of algebras which are transitive almost everywhere. The isometries Si decompose as
an integral of operators which are isometries almost everywhere as well. In partic-
ular, transitive algebras generated by isometries with orthogonal ranges would exist.

At this point, we do not know if there are transitive free semigroup algebras. The
motivation for suspecting that there may be comes from the case n = 1. A unitary
operator is reductive unless Lebesgue measure on the whole circle is absolutely con-
tinuous with respect to the spectral measure of the unitary [35]. This is the case for
‘most’ unitaries.

We will frequently construct reducing subspaces of S from A∗-invariant sub-
spaces. This procedure preserves orthogonality as well.

Lemma 3.4 Suppose that V contains an A∗-invariant subspace V1. Then H1 =
S[V1] reduces S.

https://doi.org/10.4153/CJM-2001-022-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-022-0


514 K. R. Davidson, D. W. Kribs and M. E. Shpigel

If V contains a pair of orthogonal A∗-invariant subspaces V1 and V2, then H j =
S[V j] for j = 1, 2 are mutually orthogonal.

If in addition V = V1 ⊕ V2, then H decomposes as H1 ⊕ H2 and H j ∩ V = V j for
j = 1, 2.

Proof Since V1 is invariant for A∗
i , it is also invariant for S∗i . The S-invariant sub-

space H1 = S[V1] is spanned by vectors of the form Swx where x ∈ V1 and w ∈ F+
n .

Notice that S∗i Swx equals Sw ′x if w = iw ′, 0 if w = i ′w ′ for some i ′ �= i, and S∗i x if
w = e. Since V1 is invariant for S∗, each of these possibilities belongs to H1. Thus
H1 reduces S.

Likewise, if V1 and V2 are orthogonal A∗-invariant subspaces, it follows that H1

and H2 are orthogonal. For if v j ∈ V j , the inner product (Suv1, Swv2) can be reduced
by cancellation of isometries until either u or w is the identity element. Then, for
example when w = e,

(Suv1, v2) = (v1, S∗uv2) = 0

by the A∗-invariance of V2 and orthogonality.
Now suppose that V = V1 ⊕ V2. Since H1 contains V1 and is orthogonal to V2, it

follows that H1 ∩ V = V1. Finally, H1 ⊕ H2 is an S-reducing subspace containing
V, so it is all of H by the minimality of the dilation.

4 Finite Dimensional n-Tuples

Now let us specialize to the case when V is finite-dimensional. In general, we can de-
compose the Si into a pure part and Cuntz part. Let X be the range of I −∑n

i=1 SiS∗i ,

which is the wandering space for the reducing subspace Hp =
∑⊕

v∈F+
n

SvX. The re-
striction of the Si to this space yields a multiple of the left regular representation,
where the multiplicity is dim X. We call this quantity the pure rank of the represen-
tation. On the complement Hc = H⊥

p , the restrictions of Si yield a representation of
the Cuntz algebra. Let Pp and Pc denote the projections onto Hp and Hc respectively.
It is important to note that the projection Pp does not commute with PV in general.
So we will obtain a method of computing this pure rank directly from the Ai ’s.

The key technical tool in our analysis shows that Hc is determined by Vc := Hc ∩
V. This is not the case for Hp. Let Rk denote the projection onto

∑⊕
|v|=k SvW, where

W = (V +
∑n

i=1 SiV) � V; and Qk =
∑

j≥k R j . Notice that

Qk =
∑
|w|=k

SwP⊥
V S∗w.

On any S-invariant subspace M on which the restrictions Ti of Si are pure, one
has for every x ∈ M

lim
k→∞

∑
|w|=k

‖PMS∗wx‖2 = lim
k→∞

∑
|w|=k

‖T∗
wx‖2 = 0.
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In particular, this applies to Hp and V⊥. While for x ∈ Hc, one has

∑
|w|=k

‖S∗wx‖2 = ‖x‖2 for all k ≥ 0.

Key Technical Lemma 4.1 Suppose that H1 is a reducing subspace for S contained
in Hc. Let x be a vector such that PH1 x �= 0. Then the subspace M = S∗[x] contains a
vector v in M ∩ Vc with PH1 v �= 0.

Proof Let P1 denote the projection of H onto H1. Fix ε > 0; and let x1 = P1x.
By applying the preceding remarks to both V⊥ and Hp, we may choose an integer k
sufficiently large that

∑
|w|=k

‖P⊥
V S∗wx‖2 = ‖Qkx‖2 < ε2

∑
|w|=k

‖P⊥
V S∗wx1‖2 = ‖Qkx1‖2 < ε2

and ∑
|w|=k

‖PpS∗wx‖2 =
∑
|w|=k

‖S∗wPpx‖2 < ε2.

Since
∑

|w|=k SwS∗wP1 = P1,

∑
|w|=k

‖PVS∗wx1‖2 =
∑
|w|=k

(‖S∗wx1‖2 − ‖P⊥
V S∗wx1‖2)

= ‖x1‖2 − ‖Qkx1‖2 > ‖x1‖2 − ε2.

Let E1 denote the set of words w of length k such that

‖PVS∗wx1‖2 > ε−1‖P⊥
V S∗wx‖2.

Likewise let E2 denote the set of words w of length k such that

‖PVS∗wx1‖2 > ε−1‖PpS∗wx‖2.

The set E1 ∩ E2 is relatively large in the sense that

∑
w∈E1∩E2

‖PVS∗wx1‖2 > ‖x1‖2 − ε2 −
∑

w �∈E1

‖PVS∗wx1‖2 −
∑

w �∈E2

‖PVS∗wx1‖2

> ‖x1‖2 − ε2 −
∑

w �∈E1

ε−1‖P⊥
V S∗wx‖2 −

∑
w �∈E2

ε−1‖PpS∗wx‖2

> ‖x1‖2 − ε2 − ε − ε > ‖x1‖2/4
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for small ε. Now we also have
∑

w∈E1∩E2
‖PVS∗wx‖2 ≤ ‖x‖2. Therefore there is a

word w in E1 ∩ E2 such that

‖PVS∗wx1‖ >
‖x1‖
2‖x‖‖PVS∗wx‖.

In this way, construct a sequence of words wk corresponding to εk = 1/k. Hence
define unit vectors yk = S∗wk

x/‖S∗wk
x‖ with the properties that

lim
k→∞

‖P⊥
V yk‖ ≤ lim

k→∞
1√
k

‖PVS∗wk
P1x‖

‖S∗wk
x‖ = lim

k→∞
1√
k

‖PVP1S∗wk
x‖

‖S∗wk
x‖ = 0.

Similarly,
lim

k→∞
‖Pp yk‖ = 0.

Also

‖P1 yk‖ = ‖S∗wk
x1‖/‖S∗wk

x‖ ≥ ‖PVS∗wk
x1‖/‖S∗wk

x‖

>
‖x1‖
2‖x‖

‖PVS∗wk
x‖

‖S∗wk
x‖ =

‖x1‖
2‖x‖‖PV yk‖.

By the compactness of the unit ball in V, there is a subsequence of the yk’s which
converges to a unit vector v in V. Clearly, Ppv = 0, and thus v belongs to Vc ∩
S∗[x]; whence this subspace is non-zero. By construction, ‖P1v‖ ≥ ‖x1‖/2‖x‖, and
therefore is also non-zero.

Corollary 4.2 Every non-zero subspace of Hc which is invariant for S∗ has non-zero
intersection with Vc. In particular Hc = S[Vc].

Proof Let M be any non-zero S∗-invariant subspace contained in Hc. If x is any
non-zero vector in M, the previous lemma applied to x and H1 = Hc shows that
S∗[x] intersects Vc non-trivially.

By Lemma 3.4, N = S[Vc] reduces S. We claim that N = Hc. For otherwise, let
H1 = Hc ∩ N⊥. By the first paragraph, this reducing subspace for S must intersect
Vc non-trivially. So H1 is not orthogonal to N, contrary to fact. Therefore H1 must
be zero.

Corollary 4.3 Suppose that
∑n

i=1 AiA∗
i = I and A = B(V). Then every invariant

subspace of S∗ contains V.

Proof Since H = Hc, any S∗-invariant subspace M intersects V in a non-trivial
subspace. This subspace is invariant for S∗|V = A∗ = B(V). Hence it is all of V.

Let B denote the wot-closed operator algebra on H = V ⊕ K(α)
n spanned by

B(H)PV and 0V ⊕ L(α)
n .
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Lemma 4.4 Every weak-∗ continuous functional on B is given by a trace class operator
of rank at most d + 1.

Proof An element B of B is determined by BPV and BP⊥
V . If e1, . . . , ed is a basis for

V, the former is determined by the vectors Be j . The latter term is unitarily equivalent
to A(α) for some A ∈ Ln. Any functional ϕ is thus determined by a functional ϕ0

on L(α)
n and by d functionals on H given by the Riesz Representation Theorem by

a vector y j . By [15, Theorem 2.10], the functional on Ln is given by a rank one
functional ϕ0(A) = (Aη, ζ). Whence

ϕ(B) =
d∑

j=1

(Be j , y j) + (Bη, ζ).

Corollary 4.5 The wot and weak-∗ topologies coincide on B, and thus also on S. In
particular, the weak-∗ closed algebra generated by the Si ’s coincides with S.

5 The Cuntz Case

In this section, we specialize to the Cuntz case:
∑n

i=1 AiA∗
i = I for which the isomet-

ric dilation yields a representation of the Cuntz algebra.

Example 5.1 We begin with a description of the case in which V is one dimen-
sional. A special case of a finite correlated state is a Cuntz state. This is determined
by scalars η = (η1, . . . , ηn) such that

∑n
i=1 |ηi |2 = 1. The state is determined by

ϕη(si1 · · · sik s∗j1
· · · s∗jl

) = ηi1 · · · ηik η̄ j1 · · · η̄ jl .

It is easy to show that the cyclic vector ξη from the GNS construction (Hη, πη, ξη)
spans a one-dimensional space invariant for every πη(S∗i ). Indeed,

‖πη(S∗i )ξη − η̄iξη‖2 = 〈πη(S∗i )ξη, πη(S∗i )ξη〉 − ηi〈πη(S∗i )ξη, ξη〉
− η̄i〈ξη, πη(S∗i )ξη〉 + |ηi |2

= ϕη(SiS
∗
i ) − |ηi |2 = |ηi |2 − |ηi |2 = 0.

The restrictions A∗
i = S∗i |span {ξη} = ηi satisfy

∑n
i=1 AiA∗

i = 1. They may be dilated
to their minimal isometric dilation, which is necessarily the original Si since ξη is a
cyclic vector.

Specializing to the case of η = (1, 0, . . . , 0), one has A1 = 1 and Ai = 0 for
2 ≤ i ≤ n. This yields the atomic representation σ1,1 mentioned in the Background
section. In particular, the algebra S is unitarily equivalent to Bn,1.

The various Cuntz states are related by the action of the gauge group U(n) which
acts as an automorphism group on On and on the Cuntz-Toeplitz algebra En. Indeed,
if we write Fock space Kn as a direct sum C ⊕ Hn ⊕ H⊗2

n ⊕ H⊗3
n ⊕ · · · , where Hn
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is an n-dimensional Hilbert space, then each unitary matrix U ∈ U(n) determines a
unitary operator Ũ = I ⊕ U ⊕ U⊗2 ⊕ U⊗3 ⊕ · · · on Kn. Conjugation by Ũ acts as
an automorphism ΘU of En. Moreover, it maps the ideal of compact operators onto
itself. So it also induces an automorphism θU of On. If U = [ui j] is an n × n unitary
matrix, this automorphism can also be seen to be given by

ΘU (L j ) =
n∑

i=1

ui jLi for 1 ≤ j ≤ n.

Given η, let U be any unitary with u1 j = η j . Then it follows that

ϕη(A) = ϕ(1,0,...,0)

(
θU (A)

)
for all A ∈ On.

So the corresponding representations are equivalent up to this automorphism. In
particular, the algebras Sη generated by these representations are unitarily equivalent
even though the representations are not.

A crucial step in the analysis of atomic representations was to show that certain
projections lie in the algebra S. Indeed, this is a major advantage of S over the
C∗-algebra, which contains no non-trivial projections, and over the von Neumann
algebra it generates, which contains too many. As a case in point, the projection
Pη = ξηξ

∗
η belongs to Sη . Indeed, it is the only non-trivial projection in the whole

algebra Sη .

A crucial point of our analysis is the identification of projections in S in greater
generality. We begin with the irreducible case.

Theorem 5.2 Assume that
∑n

i=1 AiA∗
i = I and A = B(V). Then S contains the

projection PV.

Proof Both S and PV belong to B. If PV were not in S, Lemma 4.4 would provide
a wot-continuous functional ϕ which annihilates S such that ϕ(PV) = 1. Represent
ϕ as a functional of rank m in the form ϕ(B) =

∑m
j=1(Bx j , y j). This then may be

realized as a rank one functional on the m-fold ampliation of B. Indeed, form the
vectors x = (x1, . . . , xm) and y = (y1, . . . , ym). Then ϕ(B) = (B(m)x, y).

Now the fact that ϕ annihilates S means that x is orthogonal to the subspace
M = S∗(m)[y]. The algebra S(m) is generated by isometries S(m)

i , which form the

minimal dilation of the A(m)
i ’s. So Corollary 4.2 of the Key Technical Lemma applies,

and shows that M intersects V(m) in a non-zero subspace M0 which is invariant for
S∗(m), and thus for A∗(m).

By hypothesis, A∗(m) = B(V)(m) � B(V) ⊗ Cm, which is a finite dimensional
C∗-algebra. The invariant subspace M0 is thus the range of a projection Q in the
commutant Cd ⊗ Mm. Let Q̃ denote the operator in CIH ⊗ Mm acting on H(m) with

the same matrix coefficients as Q. That is, Q̃ is the unique operator in
(
B(H)⊗Cm

) ′

such that P(m)
V Q̃ = Q.
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The projection Q̃ yields a decomposition of H(m) into S-reducing subspaces H1⊕
H2 where H1 = ker Q̃ and H2 = Ran Q̃; and likewise V(m) = V1 ⊕ V2 where

V1 := H1 ∩ V(m) = ker Q and V2 := H2 ∩ V(m) = Ran Q.

Observe that M0 is contained in H2. For if we had a vector x ∈ M such that PH1 x �=
0, then our Key Lemma 4.1 implies that there is a non-zero vector v in M ∩ V(m) =
M0 such that PH1 v �= 0. But by definition of Q and Q̃, M0 is orthogonal to H1, a
contradiction.

In particular, as y ∈ M, we have y = Q̃y. Thus

P(m)
V y = P(m)

V Q̃y = QP(m)
V y

belongs to QV(m) = M0. Since x is orthogonal to M and hence to M0, we see that

ϕ(PV) = (P(m)
V x, y) = (x, P(m)

V y) = 0.

Consequently PV belongs to S.

This immediately yields a structure theorem for S. Note that this does not classify
the associated representations, as they depend on the specific generators, not just the
algebra.

Corollary 5.3 Assume that
∑n

i=1 AiA∗
i = I and A = B(V). Then S � B(H)PV +

(0V ⊕ L((n−1)d)
n ) � Bn,d.

Proof By Theorem 5.2, S contains PV. Therefore it contains PVS = B(V). More-
over, it contains SiP⊥

V � 0V ⊕ L(α)
i , where α = (n − 1)d. Thus S contains the

wot-closed algebra that these operators generate, which is evidently 0V ⊕ L(α)
n . Fi-

nally, if v is any non-zero vector in V, S[v] contains V by hypothesis. So it is all of H

by minimality of the dilation. Therefore for any x ∈ H, there are operators Tk ∈ S

such that Tkv converges to x. Thus S contains Tkvv∗, which converge to the rank one
operator xv∗. So B(H)PV belongs to S. This is the whole wot-closed algebra which
we called B, which trivially contains S. It is evident that B is unitarily equivalent to
Bn,d.

Now suppose that A is a more general subalgebra of B(V). We wish to determine
the structure of S from information about A.

Lemma 5.4 Assume that
∑n

i=1 AiA∗
i = I. Suppose that V contains a minimal A∗-

invariant subspace V0 of dimension d0 which is cyclic for A. Then S contains B(H)PV0 ,
and is unitarily equivalent to Bn,d0 .

Proof By Burnside’s Theorem [32, Corollary 8.6], since A∗|V0 has no proper invari-
ant subspaces, it must equal all of B(V0). Let H0 = S[V0]. This is a reducing
subspace for S by Lemma 3.4. We will argue that H0 = H.
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Suppose that x is a non-zero vector orthogonal to H0. By Corollary 4.2 of the
Key Technical Lemma, S∗[x] ∩ V contains a non-zero vector v. Moreover since H⊥

0

reduces S, v is orthogonal to H0. Therefore S∗[v] = A∗[v] is an A∗-invariant
subspace orthogonal to V0. Since AV0 = V, there is an A ∈ A and v0 ∈ V0 such that
Av0 = v. So that

‖v‖2 = (Av0, v) = (v0, A∗v) = 0.

This contradiction establishes our claim.
Now consider the compressions Ãi = PV0 Ai |V0 = (A∗

i |V0 )∗. Then
∑n

i=1 Ãi Ã∗
i =

IV0 follows from the A∗-invariance of V0. Also by hypothesis, the algebra Ã gener-
ated by the Ãi ’s is B(V0). The minimal dilation of this n-tuple must be precisely the
restriction of Si to S[V0] = H, which is Si . So by Corollary 5.3, it follows that S is
unitarily equivalent to Bn,d0 .

The following corollary is almost immediate from the structure of Bn,d0 . We point
it out in order to obtain some non-trivial consequences.

Corollary 5.5 Assume that
∑n

i=1 AiA∗
i = I. If V contains a subspace V0 which is

cyclic for A and is a minimal invariant subspace for A∗, then V0 is the unique minimal
A∗-invariant subspace.

Proof We have A∗ = S∗|V. So by the previous lemma, A∗ contains PV0B(V). Con-
sequently, V0 is contained in every non-zero A∗-invariant subspace.

Remark 5.6 This puts constraints on which subalgebras A of B(V) can be generated
by Ai ’s which satisfy

∑n
i=1 AiA∗

i = I. For example, the semisimple algebra of matrices
of the form At =

[
a 0

(b−a)t b

]
for a, b in C and a fixed t �= 0 is similar to the 2 × 2 di-

agonal algebra. Note that At has two independent vectors which are cyclic for At and
eigenvalues for A∗

t , namely e1 and f2 = −t̄e1 + e2. By the corollary above, this cannot
equal the algebra A. Indeed, if the generators of our algebra were Ai =

[ ai 0
(bi−ai )t bi

]
,

then a computation would show that
∑n

i=1 |ai |2 = 1. Likewise considering the ma-
trix with respect to an orthonormal basis { f1, f2} would show that

∑n
i=1 |bi|2 = 1.

This then forces
∑n

i=1 |ai − bi |2|t|2 = 0. Since t �= 0, this forces all the Ai ’s to be
scalar, and hence they do not generate At .

Example 5.7 Consider a special case of the previous corollary: if A has a cyclic
vector e which is an eigenvalue for A∗. Then S is unitarily equivalent to Bn,1. The
algebra A decomposes as A = B(V)Pe + JA1P⊥

e where Pe is the orthogonal projection
onto Ce, J is the injection of V1 = {e}⊥ into V, and A1 is a unital subalgebra of
B(V1). It is easy to see that

Lat A = {V, JM : M ∈ Lat A1}.

Hence if B1 = Alg Lat A1, then

B := Alg Lat A = B(V)Pe + JB1P⊥
e .
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It follows that A is reflexive if and only if A1 is.
Thus if dim V1 > 1, there are non-reflexive examples. For example, consider the

non-reflexive algebra A1 =
{[

a 0
b a

]
: a, b ∈ C

}
. Take n = 3 and let

A1 =


1 0 0

0 1/
√

2 0
0 0 1/

√
2


 A2 =


 0 0 0

0 0 0
1/2 1/2 0


 A3 =


 0 0 0

1/
√

2 0 0
0 0 0




This can be seen to satisfy
∑3

i=1 AiA∗
i = I3 and to generate the algebra A =

{[
c 0 0
d a 0
e b a

]
:

a, b, c, d, e ∈ C
}

. This is not reflexive.

Nevertheless, A∗ has a unique minimal invariant subspace, and thus S is unitarily
equivalent to B3,1, which is hyper-reflexive. So there is no direct correspondence
between the reflexivity of A and S.

Lemma 5.8 Let A = (A1, . . . , An) be an n-tuple on a finite dimensional space V

such that
∑n

i=1 AiA∗
i = I. Let A be the unital algebra that they generate. Let S =

(S1, . . . , Sn) be the minimal isometric dilation, and S the wot-closed algebra they gen-
erate. Then S is irreducible if and only if A∗ has a unique minimal invariant subspace
V0.

Proof If V0 is unique, then it must be cyclic for A since V � A[V0] is an invariant
subspace of A∗ orthogonal to V0. So Lemma 5.4 applies. Since S contains B(H)PV0 ,
it is evidently irreducible.

Indeed, this conclusion follows if there is any minimal A∗-invariant subspace V0

which is cyclic for A. By Corollary 5.5, V0 is necessarily the unique minimal A∗-
invariant subspace.

Finally suppose that there is a minimal A∗-invariant subspace V0 which is not
cyclic. Then as in the first paragraph, V � A[V0] is an invariant subspace of A∗

orthogonal to V0. Let V1 be a minimal A∗-invariant subspace contained therein.
Notice that S[Vi] are pairwise orthogonal reducing subspaces for S by Lemma 3.4.
Hence H contains proper reducing subspaces, and so S is reducible.

Now we see how to deal with the case of more than one minimal A∗-invariant
subspace. In this lemma, we do not concern ourselves with questions of uniqueness.

Lemma 5.9 Assume that
∑n

i=1 AiA∗
i = I. There is a family of minimal A∗-invariant

subspaces V j of V, 1 ≤ j ≤ s, such that H decomposes into an orthogonal direct sum of
H j = S[V j ]; and the algebras S|H j are irreducible.

Proof This is just a matter of choosing a maximal family of pairwise orthogonal
minimal A∗-invariant subspaces, say V j for 1 ≤ j ≤ s. By Lemma 3.4, the subspaces
H j = S[V j ] are pairwise orthogonal and reducing for S. Moreover a direct appli-
cation of the previous lemma applied to H j and V j shows that S|H j is irreducible.

Finally we must show that
∑⊕s

j=1 H j = H. Take any vector x orthogonal to this sum.
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By Corollary 4.2 of the Key Technical Lemma, S∗[x] intersects V in a non-zero A∗-
invariant subspace orthogonal to all of the H j ’s, and thus orthogonal to all of the
V j ’s. This is contrary to construction, and so yields a contradiction.

Given an n-tuple A = (A1, . . . , An) such that
∑n

i=1 AiA∗
i = I, let us pick a maxi-

mal family of mutually orthogonal minimal A∗-invariant subspaces V j of V, 1 ≤ j ≤
s; and let P j = PV j . From the minimality of each V j as an A∗-invariant subspace, we

know that P j A
∗P j = B(V j ). Set Ṽ =

∑⊕s
j=1 V j . Let Ãi = PṼAi|Ṽ = (A∗

i |Ṽ)∗ be the

compression of Ai to Ṽ; and let Ã denote the algebra they generate in B(Ṽ).
Notice that the minimal isometric dilation of Ã = (Ã1, . . . , Ãn) is precisely S. It is

evident that S is a joint isometric dilation of Ã. To show that it is minimal, it suffices
to show that S[Ṽ] = H. But this is established above in Lemma 5.9.

Our goal is to show that Ã is a C∗-algebra. For the moment, let us show that it
is semisimple. Note that Ã is contained in

∑⊕
1≤ j≤s B(V j ). Moreover the quotient

map q j of compression to V j maps A onto B(V j ). Thus the kernel of this map is a

maximal ideal. Since
∑⊕ q j = id is faithful, the intersection of all maximal ideals is

{0}. Hence Ã is semisimple.
Indeed, there is a minimal family G so that

∑⊕
g∈G qg is faithful. By the Wedderburn

theory, the minimal ideal Ag = ker
∑⊕

h∈G\{g} qh is isomorphic to B(Vg). But this
kernel will, in practice, be supported on several of the V j ’s. This yields a partition

Ṽ =
∑⊕

g∈G Wg where Wg =
∑⊕

j∈Gg
V j is a sum of those V j ’s equivalent to Vg .

Because B(Vg ) is simple, it follows that there is an algebra isomorphism σ j of B(Vg)
onto B(V j ) for each j ∈ Gg such that

Ã|Wg �
{∑⊕

j∈Gg

σ j(X) : X ∈ B(Vg )
}

.

It is well-known that every isomorphism between B(Vg) and B(V j ) is spatial:
σ j(X) = T jXT−1

j for some invertible operator T j , which is unique up to a scalar
multiple.

We also need to consider the unital completely positive map Φ on B(Ṽ) given by

Φ(X) =
n∑

i=1

ÃiXÃ∗
i .

Suppose that two blocks V1 and V2 are related by a similarity as above. Let Bi :=
PV1 Ai|V1 and Ci := PV2 Ai |V2 = TBiT−1. Since

n∑
i=1

BiB
∗
i = IV1 and

n∑
i=1

CiC
∗
i = IV2 ,

we compute that

IV2 =
n∑

i=1

(TBiT
−1)(TBiT

−1)∗ = TΦ1(T−1T∗−1)T∗,
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where Φ1(X) =
∑n

i=1 BiXB∗
i = P1Φ(P1XP1)|V1 . Therefore

Φ1(T−1T∗−1) = T−1T∗−1.

We now study this completely positive map in order to gain information about the
structure of Ã.

Lemma 5.10 Let Φ(X) =
∑n

i=1 AiXA∗
i be a unital completely positive map on B(V),

where V is finite dimensional. If there is a non-scalar operator X such that Φ(X) = X,
then A∗ = Alg{A∗

1 , . . . , A∗
n} has two pairwise orthogonal minimal invariant subspaces.

Proof Since Φ is self-adjoint and unital, there is a positive non-scalar X such that
Φ(X) = X. Let ‖X‖ = 1 and let µ denote the smallest eigenvalue of X. Then
M = ker(X − I) and N = ker(X − µI) are pairwise orthogonal non-zero subspaces.
For any unit vector x ∈ M,

‖x‖2 =
(
Φ(X)x, x

)
=

n∑
i=1

(XA∗
i x, A∗

i x)

≤
n∑

i=1

(A∗
i x, A∗

i x) = ‖x‖2

This equality can only hold if each A∗
i x belongs to M. Hence M is invariant for A∗.

This argument worked because 1 is an extreme point in the spectrum of X. This is
also the case for µ. Hence a similar argument shows that N is invariant for A∗.

The following is a partial converse to the previous lemma.

Lemma 5.11 Let Φ(X) =
∑n

i=1 AiXA∗
i be a unital completely positive map on B(V),

where V is finite dimensional. Suppose that Ai = Bi ⊕Ci with respect to an orthogonal
decomposition V = V1⊕V2. Moreover, suppose that Alg{Bi} = B(V1) and Alg{Ci} =
B(V2). If there is an operator X such that Φ(X) = X and X21 := PV2 XPV1 �= 0, then
there is a unitary operator W such that Ci = W ∗BiW . Moreover the fixed point set of

Φ consists of all matrices of the form
[

a11IV1 a12W∗

a21W a22IV2

]
.

Proof Since Φ is self-adjoint, we may suppose that X = X∗. Then normalize so that
‖X21‖ = 1. Let M = {v ∈ V1 : ‖X21v‖ = ‖v‖}. Also let N = X21M denote the
corresponding subspace of V2. Write B =

[
B1 · · · Bn

]
and C =

[
C1 · · · Cn

]
,

so that
X21v = Φ(X21)v = CX(n)

21 B∗v for v ∈ M.

Since C and B∗ are contractions, and X21 achieves its norm on v, it follows that B∗v
belongs to the subspace M(n) on which X(n)

21 achieves its norm. Consequently each
B∗

i leaves M invariant. But as Alg{Bi} = B(V1), this forces M = V1. Similarly,
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consideration of X12 = X∗
21 shows that N = V2. Thus X21 and X∗

21 are isometries; so
W = X21|V1 is a unitary map from V1 onto V2.

Further, the identity above now shows that W = CW (n)B∗. Hence for all v ∈ V1

‖v‖ = ‖W v‖ = ‖CW (n)B∗v‖ ≤ ‖W (n)B∗v‖ ≤ ‖v‖.

In particular, C acts as an isometry from the range of W (n)B∗ onto the range Ran W =
V2. Since C is contractive, it must be zero on the orthogonal complement of
Ran W (n)B∗. This implies that C∗ is an isometry of V2 onto Ran W (n)B∗. Conse-
quently, C∗W = W (n)B∗; or equivalently, C∗

i = W B∗
i W ∗ for 1 ≤ i ≤ n.

Finally, if Y ∈ B(V1, V2) and
[

0 0
Y 0

]
is fixed by Φ, then

Y =
n∑

i=1

CiY B∗
i =

n∑
i=1

W BiW
∗Y B∗

i = W Φ1(W ∗Y )

where Φ1(X) =
∑n

i=1 BiXB∗
i acts on B(V1). By Lemma 5.10, W ∗Y is scalar; so Y is a

multiple of W . A similar analysis works for the other coordinates.

Example 5.12 Let

A1 =


 1/

√
2 0 0

1/2
√

2 1/2 1/2
√

2
0 0 1/

√
2


 and A2 =


 1/

√
2 0 0

−1/2
√

2 1/2 −1/2
√

2
0 0 1/

√
2


 .

Then the matrix X =
[ 1 0 0

0 1/2 0
0 0 0

]
satisfies Φ(X) = X. A calculation shows that the fixed

point set of Φ is the set of matrices X = [xi j] such that x12 = x21 = x23 = x32 = 0
and x11 + x13 + x31 + x33 = 2x22. In particular, this is not an algebra. The algebra
A∗ has two minimal invariant subspaces, Ce1 and Ce3. Note that the compression of
A to span {e1, e3} consists of scalar matrices, and the fixed point set of the restricted
completely positive map is the full 2 × 2 matrix algebra.

We can now utilize the detailed information about the map Φ to determine the
algebra Ã.

Theorem 5.13 Let Φ(X) =
∑n

i=1 AiXA∗
i be a unital completely positive map on

B(V), where V is finite dimensional. Suppose that V is the orthogonal direct sum of
minimal A∗-invariant subspaces. Then A is a C∗-algebra and the fixed point set of Φ
coincides with the commutant of A.

Proof Let V =
∑⊕

j V j be an orthogonal decomposition into minimal A∗-invariant
subspaces. The restriction of A to V j is all of B(V j ) by Burnside’s Theorem. Thus
the restriction of Φ to B(V j ) maps onto the scalars by Lemma 5.10. By the earlier
analysis, A splits into an algebraic direct sum of minimal ideals which are isomorphic
to full matrix algebras. These are determined by certain spatial intertwining relations
between some of the summands. If the restriction of Ai ’s to V1 and V2 are related
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by an intertwining operator T, then we showed that Φ1(T−1T∗−1) = T−1T∗−1. But
this is scalar by Lemma 5.10. So after scaling T, it becomes a unitary. It follows that
A is a C∗-algebra.

Evidently, Φ fixes the commutant of A = A∗. Suppose that Φ(X) = X. If Vk and
Vl are not related by a unitary intertwining map, then by Lemma 5.11, PkXPl = 0.
While if they are related by a unitary Wkl, then PkXPl = xklWkl belongs to A ′. It
follows that the fixed point set is precisely the commutant of A.

Now it is possible to provide a complete description of the algebra S in the Cuntz
case.

Lemma 5.14 Let Pg for g ∈ G denote the minimal central projections in Ã. These
projections belong to S.

Proof We follow the lines of Theorem 5.2. We may work in the algebra B =
B(H)PV + (0V ⊕ L(α)

n ) which contains S and each projection Pg . If a central pro-
jection P of Ã were not in S, by Lemma 4.4 it could be separated from S by a
functional of rank d + 1, which as before we write as ϕ(A) = (A(d+1)x, y). Let
M = S∗(d+1)[y] and M0 = Ṽ(d+1) ∩ M. This subspace M0 is invariant for the
C∗-algebra Ã∗(d+1) = Ã(d+1), and thus is the range of a projection Q in its commu-
tant.

Now P(d+1) lies in the centre of Ã(d+1), and thus commutes with Q as well. There-
fore Ṽ(d+1) decomposes as

P(d+1)QṼ(d+1) ⊕ P⊥(d+1)QṼ(d+1) ⊕ P(d+1)Q⊥Ṽ(d+1) ⊕ P⊥(d+1)Q⊥Ṽ(d+1)

=: Mpq ⊕ Mp⊥q ⊕ Mpq⊥ ⊕ Mp⊥q⊥ .

This determines an orthogonal decomposition of Ṽ(d+1) into four reducing subspaces
for Ã(d+1). Note that M0 is the sum of the first two. Recall the remarks following
Lemma 5.9 that S is the minimal isometric dilation of Ã. So by Lemma 3.4, H(d+1) has
an orthogonal decomposition into the four reducing subspaces for S(d+1) generated
by these subspaces of Ṽ(d+1), say

H(d+1) = Hpq ⊕ Hp⊥q ⊕ Hpq⊥ ⊕ Hp⊥q⊥ .

Moreover,the Key Lemma 4.1 shows as in the proof of Theorem 5.2 that y belongs to
Hpq ⊕ Hp⊥q = S(d+1)[M0].

It is evident from this construction that each of these four subspaces Hi j is mapped

onto the corresponding Mi j by the orthogonal projection P(d+1)
Ṽ

onto Ṽ(d+1). There-

fore, since P(d+1) is dominated by this projection, it is clear that it maps y into Mpq,
which is contained in M0. As before, we obtain that x is orthogonal to M0, and
therefore ϕ(P) = 0. Hence we conclude that P belongs to S.

Theorem 5.15 Let A1, . . . , An be operators on a finite dimensional space V such that∑n
i=1 AiA∗

i = I, and let S1, . . . , Sn be their joint isometric dilation. Let Ṽ be the sub-
space of V spanned by all minimal A∗-invariant subspaces. Then the compression Ã of
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A to Ṽ is a C∗-algebra. Let Ã be decomposed as
∑⊕

g∈G Mdg ⊗ Cmg with respect to a

decomposition Ṽ =
∑⊕

g∈G V
(mg )
g , where Vg has dimension dg and multiplicity mg. Let

Pg denote the projection onto Vg . Then the dilation acts on the space

H =
∑⊕

g∈G

H
(mg )
g = Ṽ ⊕ K(α)

n

where Hg = Vg ⊕ K
(αg )
n and αg = dg(n − 1) and

α =
∑
g∈G

αgmg = (n − 1)
∑
g∈G

dgmg .

The algebra S decomposes as

S �
∑⊕

g∈G

(
B(Hg)Pg

) (mg )
+ (0Ṽ ⊕ L(α)

n ).

Proof This is now just a matter of putting the pieces together and clearing up some
final details. Let Vg , 1 ≤ g ≤ s, be any maximal family of pairwise orthogonal mini-

mal A∗-invariant subspaces. Let Ṽ =
∑⊕

1≤g≤s Vg . (Do not worry at this stage about

the uniqueness of the definition of Ṽ.) By Lemma 3.4, Hg = S[Vg] are pairwise

orthogonal reducing subspaces of S. Let M =
∑⊕

1≤g≤s Hg . We claim that M = H.

Indeed, were there a non-zero vector in M⊥, then by Corollary 4.2 of the Key Tech-
nical Lemma, M⊥ ∩ V would be an non-zero A∗-invariant subspace orthogonal to
Ṽ, contrary to fact.

It now follows as above that if we compress each Ai to Ãi on Ṽ, then this new n-
tuple has the identical joint isometric dilation Si , and it is the minimal dilation by
the previous paragraph. By Theorem 5.13, the algebra Ã that they generate is self-
adjoint. Then applying Lemma 5.14, we deduce that the projection onto Ṽ belongs
to S, and that PṼS = Ã.

The restriction of S to each reducing subspace Hg is isomorphic to Bn,dg . More-

over the restriction of S to Ṽ⊥ is canonically isomorphic to L(α)
n , where by canonical

we mean that u(S)|Ṽ⊥ � L(α)
u when we make the natural identification of Ṽ⊥ with

K(α)
n as in Lemma 3.1.
Now the finite dimensional C∗-algebra Ã may be decomposed as

∑⊕
g∈G Mdg ⊗Cmg .

The multiplicities reflect the fact that the restrictions of A∗
i to different Vg ’s may be

unitarily equivalent. As before, choose a maximal subset G of pairwise inequivalent
subspaces Vg , and let Wg =

∑⊕
j∈Gg

V j be the sum of all subspaces equivalent to Vg .

Then Wg may be naturally identified with Vg ⊗ Cmg so that A∗
i |Wg � (A∗

i |Vg )(mg ).

This identifies Ṽ with
∑⊕

g∈G V
(mg )
g .

By the uniqueness of the minimal isometric dilation, it also follows that there is
a corresponding unitary equivalence between

∑⊕
j∈Gg

H j and Hg ⊗ C(mg ) so that the

restriction of Si is identified with (Si |Hg )(mg ). By Lemma 5.14, the projection PWg �
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P
(mg )
g belongs to S. Thus we now see that SPṼ decomposes as

∑⊕
g∈G

(
B(Hg)Pg

) (mg )
.

Combining all of the pieces, we obtain the desired structure theory for S.
It remains to establish the uniqueness of Ṽ. We can now see that PṼ is the unique

maximal finite rank projection in S. Indeed, every operator in S has a lower triangu-
lar form with respect to the decomposition H = Ṽ⊕K(α)

n . By [15, Corollary 1.8], Ln

contains no proper projections. Therefore all finite rank projections are supported by
Ṽ. Now suppose that V0 is any minimal A∗-invariant subspace. It may be extended
to a maximal family of pairwise orthogonal minimal A∗-invariant subspaces, and the
construction may proceed as above. The same subspace Ṽ necessarily is obtained
by the uniqueness of this maximal projection. In particular, Ṽ must contain every
minimal A∗-invariant subspace. Thus it is the span of all such subspaces.

6 The General Finite Dimensional Case

We now return to the problem posed in Section 4. Starting with a contractive n-tuple
A1, . . . , An with minimal joint isometric dilation S1, . . . , Sn, we wish to understand
the structure of S = Alg{S1, . . . , Sn} in terms of the structure of the n-tuple A and
the algebra A that it generates.

Recall from the discussion in Section 4 that H = Hp ⊕ Hc, where Hp is the
pure part determined by the wandering subspace of S, and Hc is the Cuntz part; and
that Pp and Pc denote the orthogonal projections onto these subspaces. We need a
method of getting information about this decomposition from A. Corollary 4.2 of the
Key Technical Lemma shows that Hc = S[Vc], so Hc is recovered if we can compute
Vc.

Again we consider the completely positive map Φ(X) =
∑n

i=1 AiXA∗
i . This is no

longer unital, since Φ(I) = AA∗ =
∑n

i=1 AiA∗
i ≤ I. But it is completely contractive.

Thus the sequence Φk(I) is a decreasing sequence of positive operators, and therefore
converges to a limit which we denote as Φ∞(I).

Lemma 6.1 Φ∞(I) = PVPcPV. Hence Vc = ker
(

I − Φ∞(I)
)

.

Proof If x ∈ Hc, ∑
|w|=k

‖S∗wx‖2 = ‖x‖2.

On the other hand, any vector x in Hp satisfies

lim
k→∞

∑
|w|=k

‖S∗wx‖2 = 0.

Thus if x is any vector in H = Hc ⊕ Hp,

lim
k→∞

∑
|w|=k

‖S∗wx‖2 = ‖Pcx‖2.
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We write A∗
w := w(A)∗ = S∗w|V. Now if v ∈ V,

lim
k→∞

∑
|w|=k

‖A∗
wv‖2 = lim

k→∞

∑
|w|=k

‖S∗wv‖2 = ‖Pcv‖2.

It is evident that Φk(I) =
∑

|w|=k AwA∗
w and thus

(
Φk(I)v, v

)
=

∑
|w|=k

‖A∗
wv‖2.

Therefore (
Φ∞(I)v, v

)
= ‖Pcv‖2 = (PVPcPVv, v).

Since a sesquilinear form can be recovered from its quadratic form by the polarization
identity, it follows that Φ∞(I) = PVPcPV.

In particular, ker
(

I − Φ∞(I)
)

= V ∩ Hc = Vc.

We have Hc = S[Vc], and thus the restriction of the Si ’s to Hc are the mini-
mal joint isometric dilations of the compressions of the Ai ’s to Vc. By the previous
section, we know that S|Hc is determined by the restriction of A to the span Ṽ of
all A∗-invariant subspaces contained in Vc . It is desirable to give a definition that
is somewhat independent of the definition of Vc. the space Ṽ is the span of all A∗-
invariant subspaces W on which

∑n
i=1 AiA∗

i |W = IW. Indeed, the condition

IW =
n∑

i=1

AiA
∗
i |W =

n∑
i=1

SiS
∗
i |W

implies that W is contained in Hc, whence in Hc ∩ V = Vc. Thus W is contained in
Ṽ by Theorem 5.15. The converse follows from the description there of Ṽ.

Lemma 6.2 The projection PṼ belongs to S.

Proof We may assume that PṼ �= 0. Decompose H as Hc ⊕ Hp. Let Sc denote the
restriction of S to Hc. By the Cuntz case, Theorem 5.14, the projection PṼ belongs to
the wot-closure of Sc. In other words there is a net Aα of polynomials in S such that
Aα|Hc converges in the wot topology to PṼ. Since Hc contains a wandering vector
ξ, the subspace S[ξ] is unitarily equivalent to Ln. Moreover the restriction of Aα to
S[ξ] converges weakly to 0. Now the restriction of Aα to Hp is unitarily equivalent
to a multiple of Aα|S[ξ], and thus it also converges weakly to 0. Combining the two
parts, we see that Aα converges to PṼ in B(H).

Next we wish to compute the pure rank of the dilation. Notice that the proof
which follows does not require that the n-tuple act on a finite dimensional space.
This fact is used in the development of the non-commutative curvature invariant
and Euler characteristic in [24].
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Lemma 6.3 The pure rank of S is computed as

pure rank(S) = rank
(

I − Φ(I)
)

= rank
(

I −
n∑

i=1

AiA
∗
i

)
.

Proof The wandering space is X = Ran(I − ∑n
i=1 SiS∗i ) and the pure rank of S

equals dim X. The minimality of the dilation means that X does not intersect V⊥.
Therefore PVPXPV has the same rank as PX. However it is easy to see that

PVPXPV|V = PV

(
IH −

n∑
i=1

SiS
∗
i

)
PV|V

= IV −
n∑

i=1

AiA
∗
i = IV − Φ(IV).

Thus pure rank(S) = rank
(

I − Φ(I)
)

.

Example 6.4 Any subtlety of the preceding lemma is due to fact that X is not, in
general, contained in V. To illustrate this, consider the following example. Let

A1 =


1 0 0

0 0 0
0 0 0


 and A2 =


 0 0 0

1/2 0 1/2
0 0 0


 .

Then

A1A∗
1 + A2A∗

2 =


1 0 0

0 1/2 0
0 0 0


 .

It is clear that Ce1 and Ce3 are pairwise orthogonal minimal A∗-invariant subspaces.
The vector e1 generates the subspace H1 = Se1 on which the representation is
equivalent to the atomic representation σ1,1. Furthermore, e3 is a wandering vec-
tor generating a copy of the left regular representation on H3 = Se3. However e2

is not orthogonal to H1 ⊕ H3. One can show that there is a second wandering vec-
tor ζ := e2 − P⊥

V S2(e1 + e3). The subspace H2 = Sζ yields the decomposition
H = H1 ⊕ H2 ⊕ H3.

The point here is that this decomposition does not decompose V into orthogonal
pieces. In fact, H2 has trivial intersection with V; and the vector e2 has components
in all three pieces.

We can now completely describe the algebra S determined by the joint isometric
dilation of a contractive n-tuple. There is nothing to do except combine the informa-
tion in Theorem 5.15 with the preceding two lemmas.
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Theorem 6.5 Let A1, . . . , An be a contractive n-tuple on a finite dimensional space
V with joint minimal isometric dilation S1, . . . , Sn on H. The space H decomposes as
Hp ⊕ Hc into its pure and Cuntz parts. The multiplicity of Hp is pure rank(S) =
rank(I −∑n

i=1 AiA∗
i ). The subspace Ṽ spanned by all minimal A∗-invariant subspaces

W on which
∑n

i=1 AiA∗
i |W = IW determines Hc = S[Ṽ].

The compression Ã of A to Ṽ is a C∗-algebra. Let Ã be decomposed as
∑⊕

g∈G Mdg ⊗
Cmg with respect to a decomposition Ṽ =

∑⊕
g∈G V

(mg )
g , where Vg has dimension dg and

multiplicity mg; and let Pg denote the projection onto Vg . Then the dilation acts on the
space

H =
∑⊕

g∈G

H
(mg )
g ⊕ Hp = Ṽ ⊕ K(α)

n

where Hg = Vg ⊕ K
(αg )
n , αg = dg(n − 1) and

α =
∑
g∈G

αgmg + pure rank(S)

= (n − 1)
∑
g∈G

dgmg + rank
(

I −
n∑

i=1

AiA
∗
i

)
.

The algebra S decomposes as

S �
∑⊕

g∈G

(
B(Hg)Pg

) (mg )
+ (0Ṽ ⊕ L(α)

n ).

We now collect some of the consequences of this theorem. First we obtain simple
conditions to determine when the dilation of A is irreducible.

Corollary 6.6 The algebra S determined by the joint isometric dilation of a contrac-
tive n-tuple A on a finite dimensional space V is irreducible if and only if either

(1) Ran(I − ∑n
i=1 AiA∗

i ) = Cv �= 0 and v is cyclic for A. In this case, S is unitarily
equivalent to Ln.

or

(2)
∑n

i=1 AiA∗
i = I and A∗ has a minimal invariant subspace V0 which is cyclic for A.

In this case, S is unitarily equivalent to Bn,d0 where d0 = dim V0.

which are respectively equivalent to

(1 ′) rank
(

I − Φ(I)
)

= 1 and Φ∞(I) = 0, or
(2 ′) {X : Φ(X) = X} = CI.
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Proof S is irreducible if and only if either it is pure with pure rank 1, or it has pure
rank 0 and, by Lemma 5.8, has a unique minimal A∗-invariant subspace.

By Lemma 6.3, the pure rank is 1 precisely when rank
(

I − Φ(I)
)

= 1, or equiv-
alently that Ran(I − ∑n

i=1 AiA∗
i ) is a one-dimensional subspace Cv. Now S is pure

precisely when Hc = {0}, which by Corollary 4.2 is equivalent to Vc = {0}. By
Lemma 6.1, this is equivalent to Φ∞(I) = 0, which establishes the equivalence with
(1 ′). Now Vc is A∗-invariant and orthogonal to v, and therefore orthogonal to Av.
So if v is A-cyclic, then A[v] = V and Vc = {0}. Conversely, if A[v] is proper, then
M = A[v]⊥ is A∗-invariant. But

∑n
i=1 AiA∗

i |M = IM because of the condition on
Φ(I). So M is contained in Hc. This verifies the equivalence with (1).

The Cuntz case is synonymous with the condition
∑n

i=1 AiA∗
i = I. If M is a

minimal A∗-invariant subspace, then A[M]⊥ contains another. So if M is unique, it
must be cyclic. Conversely, if it is not unique, then by Theorem 5.15, Ṽ contains at
least two pairwise orthogonal minimal A∗-invariant subspaces, one of which may be
taken to be M; call the other M ′. Then A[M] is orthogonal to M ′ and thus it is not
cyclic for A. This establishes the equivalence with (2).

Condition (2 ′) contains the fact that Φ(I) = I, so this is the Cuntz case. If there
were more than one minimal A∗-invariant subspace, then by Theorem 5.13 the fixed
point algebra contains non-scalar operators. Conversely, if Φ has non-scalar fixed
points, then Lemma 5.10 shows that there are two orthogonal A∗-invariant sub-
spaces. So (2 ′) is equivalent to irreducibility.

Corollary 6.7 The minimal isometric dilation of a finite dimensional n-tuple A =
(A1, . . . , An) is pure if and only if A(I − ∑n

i=1 AiA∗
i )V = V or equivalently that

Φ∞(I) = 0.

Proof The dilation has a Cuntz part if and only if there is a A∗-invariant subspace M

contained in ker(I−∑n
i=1 AiA∗

i ). This is equivalent to having the proper A-invariant
subspace M⊥ containing

(
ker

(
I −

n∑
i=1

AiA
∗
i

))⊥
= Ran

(
I −

n∑
i=1

AiA
∗
i

)
.

The minimal such subspace is clearly A(I − ∑n
i=1 AiA∗

i )V. Thus the dilation is pure
precisely when A(I − ∑n

i=1 AiA∗
i )V = V.

Evidently, if there is a Cuntz part, then

Φ∞(I) ≥ Φ∞(PṼ) = PṼ.

Conversely, if A is pure, then sot-limk→∞
∑

|w|=k SwS∗w = 0. The compression of
SwS∗w to V is AwA∗

w, and thus

∑
|w|=k

PVSwS∗w|V =
∑
|w|=k

AwA∗
w = Φk(I).

Since V is finite dimensional, this converges to 0 in norm.
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Our theorem also provides simple complete unitary invariants for the associated
finitely correlated representations of En (or of On in the Cuntz case).

Theorem 6.8 Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be contractive n-tuples
on finite dimensional spaces VA and VB respectively. Let S = (S1, . . . , Sn) and T =
(T1, . . . , Tn) be their joint minimal isometric dilations on Hilbert spaces HA and HB;
and let σA and σB be the induced representations of En. Let ṼA be the subspace spanned
by all minimal A∗-invariant subspaces W on which

∑n
i=1 AiA∗

i |W = IW; and similarly
define ṼB. Then σA and σB are unitarily equivalent if and only if

(1.) rank(IVA −
∑n

i=1 AiA∗
i ) = rank(IVB −

∑n
i=1 BiB∗

i ); and
(2.) A∗|ṼA

is unitarily equivalent to B∗|ṼB
.

Proof The two representations are equivalent if and only if they have the same pure
rank and the Cuntz parts are unitarily equivalent. By Theorem 6.5, the algebra S

contains the projection onto ṼA. It is the unique maximal finite rank projection in
S. Therefore the restriction A∗|ṼA

is a unitary invariant. Conversely, if these two
conditions hold, then the unitary identifying A∗|ṼA

and B∗|ṼB
extends to a unitary

equivalence between the dilations SA of Ã := PṼA
A|ṼA

and SB of B̃ := PṼB
B|ṼB

because of the uniqueness of the minimal isometric dilation. This identifies the re-
striction of SA to S[ṼA] = HAc, namely the Cuntz part of SA, with the corresponding
Cuntz part of SB. The pure rank condition allows a unitary equivalence between the
two pure parts.

Bratteli and Jorgensen [9] give a detailed analysis of representations of the Cuntz
algebra which has a lot in common with our results. They look somewhat different
since they concentrate on the state and not on the restriction to the subspace V. In
particular, their contractions are not the same as ours. They point out the relation-
ship in the discussion preceding their Theorem 5.3. They obtain our Corollary 6.6 in
the Cuntz case, and in particular recognize the role of the completely positive map
Φ. Again however, their different normalization results in a different map. But they
do not appear to classify these representations up to unitary equivalence. The reason
they do not succeed is that they did not identify the subspace which we call Ṽ, and
instead work with a subspace they call Vk which is often strictly larger. The space Ṽ

does not occur in their hierarchy of invariant subspaces. Instead, they specialize in
section 7 to a smaller class which they call diagonalizable shifts. These they do com-
pletely classify up to unitary equivalence. We have not determined in this case how
their special invariants relate to ours.

Corollary 6.9 The algebra S determined by the joint isometric dilation of a contrac-
tive n-tuple on a finite dimensional space is hyper-reflexive with distance constant at
most 5.

Proof This follows immediately from [15, Theorem 3.14] since the algebra S is uni-
tarily equivalent to the algebra of certain atomic representations. Indeed, the projec-
tion P = PṼ belongs to S and SP = WP where W is a type I von Neumann algebra
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containing the projection P. Thus by Christensen’s result [12] which shows that type
I von Neumann algebras have distance constant at most 4, we obtain the same for our
slice. The upper bound for the distance constant of Ln was improved by Bercovici [6]
to 3 from the original 51. Arguing as in [15], we obtain a distance constant no larger
than (32 + 42)1/2 = 5.

7 Similarity

Now consider the question of when two contractive n-tuples are similar, and the ef-
fect on their dilations. The first step is to show that the Cuntz parts must be unitarily
equivalent. Thus the question of similarity reduces to the pure parts. First we need a
variant of Lemma 5.10.

Lemma 7.1 Suppose that an n-tuple (A1, . . . , An) acts on a finite dimensional space
V, and generates B(V) as an algebra. Moreover suppose that Φ(X) =

∑n
i=1 AiXA∗

i is
unital. Then the only self-adjoint operators X satisfying Φ(X) ≤ X are scalar, and in
particular are fixed points.

Proof Since Φ(I) = I, we may translate X so that X ≥ 0 and 0 belongs to its spec-
trum. Let M = ker X. This is a non-zero subspace. Let x ∈ M. Then

0 =
(
Φ(0)x, x

) ≤ (
Φ(X)x, x

)

=
n∑

i=1

(AiXA∗
i x, x) =

n∑
i=1

‖XA∗
i x‖2 ≤ (Xx, x) = 0.

It follows that M is invariant for each A∗
i . But by hypothesis, the A∗

i ’s generate the full
matrix algebra, and thus have no proper invariant subspaces. So M = V and X = 0
is scalar.

Corollary 7.2 Suppose that A = (A1, . . . , An) and B = (B1, . . . , Bn) are similar
contractive n-tuples in the finite dimensional algebra B(V). Let ṼA and ṼB denote
the subspaces spanned by the minimal A∗ and B∗-invariant subspaces M on which
AA∗|M = IM and BB∗|M = IM, respectively. Then PṼA

A|ṼA
and PṼB

B|ṼB
are unitar-

ily equivalent.

Proof Let T be the similarity such that B = TAT−1. Then B∗ = T∗−1A∗T∗. So T∗−1

carries A∗-invariant subspaces onto B∗-invariant subspaces. Also T∗−1 preserves
minimality. However it is not immediately evident that it preserves the condition
that AA∗|ṼA

= IṼA
.

Let M be a minimal A∗-invariant subspace of ṼA on which AA∗|M = IM. Then
T∗−1M = N is invariant for B∗. It follows that if Ā∗

i ,and T̄∗−1 are the restrictions of
A∗

i and T∗−1 to M, and B̄∗
i is the restriction of B∗

i to N, then B̄∗
i = T̄∗−1Ā∗

i T̄∗. Let
Φ̄(X) =

∑n
i=1 ĀiXĀ∗

i on B(M). It is easy to verify that Φ̄ is unital.
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Now compute that

IN ≥
n∑

i=1

B̄i B̄
∗
i =

n∑
i=1

T̄Āi T̄
−1T̄∗−1Ā∗

i T̄∗ = T̄Φ(T̄−1T̄∗−1)T̄∗.

Therefore Φ(T̄−1T̄∗−1) ≤ T̄−1T̄∗−1. By Lemma 7.1, it follows that T̄−1T̄∗−1 is
scalar. So up to a scaling factor, T̄ is unitary.

This shows that the restrictions of A∗ to each minimal A∗-invariant subspace M

of ṼA on which AA∗|M = IM is unitarily equivalent to the corresponding subspace
of B∗. Since ṼA and ṼB are each the orthogonal direct sum of such subspaces, it fol-
lows that the restriction to these larger subspaces are unitarily equivalent (although
T itself need not be a multiple of a unitary on the whole space). Thus A∗|ṼA

is uni-
tarily equivalent to B∗|ṼB

. Equivalently, the compressions PṼA
A|ṼA

and PṼB
B|ṼB

are
unitarily equivalent.

Corollary 7.3 Suppose that A = (A1, . . . , An) and B = (B1, . . . , Bn) are similar con-
tractive n-tuples in the finite dimensional algebra B(V). Let Si and Ti be their respective
minimal joint isometric dilations. Then the Cuntz parts of Si and Ti are unitarily equiv-
alent.

Proof This is immediate from the proposition above and the fact that the Cuntz part
of Si and Ti are determined by the compressions of Ai and Bi to the subspaces ṼA and
ṼB respectively by Corollary 6.8.

Example 7.4 Now we show through a couple of examples that the pure part of the
dilation is not preserved by similarity. This first example shows that one dilation can
be strictly Cuntz type while a similarity can introduce a pure part. Consider

A1 =
[

1 0
0 0

]
and A2 =

[
0 0
1 0

]
.

This is of Cuntz type since A1A∗
1 +A2A∗

2 = I. Moreover there is a unique minimal A∗-
invariant subspace, Ce1. The dilation of this pair is thus irreducible by Corollary 6.6,
and is determined by the 1-dimensional restrictions 1 and 0 of A∗

1 and A∗
2 to Ce1. In

fact, this is easily seen to be the atomic representation σ1,1.
However, this pair is similar via T =

[ 1 0
0 1/2

]
to

B1 =
[

1 0
0 0

]
and B2 =

[
0 0

1/2 0

]
.

The restrictions of B∗
i to the unique minimal B∗-invariant subspace are still 1 and

0 respectively; and they determine a dilation which has the representation σ1,1 as a
summand. However, since

rank(I − B1B∗
1 − B2B∗

2 ) = rank

[
0 0
0 3/4

]
= 1,

the pure rank of this representation is 1.
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Example 7.5 A second easy example shows that even in the pure case, the pure rank
is not a similarity invariant. Fix an orthonormal basis e1, . . . , en for V. Let A1 = 1

2 e1e∗1
and Ai = eie∗1 for 2 ≤ i ≤ n. Then I − ∑n

i=1 AiA∗
i = 3

4 e1e∗1 is rank 1, and its range
Ce1 is A-cyclic. So by Corollary 6.6, this yields an irreducible pure dilation.

However, this is similar via T = I + e1e∗1 to B1 = A1 and Bi = 1
2 Ai for 2 ≤ i ≤ n.

This n-tuple satisfies I−∑n
i=1 BiB∗

i = 3
4 I, which has rank n. So this dilation has pure

rank n.

We wish to provide more detail about the effect of similarity on pure representa-
tions. By Popescu[26], the dilation is pure if and only if

wot-lim
k→∞

∑
|w|=k

AwA∗
w = 0.

He calls these n-tuples C0 contractions, and provides a wot-continuous functional
calculus in [28]. We can analyze this using the theory of representations of Ln devel-
oped in [16].

Let A = (A1, . . . , An) be a C0-contraction on V with pure minimal isometric dila-
tion Si � L(s)

i . This determines a wot-continuous representation ΦA of Ln which
sends X to PVX(s)|V. In particular, ΦA(Lw) = Aw := Ai1 · · ·Aik for every word
w = i1 · · · ik in F+

n . The kernel J = ker ΦA is a wot-closed ideal of Ln. By [16,
Theorem 2.1], this ideal is determined by its range M = JKn, which is an invari-
ant subspace for both Ln and its commutant Rn. The representation of compression
of Ln to M⊥ has the same kernel. We wish to determine to what extent A can be
recovered from the compression of L to M⊥.

To get a feeling for the situation, consider the case in which the Ai are d × d ma-
trices which generate Md as an algebra. Then ΦA maps Ln onto Md. The kernel J

will then have codimension d2, and therefore the dimension of M⊥ is also d2. The
compression homomorphism to M⊥ factors through ΦA. Since Md has only one
irreducible representation up to similarity, the compression to M⊥ must be simi-
lar to the direct sum of d copies of ΦA. In particular, M⊥ will decompose into a
(non-orthogonal) direct sum of d subspaces which are L∗

n -invariant such that the
compression of L is similar to A.

Nevertheless, ΦA need not occur as a compression of L to some L∗
n -invariant sub-

space. This could occur only if ΦA has pure rank 1, which need not be the case.
However, this shows that there are representations similar to ΦA which do have pure
rank 1. Moreover it turns out that in a certain sense, these similarities of pure rank
1 are the extreme points of those representations similar to ΦA. This will be estab-
lished by showing that ΦA can be recovered as a C∗-convex combination of pure rank
1 representations.

Theorem 7.6 Let A = (A1, . . . , An) be a C0-contraction on a d-dimensional space V.
Let J be the kernel of the wot-continuous representation ΦA of Ln that it determines.
Then ΦA is unitarily equivalent to the compression of Ln to a semi-invariant subspace
S = N1 � N2, where N1 = Ln[S] and N2 = N1 � S belong to Lat Ln.
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Let M = JKn be the corresponding Ln and Rn-invariant subspace associated to J.
Then there are at most d wandering vectors ζ j , say for 1 ≤ j ≤ s where s ≤ d, with
Ln[ζi] pairwise orthogonal, such that

N1 =
s∑⊕

j=1

Rζ j Kn and N2 ⊃
s∑⊕

j=1

Rζ j M.

Moreover, the subspaces M j = R∗
ζ j
S are L∗

n -invariant subspaces of M⊥, and
dim(M j ) ≤ d. The contractive n-tuples B j = (B j1, . . . , B jn) obtained by compres-
sion of L to M j have pure rank 1 and ker ΦB j ⊃ J. There is an isometry X mapping S

into
∑⊕s

j=1 M j so that

( s∑⊕

j=1

B∗
ji

)
X = XA∗

i for 1 ≤ i ≤ n.

Thus A∗ is unitarily equivalent to the restriction of
∑⊕s

j=1 B∗
j to an invariant subspace.

Consequently, A = X∗ ∑⊕s
j=1 B jX is a C∗-convex combination of the B j ’s.

In particular, when A = B(V), each subspace M j is d-dimensional and each n-tuple
B j is similar to A.

Proof The isometric dilation S = (S1, . . . , Sn) of A has pure rank s = rank(I −∑n
i=1 AiA∗

i ) ≤ d. The identity representation of Ln contains many invariant sub-
spaces with infinite dimensional wandering space; and thus an infinite multiple of
the identity representation is contained in Ln. So we may assume that ΦA is the
compression of Ln to a semi-invariant subspace S of Ln itself. The minimal choice
of a pair of Ln-invariant subspaces with difference S is given by N1 = Ln[S] and
N2 = N1 � S [33].

Now N1 has a wandering space W of dimension s. Choose an orthonormal basis
ζ j , 1 ≤ j ≤ s, for W. By [15, Theorem 2.1], there is an isometry Rζ j in Rn with range

equal to the cyclic Ln-invariant subspace Ln[ζ j]. Then N1 =
∑⊕s

j=1 Rζ j Kn. Since the
kernel of the compression to S is J,

N2 ⊃ JS = JLnS = JN1

=
s∑

j=1

JRζ j Kn =
s∑

j=1

Rζ j JKn =
s∑

j=1

Rζ j M.

The subspaces M j = R∗
ζ j
S are contained in M⊥, and have dimension at most

d = dim S. Moreover, they are L∗
n -invariant because of the identity

L∗
n R∗

ζ j
S = R∗

ζ j
L∗

nS ⊂ R∗
ζ j
N⊥

2 = R∗
ζ j
S.

Let B j denote the contractive n-tuple obtained by compression of L to M j . Clearly
L is an isometric dilation of B j . The minimal dilation is obtained by restricting L
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to Ln[M j]. However by Lemma 3.4, this is a reducing subspace of Kn. Since the
commutant Rn of Ln contains no idempotents [15, Corollary 1.8], this space must
be all of Kn. Thus the n-tuple B j has pure rank 1 for each 1 ≤ j ≤ s. Since M j is
contained in M⊥, it follows that ker ΦB j contains the ideal J.

Now notice that Rζ j M j are pairwise orthogonal subspaces, and

s∑⊕

j=1

Rζ j M j =
s∑⊕

j=1

Rζ j R
∗
ζ j
S ⊃

( s∑
j=1

Rζ j R
∗
ζ j

)
S = PN1S = S.

This allows us to identify S isometrically with a subspace of
∑⊕s

j=1 M j . Let X j =
R∗

ζ j
PS be considered as a map from S into M j . Define X to be the column matrix[

X1 · · · Xs

]t
. Then

X∗X =
s∑

j=1

PSRζ j R
∗
ζ j

PS = PSPN1 PS = PS.

So X is an isometry of S into
∑⊕s

j=1 M j . One may compute

R∗
ζ j

L∗
i PS = (R∗

ζ j
PN1 )(P⊥

N2
L∗

i PS) = R∗
ζ j

PSL∗
i PS.

Therefore identifying Ai with PSLiPS, we obtain

( s∑⊕

j=1

B∗
ji

)
X =

s∑
j=1

L∗
i R∗

ζ j
PS =

s∑
j=1

R∗
ζ j

L∗
i PS

=
s∑

j=1

R∗
ζ j

PSL∗
i PS = XA∗

i .

From this it is evident that the range of X is invariant for
∑⊕s

j=1 B∗
ji , and implements

a unitary equivalence between A∗
i and this restriction of

∑⊕s
j=1 B∗

ji . Consequently,

X∗(
∑⊕s

j=1 B jiX) = Ai for 1 ≤ i ≤ n. This expresses A as a C∗-convex combination of
the pure rank one contractions B j .

When A is isomorphic to B(V) � Md, then Ln/J is likewise isomorphic to Md

and the compression of Ln to M⊥ is a representation of Md on a subspace of di-
mension d2. The only representations of Md are multiples of the identity represen-
tation up to similarity, and the compression to M⊥ has multiplicity d. Thus the
L∗

n-invariant subspaces of M⊥ have dimension which is a multiple of d. As M j are
non-zero and have dimension at most d, they are all exactly d-dimensional and each
B∗

j is similar to A∗, whence B j is similar to A.

Say that the n-tuple A is irreducible if it generates A = B(V), or equivalently A has
no proper invariant subspaces. When A is an irreducible C0-contraction, we see that
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the compression representation to M⊥ takes the generators to an n-tuple similar to
the direct sum of d copies of A. In particular, this occurs if ‖A‖ < 1. So we obtain
a complete similarity invariant for an arbitrary irreducible n-tuple of matrices (after
scaling appropriately).

Restricting to the irreducible case is not just a matter of convenience. Simple ex-
amples show that multiplicity cannot be detected from the set of polynomial iden-
tities that an n-tuple satisfies. For example, with n = 1, take A = J2 ⊕ 0(3) and
B = J(2)

2 ⊕0 where J2 is the 2×2 nilpotent Jordan matrix and 0 is a one-dimensional
zero. These two matrices satisfy exactly the same polynomial identities. The natural
way to distinguish them is to use rank. Indeed, familiar invariants for similarity of
single matrices shows that the ranks of various polynomials can be used to determine
the multiplicity function.

Corollary 7.7 Suppose that A = (A1, . . . , An) and B = (B1, . . . , Bn) are two n-tuples
of d × d matrices which are irreducible and strictly contractive, ‖A‖ < 1 and ‖B‖ < 1.
Then A and B are similar if and only if ker ΦA = ker ΦB.

Proof Clearly two similar n-tuples give rise to representations with the same kernel.
Conversely, if they are irreducible, the kernel determines the subspace M. We adopt
the notation from the proof of Theorem 7.6. A minimal L∗

n -invariant subspace M j of
M⊥ yields a compression representation Φ j which is similar to ΦA by Theorem 7.6.
Likewise, B determines the same subspaces, and thus ΦB is also similar to Φ j , and
hence to ΦA.

The similarity question for n-tuples of matrices is an old one, and the solution
is complicated. Friedland [21] provides an algorithm for checking whether two n-
tuples A = (A1, . . . , An) and B = (B1, . . . , Bn) of d × d matrices are similar. This
is quite involved even for two 2 × 2 matrices, which he calculates explicitly. The
situation simplifies when the two matrices are not simultaneously triangularizable—
which in the 2× 2 case is the same as irreducibility. In this case, the pairs A and B are
similar if and only if these five identities hold:

Tr(A1) = Tr(B1) Tr(A2
1) = Tr(B2

1)

Tr(A2) = Tr(B2) Tr(A2
2) = Tr(B2

2)

Tr(A1A2) = Tr(B1B2).

In general, there is no explicit list of polynomials to check.
In our case, we do obtain a fairly small finite list of invariants for an irreducible n-

tuple. Unfortunately, at this point, we do not have an explicit method for computing
these invariants. Nor are they polynomials. The natural invariants in our setting are
isometries in Ln. Polynomials can be obtained by a simple approximation argument,
but are no longer canonical. In the case of two 2 × 2 matrices, we obtain exactly five
conditions.
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Theorem 7.8 Let A = (A1, . . . , An) be an irreducible n-tuple of d × d matrices with
‖A‖ < 1. The ideal J = ker ΦA determines its range space M = JKn with wandering
dimension 1 + (n − 1)d2. Thus there are 1 + (n − 1)d2 isometries X j in Ln so that an
n-tuple B of d × d matrices with ‖B‖ < 1 is similar to A if and only if ΦB(X j) = 0 for
1 ≤ j ≤ 1 + (n − 1)d2.

Moreover there is a set of m = 1 + (n − 1)d2 polynomials p j in n non-commuting
variables such that an n-tuple B of d × d matrices with ‖B‖ < 1 is similar to A if and
only if p j(B) = 0 for 1 ≤ j ≤ m.

Proof The space M has the same codimension as J, which is d2 since Ln/J is iso-
morphic to Alg{A1, . . . , An} = Md. Its wandering space is

W = M �
n∑

i=1

LiM

= Kn �
(

M⊥ ⊕
n∑

i=1

Li(Kn � M⊥)
)

=
((

Kn �
n∑

i=1

LiKn

)
⊕

n∑
i=1

LiM
⊥

)
� M⊥

=
(

Cξe ⊕
n∑

i=1

LiM
⊥

)
� M⊥.

This has dimension m = 1 + (n − 1) dim M⊥ = 1 + (n − 1)d2.
Now M is invariant for both Ln and its commutant Rn. Since it is the latter, it

decomposes [15, Theorem 2.1] as the direct sum of m cyclic Rn-invariant subspaces;
and each is the range of an isometry X j in Ln. Thus by [16, Lemma 2.5], we obtain
that J =

∑m
j=1 X j Ln.

Therefore ker ΦB contains J if and only if ΦB(X j) = 0 for 1 ≤ j ≤ m. Moreover,
since A is irreducible, J is a maximal ideal. Thus this condition ensures that ker ΦB =
J. In particular, Alg{B1, . . . , Bn} is isomorphic to Ln/J � Md; and hence B is also
irreducible. Therefore B and A are similar by Corollary 7.7.

To obtain polynomials, we notice that the algebra P which is the algebraic span
of {Lw : w ∈ F+

n} is wot-dense in Ln. Let I = J ∩ P be the ideal of all polynomials
which annihilate A. The algebra (without closure) generated by the Ai ’s is Md. So
the map ΦA takes P onto Md with kernel I; and takes Ln onto Md with kernel J. It
follows from the Hahn-Banach theorem that I is wot-dense in J.

Let ε = (1 + nd2)−1. For each 1 ≤ j ≤ m, choose polynomials p j ∈ I such that
‖p j(L)−X j‖ < ε. We claim that p j(L) generate J as a norm-closed right ideal. For let
J ∈ J. By [16, Lemma 2.5], there are elements Y j ∈ Ln such that J =

∑m
j=1 X jY j =:

XY . Moreover, the row operator X = [X1 · · ·Xm] is an isometry. Hence the column
operator Y = [Y1 · · ·Ym]t has ‖Y‖ = ‖ J‖. Let P = [p1(L) · · · pm(L)]. It follows that

‖ J − PY‖ ≤ ‖X − P‖ ‖Y‖ <
m

1 + nd2
‖ J‖.
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Since m/(1 + nd2) < 1, the right ideal generated by P is norm dense in J as claimed.
Therefore the condition that p j(B) = 0 for 1 ≤ j ≤ m is equivalent to the

condition ΦB(X j) = 0, and thus is equivalent to joint similarity to A.

While the X j ’s are needed to generate J as a wot-closed right ideal, there will
generally be redundancies as generators for J as a two-sided ideal. So 1 + (n − 1)d2

is an upper bound on the number of test elements needed. It would be interesting to
have better bounds on the number of generators for a two-sided ideal.

We observe that the existence of a determining set of polynomials for an irre-
ducible n-tuple can be deduced directly by elementary means. One can write down
polynomials in A representing the matrix units of d × d matrices and their relations.
In fact O(d2) generators and relations suffice. Then each Ai can be expressed as a
combination of matrix units. This requires only n + O(d2) polynomials, which is
somewhat better than our bound. In many concrete cases, this simple bare hands
approach is the best.

On the other hand, our result provides an algorithm for obtaining a set of gener-
ators for the ideal J. Perhaps this will prove to be of some use.

Example 7.9 This example illustrates parts of the previous two theorems. Consider
the pair of 2 × 2 matrices

A1 =
[

0 1/2
1/2 0

]
and A2 =

[
1/2 0

0 0

]
.

Since I − A1A∗
1 − A2A∗

2 =
[

1/2 0
0 3/4

]
has rank 2, this determines a pure isometric

dilation of pure rank 2. The algebra A = M2, and thus the representation ΦA of L2

is irreducible. The kernel will be a wot-closed maximal ideal J of codimension 4.
Therefore the subspace M = JK2 will be codimension 4.

The matrices A1 and A2 satisfy certain relations that express the fact that

M2 = Alg{A1, A2} = span {I, A1, A2, A1A2}.

A natural and sufficient list is

(1) 4A2
1 = I

(2) 2A2
2 = A2

(3) A2A1A2 = 0
(4) 8A1A2A1 = I − 2A2

(5) 2A1A2 + 2A2A1 = A1

However, (5) and (2) can be derived from the others. So (1), (3) and (4) are sufficient.
The ideal J is therefore generated as a two-sided ideal by the set

J = {I − 4L2
1, L2L1L2, I − 2L2 − 8L1L2L1},
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since the quotient will be M2. Therefore the range M is the L2R2-invariant subspace
generated by Jξe,

M = JK2 = L2R2Jξe

= span {ξuv − 4ξu11v, ξu212v, ξuv − 2ξu2v − 8ξu121v : u, v ∈ F+
2}.

We wish to determine M⊥. To this end, define Ω1 to be the set of all words in
11 = 12 and 2,

Ω1 = {w = 12k0 212k1 2 · · · 212ks : ki ≥ 0, s ≥ 0}.
Let Ω2 = Ω11, Ω3 = 1Ω1 and Ω4 = {e} ∪ 1Ω11. Define

xi =
∑
w∈Ωi

2−|w|ξw for 1 ≤ i ≤ 4.

Then a computation shows that M⊥ = span {x1, x2, x3, x4}. These vectors are not
orthogonal, nor of constant length. Indeed,

‖x1‖2 = 16/11, ‖x2‖2 = ‖x3‖2 = 4/11 and ‖x4‖2 = 12/11.

The pair {x1, x4} is orthogonal to {x2, x3}, but

(x1, x4) = 16/15 and (x2, x3) = 4/15.

Another matrix calculation relative to the ordered basis {x1, . . . , x4} for M⊥

shows that

L∗
1 |M⊥ =




0 0 1/2 0
0 0 0 1/2

1/2 0 0 0
0 1/2 0 0


 and L∗

2 |M⊥ =




1/2 0 0 0
0 1/2 0 0
0 0 0 0
0 0 0 0


 .

Let Φc denote the representation of compression to M⊥. This calculation shows that
Φc is similar (but not unitarily equivalent) to the direct sum of two copies of ΦA. Thus
the compression to any two dimensional L∗

2 -invariant subspace of M⊥ is similar to
ΦA. As noted in the proof of Theorem 7.6, these representations all have pure rank 1.
In particular, ΦA does not occur as such a compression. It is also a fact that Φc is not
unitarily equivalent to an orthogonal direct sum of two representations.

Next, we compute the 2-dimensional L∗
2 -invariant subspaces of M⊥. Examining

the representation Φc, we observe that the two subspaces M1 := span {x1, x3} and
M2 := span {x2, x4} are invariant for L∗

2 . Setting ηi = xi/‖xi‖, we find that {η1, η3}
and {η2, η4} are orthonormal bases for M1 and M2 respectively. Compute

L∗
1 |M1 � B∗

1 =
[

0 1
1/4 0

]
and L∗

2 |M1 � B∗
2 =

[
1/2 0

0 0

]
,

L∗
1 |M2 � C∗

1 =
[

0 1/
√

12√
3/2 0

]
and L∗

2 |M2 � C∗
2 =

[
1/2 0

0 0

]
.
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These must be pairs which have pure rank 1, as is verified by computing the ranks of

I − B1B∗
1 − B2B∗

2 =
[

11/16 0
0 0

]
and I −C1C∗

1 −C2C∗
2 =

[
0 0
0 11/12

]
.

The representation Φc factors through a representation of M2 of multiplicity 2.
Thus every 2-dimensional L∗

2 -invariant subspace is the cyclic subspace determined
by its intersection with the range of L∗

2 |M⊥ = span {η1, η2}, namely C(αη1 + βη2)
for |α|2 + |β|2 = 1. The second vector spanning the subspace must be the image
under 2L∗

1 ,

2L∗
1 (αη1 + βη2) = 2αB∗

1η1 + 2βC∗
1 η2 =

α

2
η3 +

√
3βη4.

A typical subspace of this form is

Mα,β = span
{

αη1 + βη2,
α

2
η3 +

√
3βη4

}
.

However it is sufficient just to use M1 and M2, as they correspond to a particular
choice of a basis for the wandering subspace of L2[S].

Since rank considerations show that the subspace S cannot be L∗
2 -invariant, we

must write S as the difference of two L2-invariant subspaces of multiplicity 2. We
will look for an orthonormal set {ζ1, ζ2} to span S of the form

ζ1 = αR1η1 + βR2η2 and ζ2 =
α

2
R1η3 +

√
3βR2η4.

They are always orthogonal, so the condition that they be norm one requires that

|α|2 + |β|2 = 1 =
1

4
|α|2 + 3|β|2.

This has the solution |α|2 = 8/11 and |β|2 = 3/11. Therefore set

ζ1 =
√

8/11R1η1 +
√

3/11R2η2 and ζ2 =
√

2/11R1η3 +
√

9/11R2η4.

Another computation shows that

L∗
1 ζ1 =

1

2
ζ2 +

1√
2
ξe L∗

2ζ1 =
1

2
ζ1

L∗
1ζ2 =

1

2
ζ1 L∗

2ζ2 = 0 +
1

2
ξe

Thus we see that S := span {ζ1, ζ2} is a semi-invariant subspace S = N1 �N2 where
N1 = {ξe}⊥ = L2[ξ1, ξ2] and N2 = {ξe, ζ1, ζ2}⊥. Moreover these identities show
that the compression of Li to S is unitarily equivalent to Ai for i = 1, 2.
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Let us compute the operators X1 and X2 promised in Theorem 7.6. The projection
onto S is given by PS = ζ1ζ

∗
1 + ζ2ζ

∗
2 . Then

X1 = R∗
1 PS =

√
8

11
η1ζ

∗
1 +

√
2

11
η3ζ

∗
2

and

X2 = R∗
2 PS =

√
3

11
η2ζ

∗
1 +

√
9

11
η4ζ

∗
2 .

So recalling the matrix forms for Bi and Ci , we obtain

2∑
i=1

X∗
i L1Xi =

[√
8/11 0
0

√
2/11

] [
0 1/4
1 0

] [√
8/11 0
0

√
2/11

]

+

[√
3/11 0
0

√
9/11

] [
0

√
3/2

1/
√

12 0

] [√
3/11 0
0

√
9/11

]

=
[

0 1/11
4/11 0

]
+

[
0 9/22

3/22 0

]
=

[
0 1/2

1/2 0

]
= A1

and

2∑
i=1

X∗
i L2Xi =

[√
8/11 0
0

√
2/11

] [
1/2 0

0 0

] [√
8/11 0
0

√
2/11

]

+

[√
3/11 0
0

√
9/11

] [
1/2 0

0 0

] [√
3/11 0
0

√
9/11

]

=
[

4/11 0
0 0

]
+

[
3/22 0

0 0

]
=

[
1/2 0

0 0

]
= A2.

The wandering space for M has dimension 5, and as in the proof of Theorem 7.8
is given by

W = span {ξe, L1x j , L2x j : 1 ≤ j ≤ 4} � span {x j : 1 ≤ j ≤ 4}.

We do not compute a basis for this space, as the result is not particularly illumi-
nating. But such a basis corresponds to 5 isometries X1, . . . , X5 in Ln such that
J =

∑5
j=1 X j Ln. Thus ker ΦB = J if and only if ΦB(X j) = 0 for 1 ≤ j ≤ 5.

But as we noted earlier in our remarks, finding generators for J as a right ideal is
overkill. It suffices to use generators for J as a two sided ideal. Thus it is sufficient to
verify the 3 polynomial conditions:

(1) 4B2
1 = I

(3) B2B1B2 = 0
(4) 8B1B2B1 = I − 2B2
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It is an easy exercise to verify directly that these conditions suffice to determine the
pair up to similarity.

Pursuing this example further, let us consider other contractive pairs which are
similar to A. A calculation shows that these pairs are unitarily equivalent to a pair of
the form

Ã1 =
[−at 1

4t − a2t
t at

]
Ã2 =

[
1/2 a/2

0 0

]
where t > 0 and a ∈ C.

Since this is a contractive pair, Z := I − Ã1Ã∗
1 − Ã2Ã∗

2 ≥ 0. It suffices to check that
Z22 ≥ 0 and det Z ≥ 0. In other words,

(1) (1 + |a|2)t2 ≤ 1 and
(2) 12(1 + |a|2)2t4 − (13 − 4|a|2 + 8 Re a2)t2 + 1 ≤ 0.

The dilation of this pair has pure rank 1 if and only if the determinant is 0, which
requires an equality in (2). Notice that when a = 0, one obtains the inequality
1/
√

12 ≤ t ≤ 1. The extremes yield the two pure index 1 pairs (B1, B2) and (C1,C2)
obtained above.
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