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Abstract. We introduce a flow of a spatial graph and see how invariants for spatial graphs and handle-

body-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by

introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle

cocycle invariants for spatial graphs and handlebody-links.

1 Introduction

In this paper, we introduce flowed spatial graphs and define quandle cocycle invari-

ants for spatial graphs and handlebody-links. Carter, Jelsovsky, Kamada, Langford,

and Saito [1] defined quandle cocycle invariants for links and surface-links. It was

proved that a quandle cocycle invariant detects non-invertibility for surface-links

in [1] and chirality for links in [2, 12]. We remark that the fundamental quandle

cannot detect them, although the fundamental quandle is stronger than the funda-

mental group. A quandle cocycle invariant is useful in determining the triple point

number, the triple point cancelling number, the w-index, and so on (cf. [4, 5, 13]).

A spatial graph is a finite graph embedded in the 3-sphere. An invariant for links is

that for spatial graphs, since equivalent spatial graphs have the equivalent constituent

links. Our invariant distinguishes spatial graphs whose constituent links are equiva-

lent. The Yamada polynomial [16] is an invariant for spatial graphs without vertices

of degree greater than 3, where we remark that the Yamada polynomial of a general

spatial graph is an invariant as a flat vertex graph. Our invariant is defined for all

spatial graphs and distinguishes spatial graphs whose Yamada polynomials coincide.

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere.

We can use an invariant for 3-manifolds to distinguish handlebody-links. For ex-

ample, the fundamental group of the exterior of a handlebody-link is an invariant.

However, these invariants do not work for handlebody-links with homeomorphic

exteriors, which implies that we cannot detect the chirality of a handlebody-link by

using these invariants. In [3], the first author defined a weight sum invariant for

handlebody-links by using Mochizuki’s 3-cocycle and showed that the invariant can

detect the chirality. The quandle cocycle invariant defined in this paper is a gener-

alization of this invariant. We show that the quandle cocycle invariant is non-trivial

Received by the editors February 1, 2010.
Published electronically June 20, 2011.
AMS subject classification: 57M27, 57M15, 57M25.
Keywords: quandle cocycle invariant, knotted handlebody, spatial graph.

102

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2011-035-0


Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies 103

for the handlebody-link represented by Kinoshita’s θ-curve, where we remark that

the previous weight sum invariant is trivial for the handlebody-link.

There are two steps needed to define a quandle cocycle invariant. First we have

to define a quandle coloring. It is not easy to define quandle colorings for spatial

graphs and handlebody-links, since a suitable coloring condition for a vertex is un-

known. In [3], the first author introduced an enhanced constituent link and defined

a kei coloring, where a kei is a particular type of quandle. In this paper, we intro-

duce a flow, which is a generalization of an enhanced constituent link. In the second

step, we define a suitable quandle (co)homology and a quandle cocycle invariant. We

define a new subcomplex of the rack chain complex. The quotient complex gives a

(co)homology for spatial graphs and handlebody-links. We also show that our quan-

dle cocycle invariant does not depend on the choice of the representative element of

a cohomology class.

This paper consists of nine sections. In Section 2, we introduce a flow of a spa-

tial graph and see how invariants for spatial graphs and handlebody-links are derived

from those for flowed spatial graphs. In Section 3, we recall the definitions of a quan-

dle X and an X-set and define the type of a quandle. In Section 4, we define a quandle

coloring for flowed spatial graphs. In Section 5, we give some examples for the quan-

dle coloring. In Section 6, we introduce a quandle (co)homology for spatial graphs

and handlebody-links. In Section 7, we define a quandle cocycle invariant for spatial

graphs and handlebody-links. In Section 8, we evaluate a quandle cocycle invariant

for Kinoshita’s θ-curve. In Section 9, we prove the theorems that were introduced in

Section 7.

2 A Flow of a Spatial Graph

We introduce a flow of a spatial graph and see how invariants for spatial graphs and

handlebody-links are derived from those for flowed spatial graphs.

Let G be a finite graph without vertices of degree 0. A spatial graph L = f (G) is

a graph G embedded in the 3-sphere S3. Two spatial graphs are equivalent if one can

be transformed into the other by an isotopy of S3.

Let E(L) be the set of edges of L. Let Oe be the set of two orientations of an edge

e ∈ E(L). Let A be an abelian group. A map ϕe : Oe → A is an A-flow of an edge e if

ϕe(−o) = −ϕe(o), where−o is the inverse of o ∈ Oe. An A-flow ϕe is represented by

a pair (o, s) ∈ Oe ×A up to the equivalence relation (o, s) ∼ (−o,−s); see Figure 2.1,

where an element of A is represented with an underline. We fix an orientation oe for

each edge e of L. A collection ϕ = {ϕe}e∈E(L) is an A-flow of L if we have

∑

e∈Ein(v)

ϕe(oe) =
∑

e∈Eout(v)

ϕe(oe)

at any vertex v, where

Ein(v) := {e | e is an edge incident to v such that oe points to v},

Eout(v) := {e | e is an edge incident to v such that−oe points to v}.
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s ∼ −s

Figure 2.1
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Figure 2.2

We remark that the definition of an A-flow of L does not depend on the choice of the

orientations oe. We denote by Flow(L; A) the set of A-flows of L.

An A-flowed spatial graph (L, ϕ) is a pair of a spatial graph L and ϕ ∈ Flow(L; A).

Two A-flowed spatial graphs are equivalent if one can be transformed into the other

by an ambient isotopy preserving an A-flow. We note that the two Z-flowed spatial

graphs depicted in Figure 2.2 are not equivalent.

By taking suitable subsets of Flow(L; A), we obtain many spatial graph invariants

from an A-flowed spatial graph invariant. In the following proposition, we give some

specific constructions of spatial graph invariants.

Proposition 2.1 Let Ψ be an invariant for A-flowed spatial graphs.

• Let L be a spatial graph. Let B be a subset of A such that B = −B. We set

Flow(L; B) := {ϕ ∈ Flow(L; A) |ϕe(Oe) ⊂ B for any edge e of L}.

Then the multiset {Ψ(L, ϕ) |ϕ ∈ Flow(L; B)} is an invariant of L.
• Let (L,O) be an oriented spatial graph, where O is an assignment of an orientation

O(e) ∈ Oe to each edge e of L. Let B be a subset of A. We set

Flow(L,O; B) := {ϕ ∈ Flow(L; A) |ϕe(O(e)) ∈ B for any edge e of L}.

Then the multiset {Ψ(L, ϕ) |ϕ ∈ Flow(L,O; B)} is an invariant of (L,O).

Then, for an A-flowed spatial graph invariant Ψ, we define the spatial graph in-

variant ΨΣ by

Ψ
Σ(L) = {Ψ(L, ϕ) | ϕ ∈ Flow(L; A)},

where we note that Σ is just a symbol. Proposition 2.1 follows immediately from

the fact that Flow(L; B) and Flow(L,O; B) do not depend on the embedding f for

L = f (G).

We state one lemma for constructions of A-flowed spatial graph invariants, since

they play a critical role in Proposition 2.1. Two spatial graph diagrams represent

an equivalent spatial graph if and only if they are related by a finite sequence of the

R1–R5 moves depicted in Figure 2.3 ([8,16,17]). Then we have the following lemma.
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Lemma 2.2 Two A-flowed spatial graph diagrams represent an equivalent A-flowed

spatial graph if and only if they are related by a finite sequence of the A-flowed R1–R5

moves, where the A-flowed R1–R5 moves are the R1–R5 moves preserving A-flows.

A handlebody-knot is a handlebody embedded in S3. A handlebody-link is a dis-

joint union of handlebody-knots. Two handlebody-links are equivalent if one can

be transformed into the other by an isotopy of S3. When a handlebody-link H is

a regular neighborhood of a spatial graph L, we say that H is represented by L. We

note that two spatial graphs representing an equivalent handlebody-link are said to

be neighborhood equivalent ([14]).

An (A-flowed) contraction move is a local change of an (A-flowed) spatial graph as

described in Figure 2.4, where the replacement is applied in a disk embedded in S3.

An (A-flowed) R6 move is the diagrammatic move corresponding to the (A-flowed)

contraction move. Then we have the following theorem.

Theorem 2.3 ([3]) Two spatial graphs represent an equivalent handlebody-link if and

only if they are related by a finite sequence of contraction moves and ambient isotopies.

By Proposition 2.1 and Theorem 2.3, we have the following proposition.

Proposition 2.4 Let Ψ be an invariant for A-flowed spatial graphs. If Ψ is invari-

ant under A-flowed contraction moves, then the multiset ΨΣ(L) is an invariant of a

handlebody-link represented by a spatial graph L.

We state one lemma for constructions of A-flowed spatial graph invariants that

are invariant under A-flowed contraction moves. By Lemma 2.2, we have the follow-

ing lemma, since we may apply an A-flowed contraction move in a small disk by an

isotopy of S3.
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Lemma 2.5 Let D1 and D2 be diagrams of A-flowed spatial graphs (L1, ϕ1) and

(L2, ϕ2), respectively. The following statements are equivalent:

• Two A-flowed spatial graphs (L1, ϕ1) and (L2, ϕ2) are related by a finite sequence of

A-flowed contraction moves and ambient isotopies preserving A-flows.
• Two diagrams D1 and D2 are related by a finite sequence of the A-flowed R1–R6

moves.

Remark 2.6 We do not need all spatial graphs to represent all handlebody-links.

Spatial trivalent graphs are sufficient to represent all handlebody-links, where a spa-

tial trivalent graph may contain circle components. An (A-flowed) IH-move is a local

change of an (A-flowed) spatial trivalent graph as described in Figure 2.5, where the

replacement is applied in a disk embedded in S3. Then, in Theorem 2.3, Proposi-

tion 2.4 and Lemma 2.5, we can replace spatial graphs and contraction moves with

spatial trivalent graphs and IH-moves, respectively (see [3]).

3 A Quandle

We recall the definitions of a quandle X and an X-set, and define the type of a quan-

dle.

A quandle ([6, 9]) is a non-empty set X with a binary operation ∗ : X × X → X

satisfying the following axioms:

Q1. For any a ∈ X, a ∗ a = a;

Q2. For any a ∈ X, the map Sa : X → X defined by Sa(x) = x ∗ a is a bijection;

Q3. For any a, b, c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

We present some examples of quandles. A trivial quandle (X, ∗) is a non-empty set

X with the binary operation defined by a ∗ b = a. The dihedral quandle of order p,

denoted by (Rp, ∗), is the quandle consisting of the set Zp(:= Z/pZ) with the binary

operation defined by a∗b = 2b−a. The tetrahedral quandle, denoted by (S4, ∗), is the

quandle consisting of the set Z2[t, t−1]/(t2 + t + 1) with the binary operation defined

by a ∗ b = ta + (1 − t)b. In general, an Alexander quandle (M, ∗) is a Λ-module M

with the binary operation defined by a∗b = ta+(1−t)b, where Λ := Z[t, t−1]. Then

the tetrahedral quandle is an Alexander quandle. We also remark that the dihedral

quandle (Rp, ∗) is isomorphic to the Alexander quandle (Zp[t, t−1]/(t + 1), ∗) as
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quandles. An n-fold conjugation quandle (G, ∗) is a group G with the binary operation

defined by a ∗ b = b−nabn.

The associated group of a quandle X, denoted by As(X), is defined by

As(X) =
〈

x ∈ X | x ∗ y = y−1xy (x, y ∈ X)
〉
.

An X-set is a set Y equipped with an action of the associated group As(X) from the

right. We denote by y ∗̃ g the image of an element y ∈ Y by the action g ∈ As(X).

Then we have the following:

Q̃2. For any a ∈ X, the map S̃a : Y → Y defined by S̃a(y) = y ∗̃ a is a bijection;

Q̃3. For any y ∈ Y , a, b ∈ X, (y ∗̃ a) ∗̃ b = (y ∗̃ b) ∗̃ (a ∗ b).

We show examples for X-sets. We set Y := X and y ∗̃ a := y ∗ a. Then (Y, ∗̃) is an

X-set. We set Y := {y} and y ∗̃ a := y. Then (Y, ∗̃) is an X-set.

For i ∈ Z, we define a ∗i b := Si
b(a), y ∗̃ia := S̃i

a(y). The type of a quandle X is

defined by

type X := min{i ∈ Z>0 | a ∗i b = a for any a, b ∈ X}.

We set type X := ∞ if we do not have such a positive integer i. If X is finite, then

type X <∞. A trivial quandle is of type 1. The dihedral quandle (Rp, ∗) is of type 2.

A quandle of type 2 is called kei ([15]). The tetrahedral quandle (S4, ∗) is of type 3.

We note that a quandle of type n is an n-quandle ([7]). In this paper, we set Z∞ := Z.

Then a ∗i b is well defined for i ∈ Ztype X . We define

type XY := min{i ∈ Z>0 | a ∗
i b = a, y ∗̃ia = y for any a, b ∈ X, y ∈ Y}.

We set type XY :=∞ if we do not have such a positive integer i. Then a∗i b and y ∗̃ia

are well-defined for i ∈ Ztype XY
.

4 A Quandle Coloring for Flowed Spatial Graphs

We define a quandle coloring for flowed spatial graphs. The number of quandle

colorings is an invariant for flowed spatial graphs. We also define a coloring by using

a quandle X and an X-set, which is used to define a quandle cocycle invariant in

Section 7.

Let X be a quandle. Let D be a diagram of a Ztype X-flowed spatial graph (L, ϕ). We

denote by A(D) the set of arcs of D, where an arc is a piece of a curve such that its

endpoint is an undercrossing or a vertex.

We choose an orientation O(e) ∈ Oe for each edge e ∈ E(L). Then (L,O, ϕ) is

a Ztype X-flowed oriented spatial graph. For an arc α that originates from an edge e,

we put O(α) := O(e), ϕα := ϕe. To represent an orientation O(e) in D, we may use

the co-orientation obtained by rotating the orientation O(e) π/2 counterclockwise.

We denote it by the same symbol O(α). We denote by χ0 the over-arc at a crossing

χ of D. We denote by χ1, χ2 the under-arcs at χ such that the co-orientation O(χ0)

points to χ2.

An X-coloring of D is a map C : A(D) → X satisfying the following conditions

(Figure 4.1):
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C1. For a crossing χ, we have C(χ1) ∗ϕχ0
(O(χ0)) C(χ0) = C(χ2).

C2. For a vertex ω, we have C(ω1) = · · · = C(ωd), where ω1, . . . , ωd are the arcs

incident to ω.

An X-coloring C does not depend on the choice of the orientations O(e), since the

equality in C1 is equivalent to the equality

C(χ2) ∗ϕχ0
(−O(χ0)) C(χ0) = C(χ1).

We denote by ColX(D) the set of X-colorings of D. For two diagrams D and E that

locally differ, we denote by A(D, E) the set of arcs that D and E share.

Theorem 4.1 Let X be a quandle. Let D be a diagram of a Ztype X-flowed spatial graph

(L, ϕ). Let E be a diagram obtained by applying one of the Ztype X-flowed R1–R6 moves

to D once. For C ∈ ColX(D), there is a unique X-coloring CD,E ∈ ColX(E) such that

C|A(D,E) = CD,E|A(D,E).

By Lemma 2.5, #ColX(D) is an invariant of (L, ϕ), which is invariant under

Ztype X-flowed contraction moves, where #S is the number of elements in a set S. Then

we put #ColX(L, ϕ) := #ColX(D). When #ColX(L, ϕ) =∞, the number of nontrivial

X-colorings of D may work, where an X-coloring C of D is trivial if C : A(D)→ X is

a constant map. We call C(ξ) the color of ξ.

Proof of Theorem 4.1 The color of an edge in A(E) − A(D, E) is uniquely deter-

mined by the colors of edges in A(D, E), since we have a∗s a = a for the Ztype X-flowed

R1, R4 moves, and

(· · · ((a ∗i1 b) ∗i2 b) · · · ) ∗il b = a (i1 + i2 + · · · + il = 0 in Ztype X)

for the Ztype X-flowed R2, R5 moves, and

(a ∗s b) ∗t c = (a ∗t c) ∗s (b ∗t c)

for the Ztype X-flowed R3 move, and C2 for the Ztype X-flowed R6 moves.

We denote by R(D) the set of connected regions of the complement of the under-

lying immersed graph of D. An XY -coloring of D is a map

C : A(D) ∪ R(D)→ X ∪ Y

such that C|A(D) : A(D) → X is an X-coloring of D and that C|R(D) : R(D) → Y

satisfies the following condition:
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C3. For regions α1, α2 sharing an arc α such that the co-orientation O(α) points to

α2, we have

C(α1) ∗̃ϕα(O(α))C(α) = C(α2)

(see Figure 4.2). An XY -coloring C does not depend on the choice of the orientations

O(e), since the equality in C3 is equivalent to the equality

C(α2) ∗̃ϕα(−O(α))C(α) = C(α1).

We denote by ColX(D)Y the set of XY -colorings of D. For two diagrams D and E

that locally differ, we denote by R(D, E) the set of regions that D and E share. By Q̃3,

colors of regions are uniquely determined by those of arcs and one region. Therefore,

by Theorem 4.1 we have the following theorem.

Theorem 4.2 Let X be a quandle, and let Y be an X-set. Let D be a diagram of a

Ztype XY
-flowed spatial graph (L, ϕ). Let E be a diagram obtained by applying one of

the Ztype XY
-flowed R1–R6 moves to D once. For C ∈ ColX(D)Y , there is a unique XY -

coloring CD,E ∈ ColX(E)Y such that

C|A(D,E) = CD,E|A(D,E) and C|R(D,E) = CD,E|R(D,E).

This theorem implies that #ColX(D)Y is an invariant of (L, ϕ). Unfortunately, this

invariant is not important, since we have the equality #ColX(D)Y = #Y #ColX(D).

Theorem 4.2 is used to define a quandle cocycle invariant for flowed spatial graphs in

Section 7.

5 Examples for a Quandle Coloring

We give some examples for a quandle coloring. We represent the multiplicity of an

element of a multiset by a subscript with an underline. For example, {a1, b2, c3}
represents the multiset {a, b, b, c, c, c}.

Let K0 and K1 be the spatial handcuff graphs as shown in Figure 5.1, where we

ignore flows and colors. We cannot use link invariants to distinguish K0 from K1,

since the constituent links of these spatial graphs coincide. The following example

shows that K0 and K1 are not equivalent.

Example 5.1 For s, t ∈ Z2, a, b ∈ R3, we denote by C0
s,t (a, b) (resp. C1

s,t (a)) the

R3-coloring of the Z2-flowed spatial graph diagram D0
s,t (resp. D1

s,t ) corresponding to
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K0 (resp. K1) depicted in Figure 5.1. We note that type R3 = 2. We have the equalities

ColR3
(D0

1,1) = {C0
1,1(a, b) | a, b ∈ R3}, #ColR3

(D0
1,1) = 9,

ColR3
(D0

s,t ) = {C
0
s,t (a, a) | a ∈ R3}, #ColR3

(D0
s,t ) = 3

for (s, t) ∈ Z
2
2 − {(1, 1)}, which imply #ColΣR3

(K0) = {9, 33}. We have the equalities

ColR3
(D1

s,t ) = {C
1
s,t (a) | a ∈ R3}, #ColR3

(D1
s,t ) = 3

for (s, t) ∈ Z
2
2, which imply #ColΣR3

(K1) = {34}. Thus K0 and K1 are not equivalent.

Furthermore, K0 and K1 represent nonequivalent handlebody-links.

Let K2 and K3 be the spatial θ-curves as shown in Figure 5.2, where we ignore

flows and colors. The Yamada polynomials R(K2) and R(K3) coincide:

R(K2) = R(K3) = (A4 − A2 + A + 1− 2A−1 + A−2 + A−3 − A−4)2R(θ),

R(θ) = −A2 − A− 2− A−1 − A−2.

We refer the reader to [16] for the definition and evaluation of the Yamada polyno-

mial. The following example shows that K2 and K3 are not equivalent.

Example 5.2 For s, t ∈ Z2, a, b ∈ R3, we denote by C2
s,t (a, b) (resp. C3

s,t (a)) the R3-

coloring of the Z2-flowed spatial graph diagram D2
s,t (resp. D3

s,t ) corresponding to K2

(resp. K3) depicted in Figure 5.2. We note that type R3 = 2. We have the equalities

ColR3
(D2

1,1) = {C2
1,1(a, b) | a, b ∈ R3}, #ColR3

(D2
1,1) = 9,

ColR3
(D2

s,t ) = {C
2
s,t (a, a) | a ∈ R3}, #ColR3

(D2
s,t ) = 3

for (s, t) ∈ Z
2
2 − {(1, 1)}, which imply #ColΣR3

(K2) = {9, 33}. We have the equalities

ColR3
(D3

s,t ) = {C
3
s,t (a) | a ∈ R3}, #ColR3

(D3
s,t ) = 3

for (s, t) ∈ Z
2
2, which imply #ColΣR3

(K3) = {34}. Thus K2 and K3 are not equivalent.

Furthermore, K2 and K3 represent nonequivalent handlebody-links.
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6 Quandle Homologies

Carter, Jelsovsky, Kamada, Langford, and Saito defined the quandle homology group

HQ
∗ (X; A) and the quandle cohomology group H∗

Q(X; A), and introduced quandle

cocycle invariants. We note that a quandle 2-cocycle φ satisfies

φ(a, a) = 0,(6.1)

φ(a, c) + φ(a ∗ c, b ∗ c) = φ(a, b) + φ(a ∗ b, c)(6.2)

for any a, b, c ∈ X, and that a quandle 3-cocycle θ satisfies

θ(a, a, b) = θ(a, b, b) = 0,(6.3)

θ(a, c, d) + θ(a ∗ c, b ∗ c, d) + θ(a, b, c) =(6.4)

θ(a ∗ b, c, d) + θ(a, b, d) + θ(a ∗ d, b ∗ d, c ∗ d)

for any a, b, c, d ∈ X. For the details we refer the reader to [1]. In this section,

we introduce a new (co)homology theory to define a quandle cocycle invariant for

Ztype XY
-flowed spatial graphs.

Let X be a quandle, and let Y be an X-set. Let CR
n (X)Y be the free abelian group

generated by (n + 1)-tuples (y, x1, . . . , xn), where y ∈ Y and x1, . . . , xn ∈ X if n ≥ 0,

and let CR
n (X)Y = 0 otherwise. Put

(y, x1, . . . , xn)i, j := (y ∗̃ jxi , x1 ∗
j xi , . . . , xi−1 ∗

j xi , xi+1, . . . , xn),

(y, x1, . . . , xn)+
i, j := (y ∗̃ jxi , x1 ∗

j xi , . . . , xi−1 ∗
j xi , xi , . . . , xn).

We define a homomorphism ∂n : CR
n (X)Y → CR

n−1(X)Y by

∂n(y, x1, . . . , xn) =

n∑

i=1

(−1)i
{

(y, x1, . . . , xn)i,0 − (y, x1, . . . , xn)i,1

}

for n > 0, and ∂n = 0 otherwise. Then CR
∗(X)Y = {CR

n (X)Y , ∂n} is a chain complex,

since ∂n−1 ◦ ∂n = 0.
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Let DQ
n (X)Y be the subgroup of CR

n (X)Y generated by the elements of

{
(y, x1, . . . , xn) ∈ Y × Xn | xi = xi+1 for some i

}

if n > 1, and let DQ
n (X)Y = 0 otherwise. Put CQ

n (X)Y = CR
n (X)Y/DQ

n (X)Y . Since

∂n(DQ
n (X)Y ) ⊂ DQ

n−1(X)Y , CQ
∗ (X)Y = {CQ

n (X)Y , ∂n} is a chain complex, where we

denote the induced homomorphism by the same symbol ∂n.

Let DI
n(X)Y be the subgroup of CR

n (X)Y generated by the elements of

{ type XY −1∑

j=0

(y, x1, . . . , xn)+
i, j

∣∣∣ (y, x1, . . . , xn) ∈ Y × Xn, i = 1, . . . , n

}

if n > 0 and type XY < ∞, and let DI
n(X)Y = 0 otherwise. Then we have the

following lemma.

Lemma 6.1 We have ∂n(DI
n(X)Y ) ⊂ DI

n−1(X)Y .

Proof We may suppose that n > 0 and type XY <∞. Let

σ =

type XY −1∑

j=0

(y, x1, . . . , xn)+
i, j ∈ DI

n(X)Y ,

where i ∈ {1, . . . , n}. We have σi,0 = σi,1 by the equalities

a ∗type XY b = a, y ∗̃type XY a = y

for any a, b ∈ X, y ∈ Y . By (a ∗s b) ∗t c = (a ∗t c) ∗s (b ∗t c), we have

((y, x1, . . . , xn)+
i, j)k,1 =

{
((y, x1, . . . , xn)k,1)+

i, j if k > i,

((y, x1, . . . , xn)k,1)+
i−1, j if k < i.

Then σk,1 ∈ DI
n−1(X)Y if k 6= i, where

σk,l =

type XY −1∑

j=0

(
(y, x1, . . . , xn)+

i, j

)
k,l
.

Since σk,0 ∈ DI
n−1(X)Y for k 6= i, we have

∂n(σ) =

i−1∑

k=1

(−1)kσk,0 + (−1)iσi,0 +

n∑

k=i+1

(−1)kσk,0

−
i−1∑

k=1

(−1)kσk,1 − (−1)iσi,1 −
n∑

k=i+1

(−1)kσk,1 ∈ DI
n−1(X)Y .
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We put C I
n(X)Y = CR

n (X)Y/(DQ
n (X)Y + DI

n(X)Y ). Then C I
∗(X)Y = {C I

n(X)Y , ∂n} is

a chain complex. For an abelian group A, we define the chain and cochain complexes

CW
∗ (X; A)Y = CW

∗ (X)Y ⊗ A, ∂ = ∂ ⊗ id;

C∗
W (X; A)Y = Hom(CW

∗ (X)Y ,A), δ = Hom(∂, id),

where W is R, Q, or I. We denote by HW
n (X; A)Y and Hn

W (X; A)Y the n-th homol-

ogy group and the n-th cohomology group of CW
∗ (X; A)Y and C∗

W (X; A)Y , respec-

tively. We note that, if type XY =∞, then C I
∗(X; A)Y = CQ

∗ (X; A)Y and C∗
I (X; A)Y =

C∗
Q(X; A)Y .

A map f ∈ C2
R(X; A)Y induces a 2-cocycle of C∗

Q(X; A)Y if and only if f satisfies

the conditions

f (y, a, a) = 0,(6.5)

f (y, b, c) + f (y ∗̃ b, a ∗ b, c) + f (y, a, b)(6.6)

= f (y ∗̃ a, b, c) + f (y, a, c) + f (y ∗̃ c, a ∗ c, b ∗ c),

for any y ∈ Y and a, b, c ∈ X. We suppose that type XY <∞. A map f ∈ C2
R(X; A)Y

induces a 2-cocycle of C∗
I (X; A)Y if and only if f satisfies the conditions (6.5), (6.6)

and

type XY −1∑

i=0

f (y ∗̃ia, a, b) =

type XY −1∑

i=0

f (y ∗̃ib, a ∗i b, b) = 0,(6.7)

for any y ∈ Y and a, b ∈ X. Then, by the equalities (6.1)–(6.4), we have the following

proposition, which is useful in finding 2-cocycles of C∗
I (X; A)Y .

Proposition 6.2 Let X be a quandle such that type X < ∞. For a quandle 2-cocycle

φ, we define 1 ⊗ φ ∈ C2
R(X; A){y} by (1 ⊗ φ)(y, a, b) = φ(a, b) for a, b ∈ X. Then

1⊗ φ is a 2-cocycle of C∗
Q(X; A){y}. Furthermore, if φ satisfies

type Xφ(a, b) =

type X−1∑

i=0

φ(a ∗i b, b) = 0

for any a, b ∈ X, then 1⊗ φ is a 2-cocycle of C∗
I (X; A){y}.

A quandle 3-cocycle θ is a 2-cocycle of C∗
Q(X; A)X . Furthermore, if θ satisfies

type X−1∑

i=0

θ(a ∗i b, b, c) =

type X−1∑

i=0

θ(a ∗i c, b ∗i c, c) = 0

for any a, b, c ∈ X, then θ is a 2-cocycle of C∗
I (X; A)X .
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Example 6.3 (dihedral quandle Rp) Let p be an odd prime. The quandle coho-

mology group H3
Q(Rp; Zp) ∼= Zp is generated by the cohomology class [θp] defined

by

θp(x, y, z) = (x − y)
y p + (2z − y)p − 2zp

p
,

where we remark that the right-hand side of the equality represents a polynomial with

coefficients in Zp. We call θp Mochizuki’s 3-cocycle [10]. We note that type Rp = 2.

Since we have the equalities

θp(x, y, z) + θp(x ∗ y, y, z) =
(

(x − y) + (y − x)
) y p + (2z − y)p − 2zp

p
= 0,

θp(x, y, z) + θp(x ∗ z, y ∗ z, z) =
(

(x − y) + (y − x)
) y p + (2z − y)p − 2zp

p
= 0,

θp is a 2-cocycle of C∗
I (Rp; Zp)Rp

.

T. Satoh and the authors discussed the cohomology group H3
I (Rp; Zp)Rp

in Osaka,

and showed that H3
I (R3; Z3)R3

∼= Z3 by direct calculation.

Example 6.4 (tetrahedral quandle S4) Put A := Z2[t, t−1]/(t2 + t + 1). The

quandle cohomology group H3
Q(S4; A) ∼= A3 is generated by the cohomology classes

[ f1], [ f2], [ f3] defined by

f1(x, y, z) = (x − y)(y − z)2,

f2(x, y, z) = t(x − y)(y − z)z,

f3(x, y, z) = t2(x − y)2(y − z)2z2

(see [11]). We note that type S4 = 3. Since we have the equalities

f2(x, y, z) + f2(x ∗ y, y, z) + f2(x ∗2 y, y, z)

= t
(

(x − y) + (tx − t y) + (t2x − t2 y)
)

(y − z)z

= 0,

f2(x, y, z) + f2(x ∗ z, y ∗ z, z) + f2(x ∗2 z, y ∗2 z, z)

= t(x − y)(y − z)z + t(tx − t y)(t y − tz)z + t(t2x − t2 y)(t2 y − t2z)z

= 0,

f2 is a 2-cocycle of C∗
I (S4; A)S4

. Similarly, f3 is a 2-cocycle of C∗
I (S4; A)S4

.

7 A Quandle Cocycle Invariant for Flowed Spatial Graphs

A quandle cocycle invariant is a weight sum invariant. We define the Boltzmann

weight at a crossing, and then we define a quandle cocycle invariant for flowed spatial

graphs.
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→t

↑
s

y

b

a

∑s−1
i=0

∑t−1
j=0 f ((y ∗̃ia) ∗̃ jb, a ∗

j b, b)

→
t

↓
s

y

b

a

−

∑s−1
i=0

∑t−1
j=0 f ((y ∗̃ia) ∗̃ jb, a ∗

j b, b)

Figure 7.1

Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of C∗
I (X; A)Y . Let

D be a diagram of a Ztype XY
-flowed spatial graph (L, ϕ). We choose an orientation

O(e) ∈ Oe for each edge e ∈ E(L) (such that ϕe(O(e)) ≥ 0 if type XY = ∞). Then

(L,O, ϕ) is a Ztype XY
-flowed oriented spatial graph. We denote by ǫ(χ) ∈ {1,−1}

the sign of a crossing χ of D. We denote by χi,1, χi,2 the regions sharing a crossing χ
and the under-arc χi such that the co-orientation O(χi) points to χi,2. We put

f̄ (y, a, s, b, t) :=

s−1∑

i=0

t−1∑

j=0

f ((y ∗̃ia) ∗̃ jb, a ∗ j b, b),

where we remark that f̄ (y, a, s, b, t) = 0 if s = 0 or t = 0. For an XY -coloring

C ∈ ColX(D)Y , the Boltzmann weight B f (χ; C) at a crossing χ is defined by

B f (χ; C) = ǫ(χ) f̄
(

C(χ1,1),C(χ1), ϕχ1

(
O(χ1)

)
,C(χ0), ϕχ0

(
O(χ0)

))
,(7.1)

where we regard ϕχ1
(O(χ1)) and ϕχ0

(O(χ0)) as integers in {0, 1, . . . , type XY − 1}
(see Figure 7.1).

Lemma 7.1 The Boltzmann weight B f (χ; C) does not depend on the choice of the

orientations O(e).

Proof If ϕχ1
(O(χ1)) = 0 or ϕχ0

(O(χ0)) = 0, then the Boltzmann weight

B f (χ; C) = 0 does not depend on the choice of the orientations, since we have

ϕχ1
(−O(χ1)) = 0 or ϕχ0

(−O(χ0)) = 0. Then we may suppose that ϕχ1
(O(χ1)) 6= 0,

ϕχ0
(O(χ0)) 6= 0 and type XY < ∞. For the orientations O(χ0), −O(χ1), −O(χ2),

the Boltzmann weight B f (χ; C) is given by

−ǫ(χ) f̄
(

C(χ1,2),C(χ1), ϕχ1

(
−O(χ1)

)
,C(χ0), ϕχ0

(
O(χ0)

))
.(7.2)

For the orientations −O(χ0), O(χ1), O(χ2), the Boltzmann weight B f (χ; C) is given

by

−ǫ(χ) f̄
(

C(χ2,1),C(χ2), ϕχ2

(
O(χ2)

)
,C(χ0), ϕχ0

(
−O(χ0)

))
.(7.3)
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For the orientations −O(χ0), −O(χ1), −O(χ2), the Boltzmann weight B f (χ; C) is

given by

ǫ(χ) f̄ (C(χ2,2),C(χ2), ϕχ2
(−O(χ2)),C(χ0), ϕχ0

(−O(χ0))).(7.4)

The values (7.1)–(7.4) coincide by the cocycle condition (6.7) and the following

equalities:

C(χ1,2) = y ∗̃sa, C(χ2,1) = y ∗̃t b, C(χ2,2) = (y ∗̃sa) ∗̃t b,

C(χ2) = a ∗t b,

ϕχ1
(−O(χ1)) = type XY − s, ϕχ2

(O(χ2)) = s,

ϕχ2
(−O(χ2)) = type XY − s, ϕχ0

(−O(χ0)) = type XY − t,

where y = C(χ1,1), a = C(χ1), s = ϕχ1
(O(χ1)), b = C(χ0), and t = ϕχ0

(O(χ0)).

For example, the values (7.1) and (7.2) coincide, since we have

−

type XY −s−1∑

i=0

t−1∑

j=0

f
((

(y∗̃sa) ∗̃ia
)
∗̃ jb, a ∗ j b, b

)

= −

type XY −1∑

i=s

t−1∑

j=0

f
(

(y∗̃ia)∗̃ jb, a ∗ j b, b
)

=

t−1∑

j=0

(
−

type XY −1∑

i=s

f ((y∗̃ jb)∗̃i(a ∗ j b), a ∗ j b, b)

)

=

t−1∑

j=0

s−1∑

i=0

f
(

(y∗̃ jb)∗̃i(a ∗ j b), a ∗ j b, b
)

=

s−1∑

i=0

t−1∑

j=0

f
(

(y∗̃ia)∗̃ jb, a ∗ j b, b
)
.

We set

B f (C) :=
∑

χ

B f (χ; C),

where χ runs over all crossings of D. Then we define the multiset

Φ f (D) := {B f (C) |C ∈ ColX(D)Y}.

Theorem 7.2 Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of

C∗
I (X; A)Y . Let D be a diagram of a Ztype XY

-flowed spatial graph (L, ϕ). The multiset

Φ f (D) is an invariant of (L, ϕ), which is invariant under Ztype XY
-flowed contraction

moves.

Then we put Φ f (L, ϕ) := Φ f (D).

Theorem 7.3 The invariantΦ f (L, ϕ) does not depend on the choice of a representative

element of [ f ] ∈ H2
I (X; A)Y .
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8 An Example for a Quandle Cocycle Invariant

We give an example for a quandle cocycle invariant. Let K be Kinoshita’s θ-curve as

shown in Figure 8.1, where we ignore flows and colors. Kinoshita’s θ-curve has the

following significant property. When we remove any one edge from Kinoshita’s θ-

curve, then the remainder is trivial. The following example shows that K is nontrivial.

We note that the invariant introduced in [3] does not work for this spatial graph.

Example 8.1 Put X := S4, Y := S4. For r, s ∈ Z3, y, a, b ∈ S4, we denote by

Cr,s(y, a, b) the S4-coloring of the Z3-flowed spatial graph diagram Dr,s depicted in

Figure 8.1. We note that type XY = type S4 = 3. We have

ColX(D1,1)Y = {C1,1(y, a, b) | y, a, b ∈ S4},

ColX(D2,2)Y = {C2,2(y, a, b) | y, a, b ∈ S4},

ColX(Dr,s)Y = {Cr,s(y, a, a) | y, a ∈ S4}

for (r, s) ∈ Z
2
3 − {(1, 1), (2, 2)}.

Let f2 be the 2-cocycle of C∗
I (S4; A)S4

defined in Example 6.4. By the equality

B f2
(C1,1(y, a, b)) = t(a− b)3

=

{
0 if a = b,

t otherwise,

we have Φ f2
(D1,1) = {016, t48}, where we refer the reader to Section 5 for the notation

of the multiset {016, t48}. By the equality

B f2
(C2,2(y, a, b)) = t(a− b)3

=

{
0 if a = b,

t otherwise,

we have Φ f2
(D2,2) = {016, t48}. By the equality B f2

(Cr,s(y, a, a)) = 0, we have

Φ f2
(Dr,s) = {016} for (r, s) ∈ Z

2
3 − {(1, 1), (2, 2)}. Then we have

Φ
Σ

f2
(K) = {Φ f2

(Dr,s) | r, s ∈ Z3} = {{016, t48}2, {016}7} 6= {{016}9},

where we remark that ΦΣ

f2
of the trivial spatial θ-curve is {{016}9}. Thus K is non-

trivial. Furthermore, K represents a nontrivial handlebody-link.

9 Proofs of Theorems 7.2 and 7.3

We state one lemma and prove Theorems 7.2 and 7.3 for type XY < ∞. The proofs

for type XY =∞ are easier than those for type XY <∞.

We suppose that type XY < ∞. Let (L,O, ϕ) be a Ztype XY
-flowed oriented spatial

graph, and let D be a diagram of (L,O, ϕ). We denote by D the diagram obtained

by replacing an edge e ∈ E(L) with ϕe(O(e)) parallel edges if ϕe(O(e)) 6= 0 and

two antiparallel edges otherwise as shown in Figure 9.1. Let (L,O) be the oriented
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→ → →

a a a

b
b

b

a∗r b a∗s b a∗−r−s b

r s −r − sy y∗r b y∗r+s b

Figure 8.1

spatial graph represented by D. We define a Ztype XY
-flow ϕ of L by ϕe(O(e)) = 1 for

e ∈ E(L). We denote the Ztype XY
-flowed oriented spatial graph diagram obtained by

adding ϕ to the diagram D by the same symbol D. A Ztype XY
-flowed oriented spatial

graph (L,O, ϕ) is single if ϕ(O(e)) = 1 for any edge e ∈ E(L). Then (L,O, ϕ) is

single.

Lemma 9.1 Let (L,O, ϕ) be a Ztype XY
-flowed oriented spatial graph, and let D be a

diagram of (L,O, ϕ). Then we have Φ f (D) = Φ f (D).

Proof Let χ be a crossing of D. Put s := ϕχ1
(O(χ1)), t := ϕχ0

(O(χ0)). We denote

by χ(i, j) (i = 0, . . . , s− 1, j = 0, . . . , t − 1) the crossings that originate from χ (see

Figure 9.1). For C ∈ ColX(D)Y , there is a unique XY -coloring C ∈ ColX(D)Y such

that parallel (antiparallel) arcs that originate from an arc α of D have the same color

as α. This correspondence gives a bijection between ColX(D)Y and ColX(D)Y . By the

equality B f (χ; C) =
∑s−1

i=0

∑t−1
j=0 B f (χ(i, j); C), we have Φ f (D) = Φ f (D).

Proof of Theorem 7.2 By Lemma 2.5, it is sufficient to show that Φ f (D) is invari-

ant under the Ztype XY
-flowed R1–R6 moves. We have the invariance under the

Ztype XY
-flowed R6 move immediately, since the Boltzmann weight is a weight at a

crossing.

If D1 and D2 are related by a finite sequence of the Ztype XY
-flowed R1–R5 moves,

then so are D1 and D2. By Lemma 9.1, it is sufficient to show that Φ f (D) is invariant

under the Ztype XY
-flowed R1–R5 moves preserving orientations for a diagram D of a

single Ztype XY
-flowed oriented spatial graph.

The invariance under the Ztype XY
-flowed R1, R4 moves follows from (6.5). The

invariance under the Ztype XY
-flowed R2 move follows from the signs of the crossings

that appear in the diagram for the move. The invariance under the Ztype XY
-flowed R3

move follows from (6.6). The invariance under the Ztype XY
-flowed R5 move follows

from (6.7), since the number of edges incident and directed in minus the number of

edges incident and directed out vanishes modulo type XY .

Proof of Theorem 7.3 If 2-cocycles f1, f2 of C∗
I (X; A)Y are cohomologous, then f1−

f2 is null-cohomologous. By the equality B f1
(C)−B f2

(C) = B f1− f2
(C), it is sufficient

to show that

(9.1) B f (C) = 0
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for a null-cohomologous 2-cocycle f of C∗
I (X; A)Y . Let g be a 1-cocycle of C∗

I (X; A)Y

such that f = δ1g. Furthermore, by Lemma 9.1, it is sufficient to show the equal-

ity (9.1) for a diagram D of a single Ztype XY
-flowed oriented spatial graph (L,O, ϕ).

We denote by SA(D) the set of curves obtained from D by removing (small neigh-

borhoods of) crossings and vertices. We call a curve in SA(D) a semi-arc of D. We

note that a semi-arc is obtained by dividing an over-arc at crossings. For a semi-arc

α that originates from an arc α̂, we define the orientation and the color of α by those

of α̂: O(α) := O(α̂), C(α) := C(α̂).

For a semi-arc α, there is a unique region Rα facing α such that the orientation

O(α) points from the region Rα. Then we define b(α) := g(C(Rα),C(α)). For a

semi-arc α whose endpoint χ is a crossing or a vertex, we define

ǫ(α;χ) :=

{
1 if the orientation O(α) points to χ,

−1 otherwise.

We denote by χ(1), χ(2) the semi-arcs that originate from under-arcs at a crossing

χ such that the co-orientation O(χ0) points to χ(2). We denote by χ(3), χ(4) the semi-

arcs which originate from over-arcs at a crossing χ such that the co-orientation O(χ1)
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→

↑χ(1) χ(2)

χ(4)

χ(3)

ǫ(χ) = 1

→

↓χ(1) χ(2)

χ(3)

χ(4)

ǫ(χ) = −1

Figure 9.2

(= O(χ2)) points to χ(4). For a crossing χ, we have

B f (χ; C) = ǫ(χ) f
(

C(χ1,1),C(χ1),C(χ0)
)

= ǫ(χ)(δ1g)
(

C(χ1,1),C(χ1),C(χ0)
)

= ǫ(χ)g
(

C(χ1,1),C(χ1)
)
− ǫ(χ)g

(
C(χ1,1) ∗̃C(χ0),C(χ1) ∗̃C(χ0)

)

− ǫ(χ)g
(

C(χ1,1),C(χ0)
)

+ ǫ(χ)g
(

C(χ1,1) ∗̃C(χ1),C(χ0)
)

= ǫ(χ)g
(

C(χ1,1),C(χ(1))
)
− ǫ(χ)g

(
C(χ1,1) ∗̃C(χ(0)),C(χ(2))

)

− ǫ(χ)g
(

C(χ1,1),C(χ(3))
)

+ ǫ(χ)g
(

C(χ1,1) ∗̃C(χ(1)),C(χ(4))
)

=

4∑

i=1

ǫ(χ(i);χ)b(χ(i)).

(9.2)

See Figure 9.2 for the last equality.

For semi-arcs ω(1), . . . , ω(dω) incident to a vertex ω of degree dω , we show the

equality

(9.3)

dω∑

i=1

ǫ(ω(i);ω)b(ω(i)) = 0.

For integers i and j such that Rω(i)
= Rω( j)

, we have the equalities

ǫ(ω(i);ω) = −ǫ(ω( j);ω), g
(

C(Rω(i)
),C(ω(i))

)
= g

(
C(Rω( j)

),C(ω( j))
)
,

which imply that

ǫ(ω(i);ω)b(ω(i)) + ǫ(ω( j);ω)b(ω( j)) = 0.

Then we may suppose that the orientations of all semi-arcs agree with each other.

Thus we have
dω∑

i=1

ǫ(ω(i);ω)b(ω(i)) = ±

n type XY −1∑

k=0

b(ω(ik)) = 0
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for some positive integer n, where the last equality follows from the equality

type XY −1∑

i=0

g(y ∗̃ia, a) = 0.

By equalities (9.2) and (9.3), we have

B f (C) =
∑

χ: crossing

B f (χ; C)

=

∑

χ: crossing

4∑

i=1

ǫ(χ(i);χ)b(χ(i)) +
∑

ω: vertex

dω∑

i=1

ǫ(ω(i);ω)b(ω(i))

=

∑

α: semi-arc

(
b(α)− b(α)

)
= 0.
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