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Abstract. 'We introduce a flow of a spatial graph and see how invariants for spatial graphs and handle-
body-links are derived from those for flowed spatial graphs. We define a new quandle (co)homology by
introducing a subcomplex of the rack chain complex. Then we define quandle colorings and quandle
cocycle invariants for spatial graphs and handlebody-links.

1 Introduction

In this paper, we introduce flowed spatial graphs and define quandle cocycle invari-
ants for spatial graphs and handlebody-links. Carter, Jelsovsky, Kamada, Langford,
and Saito [I]] defined quandle cocycle invariants for links and surface-links. It was
proved that a quandle cocycle invariant detects non-invertibility for surface-links
in 1] and chirality for links in [2}[12]. We remark that the fundamental quandle
cannot detect them, although the fundamental quandle is stronger than the funda-
mental group. A quandle cocycle invariant is useful in determining the triple point
number, the triple point cancelling number, the w-index, and so on (cf. [4,/5,[13]).

A spatial graph is a finite graph embedded in the 3-sphere. An invariant for links is
that for spatial graphs, since equivalent spatial graphs have the equivalent constituent
links. Our invariant distinguishes spatial graphs whose constituent links are equiva-
lent. The Yamada polynomial [16] is an invariant for spatial graphs without vertices
of degree greater than 3, where we remark that the Yamada polynomial of a general
spatial graph is an invariant as a flat vertex graph. Our invariant is defined for all
spatial graphs and distinguishes spatial graphs whose Yamada polynomials coincide.

A handlebody-link is a disjoint union of handlebodies embedded in the 3-sphere.
We can use an invariant for 3-manifolds to distinguish handlebody-links. For ex-
ample, the fundamental group of the exterior of a handlebody-link is an invariant.
However, these invariants do not work for handlebody-links with homeomorphic
exteriors, which implies that we cannot detect the chirality of a handlebody-link by
using these invariants. In [3]], the first author defined a weight sum invariant for
handlebody-links by using Mochizuki’s 3-cocycle and showed that the invariant can
detect the chirality. The quandle cocycle invariant defined in this paper is a gener-
alization of this invariant. We show that the quandle cocycle invariant is non-trivial
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for the handlebody-link represented by Kinoshita’s -curve, where we remark that
the previous weight sum invariant is trivial for the handlebody-link.

There are two steps needed to define a quandle cocycle invariant. First we have
to define a quandle coloring. It is not easy to define quandle colorings for spatial
graphs and handlebody-links, since a suitable coloring condition for a vertex is un-
known. In [3], the first author introduced an enhanced constituent link and defined
a kei coloring, where a kei is a particular type of quandle. In this paper, we intro-
duce a flow, which is a generalization of an enhanced constituent link. In the second
step, we define a suitable quandle (co)homology and a quandle cocycle invariant. We
define a new subcomplex of the rack chain complex. The quotient complex gives a
(co)homology for spatial graphs and handlebody-links. We also show that our quan-
dle cocycle invariant does not depend on the choice of the representative element of
a cohomology class.

This paper consists of nine sections. In Section 2} we introduce a flow of a spa-
tial graph and see how invariants for spatial graphs and handlebody-links are derived
from those for flowed spatial graphs. In Section[3l we recall the definitions of a quan-
dle X and an X-set and define the type of a quandle. In Section[d] we define a quandle
coloring for flowed spatial graphs. In Section 5l we give some examples for the quan-
dle coloring. In Section[f, we introduce a quandle (co)homology for spatial graphs
and handlebody-links. In Section[7] we define a quandle cocycle invariant for spatial
graphs and handlebody-links. In Section[8 we evaluate a quandle cocycle invariant
for Kinoshita’s §-curve. In Section[9] we prove the theorems that were introduced in
Section[7]

2 A Flow of a Spatial Graph

We introduce a flow of a spatial graph and see how invariants for spatial graphs and
handlebody-links are derived from those for flowed spatial graphs.

Let G be a finite graph without vertices of degree 0. A spatial graph L = f(G) is
a graph G embedded in the 3-sphere S°. Two spatial graphs are equivalent if one can
be transformed into the other by an isotopy of $°.

Let E(L) be the set of edges of L. Let O, be the set of two orientations of an edge
e € E(L). Let A be an abelian group. A map ¢, : O, — A is an A-flow of an edge e if
we(—0) = —.(0), where —o is the inverse of 0 € O,. An A-flow ¢, is represented by
apair (0,s5) € O, X A up to the equivalence relation (o, s) ~ (—o, —s); see Figure[2.1}
where an element of A is represented with an underline. We fix an orientation o, for
each edge e of L. A collection ¢ = {¢, }ece(r) is an A-flow of L if we have

Z Sae(oe): Z Sae(oe)

e€&in(v) e€Eou(v)

at any vertex v, where

Ein(v) := {e| eis an edge incident to v such that o, points to v},

Eout(v) := {e]| eis an edge incident to v such that —o, points to v}.
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Figure 2.1

Figure 2.2

We remark that the definition of an A-flow of L does not depend on the choice of the
orientations o,. We denote by Flow(L; A) the set of A-flows of L.

An A-flowed spatial graph (L, ) is a pair of a spatial graph L and ¢ € Flow(L; A).
Two A-flowed spatial graphs are equivalent if one can be transformed into the other
by an ambient isotopy preserving an A-flow. We note that the two Z-flowed spatial
graphs depicted in Figure[2.2]are not equivalent.

By taking suitable subsets of Flow(L; A), we obtain many spatial graph invariants
from an A-flowed spatial graph invariant. In the following proposition, we give some
specific constructions of spatial graph invariants.

Proposition 2.1 Let V be an invariant for A-flowed spatial graphs.
e Let L be a spatial graph. Let B be a subset of A such that B = —B. We set

Flow(L; B) := {¢ € Flow(L; A) | ¢.(0,) C B for any edge e of L}.

Then the multiset {U(L, ) | ¢ € Flow(L; B)} is an invariant of L.
e Let (L, O) be an oriented spatial graph, where O is an assignment of an orientation
O(e) € O, to each edge e of L. Let B be a subset of A. We set

Flow(L, O; B) := {® € Flow(L; A) | ¢.(O(e)) € B for any edge e of L}.
Then the multiset {U(L, ) | ¢ € Flow(L, O; B)} is an invariant of (L, O).

Then, for an A-flowed spatial graph invariant ¥, we define the spatial graph in-
variant U* by
UH(L) = {U(L, ) | ¢ € Flow(L; A)},

where we note that ¥ is just a symbol. Proposition 2.1] follows immediately from
the fact that Flow(L; B) and Flow(L, O; B) do not depend on the embedding f for
L= f(G).

We state one lemma for constructions of A-flowed spatial graph invariants, since
they play a critical role in Proposition 2.1} Two spatial graph diagrams represent
an equivalent spatial graph if and only if they are related by a finite sequence of the
R1-R5 moves depicted in Figure2.3] ([8l[I6)17]). Then we have the following lemma.
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Figure 2.4

Lemma 2.2 Two A-flowed spatial graph diagrams represent an equivalent A-flowed
spatial graph if and only if they are related by a finite sequence of the A-flowed R1-R5
moves, where the A-flowed R1-R5 moves are the RI-R5 moves preserving A-flows.

A handlebody-knot is a handlebody embedded in S°. A handlebody-link is a dis-
joint union of handlebody-knots. Two handlebody-links are equivalent if one can
be transformed into the other by an isotopy of S>. When a handlebody-link H is
a regular neighborhood of a spatial graph L, we say that H is represented by L. We
note that two spatial graphs representing an equivalent handlebody-link are said to
be neighborhood equivalent ([[14])).

An (A-flowed) contraction move is a local change of an (A-flowed) spatial graph as
described in Figure 2.4] where the replacement is applied in a disk embedded in S°.
An (A-flowed) R6 move is the diagrammatic move corresponding to the (A-flowed)
contraction move. Then we have the following theorem.

Theorem 2.3 ([3]) Two spatial graphs represent an equivalent handlebody-link if and
only if they are related by a finite sequence of contraction moves and ambient isotopies.

By Proposition[2Z.Iland Theorem[2.3] we have the following proposition.

Proposition 2.4 Let U be an invariant for A-flowed spatial graphs. If U is invari-
ant under A-flowed contraction moves, then the multiset W>(L) is an invariant of a
handlebody-link represented by a spatial graph L.

We state one lemma for constructions of A-flowed spatial graph invariants that
are invariant under A-flowed contraction moves. By Lemma[2.2] we have the follow-
ing lemma, since we may apply an A-flowed contraction move in a small disk by an
isotopy of S°.
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Figure 2.5

Lemma 2.5 Let Dy and D, be diagrams of A-flowed spatial graphs (L, ;) and
(L, p2), respectively. The following statements are equivalent:

e Two A-flowed spatial graphs (Ly, 1) and (L,, @,) are related by a finite sequence of
A-flowed contraction moves and ambient isotopies preserving A-flows.

e Two diagrams D, and D, are related by a finite sequence of the A-flowed RI-R6
moves.

Remark 2.6 We do not need all spatial graphs to represent all handlebody-links.
Spatial trivalent graphs are sufficient to represent all handlebody-links, where a spa-
tial trivalent graph may contain circle components. An (A-flowed) IH-move is a local
change of an (A-flowed) spatial trivalent graph as described in Figure[2.5 where the
replacement is applied in a disk embedded in S*. Then, in Theorem Proposi-
tion [Z.4] and Lemma [2.5] we can replace spatial graphs and contraction moves with
spatial trivalent graphs and IH-moves, respectively (see [3]]).

3 A Quandle

We recall the definitions of a quandle X and an X-set, and define the type of a quan-
dle.

A quandle ([6,9]) is a non-empty set X with a binary operation * : X x X — X
satisfying the following axioms:

Q;. Foranyac€ X,axa=a;
Q,. Foranya € X, themap S, : X — X defined by S,(x) = x * a is a bijection;
Qs. Foranya,b,c € X, (axb)xc= (axc)*(bxc).

We present some examples of quandles. A trivial quandle (X, %) is a non-empty set
X with the binary operation defined by a x b = a. The dihedral quandle of order p,
denoted by (R,, *), is the quandle consisting of the set Z,(:= 7/ pZ) with the binary
operation defined by a%b = 2b—a. The tetrahedral quandle, denoted by (S4, *), is the
quandle consisting of the set 7, [t,t '] /(t* + ¢ + 1) with the binary operation defined
by a*b = ta+ (1 — t)b. In general, an Alexander quandle (M, x) is a A-module M
with the binary operation defined by a*b = ta+(1—t)b, where A := Z[t,t~!]. Then
the tetrahedral quandle is an Alexander quandle. We also remark that the dihedral
quandle (R, *) is isomorphic to the Alexander quandle (Z,[t, t71/(t + 1),%) as
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quandles. An n-fold conjugation quandle (G, ) is a group G with the binary operation
defined by a x b = b= "ab".
The associated group of a quandle X, denoted by As(X), is defined by

As(X) =(xeX|x*xy=y "xy(x,y € X)).

An X-set is a set Y equipped with an action of the associated group As(X) from the
right. We denote by y % ¢ the image of an element y € Y by the action g € As(X).
Then we have the following:

(:22. For any a € X, the map Sa:Y — Y defined by ga(y) = y % a s a bijection;
Qs. Foranyy € Y,a,b e X, (y%a)¥b= (y*%b) *(axDb).

We show examples for X-sets. We set Y := X and y ¥a := y * a. Then (Y, %) is an
X-set. Weset Y := {y} and y %a := y. Then (Y, %) is an X-set.

Fori € 7, we define a +' b := Si(a), y ¥a := S,(y). The type of a quandle X is
defined by

typeX :=min{i € Z.o | a*' b=aforanya,b € X}.

We set type X := oo if we do not have such a positive integer i. If X is finite, then
type X < oo. A trivial quandle is of type 1. The dihedral quandle (R,, ) is of type 2.
A quandle of type 2 is called kei ([15]). The tetrahedral quandle (S4, *) is of type 3.
We note that a quandle of type n is an n-quandle ([[7]). In this paper, we set Z, := 7.
Then a #* b is well defined fori € Ziype x- We define

type Xy := min{i € Z-o|a*' b=a, y¥a = yforanya,b € X,y € Y}.

We set type Xy := oo if we do not have such a positive integer i. Then a ' b and y ¥'a
are well-defined for i € Zype x, -

4 A Quandle Coloring for Flowed Spatial Graphs

We define a quandle coloring for flowed spatial graphs. The number of quandle
colorings is an invariant for flowed spatial graphs. We also define a coloring by using
a quandle X and an X-set, which is used to define a quandle cocycle invariant in
Section[7]

Let X be a quandle. Let D be a diagram of a Zyy,. x-flowed spatial graph (L, ). We
denote by A(D) the set of arcs of D, where an arc is a piece of a curve such that its
endpoint is an undercrossing or a vertex.

We choose an orientation O(e) € O, for each edge e € E(L). Then (L, O, p) is
a Zyype x-flowed oriented spatial graph. For an arc « that originates from an edge e,
we put O(«) := O(e), Yo := .. To represent an orientation O(e) in D, we may use
the co-orientation obtained by rotating the orientation O(e) /2 counterclockwise.
We denote it by the same symbol O(ar). We denote by X, the over-arc at a crossing
x of D. We denote by x1, x» the under-arcs at x such that the co-orientation O(xy)
points to x;.

An X-coloring of D is a map C: A(D) — X satistying the following conditions
(Figure[4.1):
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Figure 4.1

C;. For a crossing x, we have C(x1) 20 (O00) C(xo) = Clx2).
C,. For a vertex w, we have C(w;) = --- = C(wy), where wy, ...,w, are the arcs
incident to w.

An X-coloring C does not depend on the choice of the orientations O(e), since the
equality in C; is equivalent to the equality
Cxa) ##0 =D C(y,) = Clxa).
We denote by Colx(D) the set of X-colorings of D. For two diagrams D and E that
locally differ, we denote by A(D, E) the set of arcs that D and E share.

Theorem 4.1 Let X be a quandle. Let D be a diagram of a Ly x-flowed spatial graph
(L, @). Let E be a diagram obtained by applying one of the Zype x-flowed R1-R6 moves
to D once. For C € Colx(D), there is a unique X-coloring Cpy € Colx(E) such that

Claw.p = Cpelaw.p)-

By Lemma 2.5 #Colx(D) is an invariant of (L, ), which is invariant under
Ziype x-flowed contraction moves, where #S is the number of elements in a set S. Then
we put #Colx (L, ¢) := #Colx (D). When #Colx (L, ) = 00, the number of nontrivial
X-colorings of D may work, where an X-coloring C of D is trivial if C : A(D) — X is
a constant map. We call C(&) the color of €.

Proof of Theorem[4.1] The color of an edge in A(E) — A(D, E) is uniquely deter-
mined by the colors of edges in A(D, E), since we have a+’a = a for the Zyp. x-flowed
R1, R4 moves, and

(@ b)y*2b)---)x"b=a (i1 +ir+-+i;=0inZypex)
for the Zype x-flowed R2, R5 moves, and
(ax*b) " c=(ax'¢)«* (b )
for the Zyp. x-flowed R3 move, and C, for the Z;yp. x-flowed R6 moves. [ |

We denote by R(D) the set of connected regions of the complement of the under-
lying immersed graph of D. An Xy -coloring of D is a map

C: AD)URD) = XUY

such that C|4py: A(D) — X is an X-coloring of D and that C|gp): R(D) — Y
satisfies the following condition:
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(52}

Figure 4.2

Cs. For regions a1, a; sharing an arc « such that the co-orientation O(«) points to
vy, we have
Clan) #9C(a) = Ca)

(see Figure[4.2)). An Xy-coloring C does not depend on the choice of the orientations
O(e), since the equality in C; is equivalent to the equality

Clay) #-0C(a) = Clay).

We denote by Colx(D)y the set of Xy-colorings of D. For two diagrams D and E
that locally differ, we denote by R(D, E) the set of regions that D and E share. By Qs,
colors of regions are uniquely determined by those of arcs and one region. Therefore,
by Theorem[4.I]we have the following theorem.

Theorem 4.2 Let X be a quandle, and let Y be an X-set. Let D be a diagram of a
Ziype x, -flowed spatial graph (L, ). Let E be a diagram obtained by applying one of
the Ziype x, -flowed R1-R6 moves to D once. For C € Colx(D)y, there is a unique Xy-
coloring Cp i € Colx(E)y such that

Clam,p =Cogelawr and Clgwr = Cpelrn.E-

This theorem implies that #Coly(D)y is an invariant of (L, ¢). Unfortunately, this
invariant is not important, since we have the equality #Colx(D)y = #Y#Colx(D).
Theorem[4.2lis used to define a quandle cocycle invariant for flowed spatial graphs in
Section

5 Examples for a Quandle Coloring

We give some examples for a quandle coloring. We represent the multiplicity of an
element of a multiset by a subscript with an underline. For example, {a;,b;,c3}
represents the multiset {a, b, b, ¢, c, c}.

Let K° and K! be the spatial handcuff graphs as shown in Figure 5.1} where we
ignore flows and colors. We cannot use link invariants to distinguish K° from K!,
since the constituent links of these spatial graphs coincide. The following example
shows that K° and K! are not equivalent.

Example 5.1 Fors,t € 75, a,b € R;, we denote by Cgt(ﬁl, b) (resp. Cit(a)) the
Rs-coloring of the Z,-flowed spatial graph diagram D?, (resp. D{,) corresponding to

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-035-0

110 A. Ishii and M. Iwakiri

K° K!
Figure 5.1

KO (resp. K!) depicted in Figure[5.1} We note that type R; = 2. We have the equalities
Colg,(DY ) = {C} (a,b) | a,b € Rs}, #Colg, (DY) =9,
Colg, (Dgt) = {Cgt(a7 a)la € R}, #Colg, (Dgt) =3
for (s,t) € 73 — {(1,1)}, which imply #Col%3 (K°) = {9,33}. We have the equalities
Colg,(D},) = {C,(a) | a € Rs}, #Colg,(D},) = 3

for (s,t) € 73, which imply #Col} (K') = {34}. Thus K and K" are not equivalent.
Furthermore, K° and K' represent nonequivalent handlebody-links.

Let K2 and K* be the spatial §-curves as shown in Figure where we ignore
flows and colors. The Yamada polynomials R(K?) and R(K?) coincide:

RK) =R(K*) = (A* — A2+ A+1 247"+ A2+ A% — A™HR(0),
RlO)=—-A*—A—-2—-A"—A"%

We refer the reader to [16] for the definition and evaluation of the Yamada polyno-
mial. The following example shows that K? and K are not equivalent.

Example 5.2 Fors,t € 7Z,,a,b € Rs, we denote by C?,(a, b) (resp. C; (a)) the Rs-
coloring of the Z,-flowed spatial graph diagram D7, (resp. D) corresponding to K*
(resp. K?) depicted in Figure[5.2l We note that type R; = 2. We have the equalities

Colg,(D},) = {C} ,(a,b) | a,b € Rs}, #Colg, (D7) =9,
Colg, (Dit) = {Cit(a7 a) | a€ Rz}, #Colg, (Dsz‘t) =3
for (s,1) € 73 — {(1, 1)}, which imply #Col} (K*) = {9,33}. We have the equalities
Colg,(D},) = {C},(a) | a € Rs}, #Colg,(D},) = 3

for (s,t) € 73, which imply #Col}, (K*) = {34}. Thus K? and K’ are not equivalent.
Furthermore, K? and K? represent nonequivalent handlebody-links.

https://doi.org/10.4153/CJM-2011-035-0 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2011-035-0

Quandle Cocycle Invariants for Spatial Graphs and Knotted Handlebodies 111

Figure 5.2

6 Quandle Homologies

Carter, Jelsovsky, Kamada, Langford, and Saito defined the quandle homology group
HY(X;A) and the quandle cohomology group H{(X; A), and introduced quandle
cocycle invariants. We note that a quandle 2-cocycle ¢ satisfies

(6.1) ¢(a,a) =0,
(6.2) d(a,c)+ pla*xc,b*xc) = ¢d(a,b)+ dlaxb,c)

for any a, b, c € X, and that a quandle 3-cocycle 6 satisfies
(6.3) 6(a,a,b) = 6(a,b,b) =0,

(6.4) O(a,c,d)+6(a*xc,bxc,d)+6(a,b,c) =
Oaxb,c,d)+0(a,b,d)+0(axd,bxd,cxd)

for any a,b,c,d € X. For the details we refer the reader to [1]. In this section,
we introduce a new (co)homology theory to define a quandle cocycle invariant for
Ziype x, -flowed spatial graphs.

Let X be a quandle, and let Y be an X-set. Let CX(X)y be the free abelian group
generated by (n + 1)-tuples (y,x1,...,x,), wherey € Yand xy,...,x, € Xifn >0,
and let CR(X)y = 0 otherwise. Put

()”Xh cee axn)i‘j = ()/ >";J-xiaxl */ XiyoooyXi—1 */ XiyXitly -« - 5x11)7

+ s . .
(J/7x17~ .- axn)i,j Ca (y*lxiaxl *J Xiy ooy Xi—1 *] Xiy Xiy oo 7xn)'

We define a homomorphism 4, : C¥(X)y — CR_,(X)y by
Ony, 1, yn) = D (=D 031, x)io — (%1, %)in }
i=1

for n > 0, and 9, = 0 otherwise. Then CR(X)y = {CE(X)y, 9,} is a chain complex,
since 0,_; 0 9, = 0.
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Let DZ(X)y be the subgroup of CR(X)y generated by the elements of
{(r,x1,..., %) €Y x X" | x; = x;1 for some i }
if n > 1, and let D(X)y = 0 otherwise. Put C¢(X)y = CR(X)y/DZ(X)y. Since
0,(DYX)y) C DS_I(X)y, CUX)y = {CUX)y,d,} is a chain complex, where we

denote the induced homomorphism by the same symbol 0,,.
Let DI (X)y be the subgroup of C¥(X)y generated by the elements of

type Xy —1
{ Z (X1, %)} (y,xl,...,xn)GYxX”,i1,...,11}
=0

if n > 0 and typeXy < oo, and let DL(X)y = 0 otherwise. Then we have the
following lemma.

Lemma 6.1 We have 0,(D.L(X)y) C D!_,(X)y.
Proof We may suppose that n > 0 and type Xy < co. Let

type Xy —1
[
g = Z (y7x17"~7xn);ij€Dn(X)Y7
=0
wherei € {1,...,n}. Wehave 0,y = 0 by the equalities
axVPeXv p— gy giPeXrg —

foranya,b € X,y € Y. By (a+° b) ' ¢ = (a %' ¢) % (b ' ¢), we have

XLy ey Xn)k1) T itk > i,
((y;xh'“,xn);’tj)k,l = ((y ! i +~'J . .
((yyx1, ... 7xn)k,1)i71,j ifk < 1.
Then oy € D._,(X)y if k # i, where
type Xy —1
Uk,l = Z ((y7x17"°7xn);:j) kIl

j=0

Since o4 € D! _|(X)y for k # i, we have

i—1 n
On(0) = (—Dore+ (=Dioig+ Y _ (—Dforg
k=1

k=i+1
i—1 n
= (Drors = (=Diois = > (Do €D, (X)y. =
k=1 k=i+1
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We put CL(X)y = CR(X)y /(D(X)y + DL(X)y). Then CL(X)y = {CL(X)y, Dy} is
a chain complex. For an abelian group A, we define the chain and cochain complexes
Cl XAy = CY¥ (X)y @ A, 0=0wid;
Ciy(X;A)y = Hom(CY (X)y, A), § = Hom(9, id),
where W is R, Q, or I. We denote by H" (X;A)y and H}}, (X; A)y the n-th homol-
ogy group and the n-th cohomology group of C!¥ (X; A)y and Cjy(X;A)y, respec-
tively. We note that, if type Xy = oo, then CL(X;A)y = C2(X;A)y and C; (X;A)y =
CH(X; A)y.

A map f € C3(X;A)y induces a 2-cocycle of CH(X;A)y if and only if f satisfies
the conditions

(6.5) f(y,a,a) =0,
(6.6) f(y,b,c)+ f(yb,axb,c)+ f(y,a,b)
= f(y%a,b,0)+ f(y,a,0) + f(y%c,ax*xc,bx*c),

forany y € Y and a, b, c € X. We suppose that type Xy < oco. Amap f € Cx(X;A)y
induces a 2-cocycle of Cf(X; A)y if and only if f satisfies the conditions (6.3)), (6.6)

and
type Xy —1 type Xy —1

(6.7) > fy#aab)y= > f(y¥baxbb)=0,
i=0 i=0

forany y € Y and a,b € X. Then, by the equalities (6&.I)—(6.4]), we have the following
proposition, which is useful in finding 2-cocycles of C; (X; A)y.

Proposition 6.2 Let X be a quandle such that type X < oo. For a quandle 2-cocycle
¢, we define 1 ® ¢ € CIZQ(X;A){y} by (1 ® ¢)(y,a,b) = ¢(a,b) fora,b € X. Then
1 ®@ ¢ isa 2-cocycle of C5(X; A)y,y. Furthermore, if ¢ satisfies

type X—1

typeXd(a,b) = Y dlax'bb) =0

i=0

forany a,b € X, then 1 ® ¢ is a 2-cocycle of C7 (X5 A) 3
A quandle 3-cocycle 0 is a 2-cocycle of C(X; A)x. Furthermore, if ) satisfies

type X—1 type X—1
> b bbe)= > flaxcbice)=0
i=0

i=0

forany a, b, c € X, then 6 is a 2-cocycle of Cj (X; A)x.
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Example 6.3 (dihedral quandle R,) Let p be an odd prime. The quandle coho-
mology group Hé(RP;Zp) = 7, is generated by the cohomology class [0,] defined
by
P+ (22— y)P —22°
0y(x,y,2) = (x — )~ py ;

where we remark that the right-hand side of the equality represents a polynomial with
coefficients in Z,. We call 0, Mochizuki’s 3-cocycle [[10]. We note that type R, = 2.
Since we have the equalities

P4 (2z — y)P — 2zP
Oyl 3.2) Oyl o3, 2) = (5= )+ (=) P2
)y"+(22—y)l’—221>

p

0p(x,y,2) + 0y (x5 2,y x2,2) = ((x — y) + (y — %) =0,

0y is a 2-cocycle of CT (Ry5 Z, )R, -

T. Satoh and the authors discussed the cohomology group H; (Rp; Zp)r , in Osaka,
and showed that H7 (Rs;73)g, = 75 by direct calculation.

Example 6.4 (tetrahedral quandle S;) Put A = Z,[t,t7']/(t* + t + 1). The
quandle cohomology group Hp(Ss; A) = A’ is generated by the cohomology classes
(Ail, [£2], [f3] defined by

hlxy,2) = (x = )y — 2)%,
fhx,y,2) =tlx — y)(y — 2)z,
filx, y,2) = Px = )y — 2)°7
(see [11]]). We note that type S4 = 3. Since we have the equalities
L, y,2)+ hxxy,y,2) + fHlx ¥ y,y,2)
= t((x —y)+(x—ty)+ (tzx — tzy)) (y —2)z
=0,
L, p,2)+ hxxz,y*x2,2) + fh(x+* 2,y +* 2, 2)
=tlx—y)(y —2)z+t(tx —ty)(ty — t2)z + t(t’x — 2y)(F2y — t’2)z
=0,

f> is a 2-cocycle of Cy (S4; A)s,. Similarly, f; is a 2-cocycle of C} (Ss; A)s, .

7 A Quandle Cocycle Invariant for Flowed Spatial Graphs

A quandle cocycle invariant is a weight sum invariant. We define the Boltzmann
weight at a crossing, and then we define a quandle cocycle invariant for flowed spatial
graphs.
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St X f((y¥a)#/b,a 7 b, b) =Y Y f((y Fa) /b, a +) b, b)
Figure 7.1

Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of C}(X; A)y. Let
D be a diagram of a Ziyp. x, -flowed spatial graph (L, ¢). We choose an orientation
O(e) € O, for each edge e € E(L) (such that ¢,(O(e)) > 0if type Xy = o0). Then
(L, 0, @) is a Zype x, -flowed oriented spatial graph. We denote by e(x) € {1,—-1}
the sign of a crossing x of D. We denote by X 1, Xi > the regions sharing a crossing x
and the under-arc y; such that the co-orientation O(x;) points to x;,. We put

s—1 t—1

froa,5,b,6):=> Y f((y¥a)#b,axl b,b),

i=0 j=0

where we remark that f(y,a,s,b,t) = 0ifs = 0 ort = 0. For an Xy-coloring
C € Colx(D)y, the Boltzmann weight B¢(x; C) at a crossing  is defined by

(7.1) B(60) = c0)f (COxi), C0a); o0, (00) ,Chx)s s (O0)) )

where we regard ¢,, (O(x1)) and ¢,,(O(xo)) as integers in {0, 1, ..., type Xy — 1}
(see Figure[Z1)).

Lemma 7.1 The Boltzmann weight By(x;C) does not depend on the choice of the
orientations O(e).

Proof If ¢, (O(x1)) = 0 or ¢,,(O(xo)) = 0, then the Boltzmann weight
Bf(x;C) = 0 does not depend on the choice of the orientations, since we have
©y, (—0(x1)) = 0or ¢,,(—O(x0)) = 0. Then we may suppose that ¢,, (O(x1)) # 0,
©y,(O(x0)) # 0 and type Xy < oo. For the orientations O(xo), —O(x1), —O(X2),
the Boltzmann weight B¢(x; C) is given by

(72)  —e00f (€012, C00): pr (—000)) ,Cxo): #14 (00x0)) )

For the orientations —O(xo), O(x1), O(x2), the Boltzmann weight B¢(x; C) is given
by

(73)  —e00f(C0r,C0a): pr (002)) . Cluls o (~00)) )
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For the orientations —O(xo), —O(x1), —O(x2), the Boltzmann weight B (x; C) is

given by

(7.4) €00 f(C(x22); C(X2);, P2, (= O(x2)); C(X0); P (= O(x0)))-

The values (ZI)-(Z4) coincide by the cocycle condition ([6.7) and the following
equalities:

C(x12) = y¥a, C(x21) = y¥b, C(x22) = (y ¥a) ¥,
C(xz) = a*' b,
oy, (=0(x1)) = type Xy — s, ©,,(0(x2)) =5,
P, (=0(x2)) = type Xy — s, ¢y, (=O(x0)) = type Xy — ¢,

where y = C(x1,1), a = C(x1), s = ¢,,(O(x1)), b = C(x0), and t = ,,(O(x0))-
For example, the values (Z.I]) and coincide, since we have

type Xy —s—1 t—1

- Z Z f( ((y¥a) %ia) #b,a+ b, b)

i=0  j=0

type Xy —1 r—1

=_ Z Zf((y%ia)%jb,a*j b,b)
i=s j=0

t—1 type Xy —1
=Z<— 3 f((y%fb)%"(a*jb),a*jb»b)>

j=0 i=s

t—1 s—1

= ZZf((y%jb)qJ(a 1 b),a ! b,b)

=0 i=0

|
—

s t—1
= f((y¥a)®b,a ' b,b). [

i

Il
S

j=0

We set
Bf(C) ==Y Bs(x;C),
X

where x runs over all crossings of D. Then we define the multiset
® (D) := {Bf(C) | C € Colx(D)y}.

Theorem 7.2 Let X be a quandle, and let Y be an X-set. Let f be a 2-cocycle of
Ci(X;A)y. Let D be a diagram of a Ziyp. x, -flowed spatial graph (L, ©). The multiset
®¢(D) is an invariant of (L, ), which is invariant under Zyyp. x, -flowed contraction
moves.

Then we put ®¢(L, ) := ®¢(D).

Theorem 7.3 Theinvariant ® ¢(L, @) does not depend on the choice of a representative
element of [f] € H}(X;A)y.
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8 An Example for a Quandle Cocycle Invariant

We give an example for a quandle cocycle invariant. Let K be Kinoshita’s §-curve as
shown in Figure [8.T} where we ignore flows and colors. Kinoshita’s #-curve has the
following significant property. When we remove any one edge from Kinoshita’s 6-
curve, then the remainder is trivial. The following example shows that K is nontrivial.
We note that the invariant introduced in [3]] does not work for this spatial graph.

Example 8.1 PutX := S, Y := S4. Forrns € 73, y,a,b € Sy, we denote by
C.s(y,a,b) the S4-coloring of the Z3-flowed spatial graph diagram D, depicted in
Figure[8.Il We note that type Xy = type S4 = 3. We have

Colx(D11)y = {C11(y,a,b) | y,a,b € S4},
Colx(Ds2)y = {Cy2(y,a,b) | y,a,b € S4},
COZX(Dr,S)Y = {Cr,s(ya a, a) | y,ac 54}

for (r,s) € 23 — {(1,1),(2,2)}.
Let f; be the 2-cocycle of Cj (S4; A)s, defined in Example[6.4l By the equality

0 ifa=ya,

t otherwise,

B, (Cri(y,a,b)) =t(a—b)’ = {

we have @, (D 1) = {016, tas }, where we refer the reader to Section[3for the notation
of the multiset {014, f43}. By the equality

0 ifa=0b
B4 (Cyo(y,a,b)) =t(a—1b)’ = ’
£(C22(y:a.b) (a ) {t otherwise,
we have @ (D;,) = {0, %s}. By the equality B;(C.s(y,a,a)) = 0, we have
P, (Dys) = {046} for (r,5) € 23 — {(1,1),(2,2)}. Then we have

% (K) = {®(Dy) | 1,5 € Zs} = {{016, tas}2, {O16}7} # {{O016}0},

where we remark that @% of the trivial spatial §-curve is {{06}¢}. Thus K is non-
trivial. Furthermore, K represents a nontrivial handlebody-link.

9 Proofs of Theorems and

We state one lemma and prove Theorems[7Z.2] and [Z.3] for type Xy < oco. The proofs
for type Xy = oo are easier than those for type Xy < oo.

We suppose that type Xy < oo. Let (L, O, ¢) be a Ziyp. x, -flowed oriented spatial
graph, and let D be a diagram of (L, O, ¢). We denote by D the diagram obtained
by replacing an edge e € E(L) with ¢,(O(e)) parallel edges if ©.(O(e)) # 0 and
two antiparallel edges otherwise as shown in Figure Let (L, O) be the oriented
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Figure 8.1

spatial graph represented by D. We define a Ziype x, -flow @ of L by 5,(O(e)) = 1 for
e € E(L). We denote the Zyy. x, -flowed oriented spatial graph diagram obtained by
adding © to the diagram D by the same symbol D. A Zy. x, -flowed oriented spatial
graph (L, O, ) is single if ©(O(e)) = 1 for any edge e € E(L). Then (L, O, ) is
single.

Lemma 9.1 Let (L, O, p) be a Ziyp.x, -flowed oriented spatial graph, and let D be a
diagram of (L, O, @). Then we have ® ;(D) = ® (D).

Proof Let x be a crossing of D. Put s := ¢,,(O(x1)), t := ©y,(O(x0)). We denote
by X4 (i=0,...,5=1,j=0,...,t — 1) the crossings that originate from x (see
Figure[@.1). For C € Colx(D)y, there is a unique Xy-coloring C € Coly(D)y such
that parallel (antiparallel) arcs that originate from an arc o of D have the same color
as a. This correspondence gives a bijection between Colx(D)y and Colx(D)y. By the
equality By (x; C) = Y- > By (X j; C) we have & (D) = (D). u
Proof of Theorem[7.2] By Lemma it is sufficient to show that ® (D) is invari-
ant under the Zgyyp.x,-flowed RI-R6 moves. We have the invariance under the
Ztype x, -flowed R6 move immediately, since the Boltzmann weight is a weight at a
crossing.

If D; and D, are related by a finite sequence of the Zy,. x, -flowed R1-R5 moves,
then so are D, and D,. By Lemma[9.1} it is sufficient to show that ® ¢(D) is invariant
under the Ziyp. x, -flowed R1-R5 moves preserving orientations for a diagram D of a
single Ziype x, -flowed oriented spatial graph.

The invariance under the Zyy. x, -flowed R1, R4 moves follows from (6.5). The
invariance under the Zy,. x, -flowed R2 move follows from the signs of the crossings
that appear in the diagram for the move. The invariance under the Zy,. x, -flowed R3
move follows from (6.6). The invariance under the Zyy. x, -flowed R5 move follows
from (6.7)), since the number of edges incident and directed in minus the number of
edges incident and directed out vanishes modulo type Xy. ]

Proof of Theorem[7.3] If 2-cocycles fi, f, of Cf (X; A)y are cohomologous, then f; —
f> is null-cohomologous. By the equality B, (C) — B, (C) = Bj,_5,(C), it is sufficient
to show that

(9.1) Bs(C) =0
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Figure 9.1

for a null-cohomologous 2-cocycle f of Cf(X;A)y. Let g be a 1-cocycle of Cf (X; A)y
such that f = 6'g. Furthermore, by Lemma[.1] it is sufficient to show the equal-
ity for a diagram D of a single Ziy. x, -flowed oriented spatial graph (L, O, ¢).

We denote by SA(D) the set of curves obtained from D by removing (small neigh-
borhoods of) crossings and vertices. We call a curve in SA(D) a semi-arc of D. We
note that a semi-arc is obtained by dividing an over-arc at crossings. For a semi-arc
o that originates from an arc &, we define the orientation and the color of « by those
of &: O(a) := O(&), C(ex) := C(&).

For a semi-arc «, there is a unique region R, facing a such that the orientation
O(«) points from the region R,. Then we define b(«) := g(C(R,),C(c)). For a
semi-arc o whose endpoint ¥ is a crossing or a vertex, we define

( ) 1 if the orientation O(«) points to x,
e(as ) = .
X —1 otherwise.

We denote by x(1), X(2) the semi-arcs that originate from under-arcs at a crossing
X such that the co-orientation O(x) points to x(2). We denote by x(3), X (4) the semi-
arcs which originate from over-arcs at a crossing y such that the co-orientation O(x;)
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X(4) X3)
X)) —— | ——Xx@ X)) $—— X@)
X@3) X(4)
e(x) =1 e(x) = —1
Figure 9.2

(= O(x2)) points to x(4). For a crossing x, we have

(9.2)
B(x;C) = e(x)f(C(x1.1),C(x1), C(x0))

= e(x)(8'¢)(C(x1,1), C(x1), C(x0))
= e(x)g(Cx1.1),Cx1)) — e()g(Clx11) #Cx0), C(x1) % C(x0))
— e()g(Cx1,1):Cx0)) +€e(x)g(Clx11) *C(x1), C(x0))
=e()g(Clx1,1), Clxy)) — e(g(Clxi) *Cx), Clx))
— ()2 (COx, Clxe)) +e00g(Clxan) *Clxm), Clxw))

4
= elxws Vb(xi)-
i=1
See Figure[@.2] for the last equality.
For semi-arcs wy,. .., w4, incident to a vertex w of degree d,,, we show the

equality

d,
(9.3) Z €(wiy; w)b(weiy) = 0.

i=1
For integers i and j such that Ry, = Ry, we have the equalities

e(wipw) = —e(w(j;w), g(C(Ry,), Clwip)) =g(CRy,),Clw)),
which imply that
e(w(,-);w)b(w(,')) + e(w(j);w)b(w(j)) =0.

Then we may suppose that the orientations of all semi-arcs agree with each other.
Thus we have

d, ntype Xy —1
Do elwisblwi) =+ Y blagy) =0
i=1 k=0
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for some positive integer n, where the last equality follows from the equality
type Xy —1
Z g(y*a,a)=0.

i=0

By equalities (9.2)) and (9.3)), we have

Bf(C)= Y Bs(x;C)

X: crossing
4 d.
= > > el )Iblxi) + D> D elwiw)blw)
X: crossing i=1 w: vertex i=1
= Y (b@) = bla) =0. n
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