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Abstract
This paper focuses on the comparison of networks on the basis of statistical inference. For that purpose,
we rely on smooth graphon models as a nonparametric modeling strategy that is able to capture complex
structural patterns. The graphon itself can be viewed more broadly as local density or intensity function
on networks, making the model a natural choice for comparison purposes. More precisely, to gain infor-
mation about the (dis-)similarity between networks, we extend graphon estimation towards modeling
multiple networks simultaneously. In particular, fitting a single model implies aligning different networks
with respect to the same graphon estimate. To do so, we employ an EM-type algorithm. Drawing on this
network alignment consequently allows a comparison of the edge density at local level. Based on that, we
construct a chi-squared-type test on equivalence of network structures. Simulation studies and real-world
examples support the applicability of our network comparison strategy.

Keywords: Network comparison; EM algorithm; Gibbs sampler; B-spline regression; Chi-squared test

1. Introduction
The field of statistical modeling and analysis of complex networks has gained increasing interest
over the last two decades. This is driven by the fact that different types of systems can be reason-
ably formalized as relationships between individuals or interactions between objects. Analyzing
such structures consequently allows to uncover and describe the phenomena that affect these sys-
tems. Network-structured data arise in various fields, for example, social and political sciences,
economics, biology, and neurosciences, to name but a few. In this regard, a connectivity pattern
between entities might describe friendships among members of a social group (Eagle et al., 2009),
the trading between nations (Bhattacharya et al., 2008), interactions of proteins (Schwikowski
et al., 2000), or the functional coactivation within the human brain (Bassett et al., 2018, Crossley
et al., 2013).

In many situations, uncovering the underlying connectivity structure is not the only con-
cern but also the comparison of akin networks and the exploration of potential differences. For
instance, this might be of interest in the context of brain coactivation, which we consider here as
motivating example. Recently, a lot of work has been going on investigating how the functional
connectivity in the brain differs when people are affected by cognitive disorders like Alzheimer’s
disease or autism spectrum disorder (Song et al., 2019, Subbaraju et al., 2017, Pascual-Belda et al.,
2018). Two such functional coactivation networks—resulting from averaging over the measure-
ments within two different subject groups, respectively—are illustrated in Figure 1. One inquiry
which is then particularly relevant to the research question posed is whether a significant differ-
ence can be observed in these brain processes. More generally, this can be phrased as a hypothesis
test on structural equivalence of two networks as exemplarily raised for the situation in Figure 1.
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Figure 1. Functional coactivation networks of the human brain. The illustrated connectivity patterns result from averaging
over multiple measurements for subjects with autism spectrum disorder (left) and typical development (right). Do these
networks reveal a significant structural difference?.

To this end, we pursue constructing a statistical approach for network comparison that allows
for a conclusion about significance. More precisely, we aim to test whether two networks can be
considered as independent samples drawn from the same probability distribution. This is appar-
ently in itself a technically difficult question since the two networks can have different sizes, and
hence the two distributions need to be somehow different. Therefore, it is crucial that the applied
distributional framework constitutes a rather universal probability measure. In fact, this is not a
trivial property, and many network models entail conceptual issues that impede a direct compari-
son. For example, in the Exponential RandomGraphModel (Robins et al., 2007), a concretemodel
parameterization has different implications for different network sizes, making corresponding
coefficient estimates hardly comparable. Hence, for the given research question, statistical mod-
els seem advantageous where the specification of size and edge probabilities can be explicitly
disentangled.

For such a comparative analysis of networks, we will demonstrate that Graphon Models
(Lovász and Szegedy, 2006, Diaconis and Janson, 2008, Sischka and Kauermann, 2022) are a very
useful tool. First, the graphon model is very flexible and able to capture complex network struc-
tures. Secondly, the graphon itself can be interpreted as local density or intensity function on
networks of nonparametric fashion. Lastly, the model’s design fulfills the above requirement of
decoupling the network’s structure and size, allowing for modeling multiple networks simultane-
ously (Navarro and Segarra, 2022). Hence, the graphon framework appears as a natural choice for
comparison purposes.

The rest of the paper is organized as follows. In Section 2, we start with reviewingmethods from
the network comparison literature. A formalization of the test problem is elaborated and discussed
in Section 3. Section 4 then deals with the joint graphon estimation, which is essential for the test-
ing procedure to be applicable. Based on the joint graphon model, in Section 5, we develop a
network comparison strategy for testing on equivalence of the underlying structures. The general
applicability of the complete approach is demonstrated in Section 6, where we consider its per-
formance on simulated and real-world data. The discussion and conclusion in Section 7 complete
the paper.

2. Concepts for network comparison
When it comes to the comparison of networks, as a first step, one needs to decide on a concept
for specifying network structures. In general, the various approaches can be broadly distinguished
according to whether they rely on a descriptive or a model-based structural framework. Survey
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articles in this field are given by Soundarajan et al., (2014), Yaveroğlu et al., (2015), Emmert-
Streib et al., (2016), and Tantardini et al., (2019). Amore general perspective on how complex data
objects—such as adjacency matrices—might be compared is pointed out by Marron and Alonso
(2014). Looking into the aforementioned compendia and examining the general literature on net-
work comparison, however, reveals a lack of model-based comparison approaches. This can also
be seen in the following, where we briefly review the different strategies that have been proposed
so far.

Starting with approaches that are based on extracted network statistics, the most intuitive strat-
egy is presumably to simply compare global characteristics such as the clustering coefficient or the
average path length (Newman, 2018, pp. 364 ff., Butts 2008, p. 31). An extensive analysis on the
capability of common network metrics in the setting of monitoring and identifying differences
in dynamic network structures has been carried out by Flossdorf and Jentsch (2021). However, a
single feature captures the overall network structure in most cases only very poorly since networks
that are structured completely differently can apparently still possess a very similar value for that
global statistic. Flossdorf et al., (2023) tackle this issue by using multiple metrics. Aiming in a
similar direction, Wilson and Zhu (2008) consider the differences in the graph spectra, see also
Gera et al., (2018). Yet, for the spectrum, it is often unclear which information in terms of local
structural properties is extracted from the network and hence such approaches somehow ascribe
only too little importance to the attributes of interest.

Another branch of the literature on descriptive network comparison relies on the concept of
graphlets, i.e. prespecified subgraph patterns that are assumed to be sufficient for describing the
present structure. Papers that, in one way or another, consider differences in the frequencies of
graphlets are, among others, Pržulj et al., (2004), Pržulj (2007), Ali et al., (2014), and Faisal et al.,
(2017). Since the counting procedure is rather complex for larger graphlets, it is sort of a consensus
to include only those that consist of no more than five nodes. Apparently, this seems some-
how arbitrary and incomplete in terms of capturing all structural aspects. Moreover, Yaveroğlu
et al., (2014) found high correlations among the graphlet-related statistics, including complete
redundancies. On the other hand, a connection between subgraph frequencies and the concrete
specification of the graphon model is exemplarily elaborated in Borgs et al., (2008), Bickel et al.,
(2011), and Latouche and Robin (2016).

Despite their wide dissemination, descriptive network statistics entail two general shortcom-
ings. First, it is very difficult to assess which network segments accommodate the structural key
differences. To be precise, the nodes or edges (present or absent) that contribute most to a quan-
tified structural discrepancy can only hardly be detected. Secondly, drawing inference on the
dissimilarity of two networks based on multiple network statistics is a complex inferential prob-
lem. For example, Butts (2008) aims to overcome this deficit by applying a simplistic conditional
uniform graph distribution.

On the other hand, probabilistic models for network data induce distributions on structural
patterns that extend to desired distributional assumptions on structural differences. As a conse-
quence, these modeling frameworks might provide concepts for network comparison. Yet, due
to a certain level of model complexity, which is required to adequately represent inherently com-
plex network data, individual shortcomings are entailed that often prevent a direct comparison.
While, for example, the Latent DistanceModel (Hoff et al., 2002) does not yield anymodel-related
key component to be compared, coefficient estimates from the exponential random graph model
are not directly comparable across separated networks. The graphon model and the Stochastic
Blockmodel (see Holland et al., 1983 and Snijders and Nowicki, 1997 and 2001) suffer from iden-
tifiability issues (Diaconis and Janson, 2008, Thm. 7.1 ) that make a comparison of corresponding
individual estimates very complicated. The blockmodel’s adaptivity is additionally highly depen-
dent on the choice of the number of blocks. Onnela et al., (2012) tackle this issue by observing
the networks’ complete disintegration processes, which they describe by the profiles over well-
known network statistics. Appropriately summarizing the differences in these profiles has been
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demonstrated to provide a reasonable distance measure between networks that leads to good
classification.

Overall, in view of the issues mentioned above, it seems little surprising that the literature on
model-based strategies for network comparison is rather scant. More specifically, to the best of
our knowledge, there exists no nonparametric statistical test on the equivalence of network struc-
tures. This shortcoming is what we aim to address in this paper. To do so, we formulate a joint
smooth graphon framework that can subsequently be used for constructing an appropriate testing
procedure.

3. Notation and formulation of the test problem
We consider the setting where two undirected networks of sizesN(1) andN(2) have been observed.
Let y(g) = [y(g)ij ]i,j=1,...,N(g) for g = 1, 2 denote the two respective adjacency matrices, where y(g)ij = 1

if, in network g, there exists an edge between nodes i and j and y(g)ij = 0 otherwise. Since we assume

the networks to be undirected, this specifically means that y(g)ij = y(g)ji , leading to a symmetric y(g) ∈
{0, 1}N(g)×N(g) . Additionally, for the diagonal elements, we set y(g)ii = 0, reflecting the absence of
self-loops. In general, we consider y(g) to be a realization of a random network Y(g) of size N(g)

which is subject to probability mass P(Y(g) = y(g) ;N(g)). The question we aim to tackle is whether
y(1) and y(2) are drawn from the same distribution. To suitably specify such a distribution, we rely
on the smooth graphon model. The data-generating process is thereby as follows. Assume that we
independently draw uniformly distributed random variables

U(g)
i ∼Uniform[0, 1] for i= 1, . . . ,N(g) and g = 1, 2. (1)

Conditional on U(g) = (U(g)
1 , . . . ,U(g)

N(g) ), we then draw the edges i.i.d. through

Y(g)
ij | (U(g) = u(g))∼ Binomial(1,w(g)(u(g)i , u(g)j )) for j> i (2)

with u(g) = (u(g)1 , . . . , u(g)N(g) ) ∈ [0, 1]N(g) and under the setting of Y(g)
ij ≡ Y(g)

ji for j< i and Y(g)
ii ≡ 0.

The function w(g):[0, 1]2 → [0, 1] is called graphon (see Lovász and Szegedy, 2006 and Diaconis
and Janson, 2008). We assume w(g)(·, ·) to be smooth according to some Hölder or Lipschitz con-
dition (cf. Wolfe and Olhede, 2013 or Chan and Airoldi, 2014). Relying on this data-generating
process, the graphon-based probability model can be defined through

Y(g) ∼ P
(
Y(g) = · ;w(g)(·, ·),N(g)). (3)

In this distribution model, the network’s size and structure are apparently dissociated, which
therefore allows for a size-independent comparison of underlying structures. Hence, our goal is
to develop a statistical test on the hypothesis

H0:w(1)(·, ·)≡w(2)(·, ·). (4)
In this context, we emphasize that data-generating process (2) is not unique because it is invariant
to permutations of w(g)(·, ·), as discussed in detail by Diaconis and Janson(2008, Sec. 7). Thus,
the formulation of H0 needs to be formally understood from the perspective of corresponding
equivalence classes. For the concrete implementation of the test procedure, we employ a concrete
representation of the two graphons as described below. Specifically, under the assumption of H0,
we define the joint graphon

wjoint(u, v) := w(1)(u, v)=w(2)(u, v) for all (u, v)� ∈ [0, 1]2.
Since w(1)(·, ·) and w(2)(·, ·) are assumed to be smooth, this also holds for wjoint(·, ·). Given such
joint graphon, the node position vectors u(1) and u(2) referring towjoint(·, ·) then provide a specific
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type of network alignment. This is what we utilize for a direct comparison of y(1) and y(2). Having
said that, in real-world applications, neither (u(1), u(2)) nor wjoint(·, ·) is observed. Thus, in order
to achieve this alignment, we first need to formulate an appropriate estimation procedure for the
joint graphon model. Note that, strictly speaking, according to formulation (3) this requires the
presence of dense networks. Yet, the following modeling technique and the subsequent testing
procedure are reasonable if the empirical densities are high enough and the observed networks
are considered to be fixed in N(g), g = 1, 2.

4. EM-based joint graphon estimation
In this section, we present an iterative estimation procedure for the joint smooth graphon model
under the assumption that null hypothesis (4) is true. To do so, we follow the EM-based estimation
routine of Sischka and Kauermann (2022), extending it to the situation of two networks.

4.1 MCMC E-step
Starting with the E-step of our iterative algorithm, we assume the joint graphon wjoint(·, ·) to be
known for the moment. Based on that, the latent positions of the networks can be separately
determined using MCMC techniques. To be precise, we apply Gibbs sampling by formulating the
full conditional distribution of U(g)

i through

f (u(g)i | u(g)1 , . . . , u(g)i−1, u
(g)
i+1, . . . , u

(g)
N(g) , y(g))

∝
∏
j	=i

wjoint(u(g)i , u(g)j )y
(g)
ij [1−wjoint(u(g)i , u(g)j )]1−y(g)ij (5)

for all i= 1, . . . ,N(g) and g = 1, 2. Details on the concrete implementation of the Gibbs sam-
pler are given in Section A of the Appendix. The resulting MCMC sequence (after cutting the
burn-in period and appropriate thinning) then reflects the joint conditional distribution f (u(g) |
y(g)). Thus, the marginal conditional means of the latent positions, i.e. E(U(g)

i | Y(g) = y(g)) for
i= 1, . . . ,N(g), can be approximated by taking the mean over the MCMC samples, which we
denote by ū(g) = (ū(g)1 , . . . , ū(g)N(g) ). This posterior mean vector, however, requires further adjust-
ment due to additional identifiability issues that cannot be coped with by the standard EM-type
algorithm. To illustrate this, let model assumption (1) be more relaxed in the sense that the U(g)

i ’s
are assumed to follow a continuous distribution F(g)( · ). Under this configuration, the model
(F(g)( · ), w(g)(·, ·)) is equivalent to any other model (F(g)′( · ), w(g)′(·, ·)) constructed through

F(g)′(u′) := F(g)(ϕ(u′)) and w(g)′(u′, v′) := w(g)(ϕ(u′), ϕ(v′))
with ϕ:[0, 1]→ [0, 1] being a strictly increasing continuous function (that is, in contrast to
Diaconis and Janson, 2008, Sec. 7 not measure-preserving). Specifically, that means

P
(
Y(g) = · ; F(g)( · ),w(g)(·, ·),N(g))≡ P

(
Y(g) = · ; F(g)′( · ),w(g)′(·, ·),N(g))

for all N(g) ≥ 2. As a matter of conception, this issue cannot be solved by the EM algorithm since
it aims at specifying a model that adapts optimally to the given data instead of perfectly recovering
the underlyingmodel structure. Consequently, the EM approach is not able to distinguish between
the two conceptually equivalent model specifications (F(g)( · ), w(g)(·, ·)) and (F(g)′( · ), w(g)′(·, ·)).
Nonetheless, this identifiability issue can simply be tackled by adjusting ū(g) before estimating the
graphon in the M-step. To do so, we just impose that the inferred node positions follow an ideal
sample drawn from the standard uniform distribution and thus intend to sprawl out the posterior

https://doi.org/10.1017/nws.2025.5 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2025.5


6 B. Sischka and G. Kauermann

means in an equidistant manner. More precisely, as an order-preserving adjusted estimate that is
directly derived from the Gibbs sampler we utilize the “uniformized” posterior mean

û(g)i = rank (ū(g)i )
N(g) + 1

,

where rank (ū(g)i ) is the rank from the smallest to the largest of element ū(g)i within ū(g). In this
context, note that the values i/(N(g) + 1) with i= 1, . . . ,N(g) represent the expectations of N(g)

ordered random variables that are independently drawn from the standard uniform distribution.
As a result, with û(g) = (û(g)1 , . . . , û(g)N(g) ) we obtain a plausible realization of the node positions
of network g. Apparently, this relies on the current joint graphon estimate ŵjoint(·, ·), which is
applied as substitute in conditional distribution (5). In the next step, we formulate the procedure
for updating ŵjoint(·, ·) given û(1) and û(2).

4.2 Spline-based M-step
For a semiparametric estimation of the joint smooth graphon, we choose a linear B-spline
regression approach. To this end, we assume the joint graphon to be approximated through

wjoint
θ (u, v)= B(u, v) θ = [B(u)⊗ B(v)] θ ,

where ⊗ is the Kronecker product, B(u) ∈R
1×L is a linear B-spline basis on [0, 1], normalized to

have a maximum value of one, and θ ∈R
L2 is the parameter vector to be estimated. The inner B-

spline knots are specified as lying equidistantly on a regular two-dimensional grid within [0, 1]2,
where θ is indexed accordingly through θ = (θ11, . . . , θ1L, θ21, . . . , θLL)�. Based on this represen-
tation and given the node positions û(1) and û(2), we formulate the marginal log-likelihood over
both networks as

�(θ)=
∑
g

∑
i,j
j	=i

[
y(g)ij log

(
B(g)
ij θ
)

+
(
1− y(g)ij

)
log
(
1− B(g)

ij θ
)]

, (6)

where B(g)
ij = B(û(g)i )⊗ B(û(g)j ). Furthermore, through standard calculations, we are able to derive

the score function s(θ) and the Fisher information F(θ), as demonstrated in Section B of the
Appendix. Fisher scoring can then be used to maximize �(θ). In addition, we include side con-
straints to ensure that wjoint

θ (·, ·) is bounded to [0, 1] and symmetric. In the linear B-spline setting,
this means restricting the parameters by the conditions

θkl ≥ 0 , θkl ≤ 1 , and θkl − θlk = 0

for all l> k. Apparently, all three conditions are of linear form and thus can be written in matrix
format. Taken together, the Fisher scoring becomes a quadratic programming problem that can
be solved using standard software (see Andersen et al., 2016 or Turlach and Weingessel, 2013).

Moreover, we intend to add penalization on the B-spline estimate. As outlined in Eilers and
Marx (1996) and Ruppert et al., (2003, 2009), penalized spline estimation under the setting of a
rather large spline basis yields a preferable outcome since it guarantees a functional fit that covers
the data adequately but is still smooth. Thus, this approach enables to precisely capture the under-
lying structure while avoiding overfitting. To realize this, we add a first-order penalty, meaning
that elements of θ get penalized that are neighboring on the notional two-dimensional grid, i.e.
θkl and θ(k+1)l as well as θkl and θk(l+1). For the log-likelihood, the score function, and the Fisher
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information, this leads to the penalized versions in the form of

�p(θ , λ)= �(θ)− 1
2
λθ�Pθ , sp(θ , λ)= s(θ)− λPθ ,

and Fp(θ , λ)= F(θ)+ λP,
(7)

respectively, whereP is a penalizationmatrix of appropriate shape (see Section B of the Appendix).
For an adequate choice of the penalty parameter λ in the two/dimensional spline regression, we
follow Kauermann et al., (2013) and apply the corrected Akaike Information Criterion (AICc, see
Hurvich and Tsai, 1989 and Burnham and Anderson, 2002). This is defined as

AICc (λ)= −2 �(θ̂p)+ 2 df (λ)+ 2 df (λ)[ df (λ)+ 1]
N(N − 1)− df (λ)− 1

,

where θ̂p is the corresponding penalized parameter estimate and df (λ) specifies the degrees of
freedom of the penalized B-spline function. More precisely, according toWood (2017, pp. 211 ff.),
the latter is defined trough

df (λ)= tr
{
F−1
p (θ̂p, λ) F(θ̂p)

}

with tr{·} being the trace of a matrix. A numerical optimization of the corrected AIC with respect
to λ concludes the estimation of θ , resulting in the estimate ŵjoint(·, ·) of the current M-step. The
convergence rate of ŵjoint(·, ·) towardswjoint(·, ·) for growingN(g), g = 1, 2, and L=O( min{N(1),N(2)})
and under the assumption of (û(1), û(2)) being true then depends on the graphon’s smoothness,
which has been postulated as a rather general assumption by the Hölder/Lipschitz condition in
Section 3. Here, O(·) refers to Landau’s small-O notation.

Finally, the EM-type estimation procedure described above allows us to adequately estimate
both the joint graphon wjoint(·, ·) and the corresponding node positions u(1) and u(2) of the two
networks. Specifically, given that u(1) and u(2) refer to the same graphon representation, this allows
to formulate an appropriate test procedure based on local comparison.

5. Two-sample test on network structures
Returning to the test problem raised in Section 3, we now develop a statistical test procedure on
hypothesis (4), i.e. whether y(1) and y(2) are drawn from the same distribution. To do so, we utilize
the network alignment resulting from the (inferred) joint smooth graphonmodel. More precisely,
we exploit the fact that two edge variables Y(1)

i1j1 and Y
(2)
i2j2 that have nearby positions—i.e. for which

the distance between (u(1)i1 , u(1)j1 )� and (u(2)i2 , u(2)j2 )� is small—possess similar probabilities to form
a connection. In a more formalized way, this means that, from ‖(u(1)i1 , u(1)j1 )� − (u(2)i2 , u(2)j2 )�‖ ≈ 0,
it follows that

P(Y(1)
i1j1 = 1 |U(1)

i1 = u(1)i1 ,U(1)
j1 = u(1)j1 )≈ P(Y(2)

i2j2 = 1 |U(2)
i2 = u(2)i2 ,U(2)

j2 = u(2)j2 ),

where ‖ · ‖ is the Euclidean distance. Following this intuition, we divide the unit square into small
segments and compare between networks the ratio of present versus absent edges occurring in
these segments (see Figure 2 for an exemplary division). For that purpose, we choose a suitable
K ∈N, specify a corresponding boundary sequence a0 = 0< a1 < . . . < aK = 1, and define the
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Figure 2. Dividing the unit square as domain of the graphon model into small segments for comparing network structure
on a microscopic level. Left: division of wjoint(·, ·) into approximately piecewise-constant rectangles. Middle and right: edge
positions (u(g)i , u

(g)
j )

� of two simulated networks with respect to wjoint(·, ·); weakly colored crosses and intensively colored
circles represent absent and present edges, respectively. The two networks can be compared by pairwise contrasting the
edge proportions within the labeled rectangles.

following two quantities for l, k= 1, . . . ,K with l≥ k:

d(g)kl =
∑
i,j
j>i

y(g)ij 1{u(g)i ∈[ak−1,ak)}1{u(g)j ∈[al−1,al)}

m(g)
kl =

∑
i,j
j>i

1{u(g)i ∈[ak−1,ak)}1{u(g)j ∈[al−1,al)}. (8)

This means d(g)kl and m(g)
kl represent the number of present (y(g)ij = 1) and (a priori) possible

edges of network g, respectively, within the constructed rectangle [ak−1, ak)× [al−1, al). The cor-
responding cross-network counts can be calculated by dkl = d(1)kl + d(2)kl and mkl =m(1)

kl +m(2)
kl .

Note that different network sizes are implicitly taken into account, since the sums in (8) run
over the number of edges in network g, which is suppressed in the notation for simplicity of
notation. Since wjoint(·, ·) is smooth, we further assume that the induced probability on edge vari-
ables within [ak−1, ak)× [al−1, al) is approximately constant. That allows for putting the observed
ratios between present and absent edges in direct relation. In this light, we formulate the following
contingency table to keep track of homogeneity between the networks within rectangle (k, l):

d
(1)
kl d

(2)
kl dkl

m
(1)
kl − d

(1)
kl m

(2)
kl − d

(2)
kl mkl − dkl

m
(1)
kl m

(2)
kl mkl

Apparently, if H0 is assumed to be true, we would expect the proportions of present edges,
d(1)kl /m(1)

kl and d(2)kl /m(2)
kl , to be similar. This can be assessed by contrasting the observed num-

bers of edges with their expectations conditional on the given margin totals, which is in line with
the construction of Fisher’s exact test on 2× 2 contingency tables. In this regard, the theoretical
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random counterpart of d(1)kl can be defined as

D(1)
kl =

∑
i,j
j>i

Y(1)
ij 1{u(1)i ∈[ak−1,ak)}1{u(1)j ∈[al−1,al)},

for which under H0 it approximately holds that

D(1)
kl | dkl ∼Hyp

(
mkl, dkl,m(1)

kl

)
with E(1)kl := E(D(1)

kl | dkl)=m(1)
kl

dkl
mkl

and V(1)
kl := V(D(1)

kl | dkl)=m(1)
kl

dkl
mkl

mkl − dkl
mkl

mkl −m(1)
kl

mkl − 1
.

(9)

Based on these specifications, we define our test statistic as

T =
∑
k,l
l≥k

(
D(1)
kl − E(1)kl

)2
V(1)
kl

with realization t =
∑
k,l
l≥k

(
d(1)kl − E(1)kl

)2
V(1)
kl

.U (10)

Note that here we only sum over the squared standardized deviations of the first network as the
hypergeometric distribution is symmetric, making the same information for the second network
redundant. Moreover, summands for which V(1)

kl = 0—resulting from m(1)
kl , mkl −m(1)

kl , dkl, or
mkl − dkl being zero—carry no relevant information and thus can simply be omitted from the cal-
culation. We can now easily simulate a sample of the distribution under H0 by drawing D(1)

kl | dkl
according to (9) and calculating T as in (10). From this, we can easily derive a critical value c1−α or
p-value by comparing the realization t of the simulated values. Moreover, asymptotic calculation
is possible if m(1)

kl is large, mkl and dkl are large compared to m(1)
kl , and dkl/mkl is not close to zero

or one. Then D(1)
kl is approximately normally distributed and we can conclude that

T a∼ χ2
K(K+1)/2. (11)

Here, the test statistic is essentially the sum of squared (conditionally) independent random vari-
ables that approximately follow a standard normal distribution. This allows again to derive a
critical value or a p-value, respectively. The choice of an appropriate K applied for these calcula-
tions is discussed in Section C of the Appendix. Note that altogether the presented test procedure
follows a conception similar to the one underlying the log-rank test for time-to-event data, which
also includes the construction of a conditional distribution as in (9). Regarding the latter, it seems
worth noting that conditioning on the margins in the corresponding contingency table does not
imply adding any assumptions on w(1)(·, ·) or w(2)(·, ·), or the structural relation between these
two. It rather means to presume that the realization of these marginal totals carries no infor-
mation about the relationship between w(1)(·, ·) and w(2)(·, ·), equivalently as for Fisher’s test on
contingency tables (Yates 1984). We also refer to (Lang 1996) for further discussion in this line.

Apparently, when conducting the test procedure on real-world networks, we obtain the joint
graphon and the corresponding alignment of the networks by applying the estimation procedure
described in Section 4. In the end, this enables us to appropriately approximate test statistic (10).
In this context, it is important to consider the general behavior of the joint graphon estimation
under the alternative, that is, if hypothesis (4) does not hold.We stress that the intuition of the esti-
mation procedure is to align the two networks as well as possible with respect to some suitable joint
graphon model. Consequently, the expectation of T will be higher the more the true graphons
w(1)(·, ·) and w(2)(·, ·) differ after “optimal” alignment. This clearly implies that the power of our
test is higher for instances that deviate more strongly from the null hypothesis.
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6. Applications
In this section, we showcase the applicability of the joint graphon estimation routine and the
subsequent testing procedure. To give a comprehensive insight, this comprises both simulated and
real-world networks. For an optimal estimation result and to best approximate test statistic (10),
we repeat the estimation and testing procedure several times. In a modeling-oriented context,
we would then typically pick the outcome with the lowest corrected AIC. However, since here
the focus is on the statistical testing aspect, we choose the estimation result which leads to the
highest p-value, assuming that this provides an optimal lower bound for the outcome under the
(potentially existing) oracle network alignment.

Moreover, applying test statistic (10) requires to specify K and the sequence a0, . . . , aK . For the
sake of simplicity and due to its minor impact, in the following applications we employ equidistant
boundaries a0, . . . , aK as an intuitive approach, that is, setting ak = k/K. In turn, under equidis-
tant node positions, the consistent number of network entries per network and rectangle,m(g)

kl , can
be easily deduced, and we choose K such that this parameter is “not too small” for both networks.
For more details, see Section C of the Appendix.

6.1 Simulation studies
6.1.1 Exemplary application to synthetic data
To demonstrate the general capability of the joint graphon estimation and the performance of the
subsequent testing procedure, we consider the graphon in the top left plot of Figure 3. Its for-
mation is inspired by and can be interpreted as a stochastic blockmodel with smooth transitions
between communities. Based on this ground-truth model specification, we simulate two networks
with N(1) = 200 and N(2) = 300 by making use of data-generating process (2). The underlying
structure can then be recovered by applying the joint graphon estimation, where, for initialization,
we make use of an uninformative random node positioning. This yields the graphon estimate at
the top right, which apparently fully captures the structure of the ground-truth graphon. Based
on the associated estimated node positions, we subsequently conduct the testing procedure on
whether the underlying distributions are equivalent. To this end, we start with calculating the
rectangle-wise differences according to the construction of test statistic (10). The results are
depicted as a heat map at the bottom left plot of Figure 3. This reveals that the difference in
the local edge density is rather low to moderate in most rectangles, whereas it is distinctly higher
in a few others. Aggregating these differences yields a test statistic of 203.2 as depicted by the
black solid vertical line at the bottom right. Contrasting this result with the simulated 95% quan-
tile of the distribution of T under H0 as the critical value (red dashed vertical line) yields no
rejection. Hence, the underlying distributions of the two networks do not significantly differ with
respect to a significance level of 5%. As a final remark with regard to the bottom right plot, the
simulated distribution of T (black solid step function) and its theoretical approximation (blue
dashed curve)—both relying on the assumption of H0 being true—are very close to one another.
Consequently, they also provide very similar critical values, namely 243.6 and 244.8, respectively.
This demonstrates that asymptotic distribution (11) represents a good approximation.

6.1.2 Performance analysis under H0
To evaluate the performance of the testing procedure in this example more profoundly, we repeat
the above proceeding 400 times, with newly simulated networks in each trial (remaining with
N(1) = 200 and N(2) = 300). Note that we run the estimation procedure always ten times (with
different random node positions as varying initialization) and finally pick the highest p-value as
the actual result for the given network pair. These repetitions already provide a broad insight into
the method’s performance under the given setting. An even more extensive evaluation becomes
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Figure 3. Joint graphon estimation for simulated networks with subsequent testing on equivalence of the underlying dis-
tribution models. The top row shows the true and the jointly estimated graphon on the left and right, respectively. The
realizations of the terms of test statistic (10), representing the dissimilarities of the two networks per rectangle, are visu-
alized at the bottom left, where m(g)

kl ≥ 100 for k 	= l and ≥ 45 otherwise (cf. contingency table on page 16). The final result
of the test statistic (black solid vertical line) as well as its distribution under H0 are illustrated at the bottom right, where
the black solid step function and the blue dashed curve depict the simulated and the asymptotic chi-squared distribution,
respectively. The red dashed vertical lines (separated by red dot) visualize the critical values at a significance level of 5%,
derived from the simulated (upper line) and the asymptotic distribution (lower line).

possible when, in contrast to the proceeding above, the testing procedure is performed on the
basis of the oracle node positions. These positions already describe an optimal network alignment
and can thus be used directly as a substitute for (û(1), û(2)) that will even lead to the smallest test
statistic possible. Moreover, it allows us to dramatically reduce the computational burden since it
releases us from the preceding (computationally expensive) model estimation. As a consequence,
we are able to increase the number of conducted tests to 10, 000. From these two repetition studies
(using either û(g) or u(g)), we obtain rejection rates of 6.5% and 6.15% under the estimated and
oracle node positioning, respectively. That means the test is slightly overconfident relative to the
nominal significance level of 5%. The test is not exact in any way, as it is built upon the asymptotic
statement (11) which explains the small bias of the test. The top row of Figure 4 shows additionally
the empirical distributions of the observed p-values, illustrated as densities (left) and cumulative
distribution functions (right). In accordance with the mildly inflated rejection rates, this exhibits
a slight tendency to underestimate the p-value, i.e. interpreting the discrepancy as too high in
distributional terms.
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Figure 4. Performance of the testing procedure with regard to the resulting p-value; results are simulation-based. Top:
empirical distribution of the p-value under H0, illustrated as density (left, including a depiction of rejection rates at signif-
icance level of 5%) and cumulative distribution function (right). The black dashed lines illustrate the desired distributional
behavior of an optimal test. Number of repetitions for estimated / oracle node positions: 400 / 10, 000. Bottom: distribution
of the p-value under H1 and the usage of oracle node positions (in box plot format); based on 1, 000 repetitions each. The
x-axis illustrates different settings according to formulation (12) (higher value of γ implies stronger deviation from H0). The
black dashed horizontal line represents the 5% significance level, and the orange curve illustrates the corresponding power.

6.1.3 Performance analysis under H1
Conclusively, we are interested in evaluating the test performance under a false null hypothesis,
which apparently requires formulating a suitable alternative. To this end, we “shrink” the het-
erogeneity within the graphon such that the present structure becomes less pronounced. The
resulting graphon specification consequently tends more towards an Erdős–Rényi model, with
the global density remaining unchanged. To be precise, based on w(1)(·, ·), we formulate

w(2)(u, v) := (1− γ )w(1)(u, v)+ γ w̄(1) (12)

with γ ∈ [0, 1] and w̄(1) = ∫∫ w(1)(u, v) du dv. Apparently, increasing the mixing parameter γ

leads to a stronger deviation from H0. At the same time, this setting guarantees an optimal align-
ment of w(1)(·, ·) and w(2)(·, ·), meaning that there exists no rearrangement of w(2)(·, ·) that is
closer to w(1)(·, ·) than specification (12). For this experiment, we again choose N(1) = 200 and
N(2) = 300. Moreover, here we rely exclusively on the oracle node positions. This provides a lower
bound of the power since the rejection rate can be expected to be higher when using estimated
node positions instead (cf. previous analysis under H0). The results for this setup are presented
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in the bottom plot of Figure 4, where the distribution of the resulting p-value is illustrated for
different settings of γ . The orange curve additionally visualizes the resulting power, i.e. the pro-
portion of cases with p< 0.05. These results clearly show that the probability of detecting the
false null hypothesis monotonically increases as the parameter γ gets larger, which underpins the
appropriateness of our test procedure.

Overall, the obtained simulation results demonstrate that the elaborated estimation and testing
procedure yields reasonable results for assessing structural differences between networks. Building
upon these findings, we next want to investigate the method’s performance on real-world data.

6.2 Real-world examples
6.2.1 Facebook ego networks
As a first real-world example, we consider two Facebook ego networks, with each describing the
friendship behavior between all friends of one user (“ego”). These networks have been assem-
bled by Leskovec and McAuley (2012) and are publicly available on the Stanford Large Network
Dataset Collection (Leskovec and Krevl, 2014). The two ego networks consist of 333 and 168 indi-
viduals, respectively, where the ego nodes are not included. An illustration of these networks is
given in the top row of Figure 5, with nodes being colored according to resulting positions. In
both networks, these final estimated node positions appear to be in line with the given network
structure in terms of reflecting the nodes’ embedding within the network. Moreover, they seem to
be aligned across networks. For example, in both networks, the reddish nodes represent the rather
centric individuals, whereas the nodes from the dark blue spectrum constitute a moderately inter-
connected branch that is more detached from the rest of the network. However, the segment-wise
differences depicted at the bottom left in Figure 5 exhibit some strong deviations. This can be
clearly traced back to the blockwise division of the adjacency matrices as it results from partition-
ing the domain of edge positions (middle row). The aggregated differences ultimately result in a
test statistic that is far from the sector of plausible values under the null hypothesis, as illustrated at
the bottom right. Consequently, we can conclude that the structural behavior in the two networks
differs significantly.

6.2.2 Human brain functional coactivation networks
In the second real-world application, we are concerned with differences in the human brain coac-
tivation structure. To be precise, we compare two types of individuals, one with autism spectrum
disorder (ASD) and the other with typical development (TD). In particular, we are interested
in whether the functional connectivity within the brain significantly differs between these two
groups (cf. the introductory example from Figure 1). For this analysis, we use resting-state func-
tional magnetic resonance imaging data from the Autism Brain Imaging Data Exchange project
(ABIDE I, 2013). More specifically, we employ preprocessed data provided by the Preprocessed
Connectomes Project platform (PCP 2015). Based on these person-specific datasets, we first
calculate correlations between brain regions with respect to concurrent activation over time.
Aggregating the results of participants from the same clinical group and employing an appropriate
threshold finally yields the network-structured data which we aim to compare. To be precise, by
performing the described preprocessing, we achieve for both groups, ASD and TD, a global con-
nectivity pattern between 116 prespecified relevant brain regions. Note that these regions are the
same for both groups, which is why this could also be viewed as a comparison task under known
node correspondence. However, we emphasize that in neurosciences, the transfer of competencies
between brain regions is a well-known phenomenon, wherefore the general functional connectiv-
ity structuremight be of greater relevance than the functional connection between specific regions.
Further details on the acquisition and adequate transformation of the data are provided in Section
D of the Appendix.
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Figure 5. Comparison of two facebook ego networks. Top: illustration of networks with coloring referring to estimated
node positions. Middle: ordered adjacencymatrices divided into blockwise segments. Bottom left: segment-wise differences
between the two networks with m(g)

kl ≥ 100 for k 	= l and ≥ 45 otherwise (cf. contingency table on page 16); gray rectangles
do not contain any observed edges (dkl = 0) and thus provide no information. Bottom right: realization of test statistic (black
solid vertical line) plus corresponding distribution under H0 (black solid step function and blue dashed curve represent sim-
ulated and asymptotic chi-squared distribution, respectively); critical values derived from the two types of distributions are
represented by the upper and the lower red dashed vertical line (separated by red dot).

For analyzing the differences in the brain coactivation structure between the two diagnostic
groups, we again start with appropriately aligning the two networks. This is apparently done by
employing the joint graphon estimation routine. The resulting node positions in relation to the
embedding of nodes within the networks are illustrated in the top row of Figure 6. Again this
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Figure 6. Comparison of functional coactivation in the human brain between groups of subjects with autism spectrum dis-
order andwith typical development. The top row shows the networks of the ASD and the TD group on the left- and right-hand
side, respectively. All illustration aspects are equivalent to the representation in Figure 5. The number of nodes per rectangle
is again given bym(g)

kl ≥ 100 for k 	= l and≥ 45 otherwise, where N/A’s in the blockwise differences result from dkl ormkl − dkl
being zero.

reveals a plausible allocation of the nodes in the joint graphon model. The structural evolve-
ment can further be evaluated by consulting the correspondingly ordered adjacency matrices
(see middle row), where the red dashed lines represent the blockwise division resulting from the
assignment of the edge positions to the rectangles in [0, 1]. At first view, the formed structure
looks quite similar in both matrices. Yet, on closer inspection, some blocks can be found where
the density seems considerably different. This is also observed in the rectangle-wise differences
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depicted in the bottom left plot. In the end, aggregating these differences leads to a p-value of
0.013 which gives a strong indication against the null hypothesis.

Given that this outcome does not support an utterly unambiguous decision of the conducted
test procedure, one might additionally be interested in the nature of the inferred differences. To
address this, in Section 1.2 of the Supplementary Material, we localize different behavior between
the networks on the microscopic scale. Note that this can also be derived more or less directly
from the joint graphon model. Moreover, for comparison reasons, we repeated the above analysis
for two randomly selected disjoint subgroups of the TD group. According to the results illustrated
in Figure 6 of the Supplementary Material, in this scenario, we do not observe a significant overall
deviation. This further underlines the findings about the dissimilarity between the ASD and the
TD group.

7. Discussion and conclusion
In the literature on network comparison, the task of drawing statistical inference appears to be
an open challenge up to now. In this paper, we addressed this shortcoming by developing a non-
parametric test on the equivalence of network structures. As a basis, we utilized joint smooth
graphon estimation in order to arrange the networks in a meaningful way. In turn, this allowed us
to compare the networks’ densities at a local level. Appropriately quantifying and aggregating the
differences between these densities finally enabled us to construct a nonparametric testing pro-
cedure on structural equivalence of networks. Given that graphons induce dense networks, our
approach is restricted to such networks and an extension to sparse networks is questionable.

The proposed strategy of ordering networks in common relation is very similar to what is
often referred to in the literature as “network alignment” (Kuchaiev et al., 2010). However, as
an essential distinction to classical network alignment strategies, our method does not seek to find
a node-wise one-to-one mapping. Instead, it implies a mapping of local components, meaning
small fuzzy groups of nodes with similar structural roles in their respective domains.

Specifically, this also allows the networks to be of different sizes. In fact, the graphon model’s
property of decoupling structure and size is crucial for the proposed approach to work. In the
same line, one could think of further decoupling the global density by following the approach of
Bickel and Chen (2009), i.e. by introducing network-related quantities ρ(g) that serve as individual
density coefficients. Specifically, this means modifying formulation (2) by employing ρ(g)w(g)(·, ·),
where ρ̂(g) = [N(g)(N(g) − 1)]−1∑

i,j y
(g)
ij could serve as an estimate that is independent of the rest

of the structure. Such a framework consequentially might lead to a more balanced comparison
strategy.

Beyond the applications presented in the previous section, which all refer to the situation with
two networks, themethod could easily be extended to cases withmultiple or even a single network.
For example, in the one-sample setting, to test whether a given network follows a hypothetical dis-
tribution P(Y = · ;w(·, ·),N), we could first align the network with the theoretical graphon. That
is, applying the E-step based on w(·, ·). Given this alignment, we could then turn distributional
assumption (9) into a binomial distribution with the rectangle-specific mean overw(·, ·) as success
probability, and, based on that, calculate the test statistic as in (10).

Besides the testing aspect, our approach could further be used to uncover relevant differ-
ences between networks on the microscopic scale. To be precise, determining the nodes or edges
(present or absent) that contribute most to a quantified structural discrepancy between net-
works is possibly interesting in many situations. This is further elaborated in Section 1.1 of the
Supplementary Material.

As a last application case, the joint graphon estimation could further be used to predict edges
between separated networks by considering the cross-sample probabilities wjoint(u(1)i1 , u(2)i2 ). This
might be of interest when two (or more) networks are assumed to be samples of a larger global
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network. To the best of our knowledge, this has not been pursued by any other approach so far
and hence constitutes a novel perspective. As a particular hurdle in this framework, the sampling
strategy that is supposed for the drawing of subnetworks needs to be taken into account in the
estimation routine. As far as this is not the simple Induced Subgraph Sampling, where one selects
a simple random sample of nodes within which all edges are observed, further adaptations are
required. Hence, this lies beyond the scope of the paper.

Supplementary material

(i) Description for deriving differences between networks at the microscopic level. As exemplary application, the two
brain networks from Section 6.2.2 are considered.

(ii) Replication of the test on functional coactivation networks for two subgroups of the typical-development group
(confer Section 6.2.2).

(iii) Python-package containing the code to perform the comparison methods described in the paper. The package
also contains the preprocessed data of the human brain functional coactivation networks (see Section 6.2.2). (GNU
zipped tar file).
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Appendix

A. Implementation of the Gibbs sampler
In an iterative joint graphon estimation procedure, the joint posterior distribution of the node
positions given wjoint(·, ·) and the networks y(1) and y(2) can be simulated by constructing a Gibbs
sampler. We stress that the node positions are independent between networks and thus the Gibbs
sampling procedure can be conducted for each network separately. TheMCMC framework is then
build upon full conditional distribution (5) and can be formulated as follows. For the successive
updating procedure, we consider u(g),<t> = (u(g),<t>

1 , . . . , u(g),<t>
N(g) ) to be the current state of the

Markov chain. In the (t + 1)-th step, component i is then updated according to (5), where all other
components remain unchanged, i.e. u(g),<t+1>

j := u(g),<t>
j for j 	= i. To do so, we propose a new

position u(g), ∗i by drawing from a normal distribution under the application of a logit link. To be
precise, we first calculate

v(g),<t>
i = logit (u(g),<t>

i )= log

(
u(g),<t>
i

1− u(g),<t>
i

)
,
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then we add a normal term in the form of v(g), ∗i = v(g),<t>
i +Normal (0, σ 2

v ), and finally we
accomplish the retransformation through

u(g), ∗i = logit−1 (v(g), ∗i )= exp (v(g), ∗i )

1+ exp (v(g), ∗i )
.

In this setting, the variance σ 2
v should be chosen such that a balance between a wide-ranging

exploration and a high acceptance rate is achieved, where the relation to the latter also strongly
depends on the graphon’s smoothness. Given these formulations, the proposal density can be
written as

q(u(g), ∗i |u(g),<t>
i )= ∂v(g), ∗i

∂u(g), ∗i

φ(v(g), ∗i |v(g),<t>
i )

∝ 1

u(g), ∗i (1− u(g), ∗i )

· exp
(

−1
2
(logit (u(g), ∗i )− logit (u(g),<t>

i ))2

σ 2
v

)
,

which leads to a proposal ratio of

q(u(g),<t>
i |u(g), ∗i )

q(u(g), ∗i |u(g),<t>
i )

= u(g), ∗i (1− u(g), ∗i )

u(g),<t>
i (1− u(g),<t>

i )
.

In combination with the likelihood ratio, the acceptance probability of the proposal, i.e. the
probability for setting u(g),<t+1>

i := u(g), ∗i , can be calculated through

min

⎧⎪⎨
⎪⎩1,

∏
j	=i

⎡
⎢⎣
⎛
⎝ w(u(g), ∗i , u(g),<t>

j )

w(u(g),<t>
i , u(g),<t>

j )

⎞
⎠

yij

·
⎛
⎝ 1−w(u(g), ∗i , u(g),<t>

j )

1−w(u(g),<t>
i , u(g),<t>

j )

⎞
⎠

1−yij
⎤
⎥⎦ u(g), ∗i (1− u(g), ∗i )

u(g),<t>
i (1− u(g),<t>

i )

⎫⎪⎬
⎪⎭ .

In case the decision leads to a rejection of the proposal, we set u(g),<t+1>
i := u(g),<t>

i . To give an
intuition about the proposal strategy and how it is affected by σ 2

v , Figure 7 shows the proposal
density q( · |u(g),<t>

i ) and its standard deviation as a function of u(g),<t>
i for different values of σv.

In our studies, we have observed a favorable behavior for the setting σ 2
v = 22.

Applying the above updating strategy to all i= 1, . . . ,N(g) completes one overall update.
Finally, we achieve a proper Gibbs sampling routine through consecutively repeating this scheme.
After cutting the burn-in period and applying an appropriate thinning, this approach yields a
sample of the desired joint posterior distribution of the node positions.

B. Derivative and penalization of the B-spline function
As has been show in Section 4.2, the log-likelihood of a B-spline function can be straightforwardly
extended towards the situation with multiple datasets. Given the formulation from (6), the score
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Figure 7. Left: proposal density for different current states u(g),<t>i with σv = 1. Right: standard deviation of the proposal
density against current state u(g),<t>i ; different profiles represent the behavior for different settings of σv .

function can be calculated as

s(θ)=
[
∂�(θ)
∂θ

]�

=
∑
g

∑
i,j
j	=i

[B(g)
ij ]�

⎛
⎝ y(g)ij

wjoint
θ (û(g)i , û(g)j )

− 1− y(g)ij

1−wjoint
θ (û(g)i , û(g)j )

⎞
⎠

where the dependence of the graphon on the parameters is expressed as subscript, i.e. wθ (·, ·).
This, in turn, leads to the Fisher information in the form of

F(θ)= −E

(
∂s(θ)
∂θ

)

=
∑
g

∑
i,j
j	=i

[B(g)
ij ]�B(g)

ij

[
wjoint

θ

(
û(g)i , û(g)j

)
·
(
1−wjoint

θ

(
û(g)i , û(g)j

))]−1
.

These results can then be used to implement the Fisher scoring procedure, where in (7) we addi-
tionally add a penalization term to guarantee a smooth estimation result. For penalizing “neigh-
borhood” elements of the parameter vector θ = (θ11, . . . , θ1L, θ21, . . . , θLL)�, the penalization
matrix can be formulated through

P = (JL ⊗ IL)� (JL ⊗ IL) + (IL ⊗ JL)� (IL ⊗ JL) ,
where IL is the identity matrix of size L and

JL =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0

0 1 −1 · · · 0
...

. . .
...

0 · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎠

∈R
(L−1)×L.

C. Choosing the number and extent of rectangles
In order to appropriately test null hypothesis (4), in Section 5, we have developed an approach
that relies on the partition of the graphon’s domain. According to formulation (8), that involves
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the number of rectangles, K, as well as their concrete specification in the form of [ak−1, ak)×
[al−1, al). In this regard, we emphasize that two aspects need to be observed. On the one hand,
the joint graphon should be approximately constant within rectangles, requiring [ak−1, ak)×
[al−1, al) to be not too expansive. On the other hand, the amount of edge variables per network
falling into these blocks should be high, which needs rather broad rectangles. Thus, a trade-off
between these two opposed requirements should be reached. In general, we choose K to grow
more slowly than both network dimensions, e.g. scaling as ming

√
N(g). Note that choosing K = 1

would imply to test whether the two networks possess the same global density under the assump-
tion of a joint Erdős–Rényi model. Having determined a suitable value for K, we then simply
specify the boundaries of the rectangles through ak = k/K for k= 0, . . . ,K. In combination with
the subsequent adjustment of the latent positions as described in Section 4.1, which leads to
equidistance of the estimates û(g)i , a general lower bound for the amount of contained nodes per
interval, N(g)

k , can be derived. To be precise, we can formulate

N(g)
k =

∣∣∣∣
{
i ∈ {1, . . . ,N(g)}: i

N(g) + 1
∈ [ak−1, ak)

}∣∣∣∣≥
⌊
1
K
(N(g) + 1)

⌋
,

where �x� returns the largest integer smaller than or equal to x. Given that, K could also be chosen
such that, per network, a prescribed minimum amount of edge variables per rectangle (N(g)

k N(g)
l

for l> k and N(g)
k (N(g)

k − 1)/2 for l= k) is guaranteed.
As a final remark, we emphasize that with regard to the rectangle-based test statistic, it seems

natural to alternatively apply a histogram estimator (Chan and Airoldi, 2014 or Olhede andWolfe,
2014). However, the smooth graphon estimation adapted from Sischka and Kauermann (2024)
considers a global node ordering which refers not only to separated intervals but to the entire
domain of [0, 1]. This consequently facilitates the iterative estimation procedure and thus leads to
a more plausible and faster converging node positioning.

D. Acquiring and processing of brain functional activation data
The data we use for analyzing differences in the functional brain activation are originally provided
by the Autism Brain Imaging Data Exchange project (ABIDE I, 2013, Di Martino et al., 2014).
However, we make use of preprocessed data that are directly accessible through the Preprocessed
Connectomes Project platform (PCP 2015, Craddock et al., 2013). To be precise, we here apply the
Connectome Computation System pipeline (Xu et al., 2015) and the reduction to the Automated
Anatomical Labeling atlas (Tzourio-Mazoyer et al., 2002). For each participant, this yields a dataset
that consists of activity measurements over time for 116 prespecified brain regions (a.k.a. regions
of interest). Based on these temporal activity measurements, we calculate Pearson’s correlation
coefficient between all pairs of brain regions which, per participant, leads to the corresponding
functional connectivity matrix (Song et al., 2019, Subbaraju et al., 2017). For this analysis, we rely
on the data from New York University, comprising 73 ASD patients and 98 TD subjects. For
aggregating these connectivity patterns per clinical group, we apply Fisher’s transformation to
the pairwise correlation coefficients, calculate their mean for all pairs of brain regions, and finally
retransform these means (Pascual-Belda et al., 2018). This yields for both diagnostic groups a
116× 116 weighted connectivity matrix which we binarize by employing a threshold of 0.4. Based
on that, the two final networks we obtain both possess a global density of about 30%. With regard
to the choice of the threshold, Song et al. (2019) have found that this has only minor effects when
comparing the networks.

Cite this article: Sischka B. and Kauermann G. (2025). Nonparametric two-sample test for networks using joint graphon
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