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Evolution of water wave packets by wind
in shallow water
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We use the Korteweg–de Vries (KdV) equation, supplemented with several forcing/friction
terms, to describe the evolution of wind-driven water wave packets in shallow water.
The forcing/friction terms describe wind-wave growth due to critical level instability in
the air, wave decay due to laminar friction in the water at the air–water interface, wave
stress in the air near the interface induced by a turbulent wind and wave decay due to
a turbulent bottom boundary layer. The outcome is a modified KdV–Burgers equation
that can be a stable or unstable model depending on the forcing/friction parameters. To
analyse the evolution of water wave packets, we adapt the Whitham modulation theory for
a slowly varying periodic wave train with an emphasis on the solitary wave train limit.
The main outcome is the predicted growth and decay rates due to the forcing/friction
terms. Numerical simulations using a Fourier spectral method are performed to validate
the theory for various cases of initial wave amplitudes and growth and/or decay parameter
ranges. The results from the modulation theory agree well with these simulations. In most
cases we examined, many solitary waves are generated, suggesting the formation of a
soliton gas.

Key words: wind-wave interactions

1. Introduction

The evolution of a wind-generated water wave is a fundamental and much-studied problem
of both scientific and operational concern. Oceanic wind waves affect the weather and
climate through transfer processes across the air–water interface, generate large forces on
marine structures, ships and submersibles and lead to extreme events such as rogue waves
and storm surges. But despite much theoretical research over many years, combined with
more recent in situ observations and numerical simulations using powerful computers,
the theoretical mechanism for wind-wave formation and evolution remains a challenging
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problem. This was very evident at the IUTAM Symposium on Wind Waves held in London
in September 2017 (Grimshaw, Hunt & Johnson 2018), where a wide range of theories,
simulations, observations and experiments were presented with a very lively discussion.

In particular there are only tentative theories about how wind affects the dynamics
of wave groups, where the issue is how, in the presence of wind, do water waves form
into characteristic wave groups, and what are their essential properties, depending on the
local atmospheric and oceanic conditions; see Zakharov et al. (2015), Zakharov, Resio
& Pushkarev (2017) and Zakharov (2018) amongst many similar critical comments. This
is the issue we have been looking at; see Grimshaw (2018, 2019a,b) and Maleewong &
Grimshaw (2022a,b, 2024), the latter hereafter referred to as MG24. The key feature in
our analysis is that, in the linearised limit, a wave group moves with a real-valued group
velocity even for unstable waves when the wave frequency and the wavenumber may both
be complex valued. In the absence of wind forcing, it is well known that the nonlinear
Schrödinger equation (NLS) describes wave groups in the weakly nonlinear asymptotic
limit where wave groups are initiated by modulation instability and then represented by
the soliton and breather solutions of the NLS model, see Grimshaw (2007) and Osborne
(2010) for instance. The effect of wind forcing is captured by the addition of a linear
growth term, based on the critical level instability theory of Miles (1957), which leads to
the forced NLS, see Maleewong & Grimshaw (2022a,b, 2024). Recently, in MG24, we
examined how the growth rate depended on the water depth and the parameters of the
wind shear profile, utilising a weak frictional modification of potential flow introduced by
Dutykh & Dias (2007b), subsequently used by Kharif et al. (2010) amongst others, and
extending it to take account of critical level instability and wave stress turbulent forcing in
the air near the water surface.

As part of the analysis in MG24 we reduced the fully nonlinear modified Euler
system in the limit as the depth goes to zero to a modified version of the shallow-water
equations. These lead to the possibility of wave steepening, which indicates the necessity
for higher-order dispersive terms to control this steepening. In MG24 we analysed the
modified shallow-water system using right-going and left-going Riemann invariants. We
noted there that, in a one-way setting for the right-going waves, inclusion of higher-order
dispersion would lead to a Korteweg–de Vries (KdV) equation, supplemented by the
addition of forcing terms describing critical level instability and wave stress driving at the
air–water interface, and frictional terms due to laminar friction at the water surface and
turbulent friction at the water bottom. That step is the subject of this paper and the outcome
is a KdV–Burgers type of equation. We note that retaining two-way propagation would lead
to a Boussinesq system, as shown by Dutykh & Dias (2007a,b) and Dutykh (2009), who
extended the frictionally modified shallow-water equations to such a Boussinesq system.
We have not pursued that here, as the modulation theory for nonlinear waves that we use
in § 3 is not as well developed for a Boussinesq equation as for the KdV equation. Other
one-way alternatives such as the Benjamin–Bona–Mahony equation were not considered
for similar reasons.

The KdV equation arises in a huge variety of physical contexts as it is the canonical
equation expressing balance between weak nonlinearity and weak dispersion. Indeed, it
is justifiably famous for that reason just as much as for its integrability, multi-soliton
structures and astonishingly rich dynamics. It has been and continues to be widely used
as a model for water waves in shallow water. It is therefore somewhat surprising that
applications to wind-driven waves are relatively sparse. An important recent exception is
the work by Costa et al. (2014), who used the multi-soliton dynamics to analyse wind wave
data in a shallow bay. That analysis is based on the theory of a soliton gas; see El (2021)
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Evolution of water wave packets by wind in shallow water

for a recent review which touches on the water wave application. As we will show, the
extension to a KdV–Burgers type of equation builds on the well-known KdV dynamics.

In § 2 we present the KdV–Burgers equation with the additional forcing/friction derived
in MG24. These forcing/friction terms are small, but important and essential perturbations
to the KdV equation, and so in § 3 we describe modulation asymptotic theory for this
perturbed KdV equation, focussing on the solitary wave train limit. In § 4 we present some
numerical simulations of the full KdV–Burgers equation for an initial condition describing
a wave packet. We conclude with a summary and discussion in § 5.

2. The KdV–Burgers equation

The KdV equation for water waves is very well known. In standard notation for a
surface displacement η above an undisturbed depth h it is the left-hand side of (2.1). The
forcing/friction term is derived in MG24 and reduced here to the shallow-water limit in a
unidirectional setting as described above and in more detail below

ηt + Cηx + 3C
2h

ηηx + Ch2

6
ηxxx = F(η), C = (gh)1/2, (2.1)

F(η) = h
2C

{[
− ρa

ρw
βW2

r + 4κ
C
h

]
ηxx − 1

h
ρa

ρw
cdU2

a(|η|η)xx − g
h2 CD|η|η

}
. (2.2)

Here, g is the acceleration due to gravity, ρa is the air density, ρw is the water density, κ

is the kinematic viscosity, cd is the wind surface drag coefficient, Wr is a reference wind
velocity introduced by Miles (1957), Ua is a scaling velocity used in MG24 for the surface
wave stress and CD is the bottom drag coefficient. The first term has two parts. The first
part describes an unstable KdV–Burgers equation and the second part describes a stable
KdV–Burgers equation. The second term describes a nonlinear unstable KdV–Burgers
equation. The third term is a decay term modelling turbulent bottom stress. Hereafter, we
refer to (2.1) as the KdV–Burgers equation, although it is a much modified version.

The first part of the first term in (2.2) arises from a representation of air pressure Pa
at the air–water interface, due to Miles (1957) and used in his pioneering paper on wind
waves

Pa

ρa
= (α|k|η + βηx)W2

r . (2.3)

Here, k, ω are the wavenumber and frequency for a sinusoidal wave, η ∝ exp (ikx − iωt)
in a linear reduction and α, β are non-dimensional real parameters, found by solving the
linearised air flow equations. Although α, β depend on the depth h this emerges only for
very small depths too small to be of practical interest, so here we set α = 0.872, β = 1.745
and Wr = 0.9 m s−1, as in MG24. Further, since only the term in β is related to the critical
level instability mechanism of Miles (1957), the term in α is omitted to derive the first
term in (2.2); see Kharif et al. (2010). Finally, we put ik → ∂/∂x. It is pertinent to note
here that Miles (1957) assumed that k > 0, as we did in MG24 and was done in many
works, which is allowed in the application to linear, sinusoidal waves. When k < 0, then
kη in Miles (1957) has been replaced by |k|η in (2.3), noting that for real-valued functions
η, both |k|, ik are valid Fourier transforms, unlike just k. Also, the solutions of the modal
equation for the linearised air flow depend on |k| rather than just k. The second part of
the first term in (2.2) is due to a laminar frictional boundary layer at the water surface
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(see Dutykh & Dias (2007a,b), Dutykh (2009) and Kharif et al. (2010)); the kinematic
viscosity κ = 10−6 m2 s−1.

The second term in (2.2) arises from a representation of wave stress in the turbulent
near-surface air flow. The wave stress is ρacd|Wa|Wa, where Wa is a near-surface wind
speed; see Tang & Grimshaw (1995) and Tang et al. (1996) for instance. In MG24
we set Wa = ua, the horizontal air flow velocity at the free surface found from the
linearised air flow equations, and given by ρacua = Pa, where Pa is given by (2.3) and
c = ω/k is the phase velocity of the underlying carrier wave with frequency ω and
wavenumber k. However, in MG24 the resulting expression is too sensitive to the depth in
the shallow-water limit to be useful here. Instead, we retain the expression ua = |k|ηUa

from MG24 but here fix the scaling velocity Ua = 5 ms−1 as a typical value for the
parameters we use here. Further, the asymptotic KdV reduction has lead to an expression
|η|η in (2.2) which is difficult to handle, both numerically in a Fourier spectral code and
analytically in the modulation theory which follows. Hence, we take advantage of the
fact that cd increases with the wind speed; see Tang & Grimshaw (1995) and Tang et al.
(1996) for instance. The outcome is that we replace cd with cd|η|/A0, where A0 is a scaling
wave amplitude and cd is now the constant value at η = A0. Hence, in (2.2), the term
cdU2

a(|η|η)xx is replaced with cdU2
a(η3)xx/A0. We set cd = 0.0023, A0 = 0.5 m as typical

values.
The third term is a conventional representation of decay due to turbulent bottom stress

CD|U|U (see Tang & Grimshaw (1995) and Tang et al. (1996) for instance) where U is the
bottom velocity. In the full shallow-water limit U = Cη/h, but in the linearised periodic
wave formulation of MG24, U = (gη/c) cosh (kh) = ckη/ sinh (kh), where c = ω/k is
the linear phase speed for a carrier wave of frequency ω and wavenumber k. In the
shallow-water limit kh → 0, c → C and we recover U = Cη/h but here we retain the
dependence on kh, even though kh is specified for (2.1) only through (2.2) and the initial
conditions. In effect, CD acquires a factor fr = c2(kh)2/(C2 sinh2 (kh)). This depends
only on kh, fr = (kh) tanh (kh)/ sinh2 (kh) = 2kh/ sinh (2kh) and fr → 1 as kh → 0 but
becomes quite small as kh increases. The device used in the second term to replace |η|η
with η3 is not available here as CD does not depend directly on the wind speed. Instead, we
use the strategy in MG24 and assume that as |η| decreases the nonlinear term |η|η can be
replaced by the linear term A0η. As the KdV equation is a small-amplitude approximation,
we replace CD|η|η in (2.2) with CDA0η where the drag coefficient remains at CD = 0.0015
and we again put A0 = 0.5 m, the same value as in the second term. In effect the quadratic
bottom stress is replaced by a linear term. If this is modelled by a laminar bottom boundary
layer we find from MG24 (see also Dutykh & Dias (2007a,b)) that CDA0 is then replaced
with kh[κ/2ω]1/2. This gives a connection between CD and the kinematic viscosity κ but
we caution that the connection depends on k and h. Nevertheless, for the plausible values
ω = 1 s−1, kh = 1 and A = 0.5 m, κ = 10−6 m2 s−1 yields CD = 0.0014 quite close to
the accepted value of CD = 0.0015.

Next, we express (2.1) in a reference frame moving with speed C, so that x is
replaced by x′ = x − Ct; henceforth, the superscript on x′ is omitted. Then, we put
(2.1) into canonical non-dimensional form using amplitude, length and time scales
ES, LS, TS; that is, ηd = ESηn, xd = LS xn, td = TS tn, where the subscript d, n denotes
the dimensional, non-dimensional variables, respectively. We set ES = 2h(3K2)−1m, TS =
6K3hC−1s, LS = Khm, where K is a non-dimensional scaling parameter chosen to ensure
that the waves have small amplitudes and are long compared with the depth. The outcome
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Figure 1. Plots of μ1 (a) and μ3 (b) vs depth h in shallow water for a 5-second carrier wave.

is, replacing ((2.1) and (2.2)), omitting the subscript n and incorporating the changes to
cd, CD specified above

ηt + 6ηηx + ηxxx = F(η), (2.4)

F(η) = −μ1ηxx − μ2(η
3)xx − μ3η, (2.5)

μ1,2,3 =
{

K
[

3
ρa

ρw
β

W2
r

C2 − 12κ

hC

]
,

2
K

ρa

ρw
cd

hU2
a

A0C2 , 2 KfrCD
A0

h

}
. (2.6)

Here, μ1,2,3 are dimensionless constants, adjusted slightly as described above from the
equivalent values in (2.2); μ1 is the sum of a term due to critical level instability and a
term due to laminar friction at the water surface, and will be positive or negative indicating
wave growth or decay, depending on which term is the larger (see Miles (1957) and Kharif
et al. (2010) for a discussion of this in the deep water context); μ1 varies with water depth
h due to the dependence of β on h and the factor W2

r /C2 in (2.6), see figure 1(a), where
the plot of β is based on the expression in MG24 for a logarithmic wind shear profile
and a 5-second carrier wave. In general, there is a critical depth hcr such that μ1 ≷ 0
according as h ≷ hcr. For our parameter settings, hcr = 2.5 m is quite shallow. The term
with coefficient μ2 describes wave growth due to a representation of wave stress in the air
at the water surface induced by a turbulent wind. In our derivation, μ2 is independent of h
as the term in (2.6) hU2

a/A0C2 = U2
a/gA0 does not depend on h. The term with coefficient

μ3 describes wave decay due to a representation of a turbulent bottom boundary layer. The
term μ3 increases rapidly when the depth is very small and decays to zero as the depth
increases, see figure 1(b). Based on these considerations we restrict attention to h > 5 m
when C > 7 m s−1, as the variability at smaller depths is unrealistic in practice, and then
each μi is a small parameter, so facilitating the asymptotic analysis of § 3. In the numerical
simulations of § 4, we choose a specific h = 10 m when C = 9.9 m s−1. Although it was
shown in MG24 that β depends on depth the variation is slight for h ≥ 10 m and so here
we put β = 1.745, constant, the value found by MG24 in water of sufficient depth for a
logarithmic wind shear profile and a 5-second carrier wave.

The KdV–Burgers equation (2.4) has two conservation laws, for mass and wave action.
For modulated periodic waves, there is an additional conservation law, conservation of
waves, see § 3. We assume that η is spatially periodic in a domain [−L, L] and then the
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mass conservation law comes directly from (2.4)

M =
∫ L

−L
η dx, M t =

∫ L

−L
F(η) dx = −μ3M . (2.7a,b)

Note that the bottom stress term with coefficient μ3 > 0 causes M → 0, an artefact of the
one-way KdV asymptotic approximation, which requires that the horizontal velocity field
is proportional to η. The energy equation obtained from (2.4) is(

η2

2

)
t
+ (2η3)x +

(
ηηxx − η2

x

2

)
x
= ηF(η). (2.8)

Wave action, the same as wave energy here, is then defined by

E =
∫ L

−L

1
2
η2 dx. (2.9)

In the absence of forcing/friction E is conserved. Otherwise

Et =
∫ L

−L
ηF(η) dx =

∫ L

−L

[
μ1η

2
x + 3μ2η

2
xη

2
]

dx − 2μ3E. (2.10)

The first term is a growth or decay term according as μ1 ≷ 0, the second term is a
growth term as μ2 > 0 and the third term is a decay term as μ3 > 0. There are analogous
expressions for solitary wave solutions where η → 0 as x → ±∞ and [−L, L] is replaced
by (−∞, ∞).

The stable KdV–Burgers equation with μ1 < 0, μ2 = μ3 = 0, was first proposed by
Su & Gardner (1969) as an extension of the KdV equation which combined nonlinearity,
dispersion and canonical dissipation. Independently, in a study of waves in a liquid-filled
elastic tube, Johnson (1970) proposed the same equation, and examined its steady-state
solution as a potential model for a bore, either undular or monotonic. In the wind-wave
context, Zdyrski & Feddersen (2021) and Manna & Latifi (2023) have recently proposed
the unstable (μ < 0) KdV–Burgers equation as a model for wind waves in shallow water.
Both used the Jeffreys pressure asymmetry theory as the driving mechanism rather than
the Miles critical level instability theory. Zdyrski & Feddersen (2021) used numerical
simulation to examine wave shape, while Manna & Latifi (2023) used an asymptotic
analysis, similar to that we present in § 3 to show that a solitary wave could grow in
amplitude and develop a singularity.

3. Modulated solitary wave train

3.1. Cnoidal waves
When unforced and in the absence of friction the KdV–Burgers equation (2.4) reduces to
the KdV equation when it has a well-known periodic wave solution, the cnoidal wave,
described in many places, including the original 1895 KdV paper. In the presence of
perturbation effects such as variable depth, or as here the forcing/friction term F(η) (2.5),
this becomes a modulated cnoidal wave, introduced by Gurevich & PitaevskiI (1974) and
Whitham (1974). It has been heavily used since, see for instance Grimshaw & Smyth
(1986), Smyth (1987, 1988), Myint & Grimshaw (1995), Grimshaw (2010), El, Grimshaw
& Tiong (2012) and Grimshaw & Yuan (2016, 2018) in a fluid mechanics context. Here,
we follow a similar approach as in these references, described briefly here in the following
text, and based on the premise that F(η) is a small perturbation.
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Evolution of water wave packets by wind in shallow water

For a modulated periodic wave with wavenumber k and frequency ω = kV , where V is
the phase speed, we introduce a phase θ(x, t) such that

θx = k, θt = −kV. (3.1a,b)

The equation for conservation of waves comes from eliminating θ from (3.1a,b)

kt + (kV)x = 0. (3.2)

We seek a modulated wave of the form η = η(θ, x, t) which is periodic in θ with period
2P and where the dependence on x, t is slowly varying and expressed through the available
wave parameters. Without loss of generality we can put P = π. The spatial period for a
single wave is 2P/k and the full spatial domain is [−L, L] containing N waves. Next, we
define a wave average for a single wave

〈[· · · ]〉 =
∫ P

−P
[· · · ]

dθ

2P
. (3.3)

We suppose that
η = η̂(θ, x, t) + D(x, t), 〈η̂〉 = 0, (3.4)

where D(x, t) = 〈η〉 is the mean level and is a slowly varying function of x, t. The averaged
wave action density, just wave energy in this context, is

E =
〈
η̂2

2

〉
, (3.5)

and is likewise a slowly varying function of x, t.
On expressing the fast dependence on θ and the slow dependence on x, t, the

KdV–Burgers equation (2.4) becomes at leading order

− k(V − 6D)η̂θ + 3k(η̂2)θ + k3η̂θθθ = · · · , (3.6)

where the omitted terms [· · · ] contain the slowly varying x, t derivatives and the
forcing/friction terms. One integration with respect to θ yields

−(V − 6D)η̂ + 3η̂2 + k2η̂θθ = 6E + · · · . (3.7)

The wave equation (3.7) has the modulated cnoidal wave solution given by

η̂ = A{b + cn2(γ θ; m)}, b = −〈cn2〉 = 1 − m
m

− E(m)

mK(m)
, (3.8)

A = 2mΓ 2, V = 6D + 4Γ 2
{

2 − m − 3E(m)

K(m)

}
, Γ = γ k. (3.9a,b)

Here, we have used the description in Grimshaw & Smyth (1986), El (2007), Grimshaw
(2010) and Grimshaw & Yuan (2016). In ((3.8) and (3.9a,b)) cn(x; m) is the Jacobi elliptic
function of modulus m (0 < m < 1) and K(m), E(m) are the elliptic integrals of the first
and second kind, respectively, defined by

cn(x; m) = cos (φ), x =
∫ φ

0

dφ′

(1 − m sin2 φ′)1/2
, 0 ≤ φ ≤ π

2
, (3.10)

K(m) =
∫ π/2

0

dφ

(1 − m sin2 φ)1/2
, E(m) =

∫ π/2

0
(1 − m sin2 φ)1/2 dφ. (3.11a,b)

The cnoidal wave (3.8) is periodic in θ with a period 2P = 2K(m)/γ , which for fixed P =
π defines γ = K(m)/π. The corresponding spatial period is 2π/k = 2K(m)/Γ . Here, V

996 A4-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.616


M. Maleewong and R. Grimshaw

is the wave phase speed, A is the wave amplitude and the maximum, minimum values of
η̂ are AM = A(b + 1), Am = Ab. The wave action density is given by

E =
〈
η̂2

2

〉
= A2

2
(C4 − b2), C4 = 〈cn4〉,

C4 = 1
3m2K(m)

{3m2K(m) − 5mK(m) + 4mE(m) + 2K(m) − 2E(m)},

⎫⎪⎪⎬
⎪⎪⎭

(3.12)

where C4, b are functions of the modulus m only.
As the modulus m → 0, cn(x; m) → cos (x), γ → 1/2, b → −1/2 and then the cnoidal

wave (3.8) collapses to a linear sinusoidal wave

η̂ = A
2

cos (θ), V = 6D − k2, E = A2

8
. (3.13a–c)

In this limit A → 0, but A/m = 2Γ 2 stays finite.
As the modulus m → 1, cn(x; m) → sech(x), K(m), E(m) → ∞, 1 and b → 0. The

cnoidal wave (3.8) becomes a solitary wave train, defined on a periodic lattice, and riding
on a background level D

η̂ = A sech2(γ θ), A = 2Γ 2, V = 6D + 4Γ 2. (3.14a–c)

In this limit, γ → ∞, k → 0 but Γ = γ k stays finite, and γ θ can be replaced by Γ (x −
Vt) in integral expressions; C4, E → 0 but E = E/k remains finite and is given by

E = 2A2

3Γ
= 8Γ 3

3
= (2A)3/2

3
. (3.15)

For pure solitary waves, where it is required that η → 0 at infinity, formally D must be
zero. However, under perturbation a trailing shelf is generated; see Grimshaw (1979) and
Grimshaw & Mitsudera (1993) for instance. It is important here to distinguish between a
pure solitary wave and a solitary wave train. The latter is essentially a useful approximation
to a modulated cnoidal wave train, often used to describe undular bores; see Grimshaw &
Smyth (1986), Smyth (1987), El (2007) and Grimshaw (2010); perturbative effects such
as friction and variable depth have been examined by Smyth (1988), Myint & Grimshaw
(1995), El et al. (2012) and Grimshaw & Yuan (2016, 2018), amongst many others.

3.2. Modulation analysis
The parameters [A, Γ, k, m, V, D] are reduced to three by the relations in (3.9a,b). They
are slowly varying functions of (x, t) found from a multi-scale asymptotic expansion, or
more directly using the conservation laws for mass (2.4) and wave action (2.8) combined
with the equation for conservation of waves (3.2). The wave average of the conservation
of mass equation (2.4) yields

Dt + 6Mx = 〈F(η)〉 = −μ3D, M = 〈η2〉
2

= D2

2
+ E. (3.16)

A slowly varying term Dxxx on the left-hand side has been omitted because it is much
smaller than the retained terms due to the slow variation in x. Likewise, two small terms
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Evolution of water wave packets by wind in shallow water

−μ1Dxx and −μ2〈η3〉xx on the right-hand side of (3.16) have been omitted. Further, when
D2 
 2E, (3.16) reduces to a Hopf equation with implicit solution

D̂τ + 6D̂D̂x = 0, D = D̂ exp (−μ3t), τ = 1 − exp (−μ3t)
μ3

,

D̂ = D0(x − 6D̂τ), D(x, t = 0) = D0(x).

⎫⎬
⎭ (3.17)

For 0 < t < ∞, 0 < τ < 1/μ3. If D0(x) = D0 is a constant the solution is the constant
D̂ = D0; D = D(t) is independent of x and decays exponentially to zero as t → ∞.
Otherwise, an infinite slope is reached if 1 + 6D0xτ = 0 which needs D0x < 0 somewhere.
For a sufficiently small initial condition such that μ3 + 6D0x > 0 for all x this does not
occur since μ3τ < 1. However, otherwise it is inevitable and can only be prevented by the
restoration of a dispersive term such as Dxxx to (3.16).

One more modulation equation is needed and this comes from taking the wave average
of the conservation of energy equation (2.8)

Mt + Qx = 〈ηF(η)〉, Q =
〈
2η3 − 3η̂2

x

2

〉
,

Q = 2D3 + 12DE +
〈
2η̂3 − 3η̂2

x

2

〉
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.18)

Next, Dt is eliminated from (3.18) using (3.16) and the wave equation (3.7) to generate an
equation for E

Et + (VE + U)x + 6EDx = 〈η̂F̂〉, U =
〈
η̂3

2
− η̂2

x

〉
, F̂ = F − 〈F〉, (3.19)

or if E = kE, k[Et + VEx + 6EDx] + Ux = 〈η̂F̂〉, (3.20)

〈η̂F̂〉 = μ1〈η̂2
x〉 + 3μ2〈η̂2

xη
2〉 − μ32E. (3.21)

Here, E is the spatially averaged wave action density, and ((3.18) and (3.20)) agree with
analogous derivations in the literature; for instance, see Grimshaw & Yuan (2016) for a
detailed review of modulated cnoidal waves for a variable-coefficient KdV equation. The
term U is needed to ensure that the modulated wave propagates with the nonlinear group
velocity and not in general with the phase speed V

U =A3
[
−b3 + 3bC4

2
+ C6

2

]
− 4A2Γ 2[(1−m)(C2 − C4) + m(C4 − C6)], Cn = 〈cnn〉.

(3.22)

When m = 0, U = −2k2E and as then V = 6D − k2, we obtain the linear group velocity
of 6D − 3k2 corresponding to a linear frequency of 6Dk − k3. However, when m → 1 we
find that U → 0.

The three ((3.2), (3.16), (3.19)) form a nonlinear hyperbolic system for the chosen three
parameters from the set [A, Γ, m, V, D], say A, m, D. In the absence of the forcing/friction
term, that is F(η) = 0, the elegant Whitham modulation theory exploits the underlying
integrability of the KdV equation and yields solutions using Riemann invariants; see
Whitham (1974) and Gurevich & PitaevskiI (1974) and the comprehensive review by
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El (2007). Of particular interest is the similarity solution
x
t

= 2A0

[
1 + m − 2m(1 − m)K(m)

E(m) − (1 − m)K(m)

]
, −6A0 <

x
t

< 4A0,

A = 2A0m, D = A0

[
m − 1 + 2E(m)

K(m)

]
, Γ = γ k = A1/2

0 .

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.23)

This describes an undular bore, an expanding wave train connecting a zero level at the front
x/t = 4A0, D = 0, where m → 1, to the rear x/t = −6A0D = A0 > 0, where m → 0. At
the front the leading wave is a solitary wave of amplitude 2A0 moving in the positive
x-direction, and at the rear the waves are linear sinusoidal waves moving in the negative
x-direction. Note that both x, t can be translated to different origins, leading to additional
flexibility in fitting to initial conditions. This solution has been widely used as a model
for nonlinear wave trains in shallow water and in density stratified flows; see Grimshaw
& Smyth (1986), Smyth (1987) and Grimshaw & Yuan (2016, 2018) for instance. With
the forcing/friction term F(η) /= 0 the system ((3.2), (3.16), (3.19)) is difficult to handle
analytically, and so we simplify it using the solitary wave train approximation.

In the solitary wave train approximation (3.13a–c) when m → 1, γ → ∞, k → 0 while
Γ = γ k stays finite, E → 0 but E = E/k remains finite and is given by

E = 2A2

3Γ
= 8Γ 3

3
= (2A)3/2

3
. (3.24)

Since in this limit E → 0 the mean level (3.16) reduces to (3.17) and yields a solution
D(x, t) independently of other parameters. Hence, D can be regarded as known. In order to
simplify the subsequent analysis of a solitary wave train, we shall set D = 0 in the detailed
calculations to follow in the remainder of this section.

In this solitary wave train limit, U → 0, and the wave action (3.20) becomes

Et + VEx + 6EDx = FS. V = 6D + 4Γ 2. (3.25)

Here, FS is the solitary wave train limit of 〈η̂F̂〉/k, given by

FS = μ1
16A2Γ

15
+ μ2

[
D2 16A2Γ

5
+ D

256A3Γ

35
+ 128A4Γ

105

]
− μ3

4A2

3Γ
. (3.26)

The solitary wave expressions (3.13a–c) have been used to express the FS in terms of Γ

noting that A = 2Γ 2. Since (3.25) is an equation for E or A, or Γ alone the system ((3.2),
(3.16), (3.19)) has been reduced to a single equation. The wavenumber k is then determined
by the conservation of waves equation (3.2) with V given in (3.25). The solitary wave train
modulation equation (3.25) is a single equation for either E , A or Γ . Here, we choose Γ

and then, after putting D = 0, (3.25) becomes

Γt + 4Γ 2Γx = G, (3.27)

G = FS

8Γ 2 = μ1
8
15

Γ 3 + μ2
256
105

Γ 7 − μ3
2Γ

3
. (3.28)

Equation (3.27) is a nonlinear hyperbolic equation which nonetheless in general is quite
difficult to solve explicitly. When G = 0 it reduces to a Hopf equation and solutions can
be found using standard techniques. In particular, we note the similarity solution

A = 8Γ 2 = 2
x
t
. (3.29)

This solution exhibits a linear progression in amplitude of a solitary wave train. Along
the track of a specific soliton with amplitude An and speed Vn = An/2, x/t → Vn as
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Evolution of water wave packets by wind in shallow water

t → ∞. There is a superficial resemblance to the undular bore solution (3.23) and it can
be interpreted as related to that when m ≈ 1. Like that solution, x/t can be replaced by
(x − x0)/(t − t0) for arbitrary constants x0, t0 provided that it stays positive.

When G /= 0 we first consider solutions which depend on t alone, when the solution is
given by

H(Γ ) =
∫ Γ

Γ0

dΓ

G = t, (3.30)

where Γ0 /= 0 is the initial constant value. On its own, the first term in G proportional to
μ1 generates the solution

1
2Γ 2

0
− 1

2Γ 2 = 8μ1t
15

, A = 2Γ 2 = A0

1 − A08μ1t/15
. (3.31a,b)

When μ1 < 0, A, Γ → 0 as t → ∞, but when μ1 > 0, A, Γ → ∞, albeit in a very long
but finite time proportional to μ−1

1 . This singularity in a modulated solitary wave in the
unstable KdV–Burgers equation was noted by Manna & Latifi (2023) but we emphasise it
is a singularity in the modulation asymptotic theory, and not in the full equation. Again on
its own, the second term proportional to μ2 > 0 generates the solution

1
6Γ 6

0
− 1

6Γ 6 = 256μ2t
105

, A3 = 8Γ 6 = A3
0

1 − A3
064μ2t/35

, (3.32a,b)

with unlimited growth to infinity in a very long time proportional to μ−1
2 . Also on its own

the third term proportional to μ3 generates the solution

Γ = Γ0 exp (−2μ3t/3), A = 2Γ 2 = A0 exp (−4μ3t/3), (3.33a,b)

with exponential decay to zero as t → ∞. In general, J (Γ ) = G(Γ )/Γ is initially
negative at Γ = 0, then increases or decreases according as μ1 ≷ 0 and becomes zero at
Γ = Γa, after which it remains positive and tends to infinity as Γ → ∞. The expressions
((3.27) and (3.30)) then imply that, if Γ0 < Γa, Γ → 0, while if Γ0 > Γa then Γ → ∞.

In general, (3.28) can be reduced to an inhomogeneous first-order nonlinear hyperbolic
equation which can, in principle, be solved implicitly, using characteristics

Ht + VHx = 1, V = V(H) = 4Γ 2. (3.34)

Solutions with zero x-dependence were discussed in the previous paragraph. Here, H is a
function of Γ , which can in principle be inverted to express Γ as a function of H. Although
this cannot be done explicitly, we have expressed V = V(H). The inhomogeneous term on
the right-hand side is removed by the transformation

H = Ĥ + t, Ĥt + VĤx = 0, V = V(Ĥ + t). (3.35)

This is a Hopf type of equation and we expect the general solution to exhibit wave
steepening. It can be formally solved using characteristics, that is, Ĥ is constant on the
curves dx/dt = V . This inevitably leads to wave steepening on a time scale determined by
the slope of the initial condition for A = 2Γ 2, which may be shorter than the time scales
in the x-independent solutions ((3.31a,b)–(3.33a,b)).

Finally, we consider the linear sinusoidal wave limit (3.13a–c) when m → 0 and the
left-hand side of (2.4) is linearised. In this limit, only the linear part proportional to μ1 in
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the forcing/friction terms is retained. The parameter set is reduced to three [A, k, D] noting
that the phase velocity V = 6D − k2. The mean (3.16) reduces to Dt = 0 and so we put
D = D0, taken here as a constant. In (3.2) for conservation of waves ω = kV = 6kD0 − k3

and the linear group velocity is cg = ωk, so that

kt + cg(k) kx = 0, cg = 6D0 − 3k2. (3.36)

Equation (3.36) is a Hopf equation, which can be solved implicitly. In general, cg(k) =
cg(x, t) and we define a new variable X by

dx
dt

= cg(x, t), x = X at t = 0, (3.37)

with solution x = x(X, t). Using (3.36), we find that cg = cg(X) and then

x = X + cg(X)t. (3.38)

The solution of (3.36) is

k = k0(X), k(x, t = 0) = k0(x), (3.39)

with a corresponding solution for cg = cg(k). Although (3.38) determines x = x(X, t)
explicitly, the inverse relation X = X(x, t) is implicit. Since Xx = (1 + cgXt)−1, Xt +
cgXx = 0 a singularity develops when 1 + cgXt = 0. This only occurs if cgX < 0, or since
cgX = −6kkX , if kX > 0.

The wave energy expressions (3.12) reduces to

E = A2

16
, U = −2k2E, (3.40a,b)

and the wave energy equation (3.19) becomes

Et + (cg(k)E)x = μ12k2E. (3.41)

Here, E propagates with the group velocity cg modulated by the KdV–Burgers term with
coefficient μ1, which can be either positive or negative. This is a linear hyperbolic equation
for E and, using the transformation x = (X, t), E(X, t) satisfies

Et + cgX

1 + cgXt
E = μ12k2E, E(X, t = 0) = E0(X),

so that E = E0(X)

1 + cgXt
exp (μ12k2t).

⎫⎪⎪⎬
⎪⎪⎭

(3.42)

The singularity at 1 + cgXt = 0 is inherited from those in k, cg and otherwise E grows or
decays exponentially according as μ1 ≷ 0.

Finally, we note that the linear wave modulation system ((3.36), (3.41)) has a steady
solution in which k, cg are constants and

E = E(x) = E0 exp (νx), ν = μ12k2

cg
. (3.43)

This is exponentially increasing or decreasing with x according to μ1cg ≷ 0. It could be
a partial, small-amplitude representation of the steady-state bore solutions analysed by
Johnson (1970) for the KdV–Burgers equation when μ1 < 0. However, we will not pursue
that here as it is beyond the scope of this article.
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Evolution of water wave packets by wind in shallow water

4. Numerical simulations

In this section we describe numerical simulations of the non-dimensional KdV–Burgers
equation (2.4), repeated here,

ηt + 6ηηx + ηxxx = F(η) − s(x)η, (4.1)

F(η) = −μ1ηxx − μ2(η
3)xx − μ3η, (4.2)

μ1,2,3 =
{

K
[

3
ρa

ρw
β

W2
r

C2 − 12κ

hC

]
,

2
K

ρa

ρw
cd

hU2
a

A0C2 , 2KfrCD
A0

h

}
. (4.3)

The numerical scheme is a Fourier spectral method, similar to that used in Grimshaw &
Maleewong (2013, 2016, 2019) for the topographically or pressure forced KdV equation.
The numerical solution is moved forward time using the fourth-order Runge–Kutta scheme
with a time step δt = 0.0002. In most cases, we set L = 451π with 8192 Fourier modes.
The term s(x)η is a sponge layer to absorb waves approaching the boundaries x = ±L,
defined by

s(x) = s1

2
{(1 + tanh(s2(x − xm))) + (1 − tanh(s2(x + xm)))}. (4.4)

We set s1 = 10, s2 = 0.1 and xm = L − 2, so that ∓xm are near the left and right
boundaries. The sponge layer changes the mass and energy expressions. For instance, the
mass conservation law (3.16) for a modulated periodic wave becomes

Dt + 6Mx = 〈F(η)〉 = −μ3D − s(x)D. (4.5)

Similarly, the wave energy equation (3.19) becomes

Et + (VE + U)x + 6EDx = 〈η̂F̂〉 − 2s(x)E. (4.6)

In both cases, the extra dissipation induced by the sponge layer should only be effective
near the boundaries. However, the global mass and energy laws ((2.7a,b) and (2.10)) both
show overall dissipation due to the sponge layer.

The initial condition is η(x, t = 0) = η0(x), a wave packet similar to that used in MG24

η0(x) = ENV(x)(D0 + M cos (k0x)), ENV(x) = sech(x/LE), −L < x < L, (4.7)

where M is the constant carrier wave amplitude, k0 > 0 is the constant initial wavenumber
and D0 is the constant initial mean level; ENV(x) is a slowly varying wave envelope, which
tends to zero as x → ±L. The initial condition (4.7) is expressed in non-dimensional
variables. The scale for the wave amplitude is ES = 2h/3K2, so with h = 10 m, we put
K = 2.58 and then ES = 1.0015 ≈ 1, and ηnm ≈ ηd, where subscripts n and d refer to
non-dimensional and dimensional variables, respectively. The envelope span LE = 60 is
chosen so that 2π/k0  LE  L = 451π/k0, where the parameter k0 = 1 for a 5-second
wave. The envelope implies that the initial wave amplitude is really A0(x) = ENV(x)M and
the initial mean level is really D0(x) = ENV(x)D0. The carrier wave amplitude varies over
the values M = 0.25, 0.5, 0.75, 1.0 and D0 is a constant with values 0, ±M. Although
the initial condition (4.7) is a sinusoidal wave, the modulus m of the emerging cnoidal
waves can be estimated from the discussion in § 3.1. We find that M ≈ mK(m)2/π2 and
the modulus m → 1 as M increases. Even for M = 0.25, m ≈ 1, as our simulations will
show. For the KdV equation, a balance between nonlinearity and dispersion requires that
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h m K fr cd CD A0 m β Wr m s−1 Ua m s−1

10 2.58 0.90 0.0023 0.0015 0.5 1.745 0.9 5

Table 1. Parameters.
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Figure 2. Evolution of η with initial condition (4.7) for M = 0.5 (a) and M = 1.0 (b) when D0 = 0 and
μ1 = μ2 = μ3 = 0. Arrows show the direction of the moving waves.

3M ∼ k2 ∼ 1, which is achieved here. A summary of the various parameters is in
table 1, which yields the values μ1 = 0.00014, μ2 = 0.000011, μ3 = 0.00035 for these
dimensionless parameters. We carried out many simulations and only a representative
sample are shown here. We set μ1 = ±0.001, ±0.0001, μ2,3 = 0.001, 0.0001, chosen
around the values found above using the specified values in table 1 in order to
explore the dependence on these key parameters. For the wave parameters we set M =
0.25, 0.5, 0.75, 1.0, D0 = 0, ±0.5. Some simulations were run for a case of no initial wave
envelope, ENV(x) ≡ 1 and some with no sponge layer, s(x) ≡ 0. All simulations used a
periodic boundary condition.

First, we consider the unforced KdV equation (4.1) when F(η) = 0, that is, when
μ1,2,3 = 0. With D0 = 0 we simulated four cases M = 0.25, 0.5, 0.75, 1.0. Next, we
considered some forced cases by setting the values for each μ1,2,3 separately, that is,
μ1 /= 0, μ2,3 = 0, and so on, followed by a full combination of these. After that we
simulated cases with D0 = ±M a non-zero constant. This range of values for M, D0 and
those for each μi = 0, ±0.0001, ±0.001 are based on data for a 5-second wave in MG24.
Although for the parameters in table 1 μ1 > 0 we performed simulations for both μ1
positive and negative. Many other simulations were performed with various parameter
settings and with and without the sponge layer. Although only a sample are shown here,
the interpretation is based on many simulations.

An unforced case μ1,2,3 = 0 is shown in figure 2 for D0 = 0 and M = 0.5 (a) and
M = 1.0 (b); contour plots of η with M = 0.25, 0.5, 0.75, 1.0 are shown in figure 3 on
the upper left, upper right, bottom left and bottom right, respectively. The initial wave
packet generates transient radiation moving upstream (x < 0) and a solitary wave train
with N solitons moving downstream (x > 0) following the arrow directions as indicated
in figure 2. This outcome is well known and to be expected in the KdV equation; see El
(2007) and Osborne (2010) for instance in the water wave context. There are many solitons

996 A4-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

61
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.616


Evolution of water wave packets by wind in shallow water

1400

1200

1000

800

600

400

200

–500 0 500 –500 0 500

–500 0 500 –500 0 500

1000

800

600

400

200

500

400

300

200

100

1400

1200

1000

800

600

400

200

0.2
0.5

0.4

0.3

0.2

0.1

–0.1

–0.2

–0.3

0

0.1

0

–0.1

–0.2

0.8

0.6

0.4

0.2

–0.2

–0.4

0

0.5

1.0

–0.5

0

t t

t

x x

t

(a) (b)

(c) (d)

Figure 3. Contour plots of η with initial condition (4.7) for M = 0.25 (a), M = 0.5 (b), M = 0.75 (c) and
M = 1.0 (d), with D0 = 0, when μ1 = μ2 = μ3 = 0.

and the solitary wave train resembles a soliton gas (El 2021). The number N of solitons
can be estimated from the inverse scattering transform theory, see El (2007) for instance;
there are no solitons (N = 0) if η0(x) < 0 for all x, and otherwise N ≥ 1

N � 1 + IN, IN =
∫ ∞

−∞
|x||η0(x)| dx. (4.8)

For the initial condition (4.7) with D0 = 0 we estimate that IN < 4ML2
E, which, although

it is certainly an overestimate, indicates correctly that N is very large due to the envelope
span LE = 60 
 1. Larger values of M produce higher wave amplitudes both upstream
and downstream. The radiation field is mainly determined by the envelope ENV(x)
demonstrated by simulations when the envelope is replaced with a constant, ENV(x) = 1.
This case is shown in figure 4(a) for M = 1, D0 = 0, μ1,2,3 = 0. This case replicates the
famous pioneering work of Zabusky & Kruskal (1965) when only one sinusoidal wave
was in the initial condition, whereas our simulations had a sinusoidal wave train. Cases
μ1 = 0.001 and μ2 = 0.001 are shown in figures 4(b) and 4(c), respectively, showing the
effect of each forcing term leading to instability, indicated around t = 50 and t = 25 with
high oscillations, increasing wave speeds and amplitudes. The case μ3 = 0.001 is shown
in figure 4(d), where the wave speed and amplitude are decreasing.

To investigate the effects of the forcing terms on the right-hand side of (4.1), we fix
M = 1, LE = 60 and vary the magnitude of each μ1,2,3 from values based on our wind
shear parameters to slightly larger values to explore the effects on a reasonable time scale.
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Figure 4. Contour plots of η with initial condition (4.7) when ENV(x) = 1, M = 1 and D0 = 0. Case
μ1,2,3 = 0 (a), case μ1 = 0.001 μ2 = μ3 = 0 (b), case μ2 = 0.001 μ1 = μ3 = 0 (c), case μ3 = 0.001
μ1 = μ2 = 0 (d).

Then, we compare the results with the unforced case and with the asymptotic theory of
§ 3. The evolution of η when μ1 = 0.001 > 0, μ2 = μ3 = 0 is shown in figure 5(a) and
the corresponding contour plot is shown in figure 5(b). The solitary wave train grows in
amplitude, especially downstream. In contrast the evolution of η when μ1 = −0.001 < 0,

μ2 = μ3 = 0 is shown in figure 6(a) and the corresponding contour plot is shown in
figure 6(b). The solitary wave trains are now decaying, with decreasing wave speeds. Next,
the evolution of η when M = 1, μ2 = 0.001 > 0, μ1 = μ3 = 0 is shown in figure 7(a) and
the corresponding contour plot is shown in figure 7(b). The solitary wave train now grows
in amplitude. Finally, the evolution of η when μ3 = 0.001 > 0, μ1 = μ2 = 0 is shown in
figure 8(a) and the corresponding contour plot is shown in figure 8(b). The solitary wave
train and the radiation field now decay, especially downstream.

Next, in order to compare these simulations with the unforced cases and with the
modulation theory of § 3 we plot the tracking of the maximum value of η over time
in figure 9. Although this only reveals the total maximum and not the individual wave
amplitudes, in most cases the maximum was the amplitude of the leading solitary wave.
The agreement is surprisingly good, given that the theory is only for time-dependent
modulations. The cases when we vary μ1 with μ2 = μ3 = 0 are shown on the upper left of
figure 9. When μ1 > 0 there is wave growth due to critical level instability, while μ1 < 0
leads to decaying waves due to dissipation at the water surface. The value of μ1 > 0 is of
order 10−4 based on the value of β = 1.745 found in MG24, but μ1 < 0 is much smaller
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Figure 5. Evolution of η with initial condition (4.7) for M = 1.0, D0 = 0 when μ1 = 0.001, μ2 = 0,

μ3 = 0 (a), and contour plot of η (b).
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Figure 6. Evolution of η with initial condition (4.7) for M = 1.0, D0 = 0, when
μ1 = −0.001, μ2 = 0, μ3 = 0 (a), and contour plot of η (b).
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Figure 7. Evolution of η with initial condition (4.7) for M = 1.0, D0 = 0, when μ1 = 0, μ2 = 0.001,

μ3 = 0 (a), and contour plot of η (b).
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Figure 8. Evolution of η with initial condition (4.7) for M = 1.0, D0 = 0, when μ1 = 0, μ2 = 0,

μ3 = 0.001 (a), and contour plot of η (b).
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Figure 9. With the initial condition (4.7), the tracking maximum value of η over time when M = 1, D0 = 0,
compared with the unforced case μ1,2,3 = 0. Cases μ1 /= 0, μ2 = μ3 = 0 (a), cases μ2 /= 0 μ1 =
μ3 = 0 (b), cases μ3 /= 0, μ1 = μ2 = 0 (c). The respective predictions ((3.31a,b)–(3.33a,b)) are from the
modulation theory. A combined case μ1 = μ2 = μ3 = 0.001 is shown in (d).

in magnitude as the kinematic viscosity κ = 10−6 m2 s−1. The predicted growth or decay
rates from the modulation theory, (3.31a,b) for μ1 = 0.001 and −0.001, are plotted to
compare with the numerical results. Note that the simulations cannot be run for too long
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Figure 10. Evolution of η with initial condition (4.7) for M = 0.5, D0 = 0.5, when μ1 = μ2 = μ3 = 0 (a),
and contour plot (b).
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Figure 11. Evolution of η with initial condition (4.7) for M = 0.5, D0 = 0.5, when
μ1 = 0.001, μ2 = μ3 = 0 (a), and contour plot (b).

due to the dissipative effect of the numerical sponge layers. The cases with μ2 > 0 and
μ1 = μ3 = 0 are shown on the upper right of figure 9. The wind stress effect in μ2 leads
to wave growth as expected, although μ2 has an order of magnitude 10−4, which is small
compared with μ1. If μ2 is of the order of 10−3 due to a much smaller depth, then there will
be significant wave growth. The predicted growth rates from (3.32a,b) for μ2 = 0.0001
and 0.001 are plotted to compare with the numerical results and again they agree well. The
cases describing the effect of bottom stress when μ3 > 0 and μ1 = μ2 = 0 are shown on
the bottom left of figure 9. For the present parameters with depth h = 10 m, μ3 has order
10−4 and causes significant wave decay, which will increase as the depth h decreases.
The predicted decay rates from (3.33a,b) for μ3 = 0.0001 and 0.001 are plotted and again
agree well. A case when all the parameters μ1,2,3 have the same order of magnitude 0.001
is shown at the bottom right of figure 9. For these parameters the bottom friction term
dominates and leads to wave decay.

Next, we examine cases with a non-zero initial mean level. We set M = 0.5 and
D0 = ±0.5, a non-zero constant in the initial condition (4.7). Figure 10 with M = 0.5,
D0 = 0.5 and μ1 = μ2 = μ3 = 0 can be compared with figures 2(a) and 3(b), where
D0 = 0. Again, there is formation of a soliton gas downstream, now with increased N,
larger amplitudes and faster speeds because the magnitude of η0(x) has been increased.
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Figure 12. With the initial condition (4.7), the tracking maximum value of η over time when M = 0.5,
D0 = 0.5, compared with the unforced case μ1,2,3 = 0. Case μ1 /= 0, μ2 = μ3 = 0 (a), case μ2 /= 0,
μ1 = μ3 = 0 (b), case μ3 /= 0, μ1 = μ2 = 0 (c). The respective predictions ((3.31a,b)–(3.31a,b)) are from
the modulation theory. A combined case μ1 = μ2 = μ3 = 0.001 with varying D0 is shown in (d).

Figure 11 is similar to figure 10 but with μ1 = 0.001, μ2 = μ3 = 0 and can be compared
with figure 5. Since μ1 = 0.001 > 0 the soliton amplitudes now grow. The corresponding
plots of the tracking of the maximum value of η over time are shown in figure 12 and
compared with the predictions from ((3.31a,b)–(3.31a,b)), which continue to hold for
a constant D0, noting that, in the absence of the wave envelope, a constant D0 is just
a translation of x. The case μ1 = μ2 = μ3 = 0.001 with a positive initial mean level
D0 = 0.5 and M = 0.5 is shown in figure 12(d). The downstream wave amplitude grows
exponentially, showing the dominant effect of the wind forcing. In the simulations, the
initial value for D is D0(x) = D0ENV(x). When D0 > 0, an expansion fan forms upstream
in −∞ < x < 6D0t and wave steepening occurs downstream in x < 6D0t < ∞ with
formation of a front. The front evolves into a solitary wave train as in figures 11 and 12.
This is in contrast to the case of zero initial mean D0 = 0 when M = 1.0 in figure 9(d),
which shows wave decay due to the dominance of the term in μ3. We also varied D0 over
the range [0.1, 0.4] and the tracking maximum amplitude shown in figure 12(d) decays
very slightly. However, when D0 = 0.5, the maximum amplitude increases. Seeking an
explanation of this phenomena, we refer to the modulation theory (3.17) for D. First,
(3.17) holds only when D2 
 2E, otherwise (3.16) is the modulation equation for D and
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Figure 13. Evolution of η with initial condition (4.7) for M = 0.5, D0 = −0.5, when μ1 = μ2 = μ3 = 0 (a),
and contour plot (b).
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Figure 14. Evolution of η with initial condition (4.7) for M = 0.5, D0 = −0.5, when
μ1 = 0.001, μ2 = μ3 = 0 (a), and contour plot (b).

this is affected by terms in Ex generating decay if Ex > 0; examination of figures 2–9
when D0 = 0 suggests this is the case. If the linear sinusoidal limit E = A2/16 = M2/4
(3.40a,b) is used to estimate E initially, then (3.17) holds when D0 
 0.7M; for M = 0.5,
this is D0 
 0.35, consistent with the numerical simulations of figure 12(d). Second, the
modulation solution for D from (3.17) shows that D will decay if μ3 + 6D0x > 0 for all x,
but otherwise will increase. Taking account of the envelope max(−6D0x) = 3D0/LE < μ3
when D0 < μ3LE/3. For the parameters we use, that is D0 < 0.02. Although much less
than the numerical predictions, the trend is correct.

Figures 13 and 14 show cases with M = 0.5, D0 = −0.5 and μ1,2,3 = 0 and μ1 =
0.001, μ2,3 = 0, respectively. In these cases η0(x) ≤ 0 and so no solitons are expected
to form. All radiating waves travel upstream with a larger amplitude when μ1 > 0. The
corresponding plots of the tracking of the maximum value of η over time are shown in
figure 15. As above we use the modulation theory (3.17) to interpret these results. Recalling
that in the simulations the initial value for D is D0(x) = D0ENV(x), when D0 < 0 we get
the opposite scenario to D0 > 0. An expansion fan forms downstream in 6D0t < x < ∞
and a front forms upstream in −∞ < x < 6D0t with wave steepening and front formation.
The fronts form first where ENVx has a maximum value, that is, at x = ±xM = D0t, where
xM = 0.88LE, sinh (xM/LE) = 1. The fronts are artefacts of the modulation theory and in
practice are smoothed by higher-order dispersion terms. This interpretation is consistent
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Figure 15. With the initial condition (4.7), the tracking maximum value of η over time when M = 0.5, D0 =
−0.5, compared with the unforced case μ1,2,3 = 0. Cases μ1 = ±0.001, μ2 = μ3 = 0 (a), case μ3 = 0.001,
μ1 = μ2 = 0 (b).

with the numerical simulations. The front evolves into a bore-like feature as in figures 13
and 14, but solitons are now precluded from forming. Instead, a quasi-periodic wave train
forms behind the front. Figures 13 and 14 also show intensifying radiation far upstream,
from which we infer that the wavenumber k is increasing in magnitude. We suggest this
is also due to the mean level upstream steepening. The wavenumber k is described by
(3.2), which reduces to (3.36) for linear sinusoidal waves when V = 6D0 − k2. Since D0
is a constant, k = k0 is constant, but when D0 is replaced by D due to the envelope and
varies with x, t as described above, k > 0 must also vary and we observe an increase in
k associated with the formation of fronts in D. The intensification moves upstream as
increasing k leads to an increase in the speed, V = 6D − k2, for a linear sinusoidal wave.
Although then the solution for D is available from (3.17), an explicit analytic expression
for k from (3.2) is not available. However, as t → ∞, |D| will decrease, leading to a
steady state far upstream, as seen in figures 13 and 14. If we suppose that the variation
in V = 6D − k2 is due mainly to D then (3.2) yields kt ≈ −k6Dx; when D0 < 0 and
so Dx > 0 upstream, there is an increase in k as observed, which is not predicted when
D0 > 0. The simulations were repeated for M = 0.5, D0 = 0, ±0.5 but with an increased
k0 = 2. The outcome (not shown here) was unchanged except that the upstream radiation,
especially for D0 = −0.5 < 0, was even more intense. As a check on another possible
interpretation, we moved the upstream sponge layer to far downstream to test whether it
was involved in this feature, but we found no discernible difference.

5. Summary and conclusions

In this paper we have used the well-known KdV equation, supplemented by the addition
of various forcing/friction terms, to describe the evolution of wind-generated water wave
packets in shallow water. The outcome is a type of KdV–Burgers equation, given in
dimensional form by ((2.1) and (2.2)) and in canonical non-dimensional form by ((2.4)
and (2.5)) in § 2. The forcing/friction terms are the shallow-water limit of terms derived
by Maleewong & Grimshaw (2024) (MG24) and are conveniently described here in
(2.6). There are three terms each with a non-dimensional coefficient μ1,2,3. The term
with coefficient μ1 is a combination of wave growth due to the critical level instability
theory of Miles (1957) and wave decay due to laminar friction at the water surface;
μ1 can be positive or negative, describing either an unstable KdV–Burgers equation
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with wave growth, or a stable KdV–Burgers equation with wave decay. The term with
coefficient μ2 describes wave growth due to a representation of wave stress in the air at
the water surface induced by a turbulent wind. The term with coefficient μ3 describes
wave decay due to a representation of a turbulent bottom boundary layer. The modified
KdV–Burgers equation (2.4) has two principal conservation laws for mass and energy,
expressed here by (2.4) itself and (2.9), respectively. In the absence of forcing/friction,
wave energy is conserved; otherwise, wave energy either grows or decays depending on
the relative signs and magnitudes of μ1,2,3. The term with coefficient μ1 leads to wave
growth or decay according to whether μ1 is positive or negative; the term with coefficient
μ2 > 0 leads to wave growth; the term with coefficient μ3 > 0 leads to exponential decay.
For wind-induced wave packets, the rate of change of wave energy for wave growth is
proportional to the square of the wave slope. Thus the wave amplitude grows slowly
over time for initially small-amplitude waves, but then grows rapidly when the amplitude
becomes large. The strength of wind shear and the wind speed near the water surface
appear in the parameters μ1, μ2, implying that a stronger wind has a greater effect on
water wave growth if μ1 > 0. We found that μ1 decreases from positive to negative as
the depth decreases, μ2 is independent of the depth and μ3 increases rapidly as the depth
decreases.

We pursued two approaches to investigate wave packet solutions of the KdV–Burgers
equation (2.4). First, in § 3 we adapted the Whitham modulation theory to study slowly
varying periodic wave trains, with an emphasis on the solitary wave train limit. We
applied a wave average to the conservation laws for mass and energy, supplemented by
(3.2) for conservation of waves. We obtained analytical solutions for modulated solitary
wave trains, amongst which we noted especially the expressions ((3.31a,b)–(3.33a,b)) for
time-dependent modulations of a solitary wave due to the forcing/friction terms with
coefficients μ1,2,3, respectively. Second, in § 4, we simulated (4.1) numerically with the
wave packet initial condition (4.7) modelled by a sinusoidal wave on a mean level, with a
slowly varying envelope. The simulations used a sponge layer (4.4) at each end of the
domain to absorb outgoing waves. In general, the outcome was a solitary wave train
downstream with many waves resembling a soliton gas, with some radiation upstream
of sinusoidal waves. Where appropriate, the numerical solutions agreed well with the
modulation theory for the wave growth and decay rates.

We conclude that, in this shallow-water limit, using the KdV–Burgers model with
forcing/friction modifications, (2.4) provides a useful model for wind-generated waves.
This has been noted in the literature, notably by Costa et al. (2014) in an examination of
ocean data in a shallow sea using just the KdV equation, and more recently by Zdyrski &
Feddersen (2021) and Manna & Latifi (2023) using an unstable KdV–Burgers equation,
numerically and analytically, respectively. The main disadvantage of this model is that it
is uni-directional. For weak two-dimensional dispersion, the KdV part can be replaced
by a Kadomtsev–Petviashvili (KP)-based model. More generally, to take account of both
bi-directional behaviour in the wind direction and two-dimensional dispersion, a model
based on a suitable Boussinesq equation could be developed.
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