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In this paper, we establish a new fractional interpolation inequality for radially
symmetric measurable functions on the whole space RN and a new compact
imbedding result about radially symmetric measurable functions. We show that the
best constant in the new interpolation inequality can be achieved by a radially
symmetric function. As applications of this compactness result, we study the
existence of ground states of the nonlinear fractional Schrödinger equation on the
whole space RN . We also prove an existence result of standing waves and prove their
orbital stability.
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1. Introduction

Recently, a great attention has been focussed on the study of inhomogeneous
fractional nonlinear Schrödinger equation{

iu̇− (−Δ)αu−m|x|σu+ ε|x|γ |u|p−1u = 0, x ∈ RN , t > 0
u|t=0 = u0 ∈ Hα(RN ), N � 2, α ∈ (0, 1), p > 1,

(1.1)

where m > 0 and ε > 0 are real physical constants, σ and γ are real constants,
1 < p < N+2α

(N−2α)+
, and this equation comes from various physical contexts in the

description of nonlinear waves such as propagation of a laser beam and plasma
waves. When σ = 2, the potential term is often called the harmonic potential and
occurs in the condensed states. When α = 1, there is a strong physical background
related to the study of (1.1) and one may prefer to the papers [3, 34, 37]. When
σ = 0 = γ, to understand the ground state of (1.1) (see proposition 3.1 in [14] or
[33]), one may use the well-known fractional Gagliardo–Nirenberg inequality that
for some θ ∈ (0, 1) such that 1

q = 1
2 − θα

N , it holds that

‖u‖q � C‖u‖θ
2‖u‖1−θ

Ḣα

(see proposition A.3 in [35]). When σ = −1, a new fractional Gagliardo–Nirenberg
inequality has been obtained in [20] to prove the existence of the ground state. In
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the above papers, the Schwartz symmetrization method (so called re-arrangement
argument) has been used. However, for σ > 0 and m > 0, one can not directly
use the re-arrangement argument to get the ground state to (1.1). The natural
question is if one may get the ground state in broad class of the powers σ, γ > 0
without using re-arrangement argument, which is one subject of this paper. In [25],
the author has found the ground state in the case when σ = 2 and α ∈ ( 1

2 ,
N
2

)
by

restricting the working space to the class of radially functions. In case when m = 0,
the ground states have been obtained [26]. The range of α also plays a crucial role in
the existence result of ground states. In this paper, we first set up a new fractional
interpolation inequality related to (1.1) and prove that the best constant in the new
inequality can be obtained by a radially measurable solution function. We then get
the ground states of the fractional Schrödinger equation on the whole space. For
α ∈ (0, 1

2 ], the power of the nonlinearity will be restricted into p ∈
(
1, N

N−α

)
and

the compactness result about radially symmetric functions obtained by Lions [23]
will be used. Even in this case, we need to have more conditions about γ and σ.
The precise results will be stated (see theorems 1.2 and 1.3 below) after we briefly
report some related results obtained by others. In the recent very interesting paper
[2], the authors have introduced the ODE approach to nonlinear equations with
the fractional Laplacian and their approach may be useful to the problem (1.1).

In [5], for α = 1 in (1.1), Chen and Guo have given a criterion for the global
existence of solutions of the corresponding Cauchy problem for an inhomogeneous
nonlinear Schrödinger equation with harmonic potential:{

iψt = −Δψ + |x|2ψ − |x|b|ψ|p−1ψ, b > 0,
ψ(x, 0) = ψ0(x),

(1.2)

with radial initial data

ψ0 ∈ Σ̃ := {u ∈ H1(RN ) : u is radial and
∫

RN

|x|2|u(x)|2 dx <∞}.

Their result may be stated as the following. Let b > 0, N > 1 + b
2 , 1 + 4+2b

N < p <
N+2
N−2 + 2b

N−1 (1 + 4+2b
N < p <∞, ifN � 2), A = N(p−1)−2b

2 , B = 2(p−1)−(N(p−1)−2b)
2

and let V (λ) =
(

A−2
p+1−A

)A−2
2B ||Q||

p−1
B

L2 λ−
A−2
2B , where Q is the ground state solution

to the equation

−ΔQ+Q− |x|b|Q|p−1Q = 0.

Define S = {φ ∈ Σ̃ : ||φ||L2 < V (||∇φ||2L2 + ||xφ||2L2)}. If ϕ0 ∈ S , then the cor-
responding solution to (1.2) is global in time and uniformly bounded in Σ̃.
Furthermore, S is unbounded in Σ̃. The proof relies on a Gagliardo–Nirenberg
inequality with best constant and an energy method. Moreover, a similar result
holds true for the critical power p = 1 + 4+2b

N , where the assumption ϕ0 ∈ S is
replaced with ϕ0 ∈ Σ̃ and ||ϕ0||L2 < ||Q||L2 . In addition, this criterion is sharp in the
following sense. For any λ > 0 and c ∈ C with |c| � 1, if ϕ0(x) = cλ

N
2 Q(λx), then

ϕ0 ∈ Σ̃, ||ϕ0||L2 � ||Q||L2 and the corresponding solution to (1.2) blows up in finite
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time. See also [21, 34] for related results. For σ = −s and γ = −t with 0 � t < 2s,
via a detailed study of a fractional version Hardy–Sobolev–Maz’ya inequality, with
particular attention to the optimality of the constants involved, Mallick [28] has
studied the existence of positive solutions of the nonlinear equation involving frac-
tional powers of the Laplacian with cylindrical potentials. Moreover, he has also
considered the symmetric and asymptotic properties of the positive solution. The
study of the problem (1.1) is also closely related to weighted Hardy type inequalities
[13, 20]. See also [7, 9, 15–19, 24, 29, 32] for related results of nonlocal problems.

We use the following notations: A � B denotes an estimate of the form A � CB
for some absolute constant C > 0; for q � 1, Lq := Lq(RN ) is the Lebesgue space
endowed with the usual norm ‖ · ‖q := ‖ · ‖Lq ; ‖ · ‖ := ‖ · ‖2, and ‖(−Δ)

α
2 · ‖ =

‖ · ‖Ḣα . We also use the brief notation that
∫ ·dx :=

∫
RN ·dx.

Recall that for s ∈ (0, 1), the fractional Hilbert space Hs = Hs(RN ) is defined
by [1, 6, 11, 12, 30]

Hs(RN ) = {u ∈ L2(RN ); (1 + |ξ|2)s/2F(u(ξ)) ∈ L2(RN )}
where F(u) denotes the Fourier transformation of u, with norm

‖u‖Hs =

√∫
RN

(1 + |ξ|2)s|F(u(ξ))|2 dξ.

We also denote by

‖(−Δ)
s
2u‖2 =

∫
RN

|ξ|2s|F(u(ξ))|2 dξ, u ∈ C∞
0 (RN ).

We introduce, for σ ∈ (0, 2), α ∈ (0, 1), a fractional Sobolev spaceDα with the norm

‖u‖Dα :=
(‖|x|σ

2 u‖2 + ‖(−Δ)
α
2 u‖2

) 1
2 ,

such that under this norm Dα is the completion of C∞
0 (RN ). We also let Ḣα be

the completion of C∞
0 (RN ) under the usual norm ‖(−Δ)

α
2 u‖. For α > 1, we may

use Fourier transform to define Hα and we refer to [8]. Then we may define Dα as
above.

For Z being any space of functions on RN , we denote by Zrd the space of radial
functions in Z. Here and hereafter, we denote, for φ ∈ Dα

rd, the mass and energy
functionals for (1.1):

M(φ) =
∫

|φ|2 dx := ‖φ‖2,

and

E(φ) =
1
2
‖(−Δ)

α
2 φ‖2 +

m

2

∫
|x|σ|φ|2 dx− 1

p+ 1

∫
|x|γ |φ|p+1 dx,

where the integration is over the whole space RN . We remark that the ground
state to (1.1) may be considered as the mountain pass critical point of the energy
functional E(·) on the working space Dα

rd [10].
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We define the functional

J(u) :=
‖(−Δ)

α
2 u‖B‖|x|σ

2 u‖A∫ |x|γ |u|1+p dx

on the space Dα
rd, where

A := (p+ 1)θ,

B := (p+ 1)(1 − θ),

where θ =
N+σ− 2N+2γ

p+1
2α+σ .

We now consider the minimization problem

d := inf
0 �=φ∈Dα

rd

{J(u);u ∈ Dα
rd, u �= 0} . (1.3)

There is no previous result about this problem with σ > 0. We now set up the
interpolation inequality as below.

Proposition 1.1. (1). Let α ∈ (0, 1
2 ], 1 < p < N

N−α , γ′ = γ
p+1 > 0, and σ > 0

with 2α
(1−p)N+α(p+1)γ � σ. Then

‖|x|γ′
u‖p+1 � ‖|x|σ

2 u‖1−θ‖u‖θ
Ḣα ,

for any u ∈ Dα
rd(R

N ).

(2). Let α ∈ ( 1
2 ,

N
2

)
, N+2γ−2α−4σ

N−2α � p � 2(N+γ)
N−2α − 1, and θ :=

N+σ− 2N
p+1−2γ′

2α+σ .
Then

‖|x|γ′
u‖p+1 � ‖|x|σ

2 u‖1−θ‖u‖θ
Ḣα ,

for any u ∈ Dα
rd(R

N ).

For α ∈ (0, 1), a more general result than proposition 1.1 is proven in theorem
1.1 in [31]. Since we have different purpose, we shall present a simpler and direct
proof of proposition 1.1 for completeness. We now explain why θ can be chosen in
this way. So we do the dimension analysis. Note that for p > 1, γ′ � 0, a > 0, b > 0,
we let the scaling ψ = ua,b := au

(
x
b

)
with x

b = z:

‖| · |γ′
ua,b‖p+1

Lp+1 =
∫

|x|γ′(p+1)up+1
a,b (x) dx

= ap+1

∫
|x|γ′(p+1)up+1

(x
b

)
dx

= ap+1bN+γ′(p+1)

∫
|x|γ′(p+1)up+1(z) dz

= ap+1bN+γ′(p+1)‖| · |γ′
u‖p+1

Lp+1 .

Note that for p = 1 and γ′ = σ
2 , we have

‖| · |σ
2 ua,b‖2

L2 = a2bN+σ‖| · |σ
2 u‖2

L2 .
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We also have

‖(−Δ)
α
2 ua,b‖2

L2 = a2bN−2α‖(−Δ)
α
2 u‖2

L2 .

If proposition 1.1 is true, then for any constant c, we have

ab
N

p+1+γ′
� c(ab

N+σ
2 )1−θ(ab

N−2α
2 )θ.

By this we have

b
N

p+1+γ′
� cb(

N+σ
2 )(1−θ)+(N

2 −α)θ,

which implies that

1 � cb(
N+σ

2 )(1−θ)+(N
2 −α)θ− N

p+1−γ′
.

Then we get (
N + σ

2

)
(1 − θ) +

(
N

2
− α

)
θ − N

p+ 1
− γ′ = 0,

which implies that

θ =
N + σ − 2N

p+1 − 2γ′

2α+ σ
.

As the consequences, we may obtain some of our main results (and the very new
part is when α ∈ (0, 1

2

]
, which has not been treated before).

Theorem 1.2. Let γ � 0. Assume (1) α ∈ (0, 1
2 ], 1 < p < N

N−α , and 2α
(1−p)N+α(p+1)

γ � σ; or (2) α ∈ ( 1
2 ,

N
2

)
, and 2γ+2α−N−4σ

N−2α � p � 2(N+γ)
N−2α − 1. We have three

conclusions below.

(1). There exists a positive constant C(N, p, γ, α), such that for any u ∈ Dα
rd, it

holds ∫
|x|γ |u|1+p dx � C(N, p, γ, α)‖|x|σ

2 u‖A‖u‖B
Ḣα . (1.4)

(2). Moreover, if 2γ+2α−N−4σ
N−2α < p < 2(N+γ)

N−2α − 1, then the minimization problem

β := inf {J(u), u ∈ Dα
rd} (1.5)

is attained in some ψ ∈ Dα
rd (that is, β = (

∫ |x|γ |ψ|p+1 dx)−1, ‖|x|σ
2 ψ‖ =

‖ψ‖Ḣα = 1) and ψ satisfies

B(−Δ)αψ +A|x|σψ − β(p+ 1)|x|γψ|ψ|p−1 = 0. (1.6)

(3). Furthermore,

C(N, p, γ, α) =
1 + p

A

(
A

B

)B
2

‖φ‖−(p−1), (1.7)

where φ is a ground state solution to the following equation on RN :

(−Δ)αφ+ |x|σφ− |x|γφ|φ|p−1 = 0, 0 �= φ ∈ Dα
rd. (1.8)
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Using this proposition, we shall prove that there is a ground state of (1.9) below.

Theorem 1.3. Take ε = 1, γ � 0, 1
2 < α < N

2 , and 2γ+2α−N−4σ
N−2α � p � 2(N+γ)

N−2α − 1.
Then, there is a ground state solution to (1.1) in the following meaning

(−Δ)αφ+ |x|σφ− |x|γφ|φ|p−1 = 0, 0 �= φ ∈ Dα
rd. (1.9)

To prove the result above, we need to set up a compactness result, which is
parallel to the classical Sobolev injection (see [5, 23]). We state here such result in
case 1

2 < α < N
2 .

Lemma 1.4. Let γ � 0, 1
2 < α < N

2 , and 2γ+2α−N−4σ
N−2α � p � 2(N+γ)

N−2α − 1. Then, the
following injection

Dα
rd(R

N ) ↪→↪→ Σ := {u ∈ L1
loc(R

n);
∫

Rn

|u|p+1|x|γ dx <∞} (1.10)

is compact, and we may simply write Σ := Lp+1(|x|γ dx).

We may also show the existence of other standing states to (1.1) in the following
way. We now define on Dα

rd the action for (1.1) by

S(u) = E(u) +
1
2
M(u)

and let Q(u) =< S′(u), u >. Set

M = {u ∈ Dα
rd;u �= 0, Q(u) = 0}

and

m0 = inf{S(u), u ∈ M}.
It is clear that when restricted on M , the action S is simplified to

S(u) = a

∫
|x|γ |u|p+1 = a

∫
|(−Δ)

α
2 u|2 +m|x|σ|u|2 + |u|2 dx

where a =
(

1
2 − 1

p+1

)
. Hence m0 � 0.

We shall show in next section that

Lemma 1.5. m0 = inf{S(u), u ∈ M} > 0.

The proof of lemma 1.5 replies on theorem 1.2 and this result will play an
important role in the argument of theorem 1.6 below.

Then, we can show the following result about the existence of standing waves
and their orbital stability for (1.1).

Theorem 1.6. Take ε = 1, γ � 0, α ∈ ( 1
2 ,

N
2

)
, and 2γ+2α−N−4σ

N−2α � p � 2(N+γ)
N−2α − 1.

We have the following conclusions.
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(1) There is a standing wave solution to (1.1) in the following sense

(−Δ)αφ+ |x|σφ+ φ− |x|γφ|φ|p−1 = 0, 0 �= φ ∈ Dα
rd, m0 = S(φ).

(2) Let B1 = (1 − θ0)(q + 1) + 2γ
N−2α , where q + 1 = p+ 1 − 2γ

N−2α and θ0 =
N
α

(
1
2 − 1

q+1

)
. For B1 < 2, this standing wave is orbitally stable.

As usual, in the orbitally stable part, we always suppose that the global existence
of solutions to (1.1) with initial datum near to the standing waves.

The rest of the paper is organized as follows. In §2, we prove lemmas 1.4 and 1.5.
We recall some useful inequalities and some tools like compactness result needed in
the sequel. In §3, we prove proposition 1.1. In §4, we prove theorem 1.2. We prove
theorem 1.3 in § 5. We establish the existence of standing states of (1.1) and the
orbital stability in §6. Thus, we prove theorem 1.6 in the last section.

2. Preliminary results

In this section, we collect some well-known facts about properties about radially
symmetric function on RN . An estimate similar to Strauss’s inequality [36] in the
fractional case is as follows [8]:

Lemma 2.1. Let N � 2 and 1
2 < α < N

2 . Then, for any u ∈ Ḣα
rd(R

N ),

sup
x�=0

|x|N
2 −α|u(x)| � C(N,α)‖(−Δ)

α
2 u‖, (2.11)

where

C(N,α) =

(
Γ(2α− 1)Γ

(
N
2 − α

)
Γ
(

N
2

)
22απ

N
2 Γ2(α)Γ

(
N
2 − 1 + α

)) 1
2

and Γ is the Gamma function.

To facilitate the proofs of our latter results, we show that ‖u‖Dα is stronger than
‖u‖Hα .

Proposition 2.2. Fix α > 0. There exists a uniform constant c1 > 0 depending
only on α and n such that

c1‖u‖2
Hα � ‖u‖2

Dα , (2.12)

for any u ∈ Dα
rd.

Proof. We argue by contradiction. Assume that (2.12) is not true. Then there exists
a sequence (uj) in Dα

rd such that ‖uj‖Hα = 1, ‖uj‖Dα → 0. We may assume that
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uj → u in L2
loc, uj → u a.e., (−Δ)

α
2 uj → 0 in L2. Since

1 = ‖uj‖2
Hα = ‖(−Δ)

α
2 uj‖2

L2 + ‖uj‖2
L2 ,

we have

1 + ◦(1) = ‖uj‖2
L2 . (2.13)

For any R > 0, we know that ‖uj‖2
L2 = ‖uj‖2

L2(BR) + ‖uj‖2
L2(Bc

R) and

Rσ‖uj‖2
L2(Bc

R) � ‖|x|σ
2 uj‖2

L2(Bc
R) = ◦(1).

This implies that u = 0 almost everywhere and

‖uj‖L2(Bc
R) � ◦(1)

(
1
R

)σ
2

.

By the local compactness imbedding theorem we conclude that ‖uj‖L2
loc

→ 0. Then
we have ‖uj‖2

L2(BR) + ‖uj‖2
L2(Bc

R) = ◦(1), which leads to a contradiction with the
equality (2.13). This completes the proof. �

Taking into account proposition 2.2, we get Dα
rd ↪→ Hα ↪→ Lq for any q ∈[

2, 2N
N−2α

]
.

Lemma 2.3. Let N � 2, p ∈ (1,∞) and α ∈ (0, 1). Then Dα
rd ↪→ Hα ↪→ Lq for any

q ∈
[
2, 2N

N−2α

]
.

This result will be useful in the proof of theorem 1.2.
We may prove lemma 1.4 by using the imbedding Dα

rd ↪→ Hα. However, we prefer
to give a direct proof below.

Proof. (Proof of lemma 1.4). Recall that

Σrd = {u ∈ L1+p(|x|γ dx);u = radial and measurable in RN},

which is a Banach space endowed with the norm

‖u‖Σrd
:=
(∫

|x|γ |u(x)|1+p dx
) 1

1+p

.

We divide the proof into three steps. Take (uj) a bounded sequence of Dα
rd and let

ε > 0. We may assume that uj converges weakly in Dα
rd and almost everywhere to

zero. We write∫
|x|γ |uj |p+1 dx =

(∫
|x|�ε

+
∫

ε�|x|� 1
ε

+
∫
|x|� 1

ε

)
|x|γ |uj |p+1 dx := I + II + III.

We should only concern γ > 0. Lemma 2.1 will play an important role below.
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Step I. We consider the integral in the region |x| � ε.

Since |u(x)| � |x|α−N
2 ‖(−Δ)

α
2 u‖ for x �= 0 and γ +

(
α− N

2

)
(p+ 1) +N > 0,

that is,

p+ 1 <
N + γ
N
2 − α

=
2N + 2γ
N − 2α

, (2.14)

we have

I =
∫
|x|�ε

|x|γ |uj |p+1 dx

�
∫
|x|�ε

|x|γ |x|(α−N
2 )(p+1)‖(−Δ)

α
2 uj‖p+1

�
∫

0

ε

rγ+(α−N
2 )(p+1)+N−1 dr‖(−Δ)

α
2 uj‖p+1

� 1
γ +

(
α− N

2

)
(p+ 1) +N

rγ+(α−N
2 )(p+1)+N |ε0 ‖(−Δ)

α
2 uj‖p+1

� εγ+(α−N
2 )(p+1)+N‖(−Δ)

α
2 uj‖p+1

� εγ+(α−N
2 )(p+1)+N → 0,

as ε→ 0.

Step II. We consider the integral in the region Oε := {ε � |x| � 1
ε}.

Since
∫

Oε
|uj |2dx→ 0 and |x|2σ is bounded in Oε, we obtain∫

Oε

|x|2σ|uj |2 dx→ 0.

Then,

II =
∫

ε�|x|� 1
ε

|x|γ |uj |p+1 dx

=
∫

(|x|N
2 −α|uj |)p−1|x|γ−(p−1)(N

2 −α)|uj |2 dx

� C‖uj‖p−1

Ḣα

∫
|x|γ−(p−1)(N

2 −α)|uj |2 dx

� C‖uj‖p−1

Ḣα
εγ−(p−1)(N

2 −α)−2σ

∫
|x|2σ|uj |2 dx

� Cεγ−(p−1)(N
2 −α)−2σ

∫
|x|2σ|uj |2 dx→ 0

as j tends to infinity.

Step III. We consider the integral in the region |x| � 1
ε .
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For γ < (p− 1)
(

N
2 − α

)
+ 2σ, we have

III =
∫

|x|γ |uj |p+1 dx =
∫ (

|x|N
2 −α|uj |

)p−1

|x|γ−(p−1)(N
2 −α)|uj |2 dx

� c‖(−Δ)
α
2 uj‖p−1

∫
|x|γ−(p−1)(N

2 −α)|uj |2 dx

� c‖(−Δ)
α
2 uj‖p−1

ε−γ+(p−1)(N
2 −α)+2σ

∫
|x|2σ|uj |2 dx

� cε−γ+(p−1)(N
2 −α)+2σ

∫
|x|2σ|uj |2 dx

� cε−γ+(p−1)(N
2 −α)+2σ → 0

as ε→ 0. Thus, the proof is completed. �

We now give the proof of lemma 1.5.

Proof. By theorem 1.2, for u ∈ M, we have

|||x| γ
p+1u||p+1 � C||(−Δ)

α
2 u|| A

p+1 |||x|σ
2 u|| B

p+1

� C1(||(−Δ)
α
2 u||2 + |||x|σ

2 u||2) 1
2 ,

and then

S(u)|M = a

∫
|x|γ |u|p+1

= a

∫
|(−Δ)

α
2 u|2 dx+

∫
||x|σ

2 u|2 dx+
∫
u2 dx

� a

∫
|(−Δ)

α
2 u|2 dx+

∫
||x|σ

2 u|2 dx

� 1
C1
a

(∫
|x|γ |u|p+1

) 2
p+1

.

Hence, (∫
|x|γ |u|p+1 dx

)1− 2
p+1

� 1
C1
a,

which implies that

m0 � a

(
a

C1

) 1
1− 2

p+1
> 0.

�
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3. Proof of proposition 1.1

We now prove proposition 1.1 via arguing by contradiction.

Proof. (proposition 1.1). We prove the result by dividing α into two cases: case (1):
α ∈ (0, 1/2] and case (2): α ∈ (1/2, N/2).

Case (1): In this case we have

α ∈ (0, 1/2], 1 < p <
N

N − α
, and

2α
(1 − p)N + α(p+ 1)

γ � σ.

If the conclusion of proposition 1.1 is not true, up to a scaling, there exists a
sequence (uj) ⊂ Dα

rd such that ‖|x| γ
p+1uj‖Lp+1 = 1, ‖(−Δ)

α
2 uj‖L2 = 1, and

‖|x|σ
2 uj‖L2 → 0. (3.15)

By Dα
rd ↪→ Hα, we may assume that ‖uj‖Hα � C for some constant C > 0. So

for any ε > 0, we have ‖|x| γ
p+1uj‖Lp+1(|x|�1/ε) → 0. Let λ =

2N
N−α−2p

2N
N−α−(p+1)

. Let BR =

{|x| � R} for R = 1/ε. Then, applying Cauchy–Schwartz inequality for u = uj and
omitting the integration domain for moment,

‖|x| γ
p+1u‖p+1

Lp+1(|x|�1/ε) =
∫

BR

|x|γ−σ
2 |u|p · |x|σ

2 |u|

�
(∫

BR

|x|2γ−σ|u|2p

)1/2(∫
BR

|x|σ|u|2
)1/2

.

Note that 2p = λ(p+ 1) + (1 − λ) 2N
N−α ,∫

|x|2γ−σ|u|2p =
∫

|x|2γ−σ|u|λ(p+1)+(1−λ) 2N
N−α

which is bounded by(∫
|x|(2γ−σ) 1

λ |u|p+1

)λ(∫
|u| 2N

N−α

)1−λ

and further bounded by (∫
|x|γ |u|p+1

)λ(
‖u‖

2N
N−α

Ḣα

)1−λ

.

In the last step we have used the assumption that

2α
(1 − p)N + α(p+ 1)

γ � σ,

which is equivalent to (2γ − σ)λ−1 � γ.
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Combining all these together, we get for some uniform constant C > 0,

‖|x| γ
p+1uj‖p+1

Lp+1(|x|�1/ε) � C

(∫
BR

|x|σ|uj |2
)1/2

→ 0,

which gives a contradiction to the assumption that

‖|x| γ
p+1uj‖Lp+1 = 1.

Case (2): Again we argue by contradiction and take the sequence (uj) as above.
Note that

1 =
∫

|x|γ |uj |p+1 =
∫ (

|x|N
2 −α|uj |

) 2γ
N−2α |uj |p+1− 2γ

N−2α .

Let q + 1 = p+ 1 − 2γ
N−2α , By lemma 2.1, we know that

1 � C

∫
|uj |q+1.

Using the well-known fractional Gagliardo–Nirenberg inequality (proposition A.3
in [35]) that

‖uj‖q+1 � C‖uj‖θ0
2 ‖uj‖1−θ0

Ḣα
,

where θ0 = N
α

(
1
2 − 1

q+1

)
, we get

‖uj‖L2 � c > 0.

That is,

‖uj‖L2(Bε) + ‖uj‖L2(Bc
ε) � c > 0. (3.16)

However,∫
Bc

ε

|uj(x)|2 dx � ε−σ

∫
Bc

ε

|x|σ|uj(x)|2 dx � ε−σ

∫
RN

|x|σ|uj(x)|2 dx→ 0.

For any ε > 0 small, ‖uj‖L2(Bε) → ‖u‖L2(Bε) = ◦(ε). Then

‖uj‖L2(RN ) → ‖u‖L2(Bε) = ◦(ε),
which lead to a contradiction with (3.16) that ‖uj‖L2 � c. �

4. Proof of theorem 1.2

The proofs of theorem 1.2 in the two groups of assumptions are almost the same.
So we present the full proof only in case α ∈ (1/2, N/2) (but in case (1), we need
to use the compactness result theorem II.1 of [23]). We divide the proof into three
parts.

A. Proof of the interpolation inequality (1.4):
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First, using lemma 2.1, we get∫
|x|γ |u(x)|1+p dx =

∫
(|x|N

2 −α|u(x)|) 2γ
N−2α |u(x)|1+p− 2γ

N−2α

� ‖u‖
2γ

N−2α

Ḣα

∫
|u(x)|1+p− 2γ

N−2α .

Now, thanks to lemma 1.1, it yields∫
|x|γ |u(x)|1+p dx � ‖u‖

2γ
N−2α

Ḣα
‖u‖1+p− 2γ

N−2α

1+p− 2γ
N−2α

� ‖u‖
2γ

N−2α

Ḣα
(‖u‖1−θ‖u‖θ

Ḣα)1+p− 2γ
N−2α

� ‖u‖(1−θ)(1+p− 2γ
N−2α )‖u‖θ(1+p− 2γ

N−2α )+ 2γ
N−2α

Ḣα
.

The proof of (1.4) is complete.
B. Proof of the equation (1.6):
Recall that β = 1

C(N,p,γ,α) and

J(u) =
‖(−Δ)

α
2 u‖B‖|x|σ

2 u‖A∫ |x|γ |u|1+p dx

on Dα
rd, where

A := (p+ 1)θ,

B := (p+ 1)(1 − θ),

where θ =
N+σ− 2N+2γ

p+1
2α+σ .

Using the definition of β in (1.5), there exists a sequence (uj) in Dα
rd such that

J(uj) → β. Denoting for aj , bj > 0 such that

‖ujajbj
‖ = 1 and ‖|x|σ

2 ujajbj
‖ = 1.

Let vj = ujajbj
, J(uj) = J(vj) and ‖vj‖Ḣα = 1, ‖|x|σ

2 vj‖ = 1.
It follows that

J(vj) =
1∫ |x|γ |vj |p+1

→ β.

Then we may assume that vj → v a.e., vj ⇀ v in Dα
rd.

Since the injection Dα
rd ↪→ Lp+1(|x|γ dx) is compact (by lemma 1.4), we obtain∫

|x|γ |vj |p+1 →
∫

|x|γ |v|p+1,

which means that

J(vj) → J(v).

Hence

J(v) = β.
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The minimizer ψ := v satisfies the Euler–Lagrange equation,

d
dε
J(ψ + εη)|ε=0 = 0, ∀η ∈ C∞

0 ∩Dα
rd.

Since

lnJ(ψ) =
B

2
ln‖(−Δ)

α
2 ψ‖2 +

A

2
ln‖|x|σ

2 ψ‖2 − ln

∫
|x|γψp+1 dx,

we have from
d
dε
J(ψ + εη)|ε=0 = 0,

that for any η ∈ Dα
rd,

B

∫
(−Δ)

α
2 ψ(−Δ)

σ
2 η dx

‖(−Δ)
α
2 ψ‖2

+A

∫ |x|σψη dx
‖|x|σ

2 ψ‖2
− (p+ 1)

∫ |x|γψpη dx∫ |x|γψp+1 dx
= 0.

That is, ψ satisfies

B

‖(−Δ)
α
2 ψ‖2

(−Δ)αψ +
A

‖|x|α
2 ψ‖2

|x|σψ − p+ 1∫ |x|γψp+1 dx
|x|γψp = 0

in the weak sense, i.e., ψ satisfies (1.6) in the weak sense.
C. Proof of the equation (1.7):
We use the scaling property of the functional J . By the fact that

B(−Δ)αψ +A|x|σψ − β(p+ 1)|x|γ |ψ|p−1ψ = 0,

letting

b =
(
A

B

) 1
2α

and a =
(

(
A

B
)

γ
2α

A

β(1 + p)

) 1
p−1

.

and ψ = φa,b := aφ(bx), we have

Aa

(
A

B
b2α(−Δ)αφ+ |x|σφ− A

B
(p+ 1)ap−1b−γ |x|γφ|φ|p−1

)
= 0.

It follows that

(−Δ)αφ+ |x|σφ− |x|γφ|φ|p−1 = 0.

Since

‖ψ‖ = 1 = ab−
N
2 ‖φ‖,

we get

β =
A

1 + p
(
A

B
)−

B
2 ‖φ‖p−1,

which is the desired equation (1.7). The proof is complete.
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5. Proof of theorem 1.3

The plan of proving theorem 1.3 is to use the Nehari method (see [10, 25, 26]).
We denote by X := Dα

rd.

Proof. We now consider the existence of the ground state φ, that is, it is the positive
solution with minimal energy to

(−Δ)αφ+ |x|σφ− |x|γ |φ|p−1φ = 0, 0 �= φ ∈ X.

For this, we let

K(u) =
1
2

∫
(|(−Δ)

α
2 u|2 + |x|σu2) dx− 1

p+ 1

∫
|x|γup+1 dx, u ∈ X.

Note that

K ′(u)ϕ =
∫ (

(−Δ)
σ
2 u(−Δ)

σ
2 ϕ+ uϕ

)
dx−

∫
|x|γ |u|p−1uϕdx,

We define the Nehari functional

N(u) = K ′(u)u =
∫ (|(−Δ)

σ
2 u|2 + |x|σu2

)− ∫ |x|γ |u|p+1 dx.

We define the Nehari manifold by

Nrd := {u ∈ X; u �= 0, N(u) = 0}.
Define

d = inf{K(u), u = 0, u ∈ Nrd}
the depth of the potential well.

Claim 1: d > 0.
For u ∈ Nrd, via a use of proposition 1.1 (2) we have

K(u) =
(

1
2
− 1
p+ 1

)
‖u‖2

X =
(

1
2
− 1
p+ 1

)∫
|x|γup+1

� ‖|x|σ/2u‖A
2 ‖(−Δ)

α
2 u‖B

2

� ‖u‖A+B
X .

Since A+B > 2, we obtain ‖u‖X � c > 0 for some uniform constant c > 0. It
follows that for u ∈ Nrd,

K(u) �
(

1
2
− 1
p+ 1

)
c2 > 0,

which implies that

d �
(

1
2
− 1
p+ 1

)
c2 > 0.

Claim 2 : There exists u ∈ Nrd, such that d = K(u).
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To prove this, we may take a minimizing sequence (uj) ⊂ Nrd,K(uj) → d. By
this we may assume ‖uj‖X � c for some uniform constant c > 0. Then using lemma
1.4, there exists a subsequence, still denoted by (uj) with the weak limit u ∈ X such
that uj → u a.e. and uj → u in Lp+1(|x|γ dx).

On one hand,

limjK(uj) = limj

(
1
2
− 1
p+ 1

)
‖uj‖2

X � K(u) =
(

1
2
− 1
p+ 1

)
‖u‖2

X .

On the other hand,

K(uj) =
(

1
2
− 1
p+ 1

)∫
|x|γ |uj |p+1 dx→

(
1
2
− 1
p+ 1

)∫
|x|γ |u|p+1 dx.

According to K(uj) → d, we get

∫
|x|γ |u|p+1 =

(
1
2
− 1
p+ 1

)−1

d > 0.

Then u �= 0 and N(u) � 0.
If N(u) < 0 and

N(tu) =
t2

2
‖u‖2

Dα
rd

− tp+1

p+ 1

∫
|u|p+1 > 0

for t > 0 small, then we have N(tcu) = 0 for some tc ∈ (0, 1). Then tcu ∈ Nrd and
K(tcu) � d. However, by direct computation, we have

K(tcu) =
(

1
2
− 1
p+ 1

)
tp+1
c

∫
|x|γup+1 <

(
1
2
− 1
p+ 1

)∫
|x|γup+1 = K(u) = d.

It is absurd. Then N(u) = 0 and K(u) = d, which implies that u is a minimizer of
K on Nrd. Then we have J ′(u) = 0 in the sense that for any ϕ ∈ C∞

0 (Rn)
⋂
Dα

rd,

J ′(u)ϕ =
∫ (

(−Δ)
σ
2 u(−Δ)

σ
2 ϕ + uϕ

)
dx−

∫
|x|γ |u|p−1uϕ dx = 0.

This implies that u is a nontrivial ground state as desired. �

Using the argument we may also get similar conclusion for the case when α ∈
(0, 1/2], 1 < p < N

N−α , and 2α
(1−p)N+α(p+1)γ � σ.

6. Proof of theorem 1.6

The argument in the proof of proposition 1.1 can be used to prove the following
interesting interpolation result.
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Lemma 6.1. Let α ∈ (1/2, N/2). There is a uniform constant C such that for any
u ∈ Hα

rd, ∫
|x|γ |u|p+1 � C‖u‖A1

2 ‖u‖B1

Ḣα

where A1 = θ0(q + 1), B1 = (1 − θ0)(q + 1) + 2γ
N−2α , q + 1 = p+ 1 − 2γ

N−2α and

θ0 = N
α

(
1
2 − 1

q+1

)
.

Proof. Let u ∈ Hα
rd. Note that∫

|x|γ |u|p+1 =
∫ (

|x|N
2 −α|u|

) 2γ
N−2α |u|q+1.

By lemma 2.1, we know that for x �= 0,

(
|x|N

2 −α|u|
) 2γ

N−2α � C(N,α)‖(−Δ)
α
2 u‖ 2γ

N−2α

Then we have ∫
|x|γ |uj |p+1 � C(N,α)‖(−Δ)

α
2 u‖ 2γ

N−2α

∫
|u|q+1.

Using the well-known fractional Gagliardo–Nirenberg inequality (proposition A.3
in [35]) that

‖u‖q+1
q+1 � C‖u‖θ0(q+1)

2 ‖u‖(1−θ0)(q+1)

Ḣα

for any u ∈ Hα, where θ0 = N
α

(
1
2 − 1

q+1

)
. Then we have

∫
|x|γ |u|p+1 � C‖u‖θ0(q+1)

2 ‖u‖(1−θ0)(q+1)+ 2γ
N−2α

Ḣα
.

This completes the proof. �

This result improves the power α ∈ (0, 1) in theorem 2.1 (1) [33] to α ∈ (1, N
2

)
.

The proof of theorem 1.6 is now given below.

Proof. To consider the existence of the ground state φ, we take a minimizing
sequence (ui) ∈ M, ui �= 0, S(ui) → m0, and we may assume(

1

2
− 1

p + 1

)∫
|x|γ |ui|p+1 =

(
1

2
− 1

p + 1

)∫
|(−Δ)

α
2 ui|2 dx +

∫
||x|σ

2 ui|2 dx +

∫
u2

i dx

� m0 + 1.

This implies that (ui) ⊂ Dα
rd is bounded. From the compact imbedding theorem,

Dα
rd ↪→ Σ. We may choose a sequence (ui) such that ui → u ∈ Dα

rd weakly and
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almost everywhere, and

(
1
2
− 1
p+ 1

)∫
|x|γ |ui|p+1 →

(
1
2
− 1
p+ 1

)∫
|x|γ |u|p+1.

Then,

(
1
2
− 1
p+ 1

)∫
|(−Δ)

α
2 u|2 dx+

∫
||x|σ

2 u|2 dx+
∫
u2 dx � m0,

(
1
2
− 1
p+ 1

)∫
|x|γ |u|p+1 = m0.

By this, we have u ∈ Dα
rd, u �= 0. In the following, we prove u ∈ M, and then S(u) =

m0, that is, u is the standing wave by the convergence of (ui). First, we have

(
1
2
− 1
p+ 1

)∫
|x|γ |u|p+1 �

(
1
2
− 1
p+ 1

)∫
|(−Δ)

α
2 u|2 dx

+
∫

||x|σ
2 u|2 dx+

∫
u2 dx,

that is, Q(u) � 0. If Q(u) < 0, then for λ ∈ (0, 1),

Q(λu) =
λ2

2

[∫
|(−Δ)

α
2 u|2 dx+

∫
||x|σ

2 u|2 dx+
∫
u2 dx

]
− λp+1

p+ 1

∫
|x|γ |u|p+1 dx

= λ2

[
1
2

∫
|(−Δ)

α
2 u|2 dx+

∫
||x|σ

2 u|2 dx+
∫
u2 dx− λp−1

p+ 1

∫
|x|γ |u|p+1 dx

]
.

By this, for λ > 0 small, Q(λu) > 0. Using the intermediate value theorem, we have
λ0 ∈ (0, 1), Q(λ0u) = 0, i.e. λ0u ∈ M, it implies S(λ0u) � m0. Note that

m0 � S(λ0u) =
(

1
2
− 1
p+ 1

)∫
|x|γ |λ0u|p+1 dx

= λp+1
0

(
1
2
− 1
p+ 1

)∫
|x|γ |u|p+1 dx

= m0λ
p+1
0 < m0,

a contradiction. Then Q(u) = 0, i.e. u ∈ M.
Next, we prove the stability of standing wave and the idea is similar to [4] (see

also [33]). Suppose there exists a sequence (u0
n) ∈ Dα

rd such that for positive real
numbers (tn) and ε0 > 0, where for some T ∗ ∈ (0,∞], un ∈ C([0, T ∗),Dα

rd) is the
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solution to (1.1) when taking n→ ∞,

||un − eitnφ||Dα
rd

→ 0, inf
θ∈R

||un(tn) − eiθφ||Dα
rd
> ε. (6.17)

Denote φn := un(tn). Since φ is a ground state to (1.1), we have S(φ) = m0, ||φ|| =
q > 0. Then

S(un) = m0 and ||un|| → q.

By theorem 1.2,
∫ |x|γ |un − φ|p+1 dx � ||un − φ||p+1

Dα
rd

→ 0, and using the mass
conservation, ||un(tn)|| = ||u0

n|| → ||φ||. By (6.17) and proposition 2.2, we have

||φn|| → q and S(φn) → m0.

If φn → φ ∈ Dα
rd, then

ε0 < inf ||φn − eiθφ||Dα
rd

� ||φn − φ|| → 0

which is a contradiction. Then we need only to prove that (φn) is relatively compact
in Dα

rd such that

||φn|| → q and S(φn) → m0.

The latter is

S(φn) =
1
2
||φn||2Dα

rd
+

1
2
||φn||2 − 1

p+ 1

∫
|x|γ |φn|p+1 dx→ m0. (6.18)

For large n, and ε > 0, using lemma 6.1 and proposition 2.2,

m0 + ε � S(φn) � 1
2
||φn||2Dα

rd
+

1
2
||φn||22 −

1
p+ 1

∫
|x|γ |φn|p+1 dx

� c

2
||φn||2Ḣα − C||φn||B1

Ḣα
||φn||A1

� c

2
||φn||2Ḣα

(
1 − C

c
||φn||B1−2

Ḣα
||φn||A1

)
.

Since B1 < 2, it follows that φn is bounded in Ḣα. This then implies that the term∫ |x|γ |φn|p+1dx is bounded. Going back to (6.18), we then know that φn is bounded
in Dα

rd. This completes the proof. �

We remark that in [27] the authors have proved existence results about ground
states of related nonlinear problems with drifting term and the existence of related
principal eigen-functions. We believe that related results there may be true for the
fractional cases.
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