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Abstract
Bibliographic aggregators like OpenAlex and Semantic Scholar offer scope for automated citation searching
within systematic review production, promising increased efficiency. This study aimed to evaluate the performance
of automated citation searching compared to standard search strategies and examine factors that influence
performance. Automated citation searching was simulated on 27 systematic reviews across the OpenAlex and
Semantic Scholar databases, across three study areas (health, environmental management and social policy).
Performance, measured by recall (proportion of relevant articles identified), precision (proportion of relevant
articles identified from all articles identified), and F1–F3 scores (weighted average of recall and precision), was
compared to the performance of search strategies originally employed by each systematic review. The associations
between systematic review study area, number of included articles, number of seed articles, seed article type, study
type inclusion criteria, API choice, and performance was analyzed. Automated citation searching outperformed the
reference standard in terms of precision (p < 0.05) and F1 score (p < 0.05) but failed to outperform in terms of recall
(p < 0.05) and F3 score (p < 0.05). Study area influenced the performance of automated citation searching, with
performance being higher within the field of environmental management compared to social policy. Automated
citation searching is best used as a supplementary search strategy in systematic review production where recall is
more important that precision, due to inferior recall and F3 score. However, observed outperformance in terms of
F1 score and precision suggests that automated citation searching could be helpful in contexts where precision is
as important as recall.

Highlights
What is already known?

• Citation searching has been recommended as s supplementary search method in systematic review
production; however, manual methods are expensive in terms of effort and time.

• The rise of bibliographic aggregators such as OpenAlex and Semantic Scholar presents promise for
automated forms of the technique, but there have been limited studies as to how they perform against
standard search methods, what factors may influence performance, and how best to integrate this into existing
systematic review production workflows.

This article was awarded Open Data and Open Materials badges for transparent practices. See the Data availability statement
for details.
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What is new?

• Our work simulated automated citation searching across 27 systematic reviews across three different
study areas (biomedical sciences/health, social policy, and environmental management) and two different
bibliographic aggregators (OpenAlex and Semantic Scholar).

• This work is novel as citation searching is often recommended as a supplementary method; however, there
is limited empirical evidence evaluating automated forms of the techniques, particularly across disciplines,
and over different databases.

• The method outperformed standard search strategies in terms of efficiently retrieving articles that are relevant
to a systematic review question efficiently (measured by precision) but was not effective in retrieving all
possible relevant articles as a whole (measured by recall).

• Study area was found to significant influence performance, with performance being higher in the environ-
mental management literature, compared to the social policy literature.

Potential impact for Research Synthesis Methods readers

• We found that automated citation searching that leverages direct citations should be used as a supplementary
search strategy, rather than a stand-alone strategy.

• However, due to its better efficiency, it can be integrated without overly burdening downstream workload in
terms of title and abstract screening.

• Teams who wish to integrate the technique should consider the citation activity of authors in their area, as
the technique may perform better in areas where “signpost” articles are common. For example, articles such
as consensus statements, guidelines or diagnostic criteria.

1. Introduction

Systematic review production and associated forms of evidence synthesis are crucial toward ensuring
the best external evidence is used to inform policy and clinical practice. However, while tradi-
tional systematic review methods are robust, they are mainly manual. This presents a mismatch
between the time it takes to synthesize and translate research evidence and the pace of research
evidence production.1 Given that efficient evidence synthesis is key to “learning health systems,”
where evidence from stakeholders, research, practice, and implementation is seamlessly integrated to
drive healthcare improvement, new methods for evidence synthesis are needed to improve efficiencies,
while maintaining requisite rigor.1

In response, the past decade has seen the rise of technological enablers to support evidence synthesis.
Mega bibliographic databases such as OpenAlex2 and Semantic Scholar3 now provide programmatic
access via application programming interfaces (APIs) to aggregate subject specific sources such as
PubMed and preprint servers such as ArXiV and MedRXiv. This enables potential automation of
evidence retrieval that utilizes citations networks and links as sources for articles that are potentially
relevant for a particular review question.

Specifically, citation searching or “snowballing” leverages citations and references (citation net-
work) of a “seed” article, for retrieving relevant articles for a particular systematic review question.4–6

This relies on the citation activity of article authors and the implicit knowledge contained in these
citation links to identify relevant articles. This has advantages over the de facto standard, the Boolean-
logic based keyword search, due to not needing to rely on the systematic review team’s own knowledge
of potential keywords thus potentially improving the comprehensiveness of a search strategy, partic-
ularly in instances where terminology is not well defined.5 However, employing citation searching as
a supplementary search strategy in conjunction with Boolean-logic-based keyword searches is slow
when conducted manually. The adoption of automated methods that leverage APIs such as OpenAlex
and Semantic Scholar offers substantial efficiencies in evidence retrieval phases of systematic reviews.
This is particularly in living guidelines7 and maps.8 A recent scoping review5 uncovered two examples
of such tools: CitationChaser, an opensource R application that leverages the Lens.org database,9 and
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CitationCloud, a publicly available extension of PubMed that allows the visualization of the citation
network of an individual paper, with a focus on biomedical sciences.10

However, there has been limited investigation into how automated citation searching performs when
compared against current standard methods. There is limited guidance on how automated citation
searching may be integrated into systematic review workflows, and on optimal circumstances for the
technique. Additionally, given the reliance of the technique on data availability and citation activity
across different study areas, understanding of potential biases and limitations is crucial.

2. Aims

The study aims to:

1. Simulate and evaluate the use of exclusively automated citation searching for evidence retrieval
compared to reference standard search strategies employed in systematic reviews. We will examine
this approach across three broad study areas: Public health and biomedical sciences; environmental
management; and social policy.

2. Evaluate the factors that influence the performance of automated citation searching, including i)
automated citation search parameters, ii) review question and included article parameters, and iii)
seed article parameters.

3. Methods

A protocol has been published a priori.11 Figure 1 highlights the high-level approach repeated in sample
systematic reviews. Python code and data devised to run the simulation and subsequent analyses is
available on GitHub (https://github.com/darrenkjr/automated_citation_search_study).

3.1. Reference systematic review retrieval

Systematic reviews were randomly selected as outlined in the protocol11 and screened against
prespecified criteria outlined in Table 1 for inclusion in the dataset. Ten systematic reviews from
each of the three study areas were randomly selected producing a random sample of 30 to be screen
using the inclusion and exclusion criteria (Table 1). The three study areas and relevant databases were:
Public health and biomedical sciences captured through the Cochrane Database of Systematic Reviews
(CSDR); environmental management captured through the Collaboration for Environmental Evidence
Database of Evidence Reviews (CEEDER); and social policy captured through Campbell Reviews.

Figure 1. Framework depicting high level methodology of the simulation study. Adapted from
protocol (11).
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Table 1. Inclusion and exclusion criteria for sample systematic reviews included in study11.

Inclusion criteria Exclusion criteria

• Completed systematic reviews with avail-
able data on search strategy depicted by a
PRISMA/Study Flow diagram and included
articles.

• Completed from 2019 to 2022 in English

• Systematic reviews with no data on Boolean-
based search strategy (including number
of included and excluded articles), and no
details on included articles

Key characteristics (Title, Source Database, Publication Year, Search Strategy Type, Study Type
Inclusion Criteria, Peer reviewed literature vs Grey Literature vs Peer reviewed & Grey Liter-
ature, Number of Included Articles) of each systematic review were also retrieved (Supplemen-
tary Tables S1 and S2).

3.2. Included article extraction

All articles originally deemed eligible for inclusion by original systematic review authors in the data
extraction phase of reference systematic reviews were extracted. These are denoted as “Included arti-
cles” in the rest of this paper. Where possible, the titles, abstracts, and relevant unique identifier (Digital
Object Identifier (DOI), PubMed Identifier (PMID), or Microsoft Academic Graph Identifier (MAG
ID)) were also retrieved Included articles were then used to both i) compute the intracluster semantic
similarity of each corresponding reference systematic review and as a ii) reference standard to evaluate
the performance of the original search strategies. Detailed original search strategies are available in the
Supplementary Appendix (Table S1).

3.3. Intracluster semantic similarity calculations

Titles and abstracts of included articles were used to compute the intracluster semantic similarity of each
corresponding reference systematic review. This represented thematic coherence or topic complexity
for each review.

First, the titles and abstracts were encoded as numerical vectors, known as embeddings. The seman-
tic similarity between included articles for each systematic review was calculated using cosine
similarity, where the cosine of the angle between two vectors (encoding the representation of the title
and abstract of a particular included article) is measured. A cosine value would range from −1 to 1,
where −1 would imply opposite meanings, 0 would imply no similarity at all between texts, and 1
indicating identical content.

The pairwise cosine similarity between the vectors of all included articles’ combined titles and
abstracts was then computed for each systematic review. The intracluster semantic similarity for a
particular reference systematic review would then be determined by averaging these pairwise cosine
similarity scores. A higher intracluster semantic similarity would thus suggest a more focused and
specific systematic review topic, while a lower score would imply a broader or more complex
systematic review topic.

3.4. Reference search strategy performance

Included articles were used as the reference standard or “ground truth” for evaluating the performance
of the original search strategy of each reference systematic review. Recall, precision, F1 score, F2 score,
and F3 score were employed as performance measures (Table 2).
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Table 2. Performance measures employed in study (recall, precision, and F score).

Measure Description Formulaa

Recall % Of included articles that were retrieved by
method
(Each systematic review has on Y
included articles. Recall is the % of these
articles that our citation searching
method identifies).

𝑋∪Y
𝑌

Precision % Of included articles that were retrieved
among all retrieved articles by method
(Precision is % of the systematic review
articles identified from all the articles our
citation searching method identifies).

𝑋∪Y
𝑋

F-β score,
𝛽 𝑟𝑎𝑛𝑔𝑒𝑠 𝑓 𝑟𝑜𝑚 1 − 3

Weighted harmonic mean of both recall and
precision, where the β parameter
determines the weight of recall in the
score. The 𝛽 range is set at 1–3 to evaluate
the performance of citation mining over a
range of potential applications
(F scores put more weight towards recall
than precision, and vice versa, by
different degrees).

(
1 + β2) ∗ precision∗recall

(β2∗precision)+recall

aX is the total retrieved documents obtained from a particular search strategy (original search strategy employed by reference systematic review or
automated citation searching), and Y is the total set of relevant documents eligible for inclusion in the sample systematic review.

To compute recall for the reference search strategy of each reference systematic review, it was
assumed that all relevant eligible articles were retrieved (Y in Table 2). Thus, recall was set at 100% for
all reference search strategies. To compute precision, the number of all articles retrieved per systematic
review (X in Table 2) was extracted from the systematic review PRISMA diagram or results section,
and the formula as in Table 2 applied. Consequently, F-β scores were computed assuming 100%
recall in the case of the reference search strategies employed by each reference systematic review and
applying the formulae in Table 2.

3.5. Seed article extraction

In order to simulate the worst-case scenario in which systematic reviewers have no prior knowledge of
the current state of the literature, it is assumed that systematic reviewers will select articles that both
i) represent their review question at hand and ii) would presumably be cited by authors of articles that
should be included in systematic review. For example, articles that represent underlying consensus in a
study area such as prior reviews, consensus definitions, or outcome constructs. It is further assumed that
such articles are typically cited in the background section to justify the conducting of the systematic
review (e.g., needing to update a prior review), or in the methods section as a way to specify the
inclusion or exclusion criteria (e.g., citing a consensus definition of a chronic disease to define the
population component of a PICO question). Thus, articles from these sections were extracted as seed
articles, forming a corresponding seed article pool for each sample systematic review.

The i) DOI/PMID, ii) Title, iii) year published, iv) number of citations, and v) number of references
were then retrieved. Seed articles were classified as: Research Article, Evidence Syntheses, Consensus
Article, Methodology Article, Commentary Article, Framework Article, and Other (including grey
literature such as book chapters and reports).
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Articles that i) were included articles but also cited in the background or methods section, or ii) had
more than 10,0000 citations, or iii) did not have a retrievable DOI or PMID were excluded from the
seed article pool. Included articles were excluded due to potentially introducing bias as the simulation
study is meant to simulate the worst-case scenario where teams have no prior knowledge, and articles
more than 10,000 citations were excluded due to practical considerations and computational limitations
(See Supplementary file for details).

3.6. Automated citation searching simulation

Seed articles were used to kickstart automated citation searching processes for each corresponding
systematic review. This was conducted on two database APIs: OpenAlex and Semantic Scholar. Both
were chosen due to their extensive coverage of over 200 million records that incorporates Microsoft
Academic Graph,12,13 which has been shown to have superior coverage over database alternatives such
as Dimensions, Scopus, and CrossRef.14 Further, API access to both databases was provided free of
charge for research purposes.

As in Figure 2, automated citation searching yielded a citation network for each seed article. Only
direct citations (both backward and forward) that were within one hop of the citation network for
a specific seed article were retrieved. This citation network was then evaluated according to recall,
precision and F1–F3 score, utilizing the included articles as the reference standard for evaluation, and
applying the formulae in Table 2.

Results that had a recall of 0 were excluded from further evaluation. All possible unique combina-
tions of the citation networks of each seed article were then iteratively combined and evaluated. Each
unique combination that was evaluated at this stage was recorded as an individual citation searching
run. Due to computational constraints, only the citation networks of the top 10 seed articles in terms
of recall per systematic review were combined and evaluated. In situations where there were less than

Figure 2. Schematic depicting the automated citation searching simulation process.
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10 seed articles with non-zero recall, all seed article citation network combinations that had a non-zero
recall were evaluated.

3.7. Analysis

The top-performing automated citation searching run for each sample systematic review were then
identified based on recall (with F3 score as a tiebreaker) and compared to performance of the reference
search strategy of the systematic review, irrespective of the API used.

Three main categories of factors were examined in relation to automated citation searching
performance, as quantified by recall, precision, F1 score, F2 score, and F3 score. First, factors related
to the review question: intracluster semantic similarity, study type inclusion criteria (gray literature vs
peer-reviewed literature), and study area (CEEDER vs Campbell vs Cochrane). Second, seed article
characteristics, specifically study type and third, citation searching parameters, including API choice
(OpenAlex vs Semantic Scholar) and the number of seed articles used were examined. The spearman’s
rank correlation matrix was employed for all numerical variables, whereas the Kruskal–Wallis and
post-hoc Mann–Whitney U hypothesis test was employed for categorical data (study area, study type
inclusion criteria, seed article study type, and API choice). Both approaches were chosen due to the
presence of outliers. Analysis for each factor except for “API Choice” was conducted on the top
performing run for each systematic review, irrespective of the API used. For the factor of “API choice,”
the best performing run for each systematic review generated from each individual API was extracted
and compared.

3.8. Extensions from initial protocol

In execution, some protocol modifications were required (11). See Supplementary File for details.

4. Results

4.1. Dataset

Systematic reviews were randomly selected (n = 30) and screened against prespecified criteria outlined
in Table 1 for inclusion in the dataset. Of the originally planned sample size of 30, only 27 systematic
reviews met inclusion and exclusion criteria (Table 1), 10 from CEEDER, 9 from Campbell Systematic
Reviews, and 8 from CDSR.

The dataset is composed of 27 systematic reviews, consisting of 10 systematic reviews from
the CEEDER, representing the environmental management literature, 9 from Campbell Reviews
representing the social policy literature, and 8 from the CDSR, representing the health literature.

In total, 25.9% (7/27) of systematic reviews included only peer-reviewed literature as part of their
inclusion criteria, while 74.1% (20/27) included both the grey and peer-reviewed literature. Reviews
from the CSDR were most likely to only consider peer-reviewed literature (7 out of 8), whereas only 1
out of 10 reviews from CEEDER considered peer reviewed literature only. Lastly, all Campbell Reviews
considered both peer-reviewed and gray literature.

All systematic reviews employed Boolean search strategies. The most common supplementary
search strategy was handsearching of specific journals and repositories (59.3%, n = 16) followed by
backward citation searching only (48.1%, n = 13), expert consultation (40.7%, n = 11), a full citation
search of select articles (33.3% n = 9), screening articles from previous versions of the review (11.1%
n = 3), screening articles from a prior evidence map (11.1% n = 3), crowdsourcing through social media
(7.4%, n = 2), and forward citation searching only (3.7%, n = 1).

As in Table 3, each systematic review contained a median of 42 (interquartile range [IQR]: 51.5)
eligible articles (included article). Review topic complexity as measured by intracluster semantic
similarity was moderate, with an average of 0.846 (IQR: 0.065).
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Table 3. Median number of included articles (IQR) and average intracluster semantic similarity (±SD)
for systematic reviews in each source database, and all reviews in the dataset.

Source database Number of included articles (IQR) Intra-cluster similarity ±SD)

CEEDER 50.5 (28.25) 0.830 (0.078)
Campbell 22.0 (53.0) 0.829 (0.035)
CDSR 15.0 (58.0) 0.864 (0.047)
All reviews 42.0 (51.5) 0.846 (0.065)

Table 4. Summary baseline characteristics of seed articles successfully retrieved from the OpenAlex
and semantic scholar APIs.

Median citation
Median references Median citations network size

Article type Article count (IQR) (IQR) (IQR)a

Semantic scholar API
Overallb 984 47.0 (53.0) 123.5 (348.25) 189.0 (393.25)
Consensus article 14 28.5 (37.25) 360.5 (1187.5) 476.5 (1193.75)
Methodology 174 42.0 (41.25) 457.0 (2650.25) 490.5 (2902.0)
Commentary 114 53.0 (67.75) 176.0 (542.5) 247.5 (521.75)
Evidence synthesis 261 79.0 (67.5) 107.0 (217.5) 205.0 (268.0)
Framework 23 60.0 (54.0) 138.0 (298.5) 216.0 (268.0)
Research article 353 39.0 (34.5) 89.0 (163.5) 136.0 (169.5)
Otherc 45 3.0 (42.0) 116.0 (486.0) 174.0 (632.0)

OpenAlex API
Overallb 1010 30.0 (35.75) 95.0 (277.75) 140.0 (309.5)
Consensus article 15 21.0 (17.5) 623.0 (1327.5) 630.0 (1332.5)
Methodology 179 27.0 (28.0) 372.0 (2314.0) 396.0 (2307.5)
Commentary 117 24.0 (37.0) 140.0 (353.0) 192.0 (369.0)
Evidence synthesis 268 51.5 (49.5) 80.5 (166.5) 151.0 (213.5)
Framework 24 36.5 (36.0) 93.5 (152.0) 140.0 (163.25)
Research article 360 25.0 (25.0) 74.0 (141.25) 106.5 (148.0)
Otherc 47 0.0 (8.5) 34.0 (138.0) 45.0 (154.0)

aRepresents sum of number of references and citations.
bAggregate of all article types. Only candidates with retrievable DOIs were extracted and retrieved.
cGrey literature, includes datasets, working papers, reports, and so on.

No significant differences in the number of included articles and intracluster semantic similarity
were observed across the study areas.

A median of 29 (IQR: 31) seed articles were extracted from each systematic review, resulting in
a total of 1024 seed articles extracted. This consisted of 35.7% (n = 366) research articles, 26.4%
(n = 270) evidence synthesis articles, 17.7% (n = 181) methodology articles, 11.4% (n = 117)
commentary articles, 2.44% (n = 25) framework articles, and 1.56% (n = 16) consensus articles. An
additional 4.76% (n = 49) articles were classified as “Other,” composed of the gray literature.

Table 4 depicts baseline characteristics of the seed articles retrieved from OpenAlex and Semantic
Scholar respectively. Overall, the median number of references per seed article was higher in the
Semantic Scholar compared to the OpenAlex API. This was similarly the case for both median citations
per seed article and median citation network size per seed article.
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Table 5. Median (IQR) precision, F1 score, F2 score, and F3 score for all search strategies employed
by the systematic reviews in the dataset.

Source database Precision % (IQR) F1 score (IQR) F2 score (IQR) F3 score (IQR)

CEEDER 1.15 (3.219) 0.02 (0.062) 0.05 (0.138) 0.10 (0.231)
Campbell 0.46 (0.374)a 0.01 (0.007)a 0.02 (0.018)a 0.04 (0.035)a
CDSR 3.81 (9.408)a 0.07 (0.168)a 0.16 (0.318)a 0.27 (0.445)a
All reviews 0.83 (3.269) 0.02 (0.063) 0.04 (0.14) 0.08 (0.236)
aSignificant difference between CDSR and Campbell reviews (adjusted p < 0.05).

4.2. Original systematic review search strategy performance

As seen in Table 5, original systematic review search strategy performance was poor in terms of
precision, with the typical review having a median precision of 0.83% (IQR: 3.29), median F1 score
of 0.02 (IQR: 0.063), median F2 score of 0.04 (IQR: 0.14), and median F3 score of 0.08 (0.236).
Reference search strategy performance was found to be significantly higher in terms of median
precision, F1 score, F2 score, and F3 score in the CDSR reviews compared to the Campbell Reviews
(Supplementary Table S5).

4.3. Performance of automated citation searching

Overall performance of automated citation searching was poor, with median recall across all sample
systematic reviews at 35.79% (IQR: 33.46%), median precision at 2.57% (IQR: 3.64%), median F1
score at 0.048 (IQR: 0.047), median F2 score at 0.031 (IQR: 0.044), and median F3 score at 0.028
(IQR: 0.040).

4.4. Automated citation searching vs reference search strategies

As pictured in Figure 3A, the automated method outperformed the reference search strategy in terms
of precision in 70.4% (19/27) of cases. However, observed out-performance started to deteriorate once
recall was weighted, with observed outperformance in terms of F1 score dropping to 67% (18/27) of
cases (Figure 3B). This further dropped to 48.1% (13/27) of cases when recall was weighted at two
times as important as precision (F2 score, Figure 3C), and finally to 11.1% (3/27) when recall was
weighted as three times important as precision (F3 score, Figure 3D).

As summarized in Table 6, observed outperformance by automated citation searching vs the
reference search strategy was significant in terms of precision and F1 score, with a median precision of
2.574% (IQR: 3.637) compared with 0.832% (IQR: 3.269) and a median F1 score of 0.048 (IQR: 0.047)
compared to 0.016 (IQR: 0.063). However, the reference search strategy significantly outperformed in
recall and F3 score (Table 6), though this assumes that the original systematic review had retrieved all
possible relevant for articles for inclusion.

5. Factors influencing automated citation searching performance

5.1. Significant factors: Study area

Among the factors examined, only study area significantly influenced automated citation searching
performance, affecting precision, F1, F2, and F3 scores.

Table 7 summarizes the best performing automated citation searching runs across different APIs,
categorized by systematic review subsets. While recall was highest in the CEEDER subset, followed
by Campbell and CDSR, the observed variation across these subsets was not significant. In terms of
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Figure 3. (A-D) Comparison of Automated Citation Searching Performance (Best Performing Run)
vs Search Strategies employed by Sample Systematic Review, by Precision, F1 Score, F2 Score and
F3 score. Observations above dotted line indicates out-peformance of automated method vs reference
standard.

precision, F1, F2, and F3 scores, performance was highest in the CDSR subset, followed by CEEDER,
and then Campbell. The differences were significant between the CEEDER and Campbell subsets, as
detailed in Table 7.

5.2. Nonsignificant factors

Other examined factors did not show significant effects. However, there were some interesting trends
as summarized in Tables S3-S4 in the Supplementary Material.
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Table 6. Performance (precision, F1 score, F2 score, and F3 score) of automated citation searching
vs reference systematic review search strategies.

Median Median
recall % precision % Median F1 Median F2 Median F3

Methods (IQR) (IQR) score (IQR) score (IQR) score (IQR)

Automated citation
searching

35.789%
(33.460)

2.574%
(3.637)a

0.048
(0.047)a

0.031
(0.044)

0.028
(0.040)a

Reference
systematic
review search
strategy
(Boolean
keyword search
+ additional
supplementary
strategies)

100.000%
(0.000)a,b

0.832%
(3.269)a

0.016
(0.063)a

0.040
(0.140)

0.077
(0.236)a

aSignificant difference between automated citation searching and reference systematic review search strategy (p < 0.05).
bAssumes that reference systematic review had retrieved all possible relevant articles for inclusion, thus set to 100%.

Table 7. Median (IQR) recall, precision, F1 score, F2 score, and F3 score of the best performing
automated citation searching runs, by systematic review subsets.

Systematic
review Median (IQR) Median (IQR) Median (IQR) Median (IQR) Median (IQR)
subset recall (%) precision (%) F1 score F2 score F3 score

All reviewsa 35.79 (33.50) 2.57 (3.60) 0.048 (0.047) 0.031 (0.044) 0.028 (0.040)
CEEDER 52.47 (33.80) 3.05 (2.40)b 0.057 (0.041)b 0.037 (0.029)b 0.034 (0.026)b
Campbell 35.48 (12.50) 1.28 (1.00)b 0.025 (0.020)b 0.016 (0.012)b 0.014 (0.011)b
CDSR 30.74 (27.10) 5.63 (5.80) 0.073 (0.086) 0.064 (0.058) 0.062 (0.055)
aAggregate of all systematic reviews.
bSignificant difference between CEEDER and Campbell subsets (adjusted p < 0.05).

First, automated citation searching tended to perform better on sample systematic reviews that
only included the peer-reviewed literature compared to systematic reviews that included both the peer
reviewed literature and the gray literature, with higher median recall, precision, and F scores. In terms
of seed article types, framework and consensus articles yielded the top two highest median recall scores
at 29.55% (IQR: 20.50) and 23.33% (IQR: 10.00), respectively. This was followed by “other” articles,
methodology articles, research articles, evidence synthesis articles, and lastly commentary articles.
However, once precision was weighted through the F scores, commentary articles merged as the leading
type of seed article, followed by evidence synthesis articles, framework articles, “other” articles,
methodology articles, and lastly consensus articles. There were marginal differences in performances
between the two APIs tested, with automated citation searching runs through the Semantic Scholar API
exhibiting a higher median recall and F1 score compared to the API. However, runs from the OpenAlex
API tended to exhibit higher precision, F2 scores and F3 scores, respectively.

Additionally, Intracluster semantic similarity tended to show moderate positive correlation with
recall, and weak positive correlations with all other performance measures. On the other hand, the
number of seed articles used in a particular automated searching run was found to have limited
correlation with recall and was negatively correlated with all other performance measures. Lastly,
the number of included articles extracted per sample systematic review also showed weak negative
correlations with precision, and limited correlation with all other performance metrics.
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Table 8. Median % (IQR) of included articles with Valid IDs extracted from systematic reviews in
dataset, and baseline retrievability rate of included articles across both APIs: (OpenAlex, Semantic
Scholar).

Median % (IQR) of Median (IQR) baseline Median (IQR) baseline
included articles with retrievability rate % retrievability rate %

Source database valid IDsa (OpenAlex) (Semantic Scholar)

All reviews 86.4 (12.05) 85.7 (13.2) 85.7 (16.4)
CEEDER 84.4 (15.52) 81.6 (15.52) 83.35 (17.65)
Campbell 89.1 (6.3) 86.4 (4.6) 87.0 (4.6)
CDSR 85.9 (15.2) 85.9 (15.2) 84.0 (18.23)
aValid IDs refer to PMIDs, DOI, or MAG IDs.

5.3. Baseline retrievability of included articles

As illustrated in Table 8, the median percentage of included articles with valid IDs in the typical
systematic review was 86.4% (IQR: 12.05%). Systematic reviews in the Campbell subset had the
highest median percentage of valid IDs, followed by CDSR and CEEDER, yet the differences were
not statistically significant.

However, the baseline retrievability rate of included articles across each API (OpenAlex and Seman-
tic Scholar) were lower than the percentage of included articles that had valid IDs, indicating potential
deficits in database coverage. Differences in retrieval rates across both APIs were nonsignificant.

5.4. Automated citation searching performance across benchmarks

Figure 4A compares the recall of the best performing automated citation searching run, irrespective of
API, against three recall thresholds: 50%, 80%, and 100%. As shown, 100% recall was achieved for
only 1 case, the 80% threshold was exceeded in 11.1% (3/27) of cases, and the 50% recall threshold
was exceeded in 37% (10/27) of cases.

Similarly, Figure 4B compares recall against the baseline retrievability rate of included articles.
Recall matched the baseline rate in only one case and exceeded the 80% threshold in 14.8% (4/27) of
cases and the 50% threshold in 40.7% (11/27) of cases, suggesting potential for improvement in the
automated technique.

6. Discussion

To our knowledge, this is the first study of its kind that investigates performance differences in
automated citation searching across different study areas and further investigates potential factors that
influence performance. Additionally, prior related simulation studies utilized different variants of auto-
mated citation searching, ranging from co-citation variants,15 to citation clusters,16 with most focus on
the biomedical literature.16,17 Additionally, prior related work has utilized different databases, ranging
from the Web of Science (WOS),15 to Lens.org,9 to the Dimensions database,16 and lastly PubMed.10

Our work here investigates the use of both the OpenAlex and Semantic Scholar APIs. However, none of
the simulation studies15–17 had investigated the variant of automated citation searching as investigated
here, where only the citation network within 1 “hop” of a seed article is retrieved.

6.1. Principal findings

Our results indicate that automated citation searching offers improved precision but struggles with
recall compared to traditional methods. Thus, while it is efficient at retrieving relevant articles, it may
miss a significant number of articles that would be found by conventional methods. As such, automated
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Figure 4. Recall of automated citation searching for each systematic review against various level of
recall (A), and against the baseline retrievability rate of included articles of each systematic review (B).

citation searching should be best used as a supplementary search strategy in traditional systematic
review production, or as an initial scoping search tool for resource-constrained settings. As a standalone
method, there is a risk of missing potentially relevant literature, and its suitability decreases as the need
for capturing all of the relevant literature increases. This is evidenced by both poor recall, and F3 score
(weighted average between recall and precision, where recall is 3x as important as precision). However,
observed outperformance in F1 score (weighted average between recall and precision, where recall is 1x
as important as precision) indicates that its integration as a supplementary method would not adversely
affect the downstream workload when it comes to the screening process.

Performance of automated citation searching was study area dependent, notably with performance in
terms of precision, F1 score, F2 score, and F3 score being significantly higher within the environmental
management literature (as represented by systematic reviews from CEEDER) relative to the social
policy literature, as represented by systematic reviews from Campbell reviews.

6.2. Study area and influence on performance

We hypothesize that observed performance differences across study areas may stem from i) varying
levels of consensus on concepts, terms, and definitions, ii) differences in research question broadness,
or iii) a combination of both. Authors in areas with high consensus are more likely to cite the same
articles, resulting in citation networks that are more likely to yield relevant articles. This could result in
enhanced automated citation searching performance. Despite a limited sample size, the high recall of
Consensus and Framework articles as seed article types supports this observation (Table 8).

We further note that the CDSR (Cochrane) subset exhibited the lowest median recall and highest F3
score. This could possibly be due to the diverse range of research questions that were the subject of the
Cochrane reviews in the dataset, ranging from health equity assessments18 to clinical interventions.19

Furthermore, the nonretrievability of clinical trials and conference abstracts by both OpenAlex and
Semantic Scholar APIs may have contributed to poorer performance in the Cochrane subset.
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6.3. Limitations of automated citation searching

Current methods of automated citation searching relies heavily on unique identifiers such as DOIs,9
PMIDs,9,10 and MAG IDs9 to identify, disambiguate, and retrieve articles. This method is further
constrained by the coverage of APIs that provide access to these IDs and citation links necessary
for building citation networks. We noted through the course of our research that the absence of valid
DOIs and other IDs primarily came from grey literature, clinical trial reports and conference abstracts.
This puts a theoretical limit on the performance that is achievable via automated citation searching
and other methods that rely on such unique identifiers. Nonetheless, as indicated by Figure 5B, the
gap between the current performance of automated citation searching and what can be theoretically
achieved suggests that more sophisticated methods, such as co-citations,15,16 additional “hops” through
the citation network beyond just 1 “hop” as tested in this study,20 and vector-based retrieval strategies,21

can yield further improvements in performance. Additionally, whilst this was not investigated in the
current study, the number of backwards and forwards citations of a seed article may also influence the
final performance of the technique, and future work should investigate where this should be a factor in
seed article selection.

6.4. Recommendations for current use

Despite its limitations as a standalone method, automated citation searching still offers distinct
advantages in terms of speed, replicability, and convenience. However, there are a dearth of publicly
available and accessible tools to allow for adoption. To this end, a publicly available web-app22

leveraging the databases tested in this study (OpenAlex and Semantic Scholar) is available for use
and further testing: https://darrenkjr-automatedcitationsearch.streamlit.app/. Our findings suggest that
automated citation searching may be best used as a supplementary strategy in study areas with high
consensus on research direction, diagnostic criteria, or definitions. Selection of seed articles should
reflect such consensus, using articles like core outcome sets and diagnostic criteria as “signposts.”
Automated citation searching may also have potential in resource constrained contexts where recall
is as important as precision, such as in rapid reviews or surveillance searches in the context of living
guideline updates.7

6.5. System-level approaches toward improving automated citation searching performance

Our work suggests that the performance of automated citation searching is currently limited by technical
aspects related to API coverage and socioecological aspects related to the citation activity of authors.
From an API coverage perspective, better support for grey literature and clinical trial identification
may improve performance, alongside improvements to data processing. Current methods rely on
the parsing of full text PDFs to extract citation links, which is non-trivial. An alternative would
be the development of an alternative format for journal article publishing built for interoperability
in terms of data sharing and machine readability. For example, such has been done with digital
health via the Fast Healthcare Interoperability Resources (FHIR) standard23 and has recently proposed
by Haddaway et al.24 for systematic reviews and other evidence syntheses. From a socioecological
perspective, increased adoption of consensus building activities within fields such as core outcome sets
and evidence-based guidelines may also yield further improvements in downstream automated citation
searching performance, beyond improvements in tackling research waste and research transparency.25

6.6. Future directions

Our work evaluates a simple form of automated citation searching in evidence synthesis and conducts
an exploratory investigation into the situations and contexts where such methods may be best deployed.
A publicly available webapp has been developed through this to allow for further testing in different
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contexts.22 Despite poor performance in recall, preliminary results indicate that there is further scope
for improvement on the technique particularly with other variants having shown promising results
in the biomedical literature specifically.5,15,16 More work with a larger sample size investigating
potential performance factors such as the citation network size of seed articles, and sensitivity analyses
investigating the effect of using included articles as seed articles is also warranted to further optimize
the technique and produce empirically derived guidance. However, for automated evidence synthesis
to truly gain mainstream adoption, more efforts are needed to integrate what is currently a disparate
tool chain with high technical hurdles for adoption; into a more user-friendly interface, crucially
starting from the beginning of the evidence synthesis process, specifically the scoping and search
strategy development phase. Future directions should be focused on current tool integration, combining
automated evidence retrieval with automated title and abstract screening, and evaluating such tools
across a diverse set of contexts and study areas. Additionally, as the support of more databases requires
technical expertise, open-source efforts to pool resources should be encouraged to allow for greater
user choice, and lower the technical gap to access such tools.

6.7. Limitations of the study

Our work here assumed that all the sample systematic reviews had retrieved all possible relevant
articles that were eligible for inclusion when the original search was conducted. In practice, some
eligible articles may have been missed by the original search, and the performance of the original search
strategies might be overinflated. It is also possible that automated citation searching may have retrieved
articles which may have been overlooked in the original systematic review due to the differences in
coverage between the APIs and the databases employed by the systematic reviews. As such, recall for
automated citation searching may have been underestimated. Further, both OpenAlex and Semantics
Scholar have bespoke ID systems beyond the ID types that were used in this study. As such, included
articles that may have been retrievable in either API may not have been uncovered, thus underestimating
recall. Lastly, our seed article selection strategy leveraged articles from the Background and Methods
sections of each sample systematic review, assuming the worst-case scenario where systematic reviews
have no prior knowledge of included articles that could be relevant to the review question, with
potentially no included articles that could be relevant. In reality, leveraging included articles could
yield better results. As such, our results could be potentially underestimating its efficacy.

7. Conclusion

Automated citation searching is currently best used as a supplementary search strategy during evidence
synthesis and systematic review production due to poor performance in terms of recall (captured less
relevant articles compared to standard practice). However, it outperforms standard methods in terms of
precision (proportion of relevant articles identified from all articles identified was better than standard
practice). As a result, it may have other niche applications in initial scoping searches or rapid reviews.
However, its suitability decreases as the need for higher recall increases, as evidenced by its poor
performance in terms of F3 score (where recall is weighted 3x as important as precision). Nonetheless,
it can be potentially integrated as a supplementary method without overly burdening the screening
process as evidenced by its higher F1 score (where recall is as important as precision) relative to
conventional methods. Lastly, the performance of automated citation searching is dependent on study
area, potentially due to differing levels of consensus on aspects such as diagnostic criteria, research
directions, and term definitions. As such, seed article choice in automated citation searching should
take this aspect into account.
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