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Abstract

We prove that every smooth complex normed space X has the Wigner property. That is, for any complex
normed space Y and every surjective mapping f : X → Y satisfying

{‖ f (x) + α f (y)‖ : α ∈ T} = {‖x + αy‖ : α ∈ T}, x, y ∈ X,

where T is the unit circle of the complex plane, there exists a function σ : X → T such that σ · f is a linear
or anti-linear isometry. This is a variant of Wigner’s theorem for complex normed spaces.
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1. Introduction

Let X and Y be normed spaces over F ∈ {R,C}, where R and C are the fields of
real and complex numbers, respectively. Denote T = {α ∈ F : |α| = 1}. A function
σ : X → T whose values are of modulus one is called a phase function on X. A
mapping f : X → Y is said to be phase equivalent to another mapping g : X → Y if
there exists a phase function σ : X → T such that f = σ · g, that is, f (x) = σ(x)g(x)
for x ∈ X.

The celebrated Wigner’s unitary–anti-unitary theorem is particularly important in
the mathematical foundations of quantum mechanics. It states that for inner product
spaces (X, 〈·, ·〉) and (Y , 〈·, ·〉) over F, a mapping f : X → Y satisfies

|〈 f (x), f (y)〉| = |〈x, y〉|, x, y ∈ X (1.1)

if and only if f is phase equivalent to a linear or anti-linear isometry in the case F = C
and to a linear isometry in the case F = R. There are several proofs of this result, see
[1, 2, 4, 6, 13, 18, 22] to list just some of them. For further generalisations of this
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fundamental result, we mention the papers [3, 5, 15, 17]. Wigner’s theorem is very
important and therefore worthy of study from various points of view.

A mapping f : X → Y between normed spaces over F is called a phase-isometry if
it satisfies the functional equation

{‖ f (x) + α f (y)‖ : α ∈ T} = {‖x + αy‖ : α ∈ T}, x, y ∈ X. (1.2)

It is worth noting that if X and Y are inner product spaces, then f : X → Y satisfies
(1.1) if and only if f satisfies (1.2). Indeed, with the substitution y = x, we deduce from
either (1.1) or (1.2) that f is norm-preserving. Squaring the norms on both sides of
(1.2), it follows that (1.2) holds if and only if

{Re(α〈 f (x), f (y)〉) : α ∈ T} = {Re(α〈x, y〉) : α ∈ T}, x, y ∈ X,

which happens if and only if (1.1) holds. Due to Wigner’s theorem, a mapping between
inner product spaces is a phase-isometry if and only if it is phase equivalent to a linear
or anti-linear isometry in the case F = C and to a linear isometry in the case F = R.

When X and Y are normed spaces, one can easily see that if f : X → Y is phase
equivalent to a linear or anti-linear isometry, then f is a phase-isometry. For instance,
if f = σ · U, where U is a linear isometry and σ : X → T is a phase function, then for
x, y ∈ X and α ∈ T,

‖ f (x) + α f (y)‖ = ‖σ(x)U(x) + ασ(y)U(y)‖ = ‖U(σ(x)x + ασ(y)y)‖
= ‖σ(x)x + ασ(y)y‖ = ‖x + ασ(x)σ(y)y‖

and then

‖x + αy‖ = ‖x + (ασ(x)σ(y))σ(x)σ(y)y‖ = ‖ f (x) + ασ(x)σ(y) f (y)‖.
Similar reasoning applies when U is an anti-linear isometry. Therefore, a natural
problem posed by Maksa and Páles [13] (the case F = R), and Wang and Bugajewski
[23] (the case F = C), can be restated as the following problem.

PROBLEM 1.1. Under what conditions is every phase-isometry between two normed
spaces over F phase equivalent to a linear or anti-linear isometry in the case F = C and
to a linear isometry in the case F = R?

A normed space X over F is said to have the Wigner property if for any normed
space Y over F, every surjective phase-isometry f : X → Y is phase equivalent to a
linear or anti-linear isometry in the case F = C and to a linear isometry in the case
F = R.

There have been several recent papers considering Problem 1.1 or the Wigner
property in the case F = R. For relevant results, please refer to [7–9, 11–13, 19–21,
23]. In particular, Tan and Huang [19] proved that smooth real normed spaces have the
Wigner property. Further, Ilišević et al. [9] proved that any real normed spaces have
the Wigner property. However, to the best of our knowledge, apart from the case where
X and Y are inner product spaces, there has been no progress in addressing Problem
1.1 in the case F = C. The aim of this paper is to give a partial solution for the case
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F = C. Specifically, we show that every smooth complex normed space has the Wigner
property. As a by-product, we give a Figiel-type result for phase-isometries. Although
our paper is interesting in its own right, we hope that it will serve as a stepping stone
to show that all complex normed spaces have the Wigner property.

2. Results

In the remainder of this paper, unless otherwise specified, all the normed spaces
are over F ∈ {R,C}. Although the real case has been solved, for the sake of brevity and
universality, we will present our lemmas, theorems and proofs in the united form F
rather than the single form C. For a normed space X, we use the notation SX , BX and
X∗ to represent the unit sphere, closed unit ball and dual space of X, respectively. The
set of positive integers is denoted by N.

We start this section with a simple and frequently-used property of phase-isometries
between two normed spaces.

LEMMA 2.1. Let X and Y be normed spaces and f : X → Y a phase-isometry. Then f
is a norm-preserving map. Moreover, if f is surjective, then

{ f (αx) : α ∈ T} = {α f (x) : α ∈ T}, x ∈ X.

PROOF. With the substitution y = x, it follows from (1.2) that

2‖ f (x)‖ = max{‖ f (x) + α f (x)‖ : α ∈ T} = max{‖x + αx‖ : α ∈ T} = 2‖x‖,
which shows that f is norm-preserving.

Now suppose that f is surjective. Let us take a nonzero x ∈ X and α ∈ T. The
surjectivity guarantees that there exists some y ∈ X such that f (y) = α f (x). Then

min{‖y + βx‖ : β ∈ T} = min{‖ f (y) + β f (x)‖ : β ∈ T} = 0,

which implies that

{α f (x) : α ∈ T} ⊂ { f (αx) : α ∈ T}.
Moreover, we conclude from (1.2) that

min{‖ f (αx) + β f (x)‖ : β ∈ T} = min{‖αx + βx‖ : β ∈ T} = 0,

which shows that

{ f (αx) : α ∈ T} ⊂ {α f (x) : α ∈ T}.
This competes the proof. �

From [19, Lemma 2], it follows that every surjective phase-isometry between
two real normed spaces is injective. The following example shows that a surjective
phase-isometry between two complex normed spaces may not be injective.

EXAMPLE 2.2. Let X be a complex normed space and x0 ∈ X\{0}. Define f : X → X
by f (αx0) = α2x0 for all α ∈ T and f (x) = x otherwise. Then f is a surjective
phase-isometry, but it is not injective since f (−x0) = x0 = f (x0).
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In Example 2.2, f is phase equivalent to the identity mapping, letting the phase
function σ be σ(αx0) = α for all α ∈ T and σ(x) = 1 otherwise.

Recall that a support functional φ at x ∈ X\{0} is a norm-one linear functional in X∗

such that φ(x) = ‖x‖. Denote by D(x) the set of all support functionals at x � 0, that is,

D(x) = {φ ∈ SX∗ : φ(x) = ‖x‖}.

The Hahn–Banach theorem implies that D(x) � ∅ for every x ∈ X\{0}. A normed space
X is said to be smooth at x � 0 if there exists a unique supporting functional at x, that
is, D(x) consists of only one element. If X is smooth at every x � 0, then X is said
to be smooth. It follows from [14, Proposition 5.4.20] that each subspace of a smooth
normed space is smooth.

Recall also the concept of Gateaux differentiability. Let X be a normed space,
x, y ∈ X. Define

G+(x, y) := lim
t→0+,t∈R

‖x + ty‖ − ‖x‖
t

= lim
t→+∞,t∈R

(‖tx + y‖ − ‖tx‖)

and

G−(x, y) := lim
t→0−,t∈R

‖x + ty‖ − ‖x‖
t

= lim
t→+∞,t∈R

(‖tx‖ − ‖tx − y‖).

It is known [14, 16] that both G+(x, y) and G−(x, y) exist for each x, y ∈ X and

G+(x, y) = max{Re φ(y) : φ ∈ D(x)}, G−(x, y) = min{Re φ(y) : φ ∈ D(x)}.

We say that the norm of X is Gateaux differentiable at x � 0 whenever G+(x, y) =
G−(x, y) for all y ∈ X, in which case the common value of G+(x, y) and G−(x, y) is
denoted by G(x, y). It is easy to see that a normed space X is smooth at x if and only if
the norm is Gateaux differentiable at x.

A point φ ∈ SX∗ is said to be a w∗-exposed point of BX∗ provided that φ is the only
supporting functional for some smooth point u ∈ SX . Recently, Tan and Huang [19]
showed that for every phase-isometry f of a real normed space X into another real
normed space Y and every w∗-exposed point φ of BX∗ , there exists ϕ ∈ SY∗ such that
φ(x) = ±ϕ( f (x)) for all x ∈ X. This result can be viewed as an extension of Figiel’s
theorem, which plays an important role in the study of isometric embedding. We
will present a similar result for a phase-isometry between two normed spaces over
F ∈ {R,C}.

LEMMA 2.3. Let X and Y be normed spaces and f : X → Y a phase-isometry. Then
for every w∗-exposed point φ of BX∗ , there exists ϕ ∈ SY∗ such that

|φ(x)| = |ϕ( f (x))|, x ∈ X.

PROOF. Let u ∈ SX be a smooth point such that φ(u) = 1. For every n ∈ N, the
Hahn–Banach theorem guarantees the existence of ϕn ∈ SY∗ such that

ϕn( f (nu)) = ‖ f (nu)‖ = ‖nu‖ = n.
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For t ∈ [0, n], there exists some αt,n ∈ T such that

‖ f (nu) − αt,n f (tu)‖ = ‖nu − tu‖ = n − t.

Consequently, we deduce that

2n = |ϕn( f (nu) − αt,n f (tu)) + ϕn( f (nu) + αt,n f (tu))|
≤ |ϕn( f (nu) − αt,n f (tu))| + |ϕn( f (nu) + αt,n f (tu))|
≤ ‖ f (nu) − αt,n f (tu)‖ + ‖ f (nu) + αt,n f (tu)‖
≤ (n − t) + (n + t) = 2n,

which implies that ϕn(αt,n f (tu)) = t. This means that for each t ∈ (0, n], there exists a
unique αt,n ∈ T such that ϕn( f (tu)) = αt,nt. By Alaoglu’s theorem, the sequence {ϕn}
has a cluster point ϕ ∈ SY∗ in the w∗ topology. It follows that for each t > 0, there exists
αt ∈ T depending only on t such that ϕ( f (tu)) = αtt.

For each x ∈ X, there exist αx, βx ∈ T such that αxφ(x) = |φ(x)| and βxϕ( f (x)) =
|ϕ( f (x))|. For each n ∈ N, there exists αx,n, βx,n ∈ T such that

‖nu − αxx‖ = ‖ f (nu) − αx,nαn f (x)‖ ≥ |ϕ( f (nu)) − αx,nαnϕ( f (x))|
= |αnn − αx,nαnϕ( f (x))| = |n − αx,nϕ( f (x))|

and

|n + βxϕ( f (x))| = |αnn + αnβxϕ( f (x))| = |ϕ( f (nu)) + αnβxϕ( f (x))|
≤ ‖ f (nu) + αnβx f (x)‖ = ‖nu + βx,nx‖.

Given that T is compact, there must be a strictly increasing sequence {nj : j ∈ N} in
N and α′x, β′x ∈ T such that limj→∞ αx,nj = α

′
x and limj→∞ βx,nj = β

′
x. Since φ is the only

supporting functional at u,

|φ(x)| = Re φ(αxx) = lim
j→∞

(‖nju‖ − ‖nju − αxx‖)

≤ lim
j→∞

(nj − |nj − αx,njϕ( f (x))|) = lim
j→∞

(nj − |nj − α′xϕ( f (x))|)

= Re (α′xϕ( f (x))) ≤ |ϕ( f (x))|

and

|ϕ( f (x))| = Re (βxϕ( f (x))) = lim
j→∞

(|nj + βxϕ( f (x))| − nj)

≤ lim
j→∞

(‖nju + βx,nj x‖ − ‖nju‖) = lim
j→∞

(‖nju + β′xx‖ − ‖nju‖)

= Re φ(β′xx) ≤ |φ(x)|.

This completes the proof. �

Let V be a vector space. For M ⊂ V , [M] denotes the subspace generated by M. If
x, y ∈ V , then we write [x] := [{x}] and [x, y] := [{x, y}] for simplicity.
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LEMMA 2.4. Let X and Y be normed spaces with X being smooth. Suppose that
f : X → Y is a surjective phase-isometry. Then for every x ∈ X,

f ([x]) = [ f (x)].

PROOF. We first prove that [ f (x)] ⊂ f ([x]) for each x ∈ X. Assume, for a contradiction,
that t f (x) � f ([x]) for some nonzero x ∈ X and t ∈ F. Since f is surjective, there exists
y ∈ X such that f (y) = t f (x). The function s �→ ‖y − sx‖ is continuous and its value
tends to infinity when |s| tends to infinity. Hence, there is at least one point s0 ∈ F such
that

d := d(y, [x]) = min{‖y − sx‖ : s ∈ F} = ‖y − s0x‖ > 0.

Set E := [x, y]. By the Hahn–Banach theorem, there exists φ ∈ SE∗ which satisfies
φ(y) = d and φ(x) = 0. Note that E being a two-dimensional subspace of X is reflexive.
This guarantees the existence of some z ∈ SE such that φ(z) = 1. Since X is smooth, so
is its subspace E. Therefore, φ is the only supporting functional at z ∈ SE. We apply
Lemma 2.3 to f |E : E → Y to obtain ϕ ∈ SY∗ such that |φ| = |ϕ ◦ f | on E. Then

0 < d = |φ(y)| = |ϕ( f (y))| = |ϕ(t f (x))| = |t||ϕ( f (x))| = |t||φ(x)| = 0,

which is a contradiction. This proves [ f (x)] ⊂ f ([x]).
Conversely, fix a nonzero x ∈ X. For each r ∈ (0,+∞), by the above inclusion and

the norm preserving property of f, there exists some αr ∈ T such that r−1 f (rx) =
f (αrx). For each α ∈ T, by Lemma 2.1, there exist βr,α,α′r ∈ T such that

f (rαx) = βr,α f (rx) = βr,αr f (αrx) = rβr,αα
′
r f (x),

which implies that f ([x]) ⊂ [ f (x)]. The proof is complete. �

Note that the conclusion of Lemma 2.4 is equivalent to

{ f (rαx) : α ∈ T} = {rα f (x) : α ∈ T}, x ∈ X, r ∈ [0,+∞).

LEMMA 2.5. Let X and Y be normed spaces with X being smooth. Suppose that
f : X → Y is a surjective phase-isometry. Then for every x, y ∈ X,

{G+( f (x),α f (y)) : α ∈ T} = {G(x,αy) : α ∈ T} = {G−( f (x),α f (y)) : α ∈ T}.

PROOF. We only prove the first equality, the second being similar. Let x, y ∈ X be
nonzero and α ∈ T. For each n ∈ N, Lemma 2.4 and (1.2) imply that there exist
αn, βn, γn ∈ T such that f (nx) = αnn f (x) and

‖ f (nx) + αnα f (y)‖ = ‖nx + βny‖, ‖ f (nx) + αnγn f (y)‖ = ‖nx + αy‖.

By the compactness of T, there is a strictly increasing sequence {nj : j ∈ N} in N and
β, γ ∈ T such that limj→∞ βnj = β and limj→∞ γnj = γ. Then

https://doi.org/10.1017/S0004972724000248 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000248


[7] The Wigner property 7

G+( f (x),α f (y)) = lim
j→∞

(‖nj f (x) + α f (y)‖ − ‖nj f (x)‖)

= lim
j→∞

(‖ f (njx) + αnjα f (y)‖ − ‖nj f (x)‖)

= lim
j→∞

(‖njx + βnj y‖ − ‖njx‖) = lim
j→∞

(‖njx + βy‖ − ‖njx‖) = G(x, βy)

and

G(x,αy) = lim
j→∞

(‖njx + αy‖ − ‖njx‖)

= lim
j→∞

(‖ f (njx) + αnjγnj f (y)‖ − ‖ f (njx)‖)

= lim
j→∞

(‖nj f (x) + γnj f (y)‖ − ‖nj f (x)‖)

= lim
j→∞

(‖nj f (x) + γ f (y)‖ − ‖nj f (x)‖) = G+( f (x), γ f (y)).

The proof is complete. �

LEMMA 2.6. Let X and Y be normed spaces with X being smooth. Suppose that
f : X → Y is a surjective phase-isometry. Then Y is smooth.

PROOF. Let x ∈ X be a nonzero element with the unique supporting functional
φx ∈ D(x). It suffices to prove that D( f (x)) is a singleton set. Let ϕ,ψ ∈ D( f (x)) and
f (y) ∈ kerϕ. For each α ∈ T, Lemma 2.5 implies that there exists β, γ ∈ T such that

Re(αφx(y)) = Reφx(αy) = G(x,αy) = G+( f (x), β f (y)) ≥ Reϕ(β f (y)) = 0

and

Re(αψ( f (y))) = Reψ(α f (y)) ≤ G+( f (x),α f (y)) = G(x, γy) = Reφx(γy).

Using the arbitrariness of α ∈ T twice gives φx(y) = 0 by the first inequality and
therefore ψ( f (y)) = 0 by the second inequality. This shows that kerϕ ⊂ kerψ. Thus,
ψ = λϕ for some λ ∈ F. Considering that ψ,ϕ ∈ D( f (x)), we find that λ = 1. This
implies that ψ = ϕ, which completes the proof. �

Recently, Ilišević and Turnšek [10, Theorem 2.2 and Remark 2.1] generalised
Wigner’s theorem to smooth normed spaces via semi-inner products. This can be
translated into the following theorem in the language of supporting functionals.

THEOREM 2.7. Let X and Y be smooth normed spaces over F and f : X → Y a
surjective mapping satisfying, for all nonzero x, y ∈ X,

|φ f (x)( f (y))| = |φx(y)|.

Then f is phase equivalent to a linear or anti-linear surjective isometry in the case
F = C and to a linear surjective isometry in the case F = R.

Combining the above results gives our main theorem.

THEOREM 2.8. Every smooth normed space has the Wigner property.
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PROOF. Let X and Y be normed spaces with X being smooth. Suppose that f : X → Y
is a surjective phase-isometry. By Lemma 2.6, Y is smooth. Then Lemma 2.5 implies
that for all nonzero x, y ∈ X,

{Reφ f (x)(α f (y)) : α ∈ T} = {Reφx(αy) : α ∈ T}.
Taking the maximum on both sides, for all nonzero x, y ∈ X,

|φ f (x)( f (y))| = |φx(y)|.
By Theorem 2.7, f is phase equivalent to a linear or anti-linear surjective isometry in
the case F = C and to a linear surjective isometry in the case F = R. This completes
the proof. �

It is well known that Lp(μ) is a smooth normed space, where μ is a measure and
1 < p < ∞. The following corollary is immediate.

COROLLARY 2.9. Lp(μ) has the Wigner property, where μ is a measure and
1 < p < ∞.
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