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This paper presents numerical simulations of the free fall of homogenous cylinders of
length-to-diameter ratios 2, 3 and 5 and solid-to-fluid-density ratios ρs/ρ going from 0
to 10 in transitional regimes. The path instabilities are shown to be due to two types
of transitional states. The well-known fluttering state is a solid mode, characterised
by significant oscillations of the cylinder axis due to a strong interaction between the
vortex shedding in the wake and the solid degrees of freedom. Weakly oscillating,
mostly irregular trajectories, are fluid modes, associated with purely fluid instabilities
in the wake. The interplay of solid and fluid modes leads to a varying scenario in
which the length-to-diameter and density ratios play an important role. The description
is accompanied by the presentation of the identified transitional states in terms of path
characteristics and vorticity structure of the wakes and by bifurcation diagrams showing
the evolution of asymptotic states with increasing Galileo numbers. There appears to be
a strong difference between the behaviour of cylinders of aspect ratio L/d = 3 and 5.
A similar contrast is stated between light cylinders of density ratios ρs/ρ ≤ 2 and dense
cylinders of density ratios 5 and 10. Finally, the question of the scatter of values of the
drag coefficient and of the frequency of oscillations raised in the literature is addressed. It
is shown, that in addition to external parameters (Galileo number, density and aspect ratio)
the amplitude of oscillations characterising the instability development is to be taken into
account to explain this scatter. Fits of the simulation results to simple correlations are
proposed. Namely that of the drag coefficient proves to be accurate (better than 1 % of
accuracy) but also that of the Strouhal number (a few per cent of accuracy) may be of
practical use.
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1. Introduction

The issue of the behaviour of bodies freely falling or ascending in a fluid has frequently
been in the centre of interest of many domains of science and engineering. Similarly as
for bodies of other shapes, predictions of the drag as a function of the Reynolds number
have been sought in the form of simple correlations. It was very soon recognised that a
‘secondary motion’ strongly influences the mean settling (rising) velocities at Reynolds
numbers starting at about 100 (see Clift, Grace & Weber 1978).

The origin of this secondary motion has been identified as ‘path instabilities’, i.e.
instabilities of the system composed of the fluid flow and the freely moving solid
body. The terminology reflects the resulting modification of the solid body trajectory as
the most conspicuous feature, but the instabilities are also accompanied by the rise of
characteristic flow structures. Path instabilities were investigated and analysed in the case
of a homogeneous sphere by Jenny, Dušek & Bouchet (2004) who showed how the degrees
of freedom of a freely translating and rotating body influence the transition scenario of the
fixed sphere wake (see Natarajan & Acrivos 1993; Johnson & Patel 1999; Ghidersa &
Dušek 2000). The effect of solid body degrees of freedom is much more spectacular for
flat objects. A comprehensive overview of the early work on path instabilities of discs and
flat cylinders has been provided by Ern et al. (2011). A diversity of shapes and possible
inhomogeneities make a systematic investigation costly and difficult to organise. Most
of numerical, experimental and theoretical work focused on homogeneous axisymmetric
bodies of prototypical shapes: flat cylinders and oblate spheroids. In this case, the
mathematical formulation can be parameterised by only three parameters. A possible
choice is the aspect ratio characterising the shape as the ratio χ = d/h, where d is the
diameter and h is the height for a cylinder or the length of the axisymmetry axis for
a spheroid, the solid–fluid density ratio ρs/ρ and an effective Reynolds number based
on the effective gravity geff = |ρs/ρ − 1|g, g being the gravitational acceleration, and
the diameter d as the length scale. Several other alternatives appear in the literature for
practical reasons. In their experimental study of slightly buoyant cylinders, Fernandes et al.
(2007) define an Archimedes number Ar using the equivalent radius of a sphere of the same
volume as length scale. The necessity to account for nominally infinitely flat discs made
Chrust, Bouchet & Dušek (2013) replace the density ratio by the non-dimensionalised
mass m∗ = m/(ρd3) as second parameter and take a Galileo number including the
non-dimensionalised volume V∗ = V/d3 in the definition.

Since the body axis is vertical in the equilibrium position of the steady fall of flat
cylinders and oblate spheroids at moderate Reynolds numbers, the path instabilities arise in
an axisymmetric configuration. As the result, they can relatively easily be simulated and
obey the weakly nonlinear theory of axisymmetry breaking of Meliga, Chomaz & Sipp
(2009). This facilitated a good understanding of their transition scenario (see Auguste,
Magnaudet & Fabre 2013; Chrust et al. 2013; Chrust, Bouchet & Dušek 2014; Tchoufag,
Fabre & Magnaudet 2014) and allowed Zhou, Chrust & Dušek (2017) to present an
exhaustive parametric study of path instabilities of oblate spheroids.

The main motivation for the study of finite cylinders was given by their prototypical
oblong shape easily available for experiments aiming at the determination of drag laws.
In some cases very specific motivations appear. Yasseri (2014) was interested in the
dispersion of landing points of cylindrical bodies dropped accidentally in water to
determine the risks of damage of offshore subsea equipments. In this case, the study results
in a statistical distribution of the probability of landing off the vertical direction without
focussing on the details of trajectories. Chow & Adams (2011) needed drag coefficient
predictions to anticipate the sedimentation of particles resulting from sequestering of CO2.
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Path instabilities of freely falling oblong cylinders

The particles having shapes of straight or curved cylinders, the classical experimentation
with straight cylinders was extended to cylinders curved in the form of truncated toruses.
Romero-Gomez & Richmond (2016) simulated the transport of an autonomous sensor of
cylindrical shape in a turbulent flow. As test case, they considered the fixed and free-fall
configurations to validate their numerical code.

The shape of homogeneous oblong cylinders is commonly parameterised by the aspect
ratio defined as L/d > 1, L being the cylinder length and d its diameter. Together with
the density ratio ρs/ρ and a suitably defined Archimedes or Galileo number, the problem
has three parameters in the same way as in the mentioned study of oblate spheroids. The
issue of most experimental investigations consists of measuring the asymptotic (terminal)
vertical velocity yielding the Reynolds number and the drag coefficient. As long as the
fall is steady vertical (i.e. without oscillation), the particle density ratio plays no role.
If the viscous effects start to be sufficiently weak, the effect of aspect ratio is well
compensated by the normal cross-section dL used to non-dimensionalise the drag. This
results in a common master curve at Reynolds numbers around 100. However, at higher
Reynolds numbers, the results are strongly influenced by a secondary motion described as
oscillations of the cylinder axis in a vertical plane about the mean horizontal orientation
(see Clift et al. 1978, chapter 6). In this case, all three parameters, especially the density
ratio, affect the dynamics, which results in a dispersion of the drag values. For this reason,
the oscillations have been subject of investigation along with the asymptotic vertical
velocity. Marchildon, Clamen & Gauvin (1964) found that the drag coefficient depends
on the particle density and suggested a relation between the oscillation frequency and the
density ratio. It was observed that a closer inspection of the presented graphs did not reveal
a real systematic dependence of the drag coefficient of the particle density. Though divided
into three density classes, low, medium and high, the particles present a drag coefficient
dispersed in a disordered way between 0.6 and 1 virtually independently of the Reynolds
number in the interval from 200 to 2000. Similarly, the suggested law for the Strouhal
number based on the length scale (dL)1/2 and the mean vertical velocity U,

f (dL)1/2/U = (ρ/ρs)
1/2/10.5, (1.1)

with f being the oscillation frequency, yields a large dispersion between the measured
values and the predictions. The underlying theory models the oscillations as that of an
undamped oscillator. The same approach is taken up by Chow & Adams (2011) and further
developed to model not only the oscillation period but also the maximum inclination
angle and the drag coefficient as functions of the square root of the ratio of density and
aspect ratio

√
(ρs/ρ)(d/L). The experimental results still present a significant dispersion

around the values predicted by a single-valued function. It is interesting to note that the
comparison of the law (1.1) with the theoretical formula for the oscillation period of Chow
& Adams (2011) yields a ratio between the mean vertical velocity U and the velocity scale
based of effective gravity (gravitational velocity)

ug,eff = √
geff d (1.2)

where U/ug,eff = 1.33. The real ratio must have been measured in the experiments but
fails to be mentioned. Jayaweera & Mason (1965) are mostly interested in very long thin
cylinders (L/d > 100) which behave very differently from cylinders of moderate aspect
ratio. Their oscillations are transverse due to the von Kármán vortex shedding. Short
cylinders are, however, also marginally discussed. The amplitude of oscillations (flutter)
about a horizontal axis is observed to decrease with the aspect ratio and the threshold of
the onset of the fluttering motion is observed to decrease with the density ratio.
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In spite of the importance of oscillations for the characterisation of the free fall of
cylinders, some numerical results of simulations of the flow past fixed finite cylinders are
also of interest for the understanding of the onset of path oscillations. Inoue & Sakuragi
(2008) simulate the flow past finite cylinders of aspect ratios 0.5 ≤ L/d ≤ 100 placed
perpendicularly to an incoming uniform flow. They present Strouhal and critical Reynolds
numbers of the vortex shedding as a function of aspect ratio. Wake patterns for both
long and short cylinders are represented. In particular, the steady case ‘type IV’ is to
be expected in the wake of a cylinder in steady vertical free fall. Pierson et al. (2019)
focus on a cylinder of a single aspect ratio L/d = 3 but investigate a variable yaw angle
with respect to the incoming flow at Reynolds numbers up to 250. For the perpendicularly
placed cylinder at Re = 100, they evidence a steady flow and the same flow pattern of
‘type IV’ as Inoue & Sakuragi (2008). At Re = 150 they find the von-Kármán-like vortex
shedding pattern labelled ‘type III’ and represented by Inoue & Sakuragi (2008) at the
same Reynolds number but for L/d = 5. Their critical Reynolds number of onset of
unsteadiness Re ∼ 125 is also in agreement with that of Inoue & Sakuragi (2008) but,
in addition, they present an interesting figure of vorticity structure immediately above the
onset of unsteadiness. It shows a double symmetry with respect to the streamwise–axial
and streamwise–transverse planes. The symmetry with respect to the plane defined by the
flow direction and the cylinder axis subsists for yaw angles down to 65◦ at the onset of
periodicity. At higher Reynolds numbers, the alternate von-Kármán-like vortex shedding
sets in and leads to a fully asymmetric wake.

The experimental work by Marchildon et al. (1964) and Chow & Adams (2011)
brought the oscillations of freely falling cylinders to the spotlight, but it is only a recent
experimental study by Toupoint, Ern & Roig (2019) that revealed the variety of unsteady
falling regimes, albeit for a single density ratio ρs/ρ = 1.16. The authors observed the
trajectories and oscillations of aspect ratios L/d ranging from 2 to 20. To fully characterise
the regimes, they use the Archimedes number

Ar = (geff D)1/2
D
ν
, D =

(
3
2

d2L
)1/3

(1.3)

(ν standing for the kinematic viscosity of the fluid) based on the diameter of the sphere
having the volume of the cylinder. The Archimedes numbers of the cylinders dropped
in water range from 200 to 1100. The depth of the experimental water tank allowed
them to track the asymptotic regimes for vertical distances exceeding 200d. The authors
distinguished five different regimes and set approximative thresholds for the loss of
stability of steady vertical paths. They showed that the (mean) vertical velocity tends to
about 1.5ug,eff with a dispersion of about 25 % due to variable aspect ratio and different
regimes. The frequencies of the fluttering motion regroup in the interval 0.1 through 0.12
if scaled by ug,eff and the length scale

√
Ld in qualitative agreement with considerations

of Chow & Adams (2011). Flow patterns are obtained by flow visualisations. In particular,
the steady wake structure characterised by two pairs of longitudinal vortices predicted
by numerical simulations is confirmed. Moreover, their paper contains a very large
amount of quantitative results that are discussed further in the present work. The authors
stated some limits of the experimental approach. Namely, the low amplitude, mostly
irregular, oscillations were difficult to observe with accuracy and some details, such as
the three-dimensionality of the trajectories, also go beyond the scope of their work. For
this reason they called for numerical simulations.

These experimental results were more recently extended to elastic cylinders of the
same density ratio and of aspect ratios ranging from 10 to 107 by Lorite-Diez et al.
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Path instabilities of freely falling oblong cylinders

(2022). In their investigation, they evidenced three transitional regimes. The TRA regime
corresponds to transverse oscillations of undeformed cylinder expected for sufficiently
elongated rigid cylinders as a response to Von Kármán vortex shedding. The reported
Strouhal number of oscillation St = 0.12 is in agreement with that of the wake of the fixed
infinite cylinder. The AZI regime is also a nominally rigid motion regime characteristic by
oscillations of the cylinder in the horizontal plane. It was not reported by Toupoint et al.
(2019) probably because it needs an aspect ratio of at least 20 whereas the investigation of
rigid cylinders was limited precisely to this value. The BO regime, in which the cylinder
responses by bending like a truly elastic body was evidenced for very large aspect ratios
L/d = 68 and 107. The bending mode depends, as expected, on the cylinder length. The
Strouhal number of oscillations (0.13) is again close to that of the vortex shedding of a long
rigid and fixed cylinder. This is very likely due to the fact that the bending oscillations are,
again, horizontal and of small amplitude (less than the cylinder diameter, i.e. about 1 % of
the cylinder length). As a consequence the cylinder motion does not destroy the parallel
vortex shedding.

Numerical simulations are better suited to shed light on the instabilities leading to
various observed unsteady regimes, on their nature and accurate thresholds. In past
numerical investigations (e.g. Zhou et al. 2017), cases of subcritical effects leading to
bi-stability or even multiple stability of coexisting states have been evidenced. In such
cases, the tracking of coexisting stability branches requires a numerical investigation. The
purpose of the present work is to fill this gap and investigate the scenario of instabilities
responsible for oscillations of freely falling homogeneous cylinders of moderate aspect
ratio. The used mathematical formulation and the numerical method along with its
validation are presented in § 2. In the next sections, cylinders of aspect ratio L/d = 2,
3 and 5 are considered. Section 3 presents the typical transition states evidenced by the
simulations. By representing the amplitude of oscillations as a function of the Galileo
number, we obtain bifurcation diagrams in § 4. Finally, § 5 takes up the previously tackled
issue of the scatter of the values of drag coefficient and frequencies of oscillations in the
light of the numerical data accumulated in the simulations.

2. Mathematical formulation and numerical method

2.1. Mathematical formulation
The mathematical formulation and the numerical method are basically the same as that
of Chrust et al. (2013) or Zhou et al. (2017). The details can be found in the PhD thesis
by Chrust (2012). Here we sum up the main features and present the minor improvements
implemented to tackle the configuration of falling (rising) elongated cylinders.

The fluid equations are solved in a vertical cylindrical domain Ω accompanying the
translation motion of the cylinder with respect to a fixed frame (0fix, xfix, yfix, zfix) (see
figure 1a). The centre O of the moving frame (O, xc, yc, zc) with axes parallel to the
fixed frame moves with velocity u with respect to the fixed frame. The figure represents
both the situation of falling and rising cylinders. In the latter case, the effective gravity
is still represented as downwards pointing and the bottom cylinder face is always the
inflow. Testings in previous work showed that the following dimensions make the results
insensitive to the position of outer boundaries: Lu = 12d, Ld = 25d and Rc = 8d. The
flow velocity field v is measured with respect to the fixed frame. As the result, the inflow
boundary condition imposed at z = −Lu and at the outer cylinder boundary simulate
a quiescent fluid of velocity v = 0. At the outflow face z = Ld a Neumann no-stress
condition is used. A spherical subdomainΩs of radius Rs is centred, again, at O but the axis
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Rc

Rs

O

Ld

Rs
zc

zs

yc
ys

xs

xc

Lu

geff

zfix

xfix yfix

Ofix

(b)(a)

Figure 1. (a) Outer cylindrical domain. The circle of radius Rs represents the boundary of the inner
spherical domain of (b). Here geff represents the direction and orientation of the vector of effective gravity,
(0fix, xfix, yfix, zfix) is a fixed frame with respect to which all velocities are expressed and (O, xc, yc, zc) is
the local frame in which the cylindrical domain is discretised. (b) Inner spherical domain of radius Rs. Here
(O, xs, ys, zs) is a rotating frame with Ozs axis along the cylinder symmetry axis.

Ozs is defined by the cylinder axis so that the whole subdomain rotates with the cylinder
(see figure 1b). The whole domain Ω is decomposed into Ωs and Ωout where Ωout is the
outer complement of Ωs in Ω .

The flow equations are non-dimensionalised using the cylinder diameter d as length
scale and the velocity scale

Uref = √
V∗geff d, (2.1)

where V∗ is the non-dimensionalised volume:

V∗ = V
d3 = π

4
L
d
. (2.2)

This results in

∂v

∂t
+ [(v − u − ω × r) · ∇] v + ω × v = −∇p + 1

Ga
∇2v (2.3)

and

∇ · v = 0, (2.4)

where u is the translation velocity of the centre of the cylinder and ω is the angular velocity
of the rotating frame in Ωs and zero in Ωout. The velocity scale (2.1) yields the Galileo
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number defined, in the case of cylinders, as

Ga =

√
π

4
Ld2geff

ν
. (2.5)

It should be noted that the so-defined Galileo number differs only by the factor of
√

π/6
from the Archimedes number of Toupoint et al. (2019) (Ga = √

π/6Ar). The no-slip
boundary condition on the cylinder surface amounts to setting

v|S = u + Ω × r|S, (2.6)

where r|S is the position vector of a point of the cylinder surface in the frame of the
spherical domain and Ω the angular velocity of the cylinder. The cylinder is let to rotate
with respect to the frame (Oxsyszs) so that Ω is only parallel to ω but not equal.

The flow equations are coupled with the solid body motion equations solved in the
spherical subdomain in the frame defined by the cylinder axis:

m∗
(

du
dt

+ ω × u
)

= F fl(v, p)− kfix, (2.7)

I∗ dΩ

dt
+ ω × (I∗Ω) = Mfl, (2.8)

where m∗ stands for the non-dimensionalised mass

m∗ = ρs

ρ
V∗, (2.9)

I∗ for the diagonal non-dimensionalised moment of inertia

I∗ = diag(I∗
⊥, I∗

⊥, I∗
‖ ); I∗

⊥ = 1
16

m∗
(

1 + 4
3

(
L
d

)2
)
, I∗

‖ = 1
8

m∗ (2.10)

and kfix is the unit vector pointing opposite to the effective gravity. F fl and Mfl are the
hydrodynamic force and torque obtained by integration of the pressure and shear stress on
the body surface.

In what follows, the Galileo number (2.5), the density ratio ρs/ρ and the aspect ratio
L/d are used as parameters of the investigation.

2.2. Numerical method
The spectral–spectral-element discretisation consisting of the spectral element
discretisation of the axial–radial plane combined with Fourier azimuthal expansion
(Ghidersa & Dušek 2000) is applied separately in both subdomains reconnected at the
spherical surface of radius Rs by using the spherical function expansion and the Wigner
matrices of the rotation group representation. The truncation of the spherical function and
azimuthal expansions is defined by the highest degree �max of spherical functions Y�,m
(Hecht 2000). If no information is to be lost, the azimuthal expansion is to be truncated
also at the wavenumber mmax = �max. An example of the axial–radial spectral-element
discretisation is presented in figure 2 for the cylinder of aspect ratio L/d = 3.

Among the numerical parameters needed to be optimised, there appeared to be the radius
Rs of the spherical subdomain enclosing the cylinder, the number of elements along the
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Figure 2. Enlarged view of the spectral element mesh of the spherical subdomain delimited by the interface
represented by the thick half-circle of radius Rs (here Rs = 2.5). The cylinder (its half-section −1.5 ≤ z ≤
1.5, r ≤ 0.5) is represented by the filled rectangle. The immediate neighbourhood outside of the gliding
interface is also visible. Individual spectral elements are discretised by 6 × 6 collocation points.

Mesh no. L/d Rs Ni N �max

1 2, 3 2.5 16 198 15
2 2, 3 2.5 16 198 31
3 3 2.5 24 300 31
4 5 3.5 24 338 31
5 5 3.5 24 338 63
6 5 3.5 44 594 63

Table 1. Tested and mostly used discretisation parameters in the simulations: Rs, radius of the gliding
interface; Ni, number of elements at the interface; N, total number of spectral elements; �max, maximum degree
of spherical function expansion (equal to the largest wavenumber of azimuthal expansion).

interface Ni (uniform distribution is adopted), the total number of elements N and their
distribution and the truncation of the spectral expansions �max. Since each shape requires
a specific discretisation a variety of meshes were implemented (see table 1).

The major issue of the present numerical study was the treatment of the largest aspect
ratios of 3 and 5. The method was developed and used, so far, for configurations involving
axisymmetry breaking. As a result, cases when the axisymmetry axes (Ozc and Ozs) of
the subdomains were mutually perpendicular rarely occurred and, when they occurred,
then only for short times. In the present case, the axes are constantly perpendicular in
the equilibrium position below the threshold of the onset path instabilities. In addition,
the rotating spherical subdomain must be large enough to contain the cylinder. This
situation was already identified as unfavourable by Chrust (2012) who showed, however,
that increasing the spectral accuracy (enlarging �max) solves the problem. The necessity
to account for high degrees � of spherical functions made us check two identities: the
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Mesh no. Ni �max Maximum error

1 16 15 1.7 × 10−5

2 16 31 0.01
3, 4 24 31 3.1 × 10−5

5 24 63 0.016
6 44 63 3.1 × 10−5

Table 2. Results of testing of the numerical accuracy of discretisation of the orthogonality relation (2.12).
‘Mesh no.’ refer the meshes described in table 1.

orthogonality of Wigner matrices d�mm′(π/2) involved in the formula for rotation matrices

�∑
m′=−�

d�mm′d�m′′m′ = δm,m′′ (2.11)

and the numerical accuracy of the orthogonality of Legendre polynomials

2�+ 1
2

(�− m)!
(�+ m)!

∫ π

0
Pm
� (cosϕ)Pm

�′(cosϕ) sin ϕ dϕ = δ�,�′ . (2.12)

Having replaced the basic formula of Hecht (2000) involving factorials by the recursion of
Blanco, Flórez & Bermejo (1997), we satisfy (2.11) up to � = 63 practically with machine
precision. As for (2.12), the tests yielded the results summed up in table 2.

The results on lines 2 and 4 of the table might cast doubt if the accuracy is sufficient.
For this reason, several tests have been executed to compare results of simulation of the
same oscillating regimes for meshes 2, 3 and 5, 6. The largest variation of vertical velocity
was 0.16 % and 0.3 % of the amplitude of oscillations when mesh 2 was compared with
mesh 3 (much less for meshes 5, 6). Other tests concerned the spectral-element resolution.
A reliable test (testing also the spectral element distribution) consists of increasing the
number of collocation points. An 8 × 8 collocation point refinement was tested with a less
than 0.2 % effect on the vertical velocity.

The parameter to which the results appeared to be the most sensitive was the
truncation �,m ≤ �max. To avoid too tedious testing and to benefit from the used
fast-Fourier-transform (FFT) algorithm optimised for powers of two, the truncations were
varied by a factor of two, i.e. with taking account of the numbering from 0, �max = 15,
31 and 63. Many results have been checked with two different truncations. In particular,
most of the presented results concerning cylinders with aspect ratio L/d = 2 and 3 have
been calculated both with truncation �max = 15 and 31 (the more accurate being selected).
The average variation of the vertical velocity was of the order of tenths of a per cent.
For L/d = 5, the (expensive) truncation at �max = 63 has been compared with �max = 31
(meshes 4 and 5). The difference being of less than 0.1 %, the truncation �max = 31, was
mostly kept as sufficient. In spite of these quantitatively satisfactory results any unexpected
behaviour, especially bi-stabilities, was checked for numerical robustness by varying the
spectral truncation.

3. Transition states of horizontally falling cylinders

At sufficiently small Galileo numbers oblong cylinders the fall with their axis oriented
horizontally and the fall is steady and vertical. With increasing Galileo number,
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instabilities set in and lead to unsteadiness. When sweeping the parameter space, we
evidenced several different regimes. Before investigating the transition scenarios of
cylinders of variable aspect and density ratio systematically, we start by describing the
found characteristic states. They are of two types.

3.1. Flutter
Flutter, in the sense we take up from Toupoint et al. (2019), is the most conspicuous and
most frequently observed behaviour in literature. It involves periodic oscillations of the
cylinder axis in a fixed vertical plane, selected by initial conditions. The whole motion
is thus planar, with the cylinder centre describing a zig-zagging (almost vertical in the
mean) planar trajectory. In our simulations, the flutter sets in mostly via a supercritical
bifurcation from the steady vertical state but, for aspect ratios L/d = 3 and 5 and large
density ratios (ρs/ρ = 5, 10), subcritical bifurcations with coexistence of large flutter with
non-oscillating or weakly oscillating states have been observed.

In the simulations, we observe the trajectory to settle to a fixed plane even if the initial
condition does not correspond to a symmetric flow. Here, we define the horizontal x-axis
in the direction of the plane and the y-axis as normal to the trajectory plane. In this
reference frame, ux and nx denote the horizontal velocity and horizontal projection of
the unit vector along the symmetry axis of the cylinder in the trajectory plane, uy, ny are
the projections normal to the plane and uz, nz are the corresponding vertical components.
Here nz represents the sine of the inclination angle of the cylinder axis with respect to the
horizontal orientation. With this definition of the reference frame, the main features of this
regime are:

(i) planar symmetry with respect to the trajectory plane xOz;
(ii) zero uy velocity;

(iii) significant periodic oscillations of the cylinder (more exactly of its symmetry axis)
in the trajectory plane characterised by oscillations of ux and nz about (almost) zero;

(iv) oscillations of the vertical velocity uz about a mean value (which will be taken to
evaluate the mean Reynolds number and the mean drag).

These characteristics are in perfect agreement with those originating in experimental
observation of Toupoint et al. (2019).

A complementary remark concerning the choice of the numerical resolution is to be
made at this place. For this purpose, we take the case of the cylinder of aspect ratio L/d =
3 and density ratio 1.16 (chosen to agree with the experiment of Toupoint et al. (2019).
Table 3 presents results of the simulation of the flutter at Ga = 200 with the truncation
�max = 15 and 31.

It can be seen that the reported values are quite acceptable even for the lower resolution.
The comparison shows that the small mean values are not to be assigned to an insufficient
convergence of the spectral method. The axial–radial spectral element mesh of the
spherical subdomain is probably not symmetric within machine precision The non-zero
mean value of the horizontal velocity results in a slightly oblique zigzagging trajectory,
albeit with a very small inclination mean(ux)/mean(uz), typically of 10−4 and less (see
figure 3a). This obliqueness is systematically neglected. The better resolution is required
mainly by the necessity to avoid the instability breaking the planar symmetry as seen in
figure 3(b,c). Whereas the lower resolution yields a growth rate of oscillation amplitude of
the velocity normal to the trajectory plane of 0.016 leading to a spurious quasi-periodic
three-dimensional trajectory, figure 3(c) shows that, with the better resolution, the
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Figure 3. (a) View of the trajectory of the cylinder centre with extremely enhanced horizontal scale,
(b) amplitude of oscillations of the velocity uy normal to the trajectory plane at truncation �max = 15 and
(c) velocity uy with truncation �max = 31. Here L/d = 3, ρs/ρ = 1.16 and Ga = 200.

�max A(nz) mean(nz) mean(uz) A(ux) mean(ux) Period

15 0.1653 6.4 × 10−4 −0.8732 0.0271 8.9 × 10−6 27.9
31 0.1634 3.95 × 10−4 −0.8706 0.0245 1.1 × 10−4 27.0

Table 3. Flutter of a cylinder L/d = 3, ρs/ρ = 1.16 simulated at Galileo number 200 for two numerical
resolutions given by truncation �max. A(nz), amplitude of the vertical projection of the cylinder axis; mean(nz),
its mean value; mean(uz), mean value of the vertical velocity; A(ux), amplitude of the horizontal velocity;
mean(ux), its mean value and period of oscillations (in units d/Uref ).

symmetry is well preserved with numerical oscillations of the normal velocity of constant
amplitude of order of 10−7.

The main properties of the flutter, enumerated previously, are illustrated in figures 4–6
referring to the motion of a cylinder of aspect ratio L/d = 5 and density ratio ρs/ρ = 10
at Galileo number Ga = 150. Figure 4(a) shows a kinogram of the cylinder motion over
one period of oscillations. In this case of high density ratio, the maximum inclination is
reached at the maximum deviation from the mean vertical line, i.e. when the horizontal
velocity becomes zero. Figure 4(b) represents the vertical (streamwise) component of
vorticity ωz in the wake at two opposite levels (level 0.28 has been chosen). The wake
structure is characterised by two exactly anti-symmetric vortex sheets shed from the
cylinder surface. Note the secondary vortices of opposite sign shed from the cylinder tip.
Figure 5(a) shows a common graph of the cylinder inclination nz and of the horizontal
velocity (the latter has been rescaled to obtain comparable amplitudes). The phase shift is
close to π/2 meaning that the maximum velocity is reached when the cylinder inclination
is zero (and conversely), in agreement with the statement concerning the kinogram. This
phase shift was discussed by Toupoint et al. (2019) at a small density ratio (1.16) and
was found close to 5π/4 (∼3.93). In the sense of the definition of Toupoint et al. (2019),
our found phase shift is close to 3π/2 (4.71), more accurately 4.80. However, the phase
shift varies with the density ratio. For the case of figure 3 (the same density ratio as that
of Toupoint et al. 2019), we find the phase shift 4.09, whereas for the same aspect ratio
L/d = 3 and Galileo number (200) but density ratio of 10, the phase shift was found to be
4.53. The situation of the example in figure 5(a) can thus be considered as characteristic
for dense and long cylinders. The stability of the symmetry is documented in figure 5(c).
The simulation referred to by the graphs was run from an initial condition in which the
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Figure 4. (a) Cylinder motion over a period of oscillation. (b) Vertical vorticity component ωz in the wake
represented by two iso-surfaces of opposite sign at ωz = ±0.28. Here L/d = 5, ρs/ρ = 10 and Ga = 150.

cylinder was in an almost horizontal position. This allowed us to follow both the instability
amplification and its saturation (see figure 5b). At Ga = 150, the amplification presents
a slightly subcritical growth (increasing growth rate; see figure 6). This is due to the
proximity of a bi-stability of the flutter with a regime of small oscillations setting in close
to Ga = 200. The primary instability, yielding the flutter, sets in at Ga ∼ 100 in this case.
Closer to this threshold, the subcritical effect disappears (see the case of Ga = 120 also
represented in figure 6).

In some cases of aspect ratio L/d = 3 (ρs/ρ = 1.16,Ga = 300 and ρs/ρ = 2,Ga =
190, 200, 250, 275) we evidenced a quasi-periodic (maybe subharmonic) modulation. It
was found to disappear with increasing Galileo number and to preserve the flow symmetry.
For this reason we do not distinguish this exceptional behaviour from the strictly periodic
flutter.

3.2. Fluid modes
The flutter described in the previous section is characterised by a strong solid–fluid
interaction. If the motion of the cylinder is inhibited, this instability disappears. Tchoufag
et al. (2014) introduced the distinction between such ‘solid’ modes and ‘fluid’ modes
arising due to instabilities of the fluid flow (wake). Coexisting solid and fluid modes have
been evidenced for flat falling objects (e.g. Dušek, Zhou & Chrust 2021). Fluid modes, i.e.
regimes where the cylinder weakly responses to the wake oscillations were evidenced by
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Figure 5. (a) Comparison of the phase shift between the oscillations of the cylinder axis (represented in terms
of the vertical component of its unit vector nz) and those of horizontal velocity ux. For better reading the
velocity ux is rescaled by a factor of 5. (b) Growth and saturation of instability from an initial horizontal
position. (c) Stability of the symmetry documented by the velocity uy normal to the trajectory plane. Here
L/d = 5, ρs/ρ = 10 and Ga = 150.
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Figure 6. (a) Growth and saturation of the amplitude of oscillations A(nz) of the cylinder axis at Ga = 150
and 120. (b) The growth rate γ = Ȧ(nz)/A(nz) vs time. Here L/d = 5 and ρs/ρ = 10.

Toupoint et al. (2019) and all the three transitional regimes investigated by Lorite-Diez et
al. (2022) can be qualified as such. Oblong cylinders we focus on in this paper also present
oscillations, of much smaller amplitude than the flutter, and are fully due to instabilities of
the wake.

3.2.1. Wake of a fixed cylinder
To substantiate this statement, let us start with presenting the transition scenario in the
wake of a fixed cylinder placed perpendicularly to a uniform flow. This configuration was
already investigated by Inoue & Sakuragi (2008). Pierson et al. (2019) presented additional
details on the wake of a cylinder of aspect ratio L/d = 3 for the yaw angle of 90◦ in
the appendix of their paper. They evidence four regimes that can be roughly identified
with the following description summarising our results obtained for a cylinder of aspect
ratio L/d = 5. In agreement with the choice of frame of § 3.1, the z-direction is oriented
streamwise, the x-axis points spanwise in the direction of the cylinder axis and the y-axis is
oriented crosswise perpendicularly both to the flow and the cylinder axis. We evidenced:

(a) a steady doubly symmetric (with respect to xOz and yOz planes) regime with no lift
at Re � 120;
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Regime Re CD A(CD) A(CLy ) Stz Sty

(a) 100 1.0483 0 0 — —
(a/b – threshold) 120 0.9852 0 0 0.1015 —
(b) 130 0.9676 0.0010 0 0.105 —
(b/c – threshold) 140 0.9495 0.0008 2 × 10−8 0.1096 0.0548
(c) 160 0.9204 0.002 0.005 0.122 0.061
(d) 180 0.8899 0.0014a 0.015a 0.13b 0.068b

Table 4. Results of simulation of hydrodynamic forces acting on a fixed cylinder of aspect ratio L/d = 5
placed perpendicularly to an incoming uniform flow. The column ‘regime’ identifies one of the enumerated
regimes. Re, Reynolds number; CD, drag coefficient of the vertical force (mean value in unsteady regimes);
A(CD), drag coefficient amplitude (a standard deviation); A(CLy ), amplitude (a standard deviation) of the
crosswise lift coefficient; Stz, Sty Strouhal number based on the cylinder diameter and on the frequency of
the drag and lift oscillations, respectively (b main peak of FFT).

(b) a periodic doubly symmetric regime with no lift and periodic drag for 120 � Re �
140;

(c) a periodic regime with only spanwise symmetry (with symmetry with respect to yOz
plane), i.e. with a periodically oscillating crosswise lift Ly, for 140 � Re � 175;

(d) a chaotic regime with both symmetries broken at Re � 170.

The quantitative characteristics are presented in table 4.

3.2.2. Fluid modes of a freely falling cylinder
3.2.2.1. Symmetric periodic state The symmetric periodic fluid mode can easily be

identified as the (b)-regime of the wake of a fixed cylinder. Since the oscillations of the
vertical velocity are extremely small (of the order of 10−4 of the mean vertical velocity),
the threshold is practically independent of the density ratio. Table 5 lists some properties
of the symmetric periodic states close to their threshold for cylinders of aspect ratio 2,
3 and 5. As can be seen, the case L/d = 5, Re = 130 of table 4 is in agreement with
the case L/d = 5, Ga = 200 of table 5. In figure 7, we present the vortex structures in
the wake of cylinder of aspect ratio L/d = 3 falling at Re = 165.8. Exactly spanwise and
crosswise views are selected to demonstrate both symmetries. It is interesting to note that,
in spite of the very small amplitude of the velocity oscillation, the vortex shedding is far
from weak. Two vortex pairs are shed from the ends of the cylinder. Each pair is perfectly
anti-symmetric crosswise and both pairs are perfectly synchronised satisfying accurately
the spanwise anti-symmetry. This makes both components of the horizontal velocity (i.e.
of the lift if the cylinder is fixed) vanish. The unsteady vortex shedding develops fully
in the far wake and, thus, only weakly influences the hydrodynamic force acting on the
cylinder. The symmetry implies also a zero torque so that the cylinder axis remains exactly
horizontal.

3.2.2.2. Crosswise-oscillating, spanwise (yOz) symmetric regime The mode labelled
(c) in § 3.2.1 generates a regime characterised by a crosswise periodic oscillation when
the cylinder is free. As already noted by Pierson et al. (2019), the reason is the loss of
symmetry with respect to the plane defined by vertical direction and the cylinder axis. The
loss of the crosswise symmetry is visible in figure 8(a). The characteristics of the cylinder
motion are reported in the first line of table 6. The amplitude of the crosswise velocity
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L/d Ga uz Re CD A(uz) St

2 210 1.1355 238.5 0.7754 1.9 × 10−4 0.1564
3 180 0.8660 155.9 0.8889 4.5 × 10−5 0.1261
5 200 0.6419 128.4 0.9708 1.14 × 10−4 0.1046

Table 5. Properties of the symmetric periodic state slightly above its threshold (i.e. no oscillations exist
at Galileo numbers 200, 170 and 190). uz, mean vertical velocity; A(uz), amplitude of its oscillation
(non-dimensionalised by Uref defined by (2.1)); Re and St, Reynolds and Strouhal numbers based on the
cylinder diameter and on the mean value of the vertical velocity (Re = Ga uz, St = 1/(T uz)); CD, drag
coefficient based on the cross section Ld and the mean vertical velocity (CD = 1/(0.5(L/d) u2

z )).
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Figure 7. Example of a symmetric periodic state: L/d = 3, ρs/ρ = 5, Ga = 190. Spanwise (a) and crosswise
(b) view of iso-surfaces of streamwise vorticity at levels ±0.4.

is about a factor of 10 larger than that of the vertical oscillations but remains 0.36 % of
mean vertical velocity, which is considered very small. Again, this is due to the fact that
the symmetry breaking occurs rather far in the wake. Figure 8(a) shows that, up to about
6d downstream of the cylinder, the vortex structure does not present visible asymmetry
and alternate vortex shedding clearly appears only about 10d downstream of the cylinder.

3.2.2.3. Weak quasi-periodic flutter At aspect ratio L/d = 3 and density ratios 5 and
10, a small periodic ‘flutter’, i.e. oscillations of the cylinder axis in a fixed vertical plane,
sets in (with critical Galileo number between 190 and 195 at ρs/ρ = 5 and between 220
and 230 at ρs/ρ = 10) witnessing of a preserved crosswise (xOz) symmetry. The feature
distinguishing this state from a genuine flutter is the coexistence of these oscillations with
those of the vertical velocity characteristic for the symmetric periodic state. Since the
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Figure 8. Iso-surfaces of vorticity ωz for (a) L/d = 5, ρs/ρ = 1, Ga = 250, ωz = ±0.45
(crosswise-oscillating, spanwise (yOz) symmetric regime), (b) L/d = 3, ρs/ρ = 5, Ga = 195, ωz = ±0.45
(weak quasi-periodic flutter), (c) L/d = 5, ρs/ρ = 0, Ga = 300, ωz = ±0.5 (asymmetric chaotic regime).

frequency of the flutter is not synchronised with that of the vertical velocity, the mode is,
strictly speaking, quasi-periodic.

At a density ratio of 5, three features distinguish this regime from a genuine flutter: (i)
the vortex shedding characteristic for the symmetric fluid mode subsists; (ii) the vertical
velocity oscillations and those of the cylinder axis are not synchronised, making the regime
quasi-periodic even though the vertical oscillations of the cylinder axis are periodic; (iii)
the weak quasi-periodic mode coexists (starting from Ga = 198.5) with a genuine strong
flutter. Figure 8(b) corresponds to the same aspect and density ratio as figure 7 showing
the effect of the instability, setting in between Ga = 190 and 195, on the wake structure.
Quantitative characteristics can be found on the second line of table 6.

At the density ratio 10, the vertical oscillations of the cylinder axis are quasi-periodic
themselves and the xOz symmetry is not quite exact. The amplitude of oscillations is
about three times smaller than at ρs/ρ = 5. Since the branches do not coexist in the same
interval, the comparison applies to Ga = 220 for ρs/ρ = 5 (A(nz) = 0.17) and Ga = 250,
ρs/ρ = 10, for which the amplitude is indicated in table 6 (line 3). Unlike all other regimes,
the dominant frequency does not correspond to that of the flutter (for the same density
ratio) but is 30 % to 40 % higher. The frequency of the flutter is still present causing the
quasi-periodicity (see figure 9a). (The coexisting flutter has an amplitude of more than a
factor of 10 larger and a frequency of 0.02.) The wake structure is more complicated than
in figure 8(b) but the xOz symmetry is still well preserved (see figure 9b).

A similar state was also observed for L/d = 2 and density ratio 5 at Ga = 230 and
233. It seems rather to be an exceptional case of more ordered states between asymmetric
quasi-periodic states described in the following.

3.2.2.4. Asymmetric quasi-periodic regime No symmetry subsists in this regime (see
figure 10a). As a result, the horizontal velocity and the cylinder axis oscillate both
crosswise and spanwise, moreover with different frequency (figure 10b,c). However, as

1000 A54-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.821


G. Bouchet and J. Dušek

0 0.02 0.04 0.06 0.08 0.10

1/T

10–4

10–3

10–2

10–1
F

F
T

 (
n z

) 
  
  
 

14

12

10

8

6

4

2

0

–2

–4 –2 0 2 4
–2

–4
–2
0
2
4

0
2

14

12

10

8

6

4

2

0

–2

–4
–2 0 2 xyyx

z

(b)(a)

Figure 9. (a) The FFT of the vertical projection of the cylinder axis. (b) Streamwise vorticity field
ωz = ±0.5. Here L/d = 3, ρs/ρ = 10 and Ga = 250.

shown in figure 10(d), the dynamics is still quasi-periodic and not yet chaotic. The
spanwise velocity ux (as well as the not represented vertical projection of the cylinder axis
nz) is practically periodic with period T = 18.84 yielding a Strouhal number St = 0.0466
(reported as the characteristic Strouhal number of this regime in table 6). The figure
represents the frequencies as multiples of f1 = 1/T . This shows that the third peak of
the vertical velocity uz is situated at an incommensurate frequency f2 = 3.6/T . Similarly,
uy and ny present a subharmonic frequency of about f3 = 0.21/T . The second highest peak
of uy corresponds to 2f1 − f3.

3.2.2.5. Asymmetric chaotic regime The fluid modes in all cases eventually become
chaotic at Galileo numbers not much exceeding the threshold of the primary symmetric
periodic state. As an example, figure 8(c) presents the vorticity in the wake of a cylinder
of aspect ratio 5 and density ratio zero at Ga = 300. Though the nz-oscillations are still
fairly periodic, the horizontal oscillations of the cylinder axis and those of the vertical and
transverse cylinder velocity (uz, uy) are clearly chaotic (see figure 11).

4. Bifurcation diagrams

Most of the bifurcations leading to the flutter, our main focus, are supercritical of Hopf
type. Its theory is old but has many variants, various terminology and diverse frameworks.
It may, therefore, be useful to specify the terminology we use in what follows and to
state some results we rely on. Since the original terminology was developed for simple,
possibly two-dimensional dynamical system, the notion of bifurcation diagram referred to
a path parameterised by a given (single) parameter. In agreement with classical studies
of instabilities of wakes where the parameter is naturally the Reynolds number, our
bifurcation diagram will have the Galileo number on the horizontal axis. Hopf bifurcation,
be it of a two-dimensional system, needs a simplification to be representable on paper. For
this purpose, usually some characteristic of the periodic oscillations at cycle is used. The
best known normal forms, such as the third-order Landau model, introduce an abstract
complex scalar variable (often denoted by z) modelling the behaviour due to the onset
of bifurcation. In this scalar case, it is easy to define the ‘instability amplitude’ as the
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Figure 10. Example of an asymmetric quasi-periodic regime, where L/d = 2, ρs/ρ = 5 and Ga = 220.
(a) Spanwise and crosswise profile of vertical flow velocity induced by the cylinder motion 2d downstream
of the cylinder centre. (b) Horizontal projection of the velocity of the cylinder centre on a time interval of 12T ,
T being the period of oscillations of ux velocity and of nz, the vertical projection of cylinder axis. (c) Projection
of the unit vector of the cylinder axis onto the vertical and crosswise (yOz) plane (note that horizontal scale is
a factor of 10 smaller than the vertical scale). (d) FFT of quantities specified in the legend. The horizontal axis
is scaled in multiples of the frequency 1/T .
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Figure 11. Example of an asymmetric chaotic regime, where L/d = 5, ρs/ρ = 0 and Ga = 300.
(a) Horizontal projection of the velocity of the cylinder centre on a time interval of 10T , T being the mean
period of oscillations of the vertical projection of the cylinder axis nz. (b) Projection of the unit vector of the
cylinder axis onto the vertical and crosswise (yOz) plane. (d) The FFT of quantities specified in the legend. The
horizontal axis is scaled in multiples of the frequency 1/T .
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Regime Section Symbol

Steady vertical § 3 ·
Flutter § 3.1 o
Symmetric periodic § 3.2.2.1 +
Crosswise-oscillating, yOz-symmetric § 3.2.2.2 square
Weak quasi-periodic flutter § 3.2.2.3 diamond
Asymmetric quasi-periodic § 3.2.2.4 x
Asymmetric chaotic § 3.2.2.5 *

Table 7. Symbols used in the bifurcation diagrams. The column ‘Section’ indicates where their description
can be found.

absolute value |z| and represent the bifurcation diagram as a graph of the amplitude vs the
bifurcation parameter. The theory shows, however, that, alternatively, the instability can be
observed simply by monitoring practically any variable. To characterise the onset of the
flutter two variables are most suitable in our simulations: the amplitude of the inclination
of the axis (expressed by the vertical projection of its unit vector) introduced previously as
A(nz) or, equivalently, the amplitude of oscillations of the horizontal velocity A(ux) if the
trajectory remains in a fixed plane. There is a close dependence between both because the
inclination induces automatically a horizontal drift. We preferred the inclination because
of its non-dimensionality. Another advantage resides in the independence of the horizontal
frame. This allowed us to use the same variable for rotating and chaotic regimes, whereas
the horizontal velocity would have been defined in the rotating frame of the body. The
two other parameters, density ρs/ρ and L/d and aspect ratios, are fixed for each diagram.
The largest aspect ratio of 5 was determined by the practicability of the numerical method
used. The choice of the largest density ratio was given by the observation of a limited
qualitative difference between the ratio 5 and 10 and the practical limitation due to the
increase of time scales of oscillations proportional to the density ratio. To distinguish the
various regimes described in § 3, symbols introduced in table 7 are used. They allow us
also to show the presence of fluid modes for which the oscillations of the cylinder axis are
absent.

4.1. L/d = 2
Figure 12 represents the obtained results for this aspect ratio in the form of graphs of the
square of the amplitude of oscillations of the vertical projection of cylinder axis vs the
Galileo number for five density ratios.

For moderate density ratios (up to 2), the typical weakly nonlinear behaviour typical
for a supercritical bifurcation arising from a steady state was evidenced. In this case, the
square of the instability amplitude is expected to grow proportionally to Ga − Gacrit. This
behaviour allowed us to obtain the critical Galileo numbers both by interpolation of growth
rates and by extrapolation of the square of the amplitude with a very good agreement (see
table 8). As can be seen in figure 12, the linear growth of the square of the amplitude of
oscillations holds on a very large interval of Galileo numbers. The last column of table 8
contains the corresponding slopes. They decrease from ρs/ρ = 0 to 2.

At higher density ratios (5 and 10), the inertia delays the onset of the flutter which
opens the way to fluid modes. For the length to diameter ratio L/d = 2, the threshold of
the primary bifurcation leading to the symmetric periodic state (in which the direction
of the cylinder axis does not move and only the vertical velocity oscillates) lies at about
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Figure 12. Square of amplitude A(nz) of oscillation of the vertical projection of the cylinder axis as a function
of the Galileo number. Here L/d = 2. The symbols are listed in table 7. The meaning of colours is given in the
legend.

ρs/ρ Base state Gacrit,1 Gacrit,2 New state Slope A2

0 Steady vertical 115.7 115.5 Flutter 2.91 × 10−3

1 Steady vertical 137.9 137.7 Flutter 1.16 × 10−3

2 Steady vertical 156.4 156.1 Flutter 0.55 × 10−3

5 Symmetric periodic n/a ∼ 210 Asymmetric quasi-periodic 0.79 × 10−3

10 n/a n/a < 250 Chaotic (very small oscillations) n/a

Table 8. Critical Galileo numbers of onset of vertical oscillations of the cylinder axis. Here L/d = 2. Base
and new states: state from which the oscillations develop and the arising state. Gacrit,1, value of the critical
Galileo number obtained by interpolation of growth rates at Galileo numbers close to the threshold; Gacrit,2,
value obtained by extrapolation to zero of the trend of the square of amplitude; Slope A2, coefficient K of the
linear fit A(nz)

2 = K (Ga − Gacrit) in the interval of linear growth.

Ga = 205. For the density ratio of 5, the oscillations of the cylinder axis were detected at
Ga = 215 leading to the asymmetric quasi-periodic regime, in which the cylinder centre
oscillates both parallel and perpendicularly to its axis. The asymptotic state is reached
progressively, evolving over a symmetric periodic and crosswise oscillating state. This is
illustrated in figure 13 for a simulation starting with a cylinder released at rest in an almost
vertical position. The axis is deviated by 10◦ with respect to the vertical direction in the
xOz plane. Figure 13(a) shows that the initial flutter of the cylinder practically decays at
t ∼ 600, where, nonetheless, oscillations of the vertical component of the velocity (uz)
corresponding to the symmetric periodic state subsist (not represented). Later on, a new
instability breaking the initial planar symmetry and yielding a crosswise oscillating state
sets in. The cylinder centre starts to oscillate perpendicularly to the initial trajectory plane
as seen in figure 13(b). This crosswise oscillating state is, however, itself unstable and
excites vertical oscillations. In the process, a subharmonic modulation of the crosswise
velocity develops. In the asymptotic regime, the cylinder axis oscillates both in the vertical
and horizontal direction (figure 13c) and the trajectory is fully three-dimensional. At the
density ratio 5, similar asymptotic states were evidenced up to Ga = 250. In two cases,
the asymmetry is non-existent (Ga = 230 and 233), so that we classified these regimes
as weak quasi-periodic flutter. This particularity had, however, practically no influence on
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Figure 13. (a) Vertical oscillation of the cylinder axis. (b) Horizontal velocity of the cylinder centre
perpendicular to the initial trajectory plane. (c) Horizontal (blue line) and vertical (red line) oscillation of
the cylinder axis in the asymptotic regime. Here L/d = 2, ρs/ρ = 5 and Ga = 220.

the trend of growth of the oscillation amplitude. At the largest considered Galileo number
(300) the behaviour was found chaotic.

The density ratio 10 was investigated in less detail concerning the onset of fluid modes
because the latter are virtually independent of the density ratio. At Ga ≥ 250 two new
features were found. First, the quasi-periodic regime gives way to a chaotic state with a
very small amplitude of oscillations. The latter, measured as standard deviation of nz from
zero, is typically about 0.05 (less than 3◦). The trajectory of the cylinder centre is fully
chaotic and the orientation of the cylinder axis strongly drifts horizontally. (At Ga = 280,
we evidenced a horizontal rotation of the cylinder axis by 23◦ within 50 time units, so
that it can be said that the horizontal drift largely dominates the vertical oscillations of the
cylinder axis.) Second, two simulations (at Ga = 280 and 290) attest a coexistence of the
chaotic state with a strong flutter. The stability interval of this branch seems to be short,
since simulations restarted at Ga = 270 and 300 decayed to the chaotic regime with small
amplitude. However, the existence of a stable strong flutter agrees with the trend found for
aspect ratio 3, where subcritical bifurcations with branches of strong flutter were clearly
evidenced.

4.2. L/d = 3
In the investigation of cylinders of aspect ratio L/d = 3, the density ratio 1 has been
replaced by 0.5 and 1.16, the latter being that of cylinders used in experiments by Toupoint
et al. (2019). The difference between ρs/ρ = 1 and ρs/ρ = 1.16 is, however, qualitatively
inessential. Moreover, the experimental data (figure 4 of Toupoint et al. 2019) is very
coarse around the threshold of the loss of stability of the steady vertical fall located
between Ar = 200 and 400, i.e. Ga = 145 and 289. The value in table 9 falls well
within this interval but the asymptotic state at Ar = 400 was found ‘irregular’ and only
at Ar = 500 (Ga = 362) a ‘fluttering’ state was reported.

Figure 14 shows many common features with the cylinders of aspect ratio 2. For density
ratios ρs/ρ ≤ 2 the primary bifurcation is, again, supercritical. The steady vertical states
loses its stability in favour of the flutter. The square of the amplitude of oscillations grows
linearly on a large interval of Galileo numbers. Unlike for L/d = 2, the slopes decrease
only very little.

The most significant difference as compared with L/d = 2 consists of the clear
coexistence of two branches of asymptotic solutions evidenced at density ratios 5 and
10. The lower stability limits of branches of strong flutter could be determined quite
reliably from the transients of the convergence to the attractor. It could be traced until
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ρs/ρ Base state Gacrit,1 Gacrit,2 New state Slope A2

0 Steady vertical 153.4 152.4 Flutter 0.994 × 10−3

0.5 Steady vertical 160.2 159.9 Flutter 0.927 × 10−3

1.16 Steady vertical 167.5 167.5 Flutter 0.817 × 10−3

2 Steady vertical 176.6 176.2 Flutter 0.809 × 10−3

5 Symmetric periodic 192.1 191.6 Weak quasi-periodic flutter 1.08 × 10−3

5 Subcritical branch 198.5 — Flutter —
10 Crosswise oscillating — ∼ 225 Chaotic (very small oscillations) —
10 Subcritical branch 182.5 — Flutter —

Table 9. Critical Galileo numbers of the onset of vertical oscillations of the cylinder axis. The meaning of
the columns is the same as in table 8 except for the subcritical branches where the lower limit of stability is
indicated in the column labelled Gacrit,1. Here L/d = 3.
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Figure 14. (a) Amplitude A(nz) of oscillation of the vertical projection of the cylinder axis. The filled circles
denote flutter starting to lose its perfect periodicity and symmetry in an initial stage of transition to chaos.
(b) Enlarged view of the instability onset represented by the square of amplitude. Here L/d = 3.

the upper limit of investigation at Ga = 300 and they can be expected to continue further.
The branches of small oscillations arising from fluid modes can be expected to have upper
limits of stability due to subcritical bifurcations. The solution then settles to the branch of
strong flutter. For the density ratio 10, the threshold of this bifurcation has not been found
within the limit of investigation, at ρs/ρ = 5 it is situated between Ga = 250 and 300.
Figure 15(a) illustrates the loss of stability of the branch of strong flutter with decreasing
Ga and figure 15(b) illustrates the loss of stability of the asymmetric quasi-periodic branch
with increasing Ga, both for density ratio 5.

4.3. L/d = 5
For cylinders of length-to-diameter ratio of 5, the scenario appears to be practically the
opposite of that found for L/d = 2 and 3. Small chaotic oscillations dominate for small
instead of high density ratios and the standard supercritical bifurcation leading from the
steady vertical fall directly to the flutter is only found at the highest considered density
ratio of 10.

A closer look at figure 16 shows, however, that the fluid modes have been evidenced for
all density ratios. For the density ratio 0, no flutter has been found in the investigated
interval of Galileo numbers. For the density ratio 1, our simulations yielded a single
case of flutter at the largest considered Galileo number of 450. This is in agreement with
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Figure 15. (a) Ga = 195: simulation restarted from the solution on the branch of strong flutter obtained at
Ga = 200. (b) Ga = 300: simulation restarted from the solution on the quasi-periodic asymmetric branch at
Ga = 250. Here L/d = 3 and ρs/ρ = 5.
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Figure 16. Square of amplitude A(nz)
2 of oscillation of the vertical projection of the cylinder axis. Here

L/d = 5. (a) Two-dimensional superimposition for all density ratios. (b) Expanded view of the amplitude A(nz)

showing the individual states along the branches of small oscillations.

figure 4 of Toupoint et al. (2019) where ‘irregular’ behaviour was reported up to Ar = 600
(Ga = 434). In what follows, we first describe the density-independent scenario of fluid
modes before focusing on states with vertical oscillations of the cylinder axis where the
density dependence requires a more detailed descriptions as a function of the density ratio.
Table 10 sums up the critical Galileo numbers delimiting the stability intervals discussed
in the text.

4.3.1. Branches of fluid modes
Given the very small amplitude of oscillations of fluid modes, the main characteristics
are practically independent of the density ratio. Let us recall the thresholds of table 4
converted into Galileo numbers with account of the computed vertical velocities (Ga =
Re/uz). Other characteristics can be found in tables 5 and 6. The critical Reynolds number
120 of onset of the symmetric periodic state given in table 4 yields the critical Galileo
number Gasp = 189 and that of the crosswise oscillating state (Re = 140) corresponds to
Gaco = 216. As can be seen in figure 16(b), in agreement with the estimate of these critical
values, the first unsteady state is found at Ga = 200 and it is the symmetric periodic one
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Branch of fluid modes

Gacrit 189 216 250

States Steady vertical Symmetric periodic Crosswise oscillating Asymmetric quasi-periodic or chaotic

Branches of figure 16 for density ratios ρs/ρ ≥ 2

ρs/ρ Branch Ga1 Ga2

2 Flutter 225 n/a
5 Steady vertical — 172.5
5 Flutter 146.7 n/a
5 Branch of fluid modes 220 n/a
10 Flutter 99 n/a
10 Branch of fluid modes 198 n/a

Table 10. Critical Galileo numbers of regimes of the cylinder of aspect ratio L/d = 5: Ga1, lower limit of
stability; Ga2, upper limit of stability.

at all three lowest density ratios 0, 1 and 2. At Ga = 250, the crosswise oscillating state is
evidenced in all three cases. For the density ratio of 2 the same regime is already found at
Ga = 220. For density ratios 5 and 10 the same states exist at the same Galileo numbers
on branches of small oscillations coexisting with the flutter.

4.3.2. Vertical oscillations of the cylinder axis at ρs/ρ = 0
Very small vertical oscillations of the cylinder axis due to the onset of a chaotic state are
present starting from Ga = 280. The standard deviation of these oscillations with respect
to the horizontal direction is only about 1◦.

4.3.3. ρs/ρ = 1
A continuous transition from a chaotic regime of very small oscillations at Ga = 280
to a (practically periodic and xOz symmetric) flutter is observed. The three investigated
intermediate states at Ga = 300, 350 and 400 are asymmetric and the direction of the
cylinder axis drifts horizontally.

4.3.4. ρs/ρ = 2
The branch of fluid modes undergoes a subcritical bifurcation between Ga = 260 and
270. Beyond this value, no other stable fluid modes have been evidenced. The reached
attractor is that of the flutter. It could be traced down to about Ga = 225 and followed up
to Ga = 360. The sudden increase of amplitude between Ga = 250 and 260 is, actually,
continuous, since no bi-stability has been stated in these regimes.

4.3.5. ρs/ρ = 5
A similar subcritical bifurcation sets in, but already in the steady vertical state at Ga =
172.5. The subcritical branch of flutter remains stable down to Ga = 146.7 and very
likely far beyond the upper limit of investigation at Ga = 300. This yields a bi-stability
interval 146.7 ≤ Ga ≤ 172.5. Another bi-stability has been evidenced for Ga > 220, i.e.
at the onset of the crosswise oscillating state, which appears to be stable at this Galileo
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Figure 17. Azimuth θ and elevation ψ in radians of the cylinder axis of a cylinder released in an initial
position θ = 0, ψ = 0.087 (5◦). Here L/d = 5, ρs/ρ = 5 and Ga = 350.

number. Starting from this threshold the branch of small oscillations follows the scenario
of transition to chaos characteristic of fluid modes. Let us remark that the two last chaotic
states at Ga = 300 and 350 present random fluctuations that, in the long term, may happen
to be strong enough to let them settle on the flutter branch. This can occur after a very long
simulation time as can be seen in figure 17 where the cylinder rotates horizontally and
weakly oscillates vertically before toggling to the flutter.

4.3.6. ρs/ρ = 10
The flutter arises via a supercritical bifurcation from the steady vertical state. The
amplitude of oscillations grows very rapidly along this branch. At Ga = 300, A(nz) reaches
the value of 0.92 which corresponds to the angle of 67◦ with respect to the horizontal
direction. As a consequence, the period of oscillations is exceptionally large, as well as the
vertical velocity (due to the reduced average horizontal projection of the cylinder). This
regime is not very far from the tumbling observed experimentally by Chow & Adams
(2011). There is a remarkable quantitative agreement between our simulation and the
experimental observation. Chow & Adams (2011) present the maximum inclination angle
as a function of the square root

√
S/E, S denoting the density and E the aspect ratio

in their paper. In the present case
√

S/E = √
2. According to their paper,

√
S/E = 1.5

corresponds to an inclination angle of 60–70◦ and to the onset of alternate tumbling
and oscillating. Their underlying theory disregards the viscosity effects assuming that
the Reynolds number exceeds 200. The mean vertical velocity at Ga = 300 yields the
Reynolds number Re = 235.

Similarly as for the density ratio 5, a branch of small oscillations coexisting with the
flutter starting from Ga = 198 has been detected. The sequence of observed states along
this branch is, again, that of fluid modes.

5. Drag and frequency

As already stated in § 1, the motivation of most of the existing experimental work has
been to provide predictions of the drag and frequency of oscillations of falling cylinders.
However, the results were always marked by a significant dispersion in spite of all efforts to
rescale the raw values (see Marchildon et al. 1964; Chow & Adams 2011). In this section,
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Path instabilities of freely falling oblong cylinders

we attempt to shed light on the origin of the dispersion of the values of drag coefficient
and of the Strouhal number in the light of the results of our numerical data.

Our considerations are based on the close dependence of the variation of virtually all
quantities on the instability amplitude, more accurately, on its square. This is a well-known
theoretical result of the weakly nonlinear theory. In particular, the Landau model predicts
a variation of angular frequency proportional to the square of the amplitude of the
modelled oscillation. Zielinska et al. (1997) evidenced and theoretically substantiated
the same scaling for the mean value of the streamwise velocity of the cylinder wake.
Though the theory originally concerns supercritical Hopf bifurcations close to their
onset, we extend our ansatz to subcritical branches and strongly nonlinear regimes. It
can be objected that the amplitude of oscillations is not an external parameter. However,
mathematically, an unambiguous prediction based on external parameters is possible only
for the asymptotic state, provided it is unique and thus independent of the initial conditions.
This is not always the case due to the coexistence of solutions. More often, transient
stages are to be accounted for: in numerical simulations, because of the simulation time;
in experiments, because of material limitations. Conceptually, correlations between two
(or more) variables resulting from observations are very frequent. For falling bodies, the
correlation between the drag coefficient and the Reynolds can be cited as an example.
As will be shown, the addition of this information solves the problem satisfactorily. The
measure of the amplitude of oscillation is thus an important piece of information.

In spite of the detailed time series of all simulations at our disposal, we limit our
analysis only to data we retrieved in the effort to establish the bifurcation diagrams of
the preceding section. In the process, transient data was needed in some cases, e.g. to
establish thresholds on the basis of growth rates or to investigate the stability of bi-stability
branches. As a consequence, the processed ensemble contains relatively randomly chosen
(chosen originally with a different purpose) transient and asymptotic data. To introduce
some ‘noise’, we also kept data obtained with different computational accuracy when the
reliability of the results had been checked. We believe that this mimics, to some extent,
experimental conditions. The resulting ensemble includes 247 sets of data, each containing
a single value for each of the most relevant quantities (values of external parameters,
averages and amplitudes of velocity components of the cylinder centre, amplitude and
period of vertical oscillations of the cylinder axis).

To allow easy comparison with other data available in the literature, we consider the drag
coefficient and the Strouhal number as functions of the Reynolds and Galileo numbers
(2.5) related by the relation

Re = Ga〈uz〉, (5.1)

where 〈uz〉 is the average vertical velocity in our non-dimensionalisation.

5.1. Drag coefficient
The commonly used definition of the drag coefficient for oblong cylinders uses the
constant projection Ld normal to the axis (Clift et al. 1978) as the section perpendicular
to the flow even if the cylinders fall freely and oscillate. For freely falling cylinders,
the balance between the hydrodynamic force, the gravity and buoyancy relates the drag
coefficient Cd to the vertical velocity. In dimensional units (Toupoint et al. 2019),

Cd = π

2
geff d

uz
2 , (5.2)
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Figure 18. (a) Scatter plot of drag coefficient vs Reynolds number coloured as a function of the vertical
oscillation amplitude A(nz). The marker types indicate the density ratio: ρs/ρ = 0, triangle; ρs/ρ = 1, square;
ρs/ρ = 2, diamond; ρs/ρ = 5, cross; ρs/ρ = 10, circle. The colours of the colour bar quantify the oscillation
amplitude. Full line: fit (5.4) of non oscillating or weakly oscillating data. (b) Drag correction with respect to
the fit in (a) as a function of the square of oscillation amplitude (for colours, see the legend). Dotted lines: fit
to the function 5.6. Here L/d = 5.

where uz is the average (dimensional) vertical velocity. Given our non-dimensionalisation
of the velocity by the velocity scale (2.1), the formula (5.2) becomes

Cd = 2d
L

1
〈uz〉2 , (5.3)

where 〈uz〉 is the average non-dimensionalised vertical velocity. In spite of the definition
accounting for the cylinder length, it cannot be expected that the drag coefficient is
independent of the aspect ratio, especially for moderate aspect ratios. This effect is already
accounted for in table 6.1 of Clift et al. (1978). For this reason, we investigate each of the
three aspect ratios L/d = 2, 3, 5, separately.

Let us present the methodology for the length to diameter ratio of 5.
Results of 81 simulations are available in this case. Figure 18(a) shows that values of the

drag coefficient in regimes with small or non-existent vertical oscillations are distributed
along a single line, which represents a master curve for non-oscillating regimes. The larger
the amplitude (represented by the colour bar), the larger the deviation from this curve.
We shall set a lower limit for the amplitude of flutter at A(nz) = Amin = 0.15. Out of the
original 81 values, 54 lie below this limit. Lowering it from 0.15 to 0.05 reduces the number
of ‘non-fluttering’ or ‘weakly fluttering’ regimes to 50, which does not significantly change
the following analysis.

The regimes with amplitudes less than Amin will be processed as ‘practically’ steady
A(nz) ≈ 0. The aspect ratio having been fixed and steady states being independent of
the density ratio, there remains a single variable function to be fitted to Ga or, almost
equivalently, Re. (Since Re is related to Ga by the vertical velocity, itself a dependent
variable subject to variations, the fits are not exactly the same.)

Clift et al. (1978) provided correlations for cylinders of aspect ratios 1 through ∞ (in
table 6.1 of Clift et al. 1978) as well as curves of drag coefficient vs Reynolds number in
the steady regime at Reynolds numbers up to about 100. Their correlation results from a
third degree polynomial fit of the logarithm of the Reynolds number vs the variable w =
1
3 log10(Cd Re2). The coefficients are given in table 6.1 of Clift et al. (1978) as functions
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Figure 19. Comparison of the correlation from table 6.1 of Clift et al. (1978) (Cd,Clift) and of the fits of the
computed drag coefficients for regimes where A(nz) < 0.15 using the method of Clift et al. (1978) (Cd,fC)
and the second-degree formula (5.4) (Cd,0). The graphs of Cd,0 and Cd,fC are practically superimposed. The
enlarged difference Cd,0 − Cd,fC is seen in the inset.

Fit Cd vs Re

L/d a2 a1 a0 Root mean square (CdA<0.15 − Cd0)

2 0.1289 −1.6713 5.0380 0.0064
3 0.1038 −1.3469 4.0420 0.0046
5 0.0857 −1.1198 3.3899 0.0047

Fit Cd vs Ga

L/d a2 a1 a0 Root mean square (CdA<0.15 − Cd0)

2 0.2123 −2.5726 7.4399 0.0069
3 0.1568 −1.9802 5.9423 0.0055
5 0.1463 −1.8952 5.9063 0.0044

Table 11. Coefficients of the fits (5.4) and (5.7).

of the aspect ratio E = L/d. In what follows, we use a simple second degree fit to the
ensemble of drag coefficient values of weakly oscillating regimes:

log(Cd,0) = a2 log2(Re)+ a1 log(Re)+ a0. (5.4)

Figure 19 presents the comparison of three fits: (i) Cd,Clift of Clift et al. (1978, table 6.1);
(ii) Cd,fC obtained by the method of Clift et al. (1978) applied to our data; (iii) Cd,0 given
by (5.4). As can be seen, the difference between Cd,fC and Cd,0 is of the order of 10−3

in the interval 50 ≤ Re ≤ 300 and can be neglected. The original fit Cd,Clift by Clift et
al. (1978) agrees for Re < 50 and overestimates the drag coefficient for higher Reynolds
number values. The coefficients of the fit (5.4) are provided in table 11. The standard
deviation from the fitted master curve is also presented and is less than 0.005.

The effect of the density ratio can be assessed from the marker types in figure 18(a).
The largest upward deviation from Cd,0 is observed for the density ratio 2 (diamonds),
whereas the largest downward shift is obtained for the density ratio 10 (‘o’). At the density
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Figure 20. Fitted slopes (c1s + c2) of the A2(nz) scalings (5.6). Dashed lines, fit vs Re; dash-dotted lines,
fit vs Ga. The colours correspond to the aspect ratio (see legend). Extrapolations to infinite density ratio
(values in brackets: fit vs Ga): L/d = 2 : −0.09(−0.16), L/d = 3 : −0.18(−0.20), L/d = 5 : −0.44(−0.53).
The markers indicate the slopes obtained separately for each density ratio by a one-dimensional linear fit.
Circles (triangles) refer to regression with the Reynolds (Galileo) number as the independent variable.

ratio 5, the drag coefficient remains close to the fitted curve. Qualitatively, it is clear that
the deviation from the master curve depends on the oscillation amplitude and the density
ratio.

It may, strictly speaking, vary also as a function of the Reynolds (Galileo) number.
However, if the difference of the drag coefficient from the master curve dCd = Cd − Cd,0
is plotted vs the square of the amplitude (figure 18b), it is seen that dCd is quite
well proportional to the square of amplitude of oscillations for a given density ratio
independently of the Reynolds (Galileo) number. A simple polynomial fit as a function
of the density ratio on the interval [0, 10] yields a satisfactory result but, since the
drag coefficient remains finite at both ends of the interval [0,∞] of density ratios,
a transformation to a finite interval of the independent variable is more inadequate
and provides the possibility of extrapolation to infinite density ratios. We shall use the
transformation [0,∞] → [0, 1]:

s = r
r0 + r

, (5.5)

where r denotes the density ratio r ≡ ρs/ρ ∈ [0,∞[ and s ∈ [0, 1] is the new variable used
for the regression. The parameter r0 makes the distinction between ‘light’ and ‘dense’. We
consider a global two-dimensional regression, with respect to both variables s and A2(nz)
and linear in each of them:

Cd − Cd,0 ≈ dCd = (c1s + c2)A2(nz)+ c3. (5.6)

The regression uses the whole sample (of 81 sets of simulation results for L/d = 5). The
value of r0 can be used for minimising the error and constitutes a fourth parameter of the
fit. Increasing the degree of the regression brings no significant improvement and tends
to yield spurious oscillations. Another method to improve the fit is to take account of the
Reynolds number variation. This brings only a 10 % reduction of the (already small) error.
The weak effect of the Reynolds number is in agreement with the general observation
that the drag is almost independent of the Reynolds number starting from Re = 150 (see
Toupoint et al. 2019, figure 7). As a result, the simple bi-linear fit (5.6) is satisfactory. Let
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Fit vs Re

L/d c1 c2 c3 r0 Root mean square of
Cd − Cd,fit,Re.

2 −0.8310 0.7418 −0.0016 10a 0.0057
3 −0.9902 0.8130 −0.0009 2.55 0.0046
5 −1.3712 0.8825 0.0044 2.11 0.0077

Fit vs Ga

L/d c1 c2 c3 r0 Root mean square of Root mean square of
Cd − Cd,fit,Ga Cd,fit,Re − Cd,fit,Ga

2 −1.0278 0.8637 −0.0017 10a 0.0070 0.0016
3 −1.0996 0.9010 −0.0009 2.58 0.0050 0.0008
5 −1.4442 0.9135 0.0000 2.60 0.0073 0.0023

Table 12. Coefficients of the fits (5.6) and (5.8). aThe minimum error is reached for a value larger than the
maximal density ratio 10 (18.8 and 14.4, respectively). Here 10 is used with a negligible loss of accuracy.

us remark, that the amplitude of oscillations of the cylinder axis can be replaced by the
amplitude of oscillations of the horizontal velocity because both are tightly correlated.

Figure 20 presents the slopes of the A2(nz) scalings as a function of the density ratio
for all the three length-to-diameter ratios of cylinders. Note that, for L/d = 5 the slopes
become negative. For a comparison, a linear (one-dimensional) fit has been performed
individually for each density ratio. The so-obtained slopes represent the exact trends
uncorrelated with other density ratios. They are also represented in the figure. The
coefficients ci, i = 1, 2, 3, of the least-squares fit as well as the optimal value of r0 are
provided in table 12. The small value of the coefficient c3 correctly accounts of the fact
that the lines in figure 18(b) should start at zero. Table 12 also contains the total error
cumulating the errors of both fits (5.4) and (5.6). As can be seen, the difference between
the computed and the fitted values is so small that it makes no sense to present a figure of
the scatter of the fitted values to compare them with figure 18(a).

The correlations of the drag coefficient as a function of the Reynolds number are most
common in the available literature. However, unlike the Galileo number, the Reynolds
number is not an external parameter of the problem. The scatter of the vertical velocity in
(5.1) influences the correlation (5.4) and thus also the drag correction (5.6). In tables 11
and 12 we also present the result of corresponding fits using the Galileo number as the
independent variable:

log(Cd,0,Ga) = a2 log2(Ga)+ a1 log(Ga)+ a0, (5.7)

Cd − Cd,0,Ga ≈ dCd,Ga = (c1s + c2)A2(nz)+ c3. (5.8)

Though the difference of the coefficients ci in (5.6) and (5.8) seems to be non-negligible,
the difference of resulting fits Cd,fit,Re = Cd,0 + dCd and Cd,fit,Ga = Cd,0,Ga + dCd,Ga
presents a smaller root mean square than the total error of the drag coefficient.

For L/d = 3 and 2, the processing follows exactly the same lines. A set of 114
simulation results has been processed for L/d = 3. Figure 21(a) shows that the oscillations
systematically increase the drag. As shown in figure 21(b) the drag correction still scales
as the square of the amplitude. This is not necessarily expected for density ratios 5 and 10.
For these density ratios the branches of large flutter are subcritical and disconnected from
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Figure 21. (a) Scatter plot of drag coefficient vs Reynolds number coloured as a function of the vertical
oscillation amplitude A(nz). Full line: fit (5.4) of non-oscillating or weakly oscillating data. The marker
types indicate the density ratio (see the caption of figure 18, except for density ratios 0.5 (squares) and 1.16
(asterisks)). (b) Drag correction with respect to the fit in figure (a) as a function of the square of oscillation
amplitude. Dotted lines: fit to the function (5.6). Here L/d = 3.
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Figure 22. (a) Scatter plot of drag coefficient vs Reynolds number coloured as a function of the vertical
oscillation amplitude A(nz). Full line: fit (5.4) of non-oscillating or weakly oscillating data. For the meaning of
the marker types refer to caption of figure 18. (b) Drag correction with respect to the fit in (a) as function of the
square of oscillation amplitude. Dotted lines: fit to the function 5.6. Here L/d = 2.

branches of small oscillations (see figure 14a) and the scaling cannot be substantiated by
weakly nonlinear arguments. In spite of that, the A2(nz) scaling still approximately holds.
For example, at ρs/ρ = 5, the five points corresponding to large values of amplitude and
those of the supercritical branch of small oscillations are well aligned along the same
straight line. Similarly as for L/d = 5 the slopes decrease with increasing density ratio
without, however, becoming negative. The overall fit (including that of the drag coefficient
without oscillations (5.4) and that of the drag correction due to oscillation (5.6) yields
an error as small as 0.0046 (see tables 11 and 12 for the values of coefficients and the
errors).

The case of L/d = 2 has been investigated in less detail. Although 52 simulations are
available for the processing only 20 satisfy the criterion A(nz) > 0.15 (see figure 22).
Qualitatively, there is much less difference between L/d = 2 and 3 than between 3 and 5.
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Path instabilities of freely falling oblong cylinders

The fit results are, again, presented in tables 11 and 12. For ρs/ρ = 0, the drag correction
values at large amplitude are not quite aligned. Obviously, the Galileo number dependence
starts to play a role. This is due to the long array of simulations at ρs/ρ = 0 in figure 12
spanning a long interval Ga ∈ [115, 200]. In spite of that, the final error of the fit is smaller
than 1 %.

All other quantities vary similarly with the growth of the square of amplitude. This is
the case of, for example, the vertical velocity, the Reynolds number and the oscillation
period. The latter is analysed using a similar method in the next subsection.

5.2. Strouhal number
In this section, we focus on the frequency of oscillations of the cylinder axis in the
vertical direction. As a consequence, we discard the frequencies of the fluid modes
where the direction of the axis remains horizontal (symmetric periodic and crosswise
oscillating states). Though not all regimes, where vertical oscillations of the cylinder axis
are observed, are pure flutter, the frequencies do not differ significantly except for the case
of the weak quasi-periodic flutter for the aspect ratio 3 and density ratio 10 described in
§ 3.2.2. These frequencies are not considered either. This still leaves 231 out of the total of
247 sets of simulation results for the analysis.

In the available literature, there is no general consensus as for the non-dimensionalisation
of the frequency of falling and fluttering oblong cylinders. Marchildon et al. (1964)
remarked that, unlike for the (fixed) infinite cylinder and its von Kármán vortex street,
the cylinder diameter, as length scale in the definition of the Strouhal number, is to be
replaced by

√
Ld. For the velocity scale the (mean) vertical velocity of the fall is used.

This yields

St = f
√

Ld
uz

=
√

L
d

1
T〈uz〉 , (5.9)

where the first expression is written in dimensional units and the second in the
non-dimensionalisation of the present paper. Alternatively, Chow & Adams (2011) and
Toupoint et al. (2019) use the gravitational velocity (1.2) as velocity scale. In the paper by
Toupoint et al. (2019), this results in the non-dimensionalisation

St∗ = f
√

Ld
ug,eff

=
√

π

4
L
d

1
T
, (5.10)

where the second expression relates this Strouhal number to the inverse of period
expressed in the non-dimensionalisation of the present paper. Chow & Adams (2011)
provided an account, moreover, of the effect of density ratio and suggest that the Strouhal
number

StCA =
√
ρs

ρ
St∗ (5.11)

should assume a constant value of 1/7.91 (0.126). Figure 23 compares the three different
definitions of Strouhal numbers (5.9), (5.10) and (5.11) in light of our simulation data.

The Strouhal numbers St and St∗ yield similar plots because

St∗/St = uz/ug,eff , (5.12)

i.e. the ratio St∗/St is equal to the mean vertical velocity non-dimensionalised by the
gravitational velocity scale. This ratio is situated between 1.2 and 1.5 at Galileo numbers
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Figure 23. Scatter plots of the values of (a) St (5.9), (b), St∗ (5.10) and (c) of StCA (5.11). The colour bar
indicates the density ratio, the marker type the aspect ratio: o, L/d = 2; x, L/d = 3; ·, L/d = 5.

150 ≤ Ga ≤ 300 for all aspect and density ratios. The value assumed by Chow & Adams
(2011) is 1.33 and data of Toupoint et al. (2019) also agree with these values. The factor√
ρs/ρ suggested by Chow & Adams (2011) over-compensates the effect of the density

ratio (and makes no sense for very light bodies). Here St∗ concentrates the best the values
for all the three aspect ratios for density ratios ρs/ρ ≤ 2. The average of 0.1 is in agreement
with that of Toupoint et al. (2019). For larger density ratios (5 and 10), the values are
considerably scattered both due to different aspect and density ratios. For this reason, we
shall proceed similarly as in § 5.1 and treat each of the aspect ratios separately. Similarly as
for the regression of the drag coefficient vs the Galileo number and the Reynolds number,
it is practically indifferent whether the analysis is performed for St or St∗ and whether the
Reynolds or the Galileo number is taken as the independent variable. We shall choose Ga
as an independent variable and St∗ as a dependent variable.

Figure 24 presents scatter plots of St∗ vs Ga separately for each aspect ratio L/d = 2,
3 and 5. Markers identify the density ratios, the colouring indicates the amplitude of
oscillations. The inertia plays a significant role for density ratios 5 (crosses) and 10
(circles) yielding significantly lower frequencies than for light bodies. The bi-stabilities
emphasise the important role of the amplitude tending to lower the frequency (increase
the period) in agreement with expectation namely if tumbling is approached for very large
amplitude.

To obtain an accurate fit, it was seen in the case of the drag coefficient, that higher
degree regression was needed. Moreover, the regression procedure could be split in two
stages: a single-parameter fit of the master curve for negligible oscillations (independent of
the density ratio) and a subsequent two-parameter regression accounting for oscillations.
In contrast, the frequency depends on the density ratio whatever the oscillation amplitude
making such a two step approach of little interest. To avoid too complicated and statistically
unreliable correlations, we limit the regression to a tri-linear (linear in all of the three
variables) fit as a function of G ≡ Ga, r ≡ ρs/ρ and a2 ≡ A2(nz). The main source
of inaccuracy comes from the dependence on the density ratio which is not even
monotonous, however we consider that more data are needed to account for this behaviour
reliably. Testing of the error has shown that the transformation (5.5) yields monotonously
decreasing error with increasing r0, which means that a regression depending linearly
directly on the density ratio r performs the best. As a consequence, for each of the three
aspect ratios, we determine the least-squares fit of

St∗ ≈ St∗fit = c1ra2G + c2rG + c3ra2 + c4r + c5a2G + c6G + c7a2 + c8 (5.13)
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Figure 24. Scatter plots of the values of St∗ (5.10) vs Ga for the three aspect ratios: (a) L/d = 2; (b) L/d = 3;
(c) L/d = 5. The density ratios are identified by symbols of the legends, the amplitudes of oscillations
are indicated by the colour bars. (d) L/d = 5, fit: circles, exact values of L/d = 5; crosses, fit (5.13) with
coefficients given in table 13.

and compute the relative root-mean-square error

ε =
√∑

i(St∗i − St∗fit,i)
2√∑

i(St∗i )2
(5.14)

and maximum relative error

εmax = max(|St∗i − St∗fit,i|/St∗i ). (5.15)

The numerical values of the coefficients ci of the fit (5.13) are given in table 13. The
somewhat over-simplified tri-linear fit yields considerably larger errors than those obtained
for the drag coefficient in table 12. Nevertheless, the several percent inaccuracy may be
acceptable as a comprehensive summary of the obtained data. The worst case of aspect
ratio L/d = 5 is, moreover, represented graphically in figure 24 (scatter plot L/d = 5,
fit). The extreme values (corresponding to ρs/ρ = 0 and 10) are well reproduced, the
inaccuracies concern the intermediate density ratios.

6. Summary

In the present paper we have investigated the behaviour of freely falling cylinders of
sufficient length-to-diameter ratio to assume a horizontal equilibrium position in the
regime of steady free fall. Aspect ratios 2, 3 and 5 and solid-to-fluid-density ratios going
from 0 to 10 in transitional regimes have been explored by numerical simulation. As
third external parameter used to determine the thresholds of the transitional regimes we
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chose the Galileo number (2.5) related in a seemingly complicated way to the effective
gravity and kinematic viscosity but appearing to be in agreement with the definition of
the Archimedes number by other authors (Toupoint et al. 2019). Both definitions account
for the body volume, the only difference consisting in taking a unit cube instead of a unit
sphere as a reference.

Several questions have been raised. The first issue aimed at exploring the onset of
typical oscillations, called flutter (Toupoint et al. 2019), yielding a planar trajectory of
the cylinder centre with the cylinder axis oscillating vertically in the same plane. For each
aspect ratio L/d = 2, 3 and 5, a detailed analysis in the two-parameter Ga–ρs/ρ plane
has been performed. Since similar trajectories appear as the result of primary bifurcations
of flat spheroids and flat cylinders keeping a vertical axis in laminar regimes, it could
be expected that the fluttering regime would arise as the results of primary bifurcations
the thresholds of which would be easy to determine. This expectation was confirmed for
density ratios up to 2 and aspect ratios 2 and 3 but a much more complicated scenario was
observed for larger density ratios and for cylinders of length 5d. For example, for L/d = 5
and density ratio 0, no flutter at all was evidenced up to Ga = 400. Instead, very small
oscillations of high frequency were detected on the vertical velocity component while the
trajectory of the cylinder centre remained strictly vertical. Given the small amplitude of
these oscillations (less than 10−4× smaller than the average vertical velocity itself), it was
not initially evident that they were not of numerical origin. Given the several-orders-higher
accuracy of the used numerical method, their presence starting at the same critical Galileo
number at other density ratios and the independence of the result of the numerical accuracy
this conjecture had to be discarded.

The negligible motion of the cylinder suggested the idea that the oscillations must be
due to a purely fluid instability of the wake and must be evidenced in the wake of a fixed
cylinder. This appeared to be the case and led to the identification of ‘fluid modes’ due
to wake instabilities with negligible solid–fluid interaction. A particular feature of the
primary instability of the wake of the fixed cylinder placed perpendicularly to the flow
direction is that all symmetries remain preserved which enhances the difficulty of its
detection. Similarly, as fluid modes evidenced for flat bodies (Dušek et al. 2021), they are
characterised by a weak response of the solid body degrees of freedom to the unsteadiness
of the wake. Unlike the robust fluttering motion, the fluid modes yield very early a chaotic
motion with three-dimensional trajectories and horizontally rotating cylinder axis. For
this reason, they can be associated with ‘irregular’ regimes evidenced experimentally by
Toupoint et al. (2019). With increasing Galileo number, vertical oscillations progressively
grow and the strongly oscillating fluid modes tend to the flutter, albeit imperfectly, having
lost its perfect periodicity and symmetry.

The role of the length-to-diameter ratio is most conspicuous in the comparison of L/d =
3 and 5. It would certainly be interesting to undertake a finer increment (which would be
feasible but would yield a large amount of additional data to process) of the aspect ratio and
go beyond L/d = 5d (which causes technical difficulties in the numerical method used).
Nevertheless, the practically opposite scenarios, where the flutter arises from a primary
bifurcation for light cylinders of aspect ratio L/d = 3 and for dense cylinders of aspect
ratio L/d = 5, indicate that for short oblong cylinders the inertia tends to inhibit the flutter
whereas for longer ones the converse seems to be true. Such a contrast was not expected
initially.

Another feature of the transition to the fluttering motion is the presence of subcritical
effects, i.e. subcritical bifurcations yielding bi-stability. Similar effects were already
observed for flat falling bodies such as oblate spheroids (Zhou et al. 2017). They are usually
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typical for larger density ratios. In the present work, they were evidenced for density ratios
ρs/ρ ≥ 2. The subcritical branches (characterised by large oscillations) correspond to the
flutter, the coexisting branches are rarely steady, instead, they correspond to unsteady fluid
modes. The non-uniqueness of the asymptotic solutions implies a loss of predictability.
The oscillation amplitude is then a necessary complement of information to provide the
distinction between both alternatives.

Finally, we addressed the problem of scattered results reported in several experimental
studies and making it difficult to propose a simple law predicting the drag of the freely
falling cylinders and the frequency of their oscillations once path instabilities set in. Also
our values of the drag coefficient as a function of the Reynolds number are significantly
scattered off the master curve obtained by processing regimes without or with weak
oscillations. To reproduce the scatter, it was necessary to account for the oscillation
amplitude and for the density ratio that starts to be of importance once the unsteady
effects become non-negligible. We suggested a simple bilinear fit of the deviation from
the master curve of ‘steady drag’ yielding a prediction with an error of less than 1 % if
the amplitude is provided and accounted for. It can be objected that the amplitude is an a
posteriori piece of information. However, without it, bistable branches of solution cannot
be distinguished and, conceptually, it is not different from the terminal Reynolds number,
figuring in most experimental correlations, which is not an external parameter either. For
the characterisation of the frequency, the Strouhal number introduced by Toupoint et al.
(2019) was used as a dependent variable and the Galileo number was used as a parameter.
A classical Strouhal number based on the vertical velocity and the length scale

√
Ld

as suggested by Marchildon et al. (1964) and the Reynolds number as the independent
variable could also be considered. In this case, a three-dimensional tri-linear regression,
accounting for the Galileo number, density ratio and the square of amplitude of vertical
oscillations of the cylinder axis, yielded an acceptable approximation, albeit, with errors
one order of magnitude larger than the fit of the drag coefficient. The origin of the error
is due the actually more complex dependence on the density ratio, in the same way as for
the drag correction. However, the amount of available data was not sufficient to use of a
higher degree regression with enough reliability.

Our study attempted to bring more detailed information on the behaviour of freely
falling oblong cylinders completing the experimental work of Toupoint et al. (2019). We
believe that our numerical analysis has improved the understanding of this topic. The
large number of simulations was enabled by the low cost of a single one. It was seen
that the complexity of some states required very long runs but thanks to the efficiency of
the spectral method each simulation can be run on a single thread. This means that, if a
run takes a month, it is just 1 month of net CPU time with no need for costly massively
parallel servers (where, nonetheless, large numbers of independent runs can be submitted
simultaneously as an ideally parallel job). In future, the behaviour of longer cylinders
is to be investigated. For this purpose, it will no longer be possible to use costly fully
three-dimensional computation methods.

Acknowledgements. The authors are grateful to the ‘Centre de Calcul Intensif d’Aix-Marseille’ for granting
us access to its high-performance computing resources.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
G. Bouchet https://orcid.org/0000-0001-5638-9084;
J. Dušek https://orcid.org/0000-0002-1946-4994.

1000 A54-38

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0001-5638-9084
https://orcid.org/0000-0001-5638-9084
https://orcid.org/0000-0002-1946-4994
https://orcid.org/0000-0002-1946-4994
https://doi.org/10.1017/jfm.2024.821


Path instabilities of freely falling oblong cylinders

REFERENCES

AUGUSTE, F., MAGNAUDET, J. & FABRE, D. 2013 Falling styles of discs. J. Fluid Mech. 719, 388–405.
BLANCO, M.A., FLÓREZ, M. & BERMEJO, M. 1997 Evaluation of the rotation matrices in the basis of real

spherical harmonics. J. Mol. Struct. 419, 19–27.
CHOW, A.C. & ADAMS, E.E. 2011 Prediction of drag coefficient and secondary motion of freefalling rigid

cylindrical particles with and without curvature at moderate Reynolds number. ASCE J. Hydraul. Engng
137, 1406–1414.

CHRUST, M. 2012 Etude numérique de la chute d’objets axisymétriques dans un fluide Newtonien. PhD
thesis, Université de Strasbourg, in English at https://publication-theses.unistra.fr/public/theses_doctorat/
2012/Chrust_Marcin_2012_ED269.pdf.

CHRUST, M., BOUCHET, G. & DUŠEK, J. 2013 Numerical simulation of the dynamics of freely falling discs.
Phys. Fluids 25, 044102.

CHRUST, M., BOUCHET, G. & DUŠEK, J. 2014 Effect of solid body degrees of freedom on the path
instabilities of freely falling or rising flat cylinders. J. Fluids Struct. 47, 55–70.

CLIFT, R., GRACE, J.R. & WEBER, M.E. 1978 Bubbles, Drops and Particles. Academic.
DUŠEK, J., ZHOU, W. & CHRUST, M. 2021 Solid–fluid interaction in path instabilities of sedimenting flat

objects. In Fluid–Structure-Sound Interactions and Control (ed. M. Braza, Y. Hoarau, Y. Zhou, A.D. Lucey,
L. Huang & G.E. Stavroulakis), pp. 57–62. Springer.

ERN, P., RISSO, F., FABRE, D. & MAGNAUDET, J. 2011 Wake-induced oscillatory paths of bodies freely
rising of falling in fluids. Annu. Rev. Fluid Mech. 44, 97–121.

FERNANDES, P.C., RISSO, F., ERN, P. & MAGNAUDET, J. 2007 Oscillatory motion and wake instability of
freely rising axisymmetric bodies. J. Fluid Mech. 573, 479–502.

GHIDERSA, B. & DUŠEK, J. 2000 Breaking of axisymetry and onset of unsteadiness in the wake of a sphere.
J. Fluid Mech. 423, 33–69.

HECHT, K.T. 2000 Quantum Mechanics. Springer.
INOUE, P. & SAKURAGI, A. 2008 Vortex shedding from a circular cylinder of finite length at low Reynolds

numbers. Phys. Fluids 20, 033601.
JAYAWEERA, K.O.L.F. & MASON, B.J. 1965 The behaviour of freely falling cylinders and cones in a viscous

fluid. J. Fluid Mech. 22, 709–720.
JENNY, M., DUŠEK, J. & BOUCHET, G. 2004 Instabilities and transition of a sphere falling or ascending

freely in a Newtonian fluid. J. Fluid Mech. 508, 201–239.
JOHNSON, T.A. & PATEL, V.C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378,

19–70.
LORITE-DIEZ, M., ERN, P., CAZIN, S., MOUGEL, J. & BOURGUET, R. 2022 An experimental study of

flow–structure interaction regimes of a freely falling flexible cylinder. J. Fluid Mech. 946, A16–35.
MARCHILDON, E.K., CLAMEN, A. & GAUVIN, W.H. 1964 Drag and oscillatory motion of freely falling

cylindrical particles. Can. J. Chem. Engng 42, 178–182.
MELIGA, P., CHOMAZ, J.M. & SIPP, D. 2009 Global mode interaction and pattern selection in the wake of a

disk: a weakly nonlinear expansion. J. Fluid Mech. 633, 159–189.
NATARAJAN, R. & ACRIVOS, A. 1993 The instability of the steady flow past spheres and disks. J. Fluid Mech.

254, 323–344.
PIERSON, J.-L., AUGUSTE, F., HAMMOUTI, A. & WACHS, A. 2019 Inertial flow past a finite-length

axisymmetric cylinder of aspect ratio 3: effect of the yaw angle. Phys. Rev. Fluids 4, 044802.
ROMERO-GOMEZ, P. & RICHMOND, M.C. 2016 Numerical simulation of circular cylinders in free-fall.

J. Fluids Struct. 61, 154–167.
TCHOUFAG, J., FABRE, D. & MAGNAUDET, J. 2014 Global linear stability analysis of the wake and path of

buoyancy-driven disks and thin cylinders. J. Fluid Mech. 740, 278–311.
TOUPOINT, C., ERN, P. & ROIG, V. 2019 Kinematics and wake of freely falling cylinders at moderate

Reynolds numbers. J. Fluid Mech. 866, 82–111.
YASSERI, S. 2014 Experiment of free-falling cylinders in water. Underwater Technol. 32, 177–191.
ZHOU, W., CHRUST, M. & DUŠEK, J. 2017 Path instabilities of oblate spheroids. J. Fluid Mech. 833,

445–468.
ZIELINSKA, B.J.A., GOUJON-DURAND, S., DUŠEK, J. & WESFREID, J.E. 1997 A strongly non linear effect

in unstable wakes. Phys. Rev. Lett. 79, 3893–3896.

1000 A54-39

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

82
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://publication-theses.unistra.fr/public/theses_doctorat/2012/Chrust_Marcin_2012_ED269.pdf
https://publication-theses.unistra.fr/public/theses_doctorat/2012/Chrust_Marcin_2012_ED269.pdf
https://doi.org/10.1017/jfm.2024.821

	1 Introduction
	2 Mathematical formulation and numerical method
	2.1 Mathematical formulation
	2.2 Numerical method

	3 Transition states of horizontally falling cylinders
	3.1 Flutter
	3.2 Fluid modes
	3.2.1 Wake of a fixed cylinder
	3.2.2 Fluid modes of a freely falling cylinder


	4 Bifurcation diagrams
	4.1 L/d=2
	4.2 L/d=3
	4.3 L/d=5
	4.3.1 Branches of fluid modes
	4.3.2 Vertical oscillations of the cylinder axis at s/=0
	4.3.3 s/=1
	4.3.4 s/=2
	4.3.5 s/=5
	4.3.6 s/=10


	5 Drag and frequency
	5.1 Drag coefficient
	5.2 Strouhal number

	6 Summary
	References

