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Abstract

Novel prediction methods should always be compared to a baseline to determine their
performance. Without this frame of reference, the performance score of a model is
basically meaningless. What does it mean when a model achieves an F1 of 0.8 on
a test set? A proper baseline is, therefore, required to evaluate the ‘goodness’ of a
performance score. Comparing results with the latest state-of-the-art model is usually
insightful. However, being state-of-the-art is dynamic, as newer models are continuously
developed. Contrary to an advanced model, it is also possible to use a simple dummy
classifier. However, the latter model could be beaten too easily, making the comparison
less valuable. Furthermore, most existing baselines are stochastic and need to be com-
puted repeatedly to get a reliable expected performance, which could be computationally
expensive. We present a universal baseline method for all binary classification models,
named the Dutch Draw (DD). This approach weighs simple classifiers and determines
the best classifier to use as a baseline. Theoretically, we derive the DD baseline for
many commonly used evaluation measures and show that in most situations it reduces
to (almost) always predicting either zero or one. Summarizing, the DD baseline is gen-
eral, as it is applicable to any binary classification problem; simple, as it can be quickly
determined without training or parameter tuning; and informative, as insightful conclu-
sions can be drawn from the results. The DD baseline serves two purposes. First, it is a
robust and universal baseline that enables comparisons across research papers. Second,
it provides a sanity check during the prediction model’s development process. When a
model does not outperform the DD baseline, it is a major warning sign.
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1. Introduction

A typical data science project can be crudely simplified into the following steps: (i) compre-
hending the problem context, (ii) understanding the data, (iii) preparing the data, (iv) modeling,
(v) evaluating the model, and (vi) deploying the model [19]. Before deploying a new model, it
should be tested to determine whether it meets certain predefined outcome criteria. A baseline
plays an essential role in this evaluation, as it gives an indication of the actual performance of
a model.

However, which method should be selected to construct a baseline? A good baseline is
desirable, but what explicitly makes a baseline ‘good’? Comparing results with the latest state-
of-the-art model is usually insightful. However, being state-of-the-art is dynamic as newer
models are continuously developed. The reproducibility of such a model is also often a prob-
lem because code is not published or large amounts of computational resources are required to
retrain the model. Furthermore, most existing baselines are stochastic and need to be computed
repeatedly to get a reliable expected performance, which could be computationally expensive.
These aspects make comparing older results with newer research hard or even impossible.
Nevertheless, it is important to stress that the comparison with a state-of-the-art model still
has merit. However, we are pleading for an additional universal baseline that can be com-
puted quickly (without the need for training) and can make it possible to compare results
across research domains and papers. With that aim in mind, we outline three principal prop-
erties that any universal baseline construction method should have: generality, simplicity, and
informativeness.

Generality In research, a new model is commonly compared to a limited number of existing
models used in the same field. Although these are usually carefully selected, they are
still subjectively chosen. Take binary classification, in which the objective is to label
each observation as either zero or one. Here, we could already select a decision tree
[10], random forest [5], variants of naive Bayes [18], k-nearest neighbors [1], support
vector machine [16], neural network [17], or logistic regression model [15] to evaluate
the performance. These models are often trained specifically for a problem instance with
parameters tuned for optimal performance in that specific case. Hence, these methods
are not general. We could not take a decision tree used for determining bankruptcy [10]
and use it as a baseline for a pathological voice detection problem [11]; at least structural
adaptations and retraining are necessary. A good standard baseline should be applicable
to all binary classification problems, irrespective of the domain.

Simplicity A universal baseline should not be too complex. Unfortunately, it is hard to deter-
mine whether a baseline is too complex for a measure. Essentially, two components are
critical in our view: computational time and explainability. For practical applications,
the baseline should be determined relatively quickly. For example, training a neural net-
work many times to generate an average baseline or optimizing the parameters of a
certain model could take too much valuable time. Secondly, if a baseline is very com-
plex, it can be harder to draw meaningful conclusions. Is this ingeniously complicated
baseline expected to outperform a new model, or is it exactly what we would expect?
This leads to the last property of a good standard baseline.
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Informativeness A baseline should also be informative. When a method achieves a score
higher or lower than the baseline, clear conclusions need to be drawn. Is it obvious that
the baseline should be beaten? Consider the athletic event high jump, where an athlete
needs to jump over a bar at a specific height. If the bar is set too low, anyone can jump
over it. If the bar is too high, no one makes it. Neither situation gives us additional
information to distinguish a professional athlete from a regular amateur. The bar should
be placed at a height where the professional could obviously beat it, but the amateur
cannot. Drawing from this analogy, a baseline should be beaten by any developed model.
If not, this should be considered a major warning sign.

Our research focuses on finding a general, simple, and informative baseline for binary classi-
fication problems. Although we focus on these types of problems, the three properties should
also hold for constructing baselines in other supervised learning problems, such as multiclass
classification and regression. Two methods that immediately come to mind are dummy clas-
sifiers and optimal threshold classifiers. They could be ideal candidates for our additional
universal baseline.

Dummy classifier A dummy classifier is a non-learning model that makes predictions follow-
ing a simple set of rules. For example, always predicting the most frequent class label, or
predicting each class with some probability. A dummy classifier is simple and general
but not always informative. The information gained by performing better than a simple
dummy classifier can be zero. With the plethora of dummy classifiers, the selection of
one of those classifiers is also arbitrary and questionable.

Optimal threshold classifier For a large family of binary performance measures, [7] deter-
mined that the optimal classifier consists of a sign function with a threshold tailored
to each specific measure. To determine the optimal classifier, it is necessary to know
or approximate P(Y = 1 | X = x), which is the probability that the binary label Y is ‘1’
given the features X = x. [8] had a similar approach, but only focused on the F1 score.
The conditional probabilities need to be learned from training data. However, this leads
to arbitrary selections, as a model is necessary to approximate these probabilities. It
is a clever approach, but unfortunately there is no clear-cut best approximation model
for different research domains. If the approximation model is not accurate, the opti-
mal classifier is based on wrong information, which makes it hard to draw meaningful
conclusions from this approach.

Both the dummy and optimal threshold classifiers have their strengths and weaknesses. This
paper introduces a novel baseline approach called the Dutch Draw (DD), which eliminates
these weaknesses while keeping the strengths. The DD can be seen as a dummy classifier on
steroids. Instead of arbitrarily choosing a dummy classifier, we mathematically derive which
classifier has the best expected performance from a family of classifiers. Also, this expected
performance can be directly determined, making it very fast to obtain the baseline. The DD
baseline is:

• applicable to any binary classification problem;

• reproducible;

• simple;

• parameter-free;
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• more informative than any single dummy baseline;

• an explainable minimal requirement for any new model.

This makes the DD an ideal candidate for a universal baseline in binary classification.
Our contributions are as follows:

• We introduce the DD and explain why this method produces a universal baseline that is
general, simple, and informative for any binary classification problem.

• We provide the mathematical properties of the DD for many evaluation measures, and
summarize them in several tables.

• We demonstrate the usefulness of the DD baseline and how it can be used in practice to
identify when models should definitely be reconsidered.

• We have made the DD available in a Python package (https://github.com/joris-pries/
DutchDraw).

2. Preliminaries

Before formulating the DD, we need to introduce the necessary notation and simultaneously
provide elementary information on binary classification. This is required to explain how binary
models are evaluated. Then, we discuss how evaluation measures are constructed for binary
classification and examine the most commonly used ones.

2.1. Binary classification

The goal of binary classification is to learn (from a dataset) the relationship between the
input variables and the binary output variable. When the dataset consists of M ∈N>0 observa-
tions, let M := {1, . . . , M} be the set of observation indices. Each instance, denoted by xi, has
K ∈N>0 explanatory feature values. These features can be categorical or numerical. Without
loss of generality, we assume that xi ∈R

K for all i ∈M. Moreover, each observation has a cor-
responding output value yi ∈ {0, 1}. Now, let X := [x1 · · · xM]� ∈R

M×K denote the matrix
with all observations and their explanatory feature values, and let y = (y1, . . . , yM) ∈ {0, 1}M

be the response vector. The complete dataset is then represented by (X, y). We call the obser-
vations with response value 1 ‘positive’, while the observations with response value 0 are
‘negative’. Let P denote the number of positives and N the number of negatives. Note that, by
definition, P + N = M must hold.

2.2. Evaluation measures

An evaluation measure quantifies the prediction performance of a trained model. We
categorize the evaluation measures into two groups: base measures and performance met-
rics [3]. Since there are two possible values for both the predicted and the true classes in
binary classification, there are four base measures: the number of true positives (TP), false
positives (FP), false negatives (FN), and true negatives (TN). Performance metrics are a func-
tion of one or more of those four base measures. To shorten the notation, let P̂ := TP + FP
and N̂ := TN + FN denote the number of positively and negatively predicted instances,
respectively.

All the base measures and performance metrics considered are shown in Table 1 along with
their abbreviations, possible alternative names, definitions, and corresponding codomains. The
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TABLE 1: Definitions and codomains of evaluation measures.

Measure Definition Codomain

True positives TP N0
True negatives TN N0
False negatives FN N0
False positives FP N0
True positive rate,

TPR = TP/P [0, 1]recall, sensitivity
True negative rate,

TNR = TN/N [0, 1]specificity, selectivity
Positive predictive value,

PPV = TP/P̂ [0, 1]precision
Negative predictive value NPV = TN/N̂ [0, 1]

Fβ score Fβ = (1 + β2)

(1/PPV) + (β2/TPR)
[0, 1]

Youden’s J statistic/index,
J = TPR + TNR − 1 [−1, 1](bookmaker) informedness

Markedness MK = PPV + NPV − 1 [−1, 1]

Accuracy Acc = (TP + TN)/M [0, 1]

Balanced accuracy BAcc = 1
2 (TPR + TNR) [0, 1]

Matthews correlation coefficient MCC = TP · TN − FP · FN√
P̂ · N̂ · P · N

[−1, 1]

Cohen’s kappa
κ = Po − Pe

1 − Pe
, with

[−1, 1]

Po = Acc, Pe = (P̂ · P + N̂ · N)/M2

Fowlkes–Mallows index,
FM = √

TPR · PPV [0, 1]G-mean 1
G-mean 2 G(2) = √

TPR · TNR [0, 1]

Prevalence threshold PT =
√

TPR · (1 − TNR) − (1 − TNR)

TPR − (1 − TNR)
[0, 1]

Threat score,
TS = TP

P + FP
[0, 1]critical success index

codomains show in what set the measure can theoretically take values (without considering
the exact values of P, N, P̂ and N̂). In Section 3, the case-specific codomains are provided
when we discuss the evaluation measures in more detail. Some performance metrics, such as
the false negative rate (FNR) and false discovery rate (FDR), are omitted, as they can easily
be derived from the results of other measures. Finally, note that the list is not exhaustive but
contains most of the commonly used evaluation measures.

2.2.1. Ill-defined measures. Not every evaluation measure is well-defined. Often, the problem
occurs due to division by zero. For example, the true positive rate (TPR) defined as TPR =
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TABLE 2: Assumptions on domains P, N, P̂ and N̂. Some measures are not defined if P, N, P̂, or N̂ is
equal to zero. These domain requirements are therefore necessary (M > 0 always).

Domain requirement

Measure P N P̂ N̂

TP, TN, FN, FP, Acc, κ — — — —
TPR, TS > 0 — — —
TNR — > 0 — —
PPV — — > 0 —
NPV — — — > 0
Fβ , FM > 0 — > 0 —
J, BAcc, G(2) > 0 > 0 — —
MK — — > 0 > 0
MCC > 0 > 0 > 0 > 0

TP/P cannot be calculated whenever P = 0. Therefore, we have made assumptions for the
allowed values of P, N, P̂, and N̂. These are shown in Table 2. One exception is the prevalence
threshold (PT) [2], where the denominator is zero if TPR is equal to the false positive rate
(defined as FPR = FP/N). Depending on the classifier, this situation could occur regularly.
Therefore, PT is omitted throughout the rest of this research.

3. Dutch Draw

In this section, we introduce the DD framework and discuss how this method is able to
provide a universal baseline for any evaluation measure. This baseline is general, simple, and
informative, which is crucial for a good baseline, as we explained in Section 1. First, we pro-
vide the family of DD classifiers and thereafter explain how the optimal classifier generates
the baseline.

3.1. Dutch Draw classifiers

Our research aims to provide a universal baseline for any evaluation measure in binary
classification. The DD baseline comes from choosing the best DD classifier. Before discussing
what ‘best’ entails, we have to define the DD classifier in general. This classifier generates the
predictions for observations by outputting a vector of M random binary values. It is described
in words as:

σθ (M) := {Take a random subset of M of size �M · θ� without replacement;

assign 1 to these observations and 0 to the remaining}.
Here, �·� is the function that rounds its argument to the nearest integer. The parameter θ ∈ [0, 1]
controls the percentage of observations predicted as positive. The mathematical definition of σθ

is σθ (M) := (1E(i))i∈M with E ⊆M uniformly drawn such that |E| = �M · θ�, with (1E(i))i∈M
the vector with ones in the positions in E and zeros elsewhere. Note that a classifier σθ does
not learn from the features in the data, just as a dummy classifier. The set of all DD classifiers
{σθ : θ ∈ [0, 1]} is the complete family of models that classify a random sample of any size as
positive.
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Given a DD classifier, the number of predicted positives P̂ depends on θ and is given
by P̂θ := �M · θ�; the number of predicted negatives is N̂θ := M − �M · θ�. Specifically,
these two numbers are integers; thus, different values of θ can lead to the same value of
P̂θ . Therefore, we introduce the parameter θ∗ := �M · θ�/M as the discretized version of θ .
Furthermore, we define

�∗ :=
{�M · θ�

M
: θ ∈ [0, 1]

}
=

{
0,

1

M
, . . . ,

M − 1

M
, 1

}

as the set of all unique values that θ∗ can obtain for all θ ∈ [0, 1].
Next, we derive mathematical properties of the DD classifier for every evaluation measure

in Table 1 (except PT). Note that the DD is stochastic; thus, we examine the distribution of
the evaluation measure. Furthermore, we also determine the range and expectation of a DD
classifier.

3.1.1. Distribution. The distributions of the base measures (see Section 2.2) are directly deter-
mined by σθ . Consider, for example, TP, the number of positive observations that are also
predicted to be positive. In a dataset of M observations with P labeled positive, �M · θ� random
observations are predicted as positive in the DD approach. This implies that TPθ is hyperge-
ometrically distributed with parameters M, P, and �M · θ�, as the classifier randomly draws
�M · θ� samples without replacement from a population of size M, where P samples are labeled
positive. Thus,

P(TPθ = s) =

⎧⎪⎨
⎪⎩

(P
s

) · ( M−P
�M·θ�−s

)
( M
�M·θ�

) if s ∈D(TPθ ),

0 otherwise,

where D(TPθ ) is the domain of TPθ . The definition of this domain is given in (5).
The other three base measures are also hypergeometrically distributed, following similar

reasoning. This leads to:

TPθ ∼ Hypergeometric(M, P, �M · θ�),

FPθ ∼ Hypergeometric(M, N, �M · θ�),

FNθ ∼ Hypergeometric(M, P, M − �M · θ�),

TNθ ∼ Hypergeometric(M, N, M − �M · θ�).

Note that these random variables are not independent. In fact, they can all be written in terms
of TPθ . This is a crucial effect of the DD approach, as it reduces the formulations to only a
function of a single variable. Consequently, most evaluation measures can be written as a linear
combination of only TPθ . With only one random variable, theoretical derivations and optimal
classifiers can be determined. As mentioned, TPθ + FNθ = P and TNθ + FPθ = N = M − P,
and we also have TPθ + FPθ = �M · θ�, because this denotes the total number of positively
predicted observations. These three identities are linear in TPθ . Thus, each base measure can
be written in the form Xθ (a, b) := a · TPθ + b with a, b ∈R. Additionally, let fXθ (a, b) be the
probability distribution of Xθ (a, b). Then, by combining the identities, we get

TPθ = TPθ , (1)
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FPθ = P̂θ − TPθ , (2)

FNθ = P − TPθ , (3)

TNθ = N − P̂θ + TPθ , (4)

with P̂θ := �M · θ�.

Example 1. (Distribution of Fβ score.) To illustrate how the probability function fXθ (a, b)
can directly be derived, we consider the Fβ score [4]. It is the weighted harmonic average
between the true positive rate (TPRθ ) and the positive predictive value (PPVθ ). The latter two
performance metrics are discussed extensively in the Supplementary Material. The Fβ score
balances predicting the actual positive observations correctly (TPRθ ) and being cautious in
predicting observations as positive (PPVθ ). The factor β > 0 indicates how much more TPRθ

is weighted compared to PPVθ . The Fβ score is commonly defined as

F(β)
θ = 1 + β2

(1/PPVθ ) + (β2/TPRθ )
.

By substituting PPVθ and TPRθ by their definitions (see Table 1) and using (1) and (2), we get

F(β)
θ = (1 + β2)TPθ

β2 · P + �M · θ� .

Since PPVθ is only defined when P̂θ = �M · θ� > 0 and TPRθ is only defined when P > 0, for
F(β)

θ we need that both these restrictions hold. The definition of F(β)
θ is linear in TPθ and can

therefore be formulated as

F(β)
θ = Xθ

(
1 + β2

β2 · P + �M · θ� , 0

)
.

3.1.2. Range. The values that Xθ (a, b) can attain depend on a, b, and the domain of TPθ .
Without restriction, the maximum number that TPθ can be is P. Then, all positive observations
are also predicted to be positive. However, when θ is small enough that �M · θ� < P, then only
�M · θ� observations are predicted as positive. Consequently, TPθ can only reach the value
�M · θ� in this case. Hence, in general, the upper bound of the domain of TPθ is min{P, �M ·
θ�}. The same reasoning holds for the lower bound: when θ is small enough, the minimum
number of TPθ is 0 since all positive observations can be predicted as negative. However,
when θ gets large enough, positive observations have to be predicted positive even if all M − P
negative observations are predicted positive. Thus, in general, the lower bound of the domain
is max{0, �M · θ� − (M − P)}. Now, let D(TPθ ) be the domain of TPθ , then

D(TPθ ) := {i ∈N0 : max{0, �M · θ� − (M − P)} ≤ i ≤ min{P, �M · θ�}}. (5)

Consequently, the range of Xθ (a, b) is given by

R(Xθ (a, b)) := {a · i + b}i∈D(TPθ ). (6)
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3.1.3. Expectation. The introduction of Xθ (a, b) allows us to write its expected value in
terms of a and b. This statistic is required to calculate the actual baseline. Since TPθ has a
Hypergeometric(M, P, �M · θ�) distribution, its expected value is known and given by

E[TPθ ] = �M · θ�
M

· P.

Next, we obtain the following general definition for the expectation of Xθ (a, b):

E[Xθ (a, b)] = a ·E[TPθ ] + b = a · �M · θ�
M

· P + b. (7)

This rule is consistently used to determine the expectation for each measure.

Example 2. (Expectation of Fβ score.) To demonstrate how the expectation is calculated for

a performance metric, we again consider F(β)
θ . It is linear in TPθ with a = (1 + β2)/(β2 · P +

�M · θ�) and b = 0, and so its expectation is given by

E
[
F(β)

θ

] =E

[
Xθ

(
1 + β2

β2 · P + �M · θ� , 0

)]
(7)= 1 + β2

β2 · P + �M · θ� ·E[TPθ ] + 0

= �M · θ� · P · (1 + β2)

M · (β2 · P + �M · θ�)

= (1 + β2) · P · θ∗

β2 · P + M · θ∗ .

A full overview of the distribution and mean of all the base and performance metrics con-
sidered is given in Table 3. The Supplementary Material provides all the calculations to derive
the corresponding distributions and expectations.

3.2. Optimal Dutch Draw classifier

Next, we discuss how the DD baseline will ultimately be derived. To do so, an overview
is presented in Figure 1. Starting with the definition of the DD classifiers in Section 3.1 and
determining their expectations for commonly used measures (see Table 3), we are now able
to identify the optimal DD classifier. Given a performance metric and dataset, the optimal DD
classifier is found by optimizing the associated expectation for θ ∈ [0, 1]. It is natural to assume
that the considered evaluation measures/metrics are maximized. Thus, metrics that are usually
minimized are omitted from this paper. The procedure can be followed for these metrics by
replacing maximizing with minimizing.

3.2.1. Dutch Draw baseline. The optimal DD classifiers and the corresponding DD baseline
can be found in Table 4. For many performance metrics, it is optimal to predict all instances
as positive or all of them as negative. In some cases, this is not allowed due to ill-defined
measures. Then, it is often optimal to only predict one sample differently. For several other
metrics, almost all parameter values give the optimal baseline. Next, we give an example to
illustrate how the results of Table 4 are derived.
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TABLE 3: Properties of performance metrics for a DD classifier. Expectation and distribution of each
performance metric for a DD classifier σθ with θ∗ = �M · θ�/M.

Distribution fXθ (a, b)

Measure Expectation a b

TP θ∗ · P 1 0
TN (1 − θ∗)(M − P) 1 M − P − M · θ∗
FN (1 − θ∗)P −1 P
FP θ∗(M − P) −1 M · θ∗
TPR θ∗ 1/P 0

TNR 1 − θ∗ 1

M − P
1 − M · θ∗

M − P

PPV
P

M

1

M · θ∗ 0

NPV 1 − P

M

1

M(1 − θ∗)
1 − P

M(1 − θ∗)

Fβ

(1 + β2)θ∗ · P

β2 · P + M · θ∗
1 + β2

β2 · P + M · θ∗ 0

J 0
M

P(M − P)
− M · θ∗

M − P

MK 0
1

M · θ∗(1 − θ∗)
− P

M(1 − θ∗)

Acc
(1 − θ∗)(M − P) + θ∗ · P

M

2

M
1 − θ∗ − P

M

BAcc
1

2

M

2P(M − P)

1

2
− M · θ∗

2(M − P)

MCC 0
1√

P(M − P)θ∗(1 − θ∗)
−

√
P · θ∗

√
(M − P)(1 − θ∗)

κ 0
2

P(1 − θ∗) + (M − P)θ∗ − 2θ∗ · P

P(1 − θ∗) + (M − P)θ∗

FM

√
θ∗ · P

M

1√
P · M · θ∗ 0

G(2) — Nonlinear in TPθ Nonlinear in TPθ

TS — Nonlinear in TPθ Nonlinear in TPθ

Example 3. (DD baseline for the Fβ score.) To determine the DD baseline, the extreme values

of the expectation E
[
F(β)

θ

]
need to be identified. To do this, examine the function f : [0, 1] →

[0, 1] defined as

f (t) = (1 + β2) · P · t

β2 · P + M · t
.
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TABLE 4: DD baseline. For many performance metrics, the maximum expected score of all allowed
DD classifiers is determined, which is the DD baseline. In this table, the baselines and the optimizing

parameters are given. ‘—’ denotes that no closed-form expression was found.

Measure max{E} ��
max := arg max{E}

TPR 1 {1}
TNR 1 {0}
PPV P/M �∗ \ {0}
NPV 1 − (P/M) �∗ \ {1}
Fβ

(1 + β2) · P

β2 · P + M
{1}

J 0 �∗
MK 0 �∗ \ {0, 1}
Acc max{P/M, 1 − (P/M)} {[P < M/2]}a

BAcc 1
2 �∗

MCC 0 �∗ \ {0, 1}
κ 0 �∗b

FM
√

P/M {1}
G(2) — —
TS P/M {1}c

a If P = M/2, then �∗. Note that Iverson brackets are used to simplify the
notation.
b If P = M, then �∗ \ {1}.
c If P = 1, then �∗ \ {0}.

FIGURE 1: Road to the DD baseline. This is an overview of how the DD baseline is determined.
(i) All expectations are derived. (ii) The expectation is maximized. (iii) The performance of the best

DD classifier is the DD baseline.

The relationship between f and E
[
F(β)

θ

]
is given as f (�M · θ�/M) =E

[
F(β)

θ

]
. To find the

extreme values, we have to look at the derivative of f ,

df (t)

dt
= β2(1 + β2) · P2

(β2 · P + M · t)2
.

It is strictly positive for all t in its domain. Thus, f is strictly increasing in t. This means E
[
F(β)

θ

]
is non-decreasing in θ and also in θ∗, because the term θ∗ = �M · θ�/M is non-decreasing
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in θ . Hence, the maximum expectation of F(β)
θ is

max
θ∈[1/(2M),1]

(
E

[
F(β)

θ

]) = max
θ∈[1/(2M),1]

(
(1 + β2) · P · �M · θ�
M · (β2 · P + �M · θ�)

)
= (1 + β2) · P

β2 · P + M
.

Note that �M · θ� > 0 is a restriction for F(β)
θ ; hence, the maximum is taken over the interval

[1/(2M), 1]. Furthermore, the optimization value θmax is given by

θmax ∈ arg max
θ∈[1/(2M),1]

(
E

[
F(β)

θ

]) = arg max
θ∈[1/(2M),1]

( �M · θ�
β2 · P + �M · θ�

)
=

[
1 − 1

2M
, 1

]
.

Following this reasoning, the discrete form θ∗
max is given by

θ∗
max ∈ arg max

θ∗∈�∗\{0}
{
E

[
F(β)

θ∗
]} = arg max

θ∗∈�∗\{0}

{
θ∗

β2 · P + M · θ∗

}
= {1}.

This implies that predicting everything positive yields the largest E
[
F(β)

θ

]
.

3.2.2. Selecting performance metrics. The expectations of the DD given in Table 4 and the
codomains of each performance metric given in Table 1 indicate that DD baseline values are
identical to the expected score of the ‘optimal’ model for some performance metrics, like
TPR/TNR. Evaluating the performance of a classifier on one of these metrics will always give
an unsatisfying result, as input-dependent classifiers can only underperform or match the DD
baseline. In addition, evaluating a classifier on only one of the other metrics cannot give a
holistic view of the performance of a classifier, as each metric weights the base measures
differently. There is no metric ‘objectively’ better than all other metrics. Multiple perfor-
mance metrics should be checked to evaluate a classifier properly. The expectations given
in Table 4 serve as a lookup table to validate the performance of a classifier from a holistic
perspective.

3.2.3. Non-linear performance metrics. We have shown that the DD baseline is straightfor-
ward for performance metrics that can be written in linear terms of TPθ . However, there are
performance metrics, such as G(2)

θ , where this is impossible. This could make it hard to derive
a closed-form expression for the maximum expectation. Previously, we saw in Table 4 that
θ∗ = 0 or θ∗ = 1 was often optimal. Examining G(2)

θ more closely shows that simply selecting
θ∗ = 0 or θ∗ = 1 would result in the worst possible score. To show that the optimal param-
eter is less straightforward in this case, we show the optimal θ∗

max in Figure 2 for a fixed M
and increasing P. This shows that θ = 0.5 is not always optimal. The optimal value signifi-
cantly differs when P � N or P  N. We believe that the following reasoning can explain this:
Observe that G(2) = √

TPR · TNR is zero when either TPR or TNR is zero, which is the mini-
mum score. When there are few positive labels, it must be prevented that all these samples are
falsely predicted negative, which is why θ∗

max is increased. The reverse holds when there are
only a few negative samples. The DD baseline can still be derived for non-linear performance
metrics by determining the expectations of all DD classifiers. However, future research can
greatly improve this (see Section 5).
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FIGURE 2: Non-trivial θ∗
max for G(2)

θ . For each P ∈ {1, . . . , 49}, the optimal θ∗
max is derived for the

performance metric G(2)
θ with a dataset consisting of P positive and 50 − P negative samples. This shows

that the optimal value is not straightforward.

4. Dutch Draw in practice

Now that we have established how to derive the DD baseline, it is time to see how the DD
could be used in practice.

Example 4. (Cleveland heart disease.) A dataset (Cleveland heart disease) was provided to
predict whether patients have heart disease using several feature values [6]. We randomly split
the dataset into a training (90%) and a test set (10%) and chose the F1 measure to evaluate
how well a model performs. The DD baseline, derived using the M and P of the test data,
immediately provided a performance reference (0.735) for any model. We trained two common
machine learning algorithms (decision tree and k-nearest neighbors) with default parameters in
scikit-learn [13]. To estimate the expected performance, we averaged the results obtained from
10 different random seeds for each stochastic model. They achieved an average score of 0.727
and 0.710, respectively, which are worse than the DD baseline. This is a major warning sign.
Although the decision tree performed better than k-nearest neighbors, it should still not be used.
Thus, we decided to train three other models (logistic regression, random forest, and Gaussian
naive Bayes), which ended up performing better than the baseline. Finally, we selected the
logistic regression model in practice, as this model achieved the highest score and beat the DD
baseline. Table 5 shows an overview of the performance of these five models and the baseline
on a set of selected performance metrics.

Example 5. (ImageNet.) The previous example illustrates how the DD baseline provides
insights into the performance of a set of standard machine-learning models. Nevertheless, tasks
involving higher-dimensional data necessitate more advanced model architectures. Image-
related classification tasks serve as a prevalent example of such complex problems, and we
aim to demonstrate in this example how the DD baseline imparts valuable insights for these
models tackling more demanding challenges. The ImageNet Large Scale Visual Recognition
Challenge 2012 (ILSVRC2012) offers a significant dataset comprised of over one million
images across a thousand diverse object categories [14]. This challenge involves developing
a multiclass classification model that accurately predicts which object (such as a sock, volley-
ball, vase, etc.) is visible in each image. We selected a range of state-of-the-art vision models,
including DenseNet121, GoogLeNet, ResNet18, ResNet50, VGG11, and VGG19, to tackle
this classification problem. These models were implemented and pre-trained in PyTorch [12]
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TABLE 5: Comparing performance with the DD baseline. Five standard machine learning algorithms
(decision tree (DT), k-nearest neighbors (KNN), logistic regression (LR), random forest (RF), and
Gaussian naive Bayes (GNB)) were tested on the Cleveland Heart Disease dataset for many commonly
used performance metrics. The average results on the test data using 10 random seeds for the stochastic
models are compared with the DD baseline (DDB, first column). The bold scores highlight the situations

where a model achieved a score inferior to the DD baseline.

Metric DDB DT KNN LR RF GNB

Acc 0.581 0.710 0.710 0.903 0.871 0.839
BAcc 0.500 0.718 0.729 0.906 0.868 0.840
F1 0.735 0.727 0.710 0.914 0.889 0.857
FM 0.762 0.730 0.719 0.915 0.889 0.857
G(2) 0.500 0.716 0.719 0.906 0.867 0.840
J 0.000 0.436 0.457 0.812 0.735 0.679
κ 0.000 0.422 0.434 0.803 0.735 0.672
MCC 0.000 0.430 0.457 0.805 0.735 0.674
MK 0.000 0.425 0.457 0.798 0.735 0.668
NPV 0.419 0.625 0.611 0.857 0.846 0.786
PPV 0.581 0.800 0.846 0.941 0.889 0.882
TS 0.581 0.571 0.550 0.842 0.800 0.750

TABLE 6: Comparative accuracy scores across categories. For each vision model, the category-wise accu-
racy is determined on the validation dataset of ILSVRC2012. The DD baseline is identical for each
category, as there are 50 images in the data (0.999). For each vision model, the number of categories with

scores inferior to the DD baseline is presented.

# Underperforming
Model categories

DenseNet121 49
GoogLeNet 97
ResNet18 94
ResNet50 43
VGG11 112
VGG19 63

on the training dataset of the ImageNet dataset. Typically, the performance of these models
is assessed based on top-one or top-five accuracy rates. However, our interest lies in iden-
tifying the categories where these models do not perform as well in testing the underlying
performance. The test data labels are not publicly available, but we can assess these models
using the provided validation dataset, which contains 50 images per category. The outputs of
the selected vision models on this dataset are vectors of probabilities representing the likeli-
hood of the input image belonging to each of the 1000 classes. The model assigns the class
label with the highest likelihood to the instance. We calculated the four base measures for
each category i by categorizing all instances of label i as ‘positive’ and all other labels as
‘negative’ in both the predicted and actual data. There are 50 images per category in the vali-
dation dataset, so the DD baseline, independently of the selected evaluation metric, is identical
for each category (P = 50, M = 50 000). Table 6 shows the number of categories having an
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inferior Accuracy score when compared to its corresponding DD baseline (0.999). As the DD
baseline takes class imbalance into account, accuracy scores can be interpreted for this binary
classification problem even though this metric is not robust against imbalance. It is crucial to
explore categories that fail the sanity check, whether this stems from issues with the data or the
models themselves. There are, in total, 24 categories where none of the selected vision mod-
els actually outperform the DD baseline, indicating underlying issues with these categories.
Enhancing the performance in these weaker categories would contribute to the overall efficacy
of these multiclass classification models.

Example 6. (CelebA.) In the previous example, we delved into a high-dimensional multiclass
classification problem, illustrating how the DD baseline aids in the improvement of mod-
els tackling this problem. Now, we focus on another realm of high-dimensional challenges,
specifically those involving multiple binary classification tasks, the so-called multitask learn-
ing problem, namely the image-related task of detecting facial attributes. The problem is to
detect these attributes in images, like wearing glasses or a cap. The CelebA dataset can be used
for this task and generative image creation [9]. The dataset consists of 100 000+ images of
10 177 identities. Each image is annotated with 40 facial attributes. To the best of our knowl-
edge, no publicly available trained model is yet available. Fortunately, we can use pre-trained
models of other datasets, like the ImageNet dataset, and replace the last layer of each network
with a layer making predictions for each binary facial attribute. The approach is commonly
known as transfer learning. We selected the same vision models as for the ImageNet dataset.
We trained this last layer on the training dataset of CelebA based on the weighted cross entropy
loss that corrects for imbalance in the training data and the standard Adam optimizer in batches
of 100 images. The labels for the test dataset comprising 19 962 images are publicly available,
so the trained vision models were evaluated on this data. Table 7 shows the results of the
vision models evaluated on the test dataset of the CelebA dataset. The DD baseline helps iden-
tify attributes where the score of the transferred state-of-the-art vision models was inferior. In
our evaluation, we selected the F1 score to assess each model’s performance, as the data has
an attribute-dependent class imbalance. Still, similar results can be acquired when selecting
another evaluation metric. Remarkably, the performance of all the vision models was inferior
for the attributes Big_Lips, Narrow_Eyes, Oval_Face, Pointy_Nose, and Wearing_Necklace.
Like our statement for the ImageNet dataset, data- or model-related issues can cause this under-
performance. Again, the DD baseline helps identify features where the score of classification
models is inferior.

5. Discussion and conclusion

In this research, we have proposed a new baseline methodology called the Dutch Draw. The
DD baseline is:

(i) applicable to any binary classification problem;

(ii) reproducible;

(iii) simple;

(iv) parameter-free;

(v) more informative than any single dummy baseline;

(vi) an explainable minimal requirement for any new model.
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TABLE 7: F1 scores for vision models on the CelebA test dataset. After retraining the last layer of
each pre-trained vision mode, the following F1 scores are obtained. The DD baseline, DenseNet121,
GoogLeNet, ResNet18, ResNet50 are abbreviated as DDB, DN121, GN, RN18, and RN50, respectively.
We selected the attributes where at least one of the vision models underperformed compared to the
DD baseline. We highlight the performance metric scores in bold, indicating a score inferior to the DD

baseline.

Attribute DDB DN121 GN RN18 RN50 VGG11 VGG19

Arched_Eyebrows 0.443 0.476 0.497 0.432 0.383 0.519 0.446
Bags_Under_Eyes 0.337 0.444 0.431 0.401 0.491 0.350 0.131
Big_Lips 0.493 0.209 0.315 0.137 0.227 0.131 0.124
Brown_Hair 0.305 0.416 0.454 0.524 0.548 0.388 0.255
Bushy_Eyebrows 0.229 0.348 0.210 0.346 0.373 0.202 0.282
Double_Chin 0.087 0.325 0.317 0.267 0.220 0.127 0.071
Mouth_Slightly_Open 0.662 0.790 0.710 0.765 0.767 0.655 0.643
Mustache 0.074 0.119 0.228 0.259 0.142 0.079 0.058
Narrow_Eyes 0.259 0.201 0.081 0.122 0.112 0.018 0.016
Oval_Face 0.456 0.354 0.239 0.432 0.398 0.330 0.383
Pale_Skin 0.081 0.369 0.357 0.432 0.459 0.082 0.055
Pointy_Nose 0.444 0.257 0.218 0.387 0.330 0.208 0.282
Receding_Hairline 0.156 0.226 0.305 0.368 0.190 0.142 0.060
Rosy_Cheeks 0.134 0.430 0.333 0.350 0.438 0.103 0.117
Straight_Hair 0.347 0.384 0.321 0.399 0.540 0.383 0.234
Wearing_Earrings 0.343 0.536 0.412 0.456 0.479 0.372 0.262
Wearing_Necklace 0.242 0.051 0.036 0.037 0.109 0.038 0.018

We have shown that for the most commonly used measures, the DD baseline can be theo-
retically determined (see Table 4). When the baseline cannot be derived directly, it can quickly
be identified by computation. For most performance metrics, the DD baseline reduces to one
of the following three cases:

(i) always predicting positive or negative;

(ii) always predicting positive or negative, except for one instance;

(iii) any DD classifier, except maybe for θ∗ = 0 or θ∗ = 1.

However, there are exceptions to these three cases, as was shown with the G(2)
θ . This shows

that the DD is not always reduced to one of the three previously mentioned cases and does not
always give straightforward results.

By introducing the DD baseline, we have simplified and improved the evaluation process
of new binary classification methods. We consider it a minimum requirement for any novel
model to at least beat the DD baseline. When this does not happen, the question is raised of
how much a new method has even learned from the data since the DD baseline is derived from
dummy classifiers. When the novel model has beaten the DD baseline, it should still be com-
pared to a state-of-the-art method in that domain to obtain additional insights. In Section 4,
we have shown how the DD should be used in practice. In Example 4, we showed that com-
monly used approaches, such as k-nearest neighbors and a decision tree, can underperform.
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An advantage of the DD is that the expected performance can be directly derived, as opposed
to other (stochastic) models, where the expected value can only be estimated through (many)
experiments. Examples 5 and 6 discussed two image-related tasks where the DD baseline can
identify task-related underperformance of vision models. The DD baseline can identify prob-
lematic categories in multiclass problems or specific tasks in multitask classification problems.
The goal of these experiments is to show that benchmarking classification models is essential.
The insights obtained from the DD baseline provide valuable perspectives that empower us to
enhance and refine models. Hence, using the Dutch Draw as a general, simple, and informative
baseline should be the new gold standard in any binary model evaluation process.

5.1. Further research

Our baseline is a stepping stone for further research, where multiple avenues should be
explored. We discuss five possible research directions.

First, a wide range of other input-independent classifiers should be explored. Does the DD
baseline outperform these methods, and can this be proven? If so, it would provide a solid argu-
ment to use the DD baseline over any other input-independent baseline in future applications,
which is why this research question is important.

Second, we can now determine whether a binary classification model performs better than
a universal baseline. However, we do not yet know by how much it performs better (or worse).
For example, let the baseline have a score of 0.5 and a new model a score of 0.9. How much
better is the latter score? It could be that a tiny bit of extra information quickly pushes the score
from 0.5 to 0.9. Or, it is possible that a model needs a lot of information to understand the
intricacies of the problem, making it very difficult to reach a score of 0.9. Thus, it is necessary
to quantify how hard it is to reach any score. Also, when another model is added that achieves
a score of 0.91, can the difference in the performance of these models be quantified? Is it only
a slightly better model, or is it a leap forward?

Third, our DD baseline could be used to construct new standardized evaluation measures
from their original versions. The advantage of these new measures would be that the interpre-
tation of their scores is independent of the number of positive and negative observations in the
dataset. In other words, the DD baseline would already be incorporated in the new measure,
so comparing a score to the baseline is no longer necessary. The DD baseline can be used to
scale a measure in many ways. Let �max and �min denote the maximum and minimum DD
baseline, respectively. As an example, a measure μ with range [μmin, μmax] that needs to be
maximized can be rescaled by

μrescaled =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−1 if μ ≤ �min,
μ − �max

�max − �min
if �min ≤ μ ≤ �max,

μ − �max

μmax − �max
otherwise.

Everything below the lowest DD baseline ( �min) gets value −1, because every Dutch Draw
classifier performs better. This should be a major warning sign. A score between �min and
�max is rescaled to [−1, 0]. This value indicates that the performance is still worse than the
best DD baseline. All scores above �max are scaled to [0,1]. In this case, the performance of a
classifier outperforms the best DD baseline.

Fourth, another natural extension would be to drop the binary assumption and consider
multiclass classification. This is more complicated than it seems because not every multiclass
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evaluation measure follows automatically from its binary counterpart. However, we expect that
for most multiclass measures, it is again optimal always to predict a single specific class.

Fifth, for some (less straightforward) performance metrics, the DD baseline is derived by
examining the expectations of all DD classifiers. Thus, faster techniques should be developed
for large applications. Insights could greatly improve the computation time. For example, we
conjecture for G(2)

θ that θ∗
max ∈ [

0, 1
2

]
when P > N, and θ∗

max ∈ [ 1
2 , 1

]
, when P < N. This already

reduces the search domain by half. Proving convexity could also make it easier to derive the
optimal value. Decreasing the computation time could be essential for some large applications
and should be investigated.

Finally, we have published the code for the DD so the reader can easily implement the
baseline in their binary classification problems.
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