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Abstract

We prove a Tannakian form of Drinfeld’s lemma for isocrystals on a variety over a finite
field, equipped with actions of partial Frobenius operators. This provides an interme-
diate step towards transferring V. Lafforgue’s work on the Langlands correspondence
over function fields from �-adic to p-adic coefficients. We also discuss a motivic variant
and a local variant of Drinfeld’s lemma.

1. Introduction

This paper is a sequel of sorts to the first author’s paper [Ked23a], although there is no logi-
cal dependence between the two. Both papers concern themselves with analogues of ‘Drinfeld’s
lemma’ in étale cohomology and, in particular, with corresponding statements in p-adic coho-
mology; however, there are some differences in scope and methodology which we highlight
below.

1.0.1. Drinfeld’s lemma was first introduced in his proof of the Langlands correspondence for GL2

over global function fields of characteristic p > 0 (see [Dri80]). Let us briefly review the result.
Let X1, X2 be two connected schemes over k = Fp. The scheme X := X1 ×k X2 is equipped
with two endomorphisms F1, F2, obtained by base changes of the absolute Frobenius on X1, X2,
respectively. We consider the category C(X, Φ) of objects (T, F{1}, F{2}) consisting of a finite
étale morphism T → X and isomorphisms F{i} : T ×X,Fi X

∼−→ T commuting with each other,
whose composition is the relative Frobenius morphism FT/X of T over X. This category is a
Galois category and we denote by π1(X, Φ, x) the Galois group defined by a geometric point x
of X. Then Drinfeld’s lemma says that the projection maps X → Xi induce an isomorphism of
profinite groups:

π1(X, Φ, x) ∼−→ π1(X1, x)× π1(X2, x). (1.0.1.1)
(See [Lau04, Theorem 8.1.4] or [Ked19, Theorem 4.2.12]. For the key case where X2 is a geometric
point, see also [Laf18, Lemme 8.11].)

A closely related result is that any quasicompact open immersion which is stable under
the Fi is covered by products of open immersions into the Xi. (See [Lau04, Lemma 9.2.1] or
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[Ked19, Theorem 4.3.6]. For the key case where X2 is a geometric point, see also [Laf18,
Lemme 8.12].) These two results together allow us to view lisse �-adic sheaves with ‘partial Frobe-
nius’ on X as �-adic representations of π1(X1, x)× π1(X2, x), and to work with constructible
sheaves with partial Frobenius on X via stratifications coming from X1 and X2. We refer to
[Lau04] and [Ked19, Lecture 4] for more detailed expositions.

1.0.2. Drinfeld’s lemma also plays an essential role in V. Lafforgue’s work [Laf18] on the
automorphic-to-Galois direction of the Langlands correspondence for reductive groups over a
global function field F . Roughly speaking, V. Lafforgue showed that the space of cuspidal auto-
morphic functions (with values in Q�) of a reductive group G over F admits a decomposition
indexed by certain �-adic Langlands parameters. This decomposition is obtained by investigat-
ing the �-adic cohomology of certain moduli stacks of shtukas for G. Moreover, he conjectured
that this decomposition should be �-independent and indexed by certain motivic Langlands
parameters.

In particular, we expect that there is a variant of V. Lafforgue’s result in terms of p-adic
Langlands parameters, corresponding to Abe’s adaptation of the work of L. Lafforgue from �-adic
to p-adic coefficients [Abe18b]. In this adaptation, the p-adic analogues of lisse �-adic sheaves
are overconvergent F -isocrystals. In addition to those objects, we may also consider the larger
category of convergent F -isocrystals, which admit no �-adic analogue but play an important role
in the p-adic setup.

Recently, Drinfeld proposed an unconditional definition of motivic Langlands parameters
[Dri18]. Inspired by this work, we consider p-adic Langlands parameters as homomorphisms
of the Tannakian group of the category of overconvergent F -isocrystals over a curve to the
Langlands dual group of G.

1.0.3. From this perspective, we prove a Tannakian form of Drinfeld’s lemma for
overconvergent/convergent F -isocrystals, which aims to establish the aforementioned result for
p-adic Langlands parameters. Note that another ingredient of V. Lafforgue’s approach, the
geometric Satake equivalence, was established for F -isocrystals by the second author and
Zhu [XZ22].

Keep the notation of § 1.0.1. Given an overconvergent (respectively, convergent) isocrystal E
on X, a partial Frobenius structure on E consists of two isomorphisms ϕi : F ∗

i (E ) ∼−→ E such that
ϕ1 ◦ F ∗

1 (ϕ2) = ϕ2 ◦ F ∗
2 (ϕ1); this composition, in particular, provides E with the structure of an

F -isocrystal. The category Φ-Isoc†(X) (respectively, Φ-Isoc(X)) of overconvergent (respec-
tively, convergent) isocrystals with a partial Frobenius structure is a Tannakian category and we
denote by πΦ-Isoc†

1 (X) (respectively, πΦ-Isoc
1 (X)) the associated Tannakian group (with respect

to a fiber functor).

Theorem 1.0.4 (Theorems 2.2.4, 3.3.2, and 3.5.1). (i) Suppose each Xi is geometrically con-
nected (respectively, smooth and geometrically connected) over k. The pullback functors of
projections pi : X → Xi induce a canonical isomorphism of Tannakian groups:

p◦1 × p◦2 : πΦ-Isoc†
1 (X) ∼−→ πF-Isoc†

1 (X1)× πF-Isoc†
1 (X2)

(respectively, πΦ-Isoc
1 (X) ∼−→ πF-Isoc

1 (X1)× πF-Isoc
1 (X2)),

(1.0.4.1)

where πF-Isoc†
1 (respectively, πF-Isoc

1 ) denotes the Tannakian group of the category of over-
convergent (respectively, convergent) F -isocrystals over Qp, and similarly with F replaced
by Φ.

(ii) Suppose each Xi is smooth and geometrically connected over k. By taking connected
components in the above isomorphism, we recover the isomorphism (1.0.1.1).
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In the overconvergent case, we also establish a similar isomorphism for overconvergent isocrys-
tals which can be equipped with a Frobenius structure but do not carry a specified one. This
roughly corresponds to passing from arithmetic to geometric fundamental groups in the �-adic
setting.

1.0.5. In very recent work [Ked22c], the first author has established a relative version of the
p-adic local monodromy theorem for differential modules with a Frobenius structure over an
annulus [And02, Meb02, Ked04a]. An application is the local monodromy theorem for mod-
ules with an integrable connection and a partial Frobenius structure over polyannuli [Ked22c,
Theorem 3.3.6]. We formulate these results in terms of a Tannakian form of local Drinfeld’s
lemma (Theorem 5.0.1) and discuss some related constructions.

We remark that variants of local Drinfeld’s lemma for �-adic sheaves are key ingredients of
the local Langlands correspondence of Genestier and V. Lafforgue [GL17] and of Fargues and
Scholze [FS21].

Inspired by Berger’s thesis [Ber02], we expect to deduce a ‘de Rham implies potentially
semistable’ result for p-adic representations of powers of Galois groups from local Drinfeld’s
lemma. There are some related results in this direction: (i) the overconvergence of multivariate
(ϕ, Γ)-modules has been proved by the first author, Carter, and Zábrádi [CKZ21]; (ii) multi-
variable de Rham representations and the associated p-adic differential equations are studied by
Brinon, Chiarellotto, and Mazzari [BCM21].

1.0.6. We now describe the structure of the paper.
The proof of Theorem 1.0.4 in the overconvergent case is given in § 2. A key ingredient is

Proposition 2.2.8, which says that the pushforward functor (for arithmetic D-modules) of the
projection pi : X → Xi (i = 1, 2) sends overconvergent isocrystals on X, which can be equipped
with a partial Frobenius structure, to overconvergent isocrystals on Xi. Combined with a cri-
terion of Esnault, Hai, and Sun [EHS07] on exact sequences of Tannakian groups, we conclude
Theorem 1.0.4(i) in the overconvergent case.

The proof in the convergent case is contained in § 3 and follows a similar line as in [Ked23a].
We study unit-root and diagonally unit-root convergent isocrystals with a partial Frobenius
structure (Propositions 3.1.8 and 3.2.2), and the diagonal (respectively, partial) Frobenius slope
filtrations (Theorems 3.1.10 and 3.4.1). These tools allow us to define a pushforward functor along
the projection pi : X → Xi from Φ-Isoc(X) to F-Isoc(Xi). Then we deduce Theorem 1.0.4(i)
in the convergent case by a similar argument as in the overconvergent case.

We upgrade the isomorphism (1.0.4.1) in an �-independent form à la Drinfeld [Dri18] in § 4
(see Proposition 4.2.4 and (4.2.6.1)).

The last section is devoted to the local Drinfeld’s lemma.

1.0.7. We now compare more carefully the results of this paper with those of [Ked23a]. In
[Ked23a], each Xi is required to be smooth over some perfect field ki, but it is not required that
ki be either finite or independent of i. The more restricted situation considered here (in which
ki = Fp for all i) is sufficient for the application to geometric Langlands; moreover, it is not
immediately apparent how to reproduce the Tannakian formulation in the setting of [Ked23a].

Another important difference with [Ked23a] is in the overall structure of the arguments.
Therein, the convergent case is treated first, using the isomorphism (1.0.1.1) as input, and then
the overconvergent case is deduced as a corollary; herein, we obtain the overconvergent case
directly using cohomological methods, deduce (1.0.1.1) as a corollary, and finally recover the
convergent case.
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Notation. Let k be a perfect field of characteristic p > 0, K a complete discrete valuation field
of characteristic zero with residue field k, and OK its ring of integers. Let s be a positive integer
and q = ps. We assume, moreover, that the sth Frobenius automorphism k

∼−→ k, x �→ xq lifts to
an automorphism σ : OK

∼−→ OK .
In this article, we mainly work with the case where (k, σ) = (Fq, idOK

) (and K is, therefore,
a finite extension of Qp). In this case, we fix an algebraic closure Qp of K.

In the following, a k-variety X means a separated scheme of finite type over k. We denote
the sth Frobenius morphism on X by FX .

When using the notation
∏

for a product of schemes, the product is taken over k.

2. Drinfeld’s lemma for overconvergent F -isocrystals

2.1 Generalities on Tannakian categories
In the following, we study some general constructions in the Tannakian formalism. Let E be a
field of characteristic zero. Let VecE denote the category of finite-dimensional E-vector spaces.
For any neutral Tannakian category C over E with respect to a fiber functor ω, we use π1(C , ω)
to denote its Tannakian group (i.e. the group of natural automorphisms of ω). We omit ω from
the notation if there is no risk of confusion.

2.1.1. Let C̃ be a Tannakian category over E, neutralized by a fiber functor ω : C̃ → VecF , where
F is a finite extension of E. Suppose there exist E-linear tensor equivalences τi : C̃ → C̃ and
isomorphisms of tensor functors ηi : ω ◦ τi

∼−→ ω for i = 1, 2, . . . , n. Moreover, we assume that
there exist natural isomorphisms σij : τi ◦ τj � τj ◦ τi for i, j such that the following diagram
commutes.

ω ◦ τi ◦ τj
ηi◦id ��

ω(σij)

��

ω ◦ τj
ηj

�� ω

ω ◦ τj ◦ τi
ηj◦id

�� ω ◦ τi

ηi

�����������

(2.1.1.1)

Since ω is faithful, such an isomorphism σij is unique. In the following, for every i = 1, . . . , n,
we fix a quasi-inverse τ−1

i of τi. For m ∈ Z, we set τm
i to be the |m|th composition of τi (or τ−1

i

if m < 0) and define ηm
i : ω ◦ τm

i
∼−→ ω by the composition of ηi (or the inverse of ηi if m < 0).

We define a category C0 as follows: an object (E , ϕ1, . . . , ϕn) consists of an object E of C̃
and isomorphisms ϕi : τi(E ) ∼−→ E such that ϕj ◦ τj(ϕi) = ϕi ◦ τi(ϕj) via σij . Morphisms of C0

are morphisms of C̃ compatible with the ϕi. We have a canonical functor

C0 → C̃ , (E , ϕi) �→ E .

By [Del07, § 2.5] and a similar argument to [XZ22, Proposition 3.4.5], we can show that C0

is a Tannakian category over E neutralized by ω over VecF .
We say an object of C0 is constant if its image in C̃ is isomorphic to a finite direct sum of

the unit object.
Recall [Ber08, § 2] that a Tannakian subcategory of C̃ is a strictly full abelian subcategory

closed under ⊗, duals, and subobjects (and, thus, quotients). The constant objects of C0 form a
Tannakian subcategory C0,cst of C0 (see [Ber08, § 2]).

Let C be the smallest Tannakian subcategory of C̃ containing the essential image of C0 (i.e.
generated by the subquotients of the essential image of C0).
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2.1.2. In the following, we assume that C̃ is neutral over E by ω : C̃ → VecE . Then so are C , C0

and C0,cst. We prove the following results by a similar approach of [D’Ad20, Appendix], where
D’Addezio treated the case n = 1. A similar discussion appeared in [HNY13, Appendix 2] and
[XZ22, § 3.4].

Proposition 2.1.3. (i) The canonical functors C0,cst → C0 → C induce a short exact sequence

1→ π1(C )→ π1(C0)→ π1(C0,cst)→ 1.

(ii) The category C0,cst is equivalent to the category of representations of Zn over E and the
Tannakian group π1(C0,cst) is isomorphic to the pro-algebraic completion of Zn.

In view of [DM82, Proposition 2.21] and the definition of C , the morphism π1(C )→ π1(C0)
(respectively, π1(C0)→ π1(C0,cst)) is a closed immersion (respectively, faithfully flat). We use
the following criterion to prove the exactness.

Theorem 2.1.4 ([DM82, Proposition 2.21], [EHS07, Theorem A.1]). We consider a sequence of
affine group schemes over E:

L
q−→ G

p−→ A (2.1.4.1)

and the associated functors:

RepE(A)
p∗−→ RepE(G)

q∗−→ RepE(L). (2.1.4.2)

(i) The map p : G→ A is faithfully flat if and only if p∗(RepE(A)) is a full subcategory of
RepE(G), closed under taking subquotients.

(ii) The map q : L→ G is a closed immersion if and only if any object of RepE(L) is a
subquotient of an object q∗(V ) for some V ∈ RepE(G).

(iii) Assume that q is a closed immersion and p is faithfully flat. Then the sequence (2.1.4.1)
is exact if and only if the following conditions are satisfied.

(a) For an object V ∈ RepE(G), q∗(V ) in RepE(L) is trivial if and only if V � p∗U for some
object U in RepE(A).

(b) Let W0 be the maximal trivial subobject of q∗(V ) in RepE(L). Then there exists a subobject
V0 of V in RepE(G) such that q∗(V0) �W0.

(c) Any object of RepE(L) is a subobject of an object in the essential image of q∗.

For any E-algebra R and 1 ≤ i ≤ n, the above structure defines a homomorphism:

ui : Z→ Aut(π1(C )(R)), k �→ (h : ω → ω �→ ω
η−k

i−−→ ω ◦ τk
i

h◦id−−→ ω ◦ τk
i

ηk
i−→ ω). (2.1.4.3)

In view of (2.1.1.1), the images of ui, uj commute with each other. We thus obtain an action of
Zn on π1(C ) and this allows us to define a group scheme π1(C ) � Zn over E, which we denote
by W (C0).

Lemma 2.1.5. (i) There exist a canonical equivalence of categories C0
∼−→ RepE(W (C0)) and

a canonical morphism of group schemes ι : W (C0)→ π1(C0) such that the following diagram is
2-commutative.

C0

∼�������������
∼

�������������

RepE(π1(C0))
ι∗ �� RepE(W (C0))

Moreover, the image of ι is Zariski-dense in π1(C0).
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(ii) The subgroup π1(C ) of π1(C0) is normal. In particular, every object of C is a subobject
of an object in the essential image of C0.

Proof. (i) We construct a functor

C0 → RepE(W (C0)).

Given an object (E , ϕi) of C0, we construct a representation ρ of W (C0)(E) on ω(E ). For any
element (g, m1, . . . , mn) ∈ π1(C )(E) � Zn, we define ρ(g, mi) as the composition:

ω(E )
∏

η
−mi
i−−−−−→ ω

( ∏
τmi
i (E )

)
g−→ ω

( ∏
τmi
i (E )

) ∏
η

mi
i−−−−→ ω(E ).

In view of the definition of ui (2.1.4.3), one checks that the above formula defines a representation.
Then we obtain the above functor and we can check that it is an equivalence.

By the Tannakian reconstruction theorem [DM82, Theorem 2.11], π1(C0) is the pro-algebraic
completion of W (C0) and the image of ι is therefore Zariski-dense.

(ii) The second assertion follows from the first one by Theorem 2.1.4(iii)(c). Let H denote the
normalizer of π1(C ) in π1(C0). As π1(C ) is normal in W (C0), the image of ι : W (C0)→ π1(C0)
is contained in H. As ι has Zariski-dense image by assertion (i), this implies that H = π1(C0)
and the assertion follows. �
Proof of Proposition 2.1.3. (i) We know the exactness at the left and the exactness on the right
follows from [DM82, Proposition 2.21]. We use Theorem 2.1.4 to verify the exactness. Condition
(a) follows from the definition. Given an object (V, ϕ1, . . . , ϕn) of C0, the maximal trivial sub-
object W0 of V in C is preserved by the ϕi. Therefore condition (b) is verified. Condition (c) is
proved in Lemma 2.1.5(ii).

(ii) The assertion follows from Lemma 2.1.5 applied to the category VecE . �

2.2 Tannakian form of Drinfeld’s lemma for overconvergent F -isocrystals
2.2.1. Let X be a k-variety. We denote by Isoc†(X/K) (respectively, Isoc(X/K)) the cat-
egory of overconvergent (respectively, convergent) isocrystals over X relative to K. If we
apply the construction of § 2.1.1 to the Tannakian category C̃ = Isoc†(X/K) (respectively,
Isoc(X/K)) over k and the (sth) Frobenius pull-back functor τ = F ∗

X , then C0 corresponds to
the category F-Isoc†(X/K) (respectively, F-Isoc(X/K)) of overconvergent (respectively, conver-
gent) F -isocrystals over X/(K, σ). We set Isoc††(X/K) := C , the Tannakian full subcategory
of Isoc†(X/K) generated by subquotients of overconvergent isocrystals which admit a (sth)
Frobenius structure, considered in [Abe18b].

2.2.2. In the following, we assume (k, σ) = (Fq, idOK
).

The above construction can be generalized as follows. For i = 1, . . . , n, let Xi be a k-variety
and set X := X1 ×k · · · ×k Xn. We define a morphism Fi : X → X by the (sth) Frobenius mor-
phism FXi of Xi on the component Xi and the identity map on other components. The morphisms
Fi commute with each other and their composition is equal to FX . The morphisms Fi induce
tensor equivalences

F ∗
i : Isoc†(X/K)→ Isoc†(X/K) (respectively, Isoc(X/K)→ Isoc(X/K)), i = 1, . . . , n,

commuting with each other and their composition is equal to F ∗
X .

Given an overconvergent (respectively, convergent) isocrystal E over X/K, a partial ( sth)
Frobenius structure on E consists of isomorphisms ϕi : F ∗

i (E ) ∼−→ E for i = 1, . . . , n such that
ϕi ◦ F ∗

i (ϕj) = ϕj ◦ F ∗
j (ϕi). For i = 1, . . . , n, ϕi is called the ith partial Frobenius structure (on E ).

Note that the composition of the ϕi (in any order) forms a Frobenius structure on E .
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If we apply the construction of 2.1.1 to (C̃ = Isoc†(X/K) (respectively, Isoc(X/K));
F ∗

1 , . . . , F ∗
n), then C0 corresponds to the category of overconvergent (convergent) isocrystals

over X with a partial Frobenius structure, which we denote by Φ-Isoc†(X/K) (respectively,
Φ-Isoc(X/K)). We set Isoc††(X, Φ/K) := C , the full subcategory of Isoc†(X/K), generated
by subquotients of overconvergent isocrystals which admits a sth partial Frobenius structure.

We denote by Fi- Isoc†(X/K) (respectively, Fi- Isoc(X/K)) the category of pairs (E , ϕi)
consisting of an overconvergent (respectively, convergent) isocrystal with an ith partial Frobenius
structure.

Let k′/k be a finite extension of degree a and set K ′ := W(k′)⊗W(k) K. (We denote the
Witt vector functor by W to reduce confusion with the notation W (C0) from Lemma 2.1.5.) Set
Xk′ := X ⊗k k′. Then we have a canonical functor of extension of scalars:

Φ-Isoc(X/K)→ Φ-Isoc(Xk′/K ′), (E , ϕi) �→ (E ⊗K K ′, ϕa
i ⊗K K ′). (2.2.2.1)

2.2.3. The category Isoc††(X, Φ/K) defined above is a Tannakian category over K and
may not be neutral. For any algebraic extension L of K in Qp, we set Isoc††(X, Φ/L) :=
Isoc††(X, Φ/K)⊗K L. When L = Qp, this category is a neutral Tannakian category over Qp

(with respect to a fiber functor) and we omit /Qp from the notation. We denote by πIsoc††
1 (X, Φ)

(respectively, πΦ-Isoc†
1 (X), respectively πΦ-Isoc

1 (X)) the Tannakian group of Isoc††(X, Φ) (respec-
tively, Φ-Isoc†(X), Φ-Isoc(X)) over Qp. When n = 1 (i.e. partial Frobenius structures reduce
to a Frobenius structure), we omit Φ from the notation or replace it with F .

The pullback functor p∗i induces a canonical tensor functor

p∗i : F-Isoc†(Xi)→ Φ-Isoc†(X)

(respectively, Isoc††(Xi)→ Isoc††(X, Φ), respectively, F-Isoc(Xi)→ Φ-Isoc(X))

(Ei, ϕi) �→ (p∗i Ei, id, . . . , p∗i (ϕi), . . . , id).

(2.2.3.1)

By the Künneth formula, the functor p∗i : Isoc††(Xi)→ Isoc††(X, Φ) is fully faithful. It induces
a canonical Qp-homomorphism

p◦i : πΦ-Isoc†
1 (X)→ πF-Isoc†

1 (Xi)

(respectively, πIsoc††
1 (X, Φ)→ πIsoc††

1 (Xi), respectively, πΦ-Isoc
1 (X)→ πF-Isoc

1 (Xi)).

The Tannakian form of Drinfeld’s lemma can be summarized as follows. Its proof will occupy
most of the remainder of § 2.2.

Theorem 2.2.4. Assume each Xi is a geometrically connected k-variety. The following canonical
homomorphisms are isomorphisms:

n∏
i=1

p◦i : πIsoc††
1 (X, Φ) ∼−→

n∏
i=1

πIsoc††
1 (Xi),

n∏
i=1

p◦i : πΦ-Isoc†
1 (X) ∼−→

n∏
i=1

πF-Isoc†
1 (Xi). (2.2.4.1)

We first establish some basic properties of the category Isoc††(X, Φ).

Proposition 2.2.5. (i) An irreducible object of Isoc†(X) belongs to Isoc††(X, Φ) if and only
if it can be equipped with an s′th partial Frobenius structure for some s|s′.

(ii) (D’Addezio and Esnault [DE22]) The category Isoc††(X, Φ) is closed under extension.
Every object of Isoc††(X, Φ) can be embedded into an object of Φ-Isoc†(X).
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(iii) The category Isoc††(X, Φ) is equivalent to the thick full subcategory of Isoc†(X) gen-
erated by those objects which can be equipped with an s′th partial Frobenius structure for
some s|s′.

Proof. (i) Given an object E of Φ-Isoc†(X), the partial Frobenius pullbacks permute the iso-
morphism classes of the irreducible constituents of E in Isoc††(X). We thus conclude that an
irreducible object Isoc††(X, Φ) admits s′th partial Frobenius structure for some s|s′.

On the other hand, if an object E of Isoc†(X) is irreducible equipped with an s′(= st)th
partial Frobenius structure for some t ∈ N, then E is a subobject of

F :=
t−1⊕
j1=0

· · ·
t−1⊕

jn=0

F j1∗
1 ◦ · · · ◦ F jn∗

n (E ),

which admits an sth Frobenius structure. Therefore, E belongs to Isoc††(X, Φ).
(ii) When n = 1, assertion (ii) is proved in [DE22, Theorem 5.4]. The general case can be

showed in a similar way as in [DE22, Theorem 5.4].
(iii) Assertion (iii) follows from assertions (i) and (ii). �

2.2.6. We will use the theory of holonomic (arithmetic) D-modules and their six functors for-
malism developed in [AC18, Abe18b]. Let L be an extension of K in Qp, T := {k, OK , K, L} the
associated geometric base tuple and TF := {k, OK , K, L, s, idL} the associated arithmetic base
tuple [Abe18b, 1.4.10, 2.4.14].

Let X be a k-variety. There exists an L-linear triangulated category D(X/L) (respectively,
D(X/LF )) relative to the geometric base tuple T (respectively, arithmetic base tuple TF ). This
category is denoted by Db

hol(X/T) or Db
hol(X/L) (respectively, Db

hol(X/TF ) or Db
hol(X/LF )) in

[Abe18b, 1.1.1, 2.1.16]. For � ∈ {∅, F}, there exists a holonomic t-structure on D(X/L�), whose
heart is denoted by Hol(X/L�), called the category of holonomic modules. We denote by H∗ the
cohomological functor for holonomic t-structure.

The six functors formalism for D(X/L) (respectively, D(X/LF )) has been established
recently. We refer to [Abe18b, § 2.3] for details and to [Abe18b, 1.1.3] for a summary.

2.2.7. Let X be a smooth and quasiprojective geometrically connected k-variety of
dimension dX . The category Isoc††(X) (respectively, F-Isoc†(X)) is equivalent to the full sub-
category Sm(X/Qp) (respectively, Sm(X/Qp,F )) consisting of smooth objects of the category
Hol(X/Qp)[−dX ] (respectively, Hol(X/Qp,F )[−dX ]) of holonomic arithmetic D-modules shifted
by the dimension −dX (see [Abe18b, 1.1.3 (12)]).

We briefly review the pushforward and pullback functors for a smooth morphism f : X → Y
of relative dimension d between quasiprojective geometrically connected k-varieties following
[Abe18b, 1.2.8]. We have an adjoint pair (f+, f+[2d])

f+ : D(X/L�) � D(Y/L�) : f+[2d].

The functor f+[d] is exact and induces a fully faithful functor [XZ22, Proposition 2.1.6]:

f+[d] : Hol(Y/L�)→ Hol(X/L�). (2.2.7.1)

If dX (respectively, dY ) denotes the dimension of X (respectively, Y ), the functor

f∗ := Hd(f+(−))[−d] : Hol(X/L�)[−dX ]→ Hol(Y/L�)[−dY ] (2.2.7.2)

is a right adjoint of f∗ := f+ and is left exact. Its right derived functor R f∗ is compatible
with f+.
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Moreover, there exists a canonical isomorphism (Poincaré duality [Abe18b, 1.5.13]):

f+(d)[2d] ∼−→ f !.

Proposition 2.2.8. Assume each Xi is smooth and quasiprojective over k.

(i) The functor pi,∗ sends objects of Isoc††(X, Φ) to Isoc††(Xi) (respectively, Φ-Isoc†(X) to
F-Isoc†(Xi)).

(ii) The functor pi,∗ : Isoc††(X, Φ)→ Isoc††(Xi) is a right adjoint of p∗i (2.2.3.1). The adjoint
morphism id→ pi,∗p∗i is an isomorphism and p∗i pi,∗ → id is injective.

2.2.9. Let Y := Y1 ×k Y2 be a product of two geometrically connected k-varieties, k′ a perfect
field over k, OK′ := W(k′)⊗W(k) OK , equipped with a lift σ′ of the sth Frobenius automorphism
of k′ defined by that of W(k′) and idOK

. We set K ′ := OK′ [1/p].
We denote by F1- Isoc†(Y1,k′/K ′) (respectively, F1- Isoc(Y1,k′/K ′)) the category of pairs

(E , φ) consisting of an object E of Isoc†(Y1,k′/K ′) (respectively, Isoc(Y1,k′/K ′)) and an
isomorphism φ : (FY1 ⊗ idk′)∗(E ) ∼−→ E .

A point i : Spec(k′)→ Y2 induces a natural functor:

ι : F1- Isoc†(Y/K)→ F1- Isoc†(Y1,k′/K ′), (respectively, F1- Isoc(Y/K)→ F1- Isoc(Y1,k′/K ′)),

(E , ϕ) �→ ((idY1 ×i)∗(E ), (idY1 ×i)∗ϕ).
(2.2.9.1)

When k′ is a finite extension of k of degree a, we associate an F -isocrystal over Y1,k′/K ′ to an
object of F1- Isoc†(Y1,k′/K ′) by composing its Frobenius structure a times.

When Y2 = Spec(k), we regard the above functor as the functor of extension of scalars:

ιk′/k : F-Isoc†(Y/K)→ F1- Isoc†(Y1,k′/K ′).

2.2.10. Proof of Proposition 2.2.8. (i) It suffices to prove the assertion for objects of
Isoc††(X, Φ/K). We may assume i = 1. We set X ′ :=

∏n
i=2 Xi.

(a) We first prove the assertion for an object E of Isoc††(X, Φ/K) equipped with a partial
Frobenius structure (ϕ1, . . . , ϕn). There exists an open subscheme U1 of X1 such that p1,∗(E )|U1

is smooth. In view of their fibers, the adjoint morphism of overconvergent isocrystals:

p∗1(p1,∗(E )|U1)→ E |U1×kX′

is injective. The first partial Frobenius ϕ1 on E induces a Frobenius structure φ1 on p1,∗(E )|U1

and the above morphism is compatible with the first partial Frobenius structures p∗1(φ1) and ϕ1.
Let k′ be a perfect closure of k(X ′) and K ′ := W(k′)[1/p]. By the exactness of the functor ι,
defined in (2.2.9.1), we obtain an injection in F1- Isoc†(U1,k′/K ′):

ιk′/k(p1,∗(E )|U1) ↪→ ι(E |U1×kX′).

By [Ked07, Proposition 5.3.1], the left-hand side extends to a subobject F ′ of ι(E ) of
Isoc†(X1,k′/K ′).

We claim that there exists an overconvergent isocrystal F of Isoc†(X1/K) extend-
ing p1,∗(E )|U1 such that ιk′/k(F ) � F ′. By Kedlaya and Shiho’s purity theorem [Ked22a,
Theorem 5.1], we may assume that the boundary D := X1 − U1 is a smooth divisor. Since the
local monodromy of F ′ around Dk′ is constant [Ked07, Theorem 5.2.1], then so is the local
monodromy of p1,∗(E )|U1 around D. Then the claim follows.

Moreover, the Frobenius structure on p1,∗(E )|U1 extends to F . Finally, by full faithfullness
of pullback for holonomic D-modules along U1 → X1 (see [XZ22, Proposition 2.1.6]), we deduce
that F is isomorphic to p1,∗(E ). Then the assertion in this case follows.

98

https://doi.org/10.1112/S0010437X23007571 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007571


Drinfeld’s lemma for F -isocrystals, II: Tannakian approach

(b) An object E of Isoc††(X, Φ) can be embedded into an object F , which can be equipped
with a partial Frobenius structure (Proposition 2.2.5(ii)). As p1,∗ is left exact, we have an injection
to a smooth object N of Hol(X1/Qp,F )[−dX1 ]:

M := p1,∗(E ) ↪→ N := p1,∗(F ).

It remains to show that M is also smooth. We first consider the case where X1 is a curve.
Let U1 be an open subset of X1 on which M is smooth. By applying [XZ22, Corollary 2.3.4] to
M |U1 , the exactness of pullback on smooth modules and of the nearby cycle functor, we deduce
the smoothness of M from that of N .

In general, there is a dense open subscheme j : U1 → X1 and a smooth object L on U1 such
that M |U1 � L . Let c : C → X1 be a morphism from a smooth curve to X such that c(C) ∩ U1

is non-empty and pc : C ×k X ′ → C the projection. By the above argument, pc,∗((c× id)∗E ) is
smooth and the pullback c∗L extends to an overconvergent isocrystal on C. By Shiho’s cut-
by-curves theorem [Shi11a] and Kedlaya and Shiho’s purity theorem, L can be extended to an
overconvergent isocrystal over X. By full faithfulness of pullback along U1 → X1, we deduce that
M is isomorphic to the extension of L to X1. This finishes the proof.

(ii) The isomorphism id→ pi,∗p∗i follows from the Künneth formula [Abe18b,
Proposition 1.1.7]. In view of fibers at closed points, the injectivity of p∗i pi,∗ → id follows. �

2.2.11. We now turn to the proof of Theorem 2.2.4. We first prove Theorem 2.2.4 for πIsoc††
1

under the additional hypothesis that each Xi is smooth and quasiprojective over k.

Proof. As we work with arithmetic D-modules with coefficients in Qp, we may enlarge the base
field k as in [Abe18b, 1.4.11]. Therefore, we may assume there exists a k-point x of X1. We
consider the following diagram.

X ′
u=(x,id)

��

g

��

X = X1 ×k X ′

p1

��
Spec(k)

x �� X1

We denote by Φ′-Isoc†(X ′) the category of overconvergent isocrystals over X ′ with a partial
Frobenius structure and Isoc††(X ′, Φ′) the Tannakian subcategory of Isoc†(X ′) generated by
those object which can be equipped with some partial Frobenius structure. The morphism u
induces a tensor functor

u∗ : Isoc††(X, Φ)→ Isoc††(X ′, Φ′) (respectively, Φ-Isoc†(X)→ Φ′-Isoc†(X ′)) E �→ u∗(E )
(2.2.11.1)

and a homomorphism u◦ : πIsoc††
1 (X ′, Φ′)→ πIsoc††

1 (X, Φ). Consider the following commutative
diagram.

1 �� πIsoc††
1 (X ′, Φ′)

u◦
��

∏n
i=2 p◦i

��

πIsoc††
1 (X, Φ)

p◦1 ��

∏n
i=1 p◦i

��

πIsoc††
1 (X1) �� 1

1 �� ∏n
i=2 πIsoc††

1 (Xi) �� ∏n
i=1 πIsoc††

1 (Xi) �� πIsoc††
1 (X1) �� 1

(2.2.11.2)

Here the upper sequence is defined as before and the lower sequence is exact. By induction, it
suffices to show the exactness of the upper sequence. In the following, we will do it by checking
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the conditions of Theorem 2.1.4 for the functors:

Isoc††(X1)
p∗1−→ Isoc††(X, Φ) u∗

−→ Isoc††(X ′, Φ′),

where p∗1 is defined as in (2.2.3.1). We use the functor pi,∗ defined in Proposition 2.2.8(i).
(i) Let E be an object of Isoc††(X1) and F a subobject of p∗1(E ). We need to show that

F is the image under p∗1 of a subobject of E . If G denotes the quotient p∗1(E )/F , by applying
p∗1p1,∗ we obtain a commutative diagram.

0 �� p∗1p1,∗F ��

α

��

p∗1E
δ ��

β

��

p∗1p1,∗G

γ

��
0 �� F �� p∗1E �� G �� 0

Here β is the identity, whereas α, γ are injective by Proposition 2.2.8(ii). Then δ is surjective.
We deduce that α is an isomorphism. Then we conclude that πIsoc††

1 (X, Φ)→ πIsoc††
1 (X1) is

faithfully flat by [DM82, Proposition 2.21].
(ii) and (iii)(c) Since u is a section of p′ : X = X1 ×k X ′ → X ′, we deduce condition (iii)(c) of

Theorem 2.1.4 for u◦ : πIsoc††
1 (X ′, Φ′)→ πIsoc††

1 (X, Φ). Then u◦ is a closed immersion by [DM82,
Proposition 2.21].

(iii)(b) Given an object E of Isoc††(X, Φ), the maximal trivial subobject of u∗E in the
category Isoc††(X ′, Φ′) is g∗g∗u∗E . Since u+(E )[2d] � u!(E ), we have g∗g∗u∗E � u∗p∗1p1,∗E by
smooth base change. Then condition (b) follows from the fact that p∗1p1,∗ → id is injective by
Proposition 2.2.8(ii).

(iii)(a) If an object E of Isoc††(X, Φ) comes from the essential image of p∗1, then u∗(E )
is trivial. Conversely, in view of condition (iii)(b), if u∗(E ) is trivial, then E � p∗1p1,∗(E ). This
verifies condition (a). �

We now upgrade the previous argument to eliminate the smooth quasiprojective hypothesis.

Lemma 2.2.12. The categories Isoc†(X),Φ-Isoc†(X), Isoc††(X, Φ) admit descent with respect
to any proper hypercoverings of the Xi.

Proof. Descent for Isoc†(X) is established in [Laz22, Theorem 5.1]. This then implies descent
for Φ-Isoc†(X); we deduce descent for Isoc††(X, Φ) using Proposition 2.2.5. �

2.2.13. Proof of Theorem 2.2.4 for πIsoc††
1 with general Xi. By de Jong’s alterations

theorem [deJ96], there exist smooth, connected, and quasiprojective k-varieties Yi and proper
surjective, generic étale maps πi : Yi → Xi for i = 1, 2, . . . , n. We use the hypercovering produced
by the πi to show that the upper sequence in (2.2.11.2) is exact, by again checking the conditions
of Theorem 2.1.4.

We set Y :=
∏n

i=1 Yi and π : Y → X to be the product
∏n

i=1 πi. By induction, it suffices to
treat the case where Yi = Xi for i = 2, . . . , n. Consider the following diagram.

1 �� πIsoc††
1 (X ′)

u◦
�� πIsoc††

1 (Y, Φ)
p◦1 ��

π◦
��

πIsoc††
1 (Y1) ��

π◦
1

��

1

1 �� πIsoc††
1 (X ′)

u◦
�� πIsoc††

1 (X, Φ)
p◦1 �� πIsoc††

1 (X1) �� 1
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By induction hypotheses, we may assume the exactness of the second line. We will deduce the
exactness of the first line from the second one. The above diagram corresponds to the top two
lines in the following diagram.

Isoc††(X1)
p∗1 ��

π∗
1

��

Isoc††(X, Φ)
u∗

��

π∗
��

Isoc††(X ′)

Isoc††(Y1)
p∗1 ��

��

Isoc††(Y, Φ)
u∗

��

��

Isoc††(X ′)

Isoc††(Y (2)
1 ) �� Isoc††(Y (2), Φ)

Here Y
(2)
1 := Y1 ×X1 Y1 and Y (2) := Y ×X Y . We check the conditions of 2.1.4 for the first line.

(i) Let U be an object of Isoc††(X1) and V0 a subobject of p∗1(U). By exactness of the second
line, we deduce that there exists a subobject U0,Y of π∗

1(U) over Y1 such that p∗1(U0,Y ) � π∗(V0)
as subobjects of π∗(p∗1(U)). As the functor p∗1 : Isoc††(Y (2)

1 )→ Isoc††(Y (2), Φ) is fully faithful,
the descent data on π∗(V0) gives rise to a descent data on U0. In this way, we obtain a subobject
U0 of U over X1, sent to V0 → p∗1(U) via p∗1. Hence, the map p◦1 : πIsoc††

1 (X, Φ)→ πIsoc††
1 (X1) is

faithfully flat.
Conditions (ii) and (iii)(c) follow from the same argument as in the smooth and quasipro-

jective case.
(iii)(a) Let V be an object of Isoc††(X, Φ) such that u∗(V ) is trivial. Then there exists an

object UY over Y1 such that p∗1(UY ) � π∗(V ). The descent data on π∗(V ) induces a descent data
on UY , which gives rise to an object U on X1, sent to V via p∗1.

(iii)(b) Let V be an object of Isoc††(X, Φ), W0 be the maximal trivial subobject of u∗(V ).
By exactness of the second line, there exists a subobject V0 of π∗(V ) on Y , sent to W0 via u∗.
Since u∗ is faithful, we deduce that the descent data on π∗(V ) preserves V0. This gives rise to a
subobject of V , sent to the trivial object W0. �
2.2.14. Proof of Theorem 2.2.4 for πΦ-Isoc†

1 . By Proposition 2.1.3(i), we have a commutative
diagram:

1 �� πIsoc††
1 (X, Φ) ��

∏
p◦i

��

πΦ-Isoc†
1 (X) ��

∏
p◦i

��

πΦ-Isoc†
1 (X)cst ��

��

1

1 �� ∏n
i=1 πIsoc††

1 (Xi) �� ∏n
i=1 πF-Isoc†

1 (Xi) �� ∏n
i=1 πF-Isoc†

1 (Xi)cst �� 1

where the first and second lines are exact. By Proposition 2.1.3(ii), the right vertical arrow iden-
tifies with the projection of the pro-algebraic completion of Zn to the pro-algebraic completion
of Z and is therefore an isomorphism. The assertion follows from that the left vertical arrow is
an isomorphism. �

3. Drinfeld’s lemma for convergent Φ-isocrystals

In this section, we assume (k, σ) = (Fq, idOK
), and Xi denotes a k-variety for i = 1, . . . , n

and X :=
∏n

i=1 Xi. Except in §§ 3.1.1–3.1.3, we assume each Xi is smooth and geometrically
connected over k.
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3.1 Unit-root and diagonally unit-root convergent Φ-isocrystals
3.1.1. We first define the partial Frobenius slopes at a closed point of X.

Let (E , ϕi) be an object of Φ-Isoc(X/K), x ∈ |X| a closed point, Kx := W(kx)⊗W(k) K,
and a := [kx : k]. We take the extension of scalars to kx (2.2.2.1) and then take its fiber
(Ex, ϕa

1|x, . . . , ϕa
n|x) at x, which is an object of Φ-Isoc(Spec(kx)/Kx) with respect to the sath

power of Frobenius, that is a Kx-vector space together with commuting linear automorphisms
ϕa

i |x. This allows us to define the ith partial Frobenius slopes of (E , ϕi) at x for i = 1, . . . , n by
Dieudonné–Manin theory.

We have a surjection from points of X to products of points of the Xi:

π : |X|�
n∏

i=1

|Xi|.

Let (xi)n
i=1 ∈

∏
|Xi| be a tuple of closed points. To simplify notation, assume that there

exists a finite extension k′ of k such that kxi � k′ (this can always be enforced by enlarging k).
We have a decomposition ∏

k

xi �
⊔
G

Spec(k′), (3.1.1.1)

indexed by G :=
( ∏

Gal(k′/k)
)
/ Gal(k′/k), for the diagonal action. For an object (E , ϕi) of

Φ-Isoc(
∏

k xi/K), E corresponds to a direct sum of vector spaces over K ′, indexed by G.
If a = [k′ : k], then the ath power of each partial Frobenius ϕa

i preserves each component.

Lemma 3.1.2. The partial Frobenius slopes at a point x ∈ |X| depend only on its image π(x) =
(x1, . . . , xn) ∈

∏
|Xi|.

Proof. We keep the above notation. Since G acts transitively on each component of (3.1.1.1),
the action induces isomorphisms between the pullback of (Ex, ϕa

i,x) to each component and the
claim follows. �
Definition 3.1.3. Let (E , ϕ1, . . . , ϕn) be an object of Φ-Isoc(X).

(i) We say the ith partial Frobenius structure ϕi : F ∗
i (E )→ E is unit-root, if its slope at each

closed point is zero.
(ii) We say E is unit-root, if every partial Frobenius structure ϕi is unit-root.
(iii) We say E is diagonally unit-root if the associated convergent F -isocrystal is unit-root.

3.1.4. In the following, we assume each Xi is a smooth geometrically connected k-variety. Then
so is X.

Let x be a closed point of X and x the associated geometric point. Recall [Cre87] that there
exists a canonical equivalence between the category of continuous K-representations of πét

1 (X, x)
and the category of unit-root convergent F -isocrystals over X/K:

Repcont
K (πét

1 (X, x)) ∼−→ F-Isocur(X/K). (3.1.4.1)

Via the equivalence between the left-hand side and the category LocSys(X, K) of lisse K-sheaves
over X, we have

LocSys(X, K) ∼−→ F-Isocur(X/K). (3.1.4.2)

The above equivalence is compatible with the following operations.

(i) The pullback functoriality along a morphism between smooth connected k-varieties.
(ii) Extensions of scalars.
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Recall that a lisse K-sheaf L over X is equipped with the Frobenius correspondence [SGA5,
XIV=XV]:

φL : F ∗
X(L) ∼−→ L. (3.1.4.3)

Lemma 3.1.5. Let (E , ϕ) be a unit-root convergent F -isocrystal over X and L the associ-
ated sheaf. Then the Frobenius structure ϕ : (F ∗

XE , F ∗
Xϕ) ∼−→ (E , ϕ) gives rise to the above

isomorphism φL.

Proof. In view of the construction of (3.1.4.1), we may reduce to the case where L is a lisse
OK/pnOK-sheaf for some n, and we may assume X is affine and admits a smooth lifting Xn to
OK/pnOK , equipped with a Frobenius lift. After taking pullback along a finite étale morphism
trivializing L, we may moreover assume that L is a trivial OK/pnOK-module. In this case, the
assertion is clear. �
Remark 3.1.6. When X = x = Spec(k), we will view φL as an endomorphism on L in such a way
that the action on the geometric fiber Lx coincides with the action of the geometric Frobenius
Fk ∈ Gal(k/k).

3.1.7. Let i be an integer ∈ [1, n]. The ith partial Frobenius Fi of X is a homeomorphism
and induces an equivalence of étale topoi of X. Let (E , ϕ1, . . . , ϕn) be a diagonally unit-root
convergent Φ-isocrystal over X and L the lisse K-sheaf over X associated to (E , ϕ). The ith
partial Frobenius structure ϕi induces an isomorphism of sheaves:

φi : F ∗
i (L) ∼−→ L.

The isomorphisms φi commute with each other in the following sense: for any 1 ≤ i, j ≤ n, the
identifications

F ∗
i (F ∗

j (L)) ∼= (Fi ◦ Fj)∗(L) = (Fj ◦ Fi)∗(L) ∼= F ∗
j (F ∗

i (L))

induce an equality φj ◦ F ∗
j (φi) = φi ◦ F ∗

i (φj). The composition of φi coincides with the iso-
morphism φL (3.1.4.3). The above construction is clearly functorial.

Proposition 3.1.8. The category of diagonally unit-root Φ-isocrystals over X is equivalent
to the category of pairs (L, {φi}ni=1) consisting of a lisse K-sheaf L over X together with iso-
morphisms φi : F ∗

i (L) ∼−→ L commuting to each other and whose composition is φL (3.1.4.3). The
morphisms in the latter category are morphisms of LocSys(X, K) compatible with the φi.

Proof. We construct a quasi-inverse of the functor in § 3.1.7. Let (L, {φi}ni=1) be a collection of
data as above and (E , ϕ) the unit-root F -isocrystal over X associated to L. By functoriality of
(3.1.4.2), φi induces an ith partial Frobenius structure ϕi on E . The commutativity of the ϕi,
and the fact that the composition of the ϕi equals ϕ, follow from the corresponding properties
of the φi. This construction is clearly functorial and provide a quasi-inverse of § 3.1.7. �
Corollary 3.1.9. Let (E , ϕi) be a diagonally unit-root Φ-isocrystal over X. Then for i =
1, 2, . . . , n, the ith partial Frobenius slopes of E are constant on |X|.
Proof. Let (L, {φi}ni=1) be the associated data in Proposition 3.1.8. Then the ith partial Frobe-
nius slope of E at x ∈ X(k) can be calculated by that of φi,x on Lx (with the convention of
Remark 3.1.6). Since L admits a lisse OK-sheaf as an integral model, the slopes of φi at each
fibers Lx are constant as function on x ∈ X(k).

The corollary follows from applying the previous argument to extensions of scalars of (E , ϕi)
(§ 3.4.1). �
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Theorem 3.1.10. Let (E , ϕi) be a convergent Φ-isocrystal over X. Suppose that the diagonal
Newton polygon of (E , ϕi) is constant as a function on |X|.

(i) There exists a filtration

0 = E0 ⊂ · · · ⊂ El = E (3.1.10.1)

of Φ-Isoc(X) and an increasing sequence μ1 < μ2 < · · · < μ� of rational numbers such that for
j = 1, . . . , �, the diagonal Newton polygon of Ej/Ej−1 is constant with slope μj . Moreover, the
filtration and sequence are both uniquely determined by this condition. (We call it the diagonal
slope filtration of E .)

(ii) For each partial Frobenius structure ϕi of E , its Newton polygon is also constant on |X|.
Proof. (i) There exists a slope filtration (3.1.10.1) as convergent F -isocrystals [Ked22a,
Corollary 4.2]. It suffices to show that each partial Frobenius ϕi preserves this filtration, that is
the composition F ∗

i (Ej)
ϕi−→ E → E /Ej vanishes. Then uniqueness follows from that of the slope

filtration for F -isocrystals.
We reduce to checking the above claim at the fiber of each closed point x ∈ |X|. We may

assume there exists a finite extension k′/k of degree a such that x � Spec(k′) as in § 3.1.1.
Then the fiber of the Frobenius structure ϕa

x is a linear automorphism of Ex, and its generalized
eigenspace decomposition is a refinement of the filtration E0,x ⊂ · · · ⊂ E�,x. Since each partial
Frobenius structure ϕi,x commutes with ϕa

x, ϕi,x preserves each generalized eigenspace of ϕa
x.

Then the assertion follows.
(ii) By assertion (i), we may reduce to the case where E is diagonally unit-root after twisting.

In this case, assertion (ii) follows from Corollary 3.1.9. �

3.2 A variant of Crew’s theorem for unit-root convergent Φ-isocrystals
3.2.1. We denote by C(X, Φ) the category of objects (T, {F{i}}ni=1) consisting of a finite étale mor-
phism T → X = X1 ×k · · · ×k Xn and isomorphisms F{i} : T ×X,Fi X

∼−→ T commuting with each
other, i.e. F{i} ◦ F{j} ×X,Fj X = F{j} ◦ F{i} ×X,Fi X, whose composition is the relative Frobenius
morphism FT/X of T over X. A morphism in this category is a morphism above X compatible
with the F{i}. Note that an object of C(X, Φ) is equivalent to the data of a pair (T, {ϕT,i}ni=1)
consisting of a finite étale morphism T → X together with morphisms ϕT,i : T → T above Fi,
commuting with each other, whose composition is the Frobenius morphism FT .

This category is a Galois category and we denote by πét
1 (X, Φ, x) the Galois group defined

by the fiber functor associated to x. We have the following equivalence:

• the category of continuous actions of π1(X, Φ, x) on finite sets;
• the category of locally constant constructible sheaves L of Xét, equipped with a partial

Frobenius structure φi : F ∗
i (L) ∼−→ L, commuting with each other, whose composition is the

Frobenius correspondence φL.

Proposition 3.2.2. There is a canonical equivalence between the category of continuous rep-
resentations of πét

1 (X, Φ, x) on finite-dimensional K-vector spaces and the full subcategory
Φ-Isocur(X/K) of Φ-Isoc(X/K) consisting of unit-root convergent Φ-isocrystals.

3.2.3. Let π be a uniformizer of OK . We set R := OK and Rn := OK/πnOK for n ≥ 1. We may
reduce to the case where each Xi is affine and admits a smooth formal lifting Xi to R and a
lifting FXi : Xi → Xi of the Frobenius FXi . We set X :=

∏
W(k) Xi and denote by Fi,X : X→ X

the product of FXi and the identity maps on other components.
A unit-root Φ-lattice on X/R is a locally free OX-module of finite rank together with iso-

morphisms ϕi : F ∗
i,X(M) ∼−→M commuting with each other. We first establish an equivalence
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following [Cre87]:

ι : Repcont
R (π1(X, Φ, x)) ∼−→ {Unit-root Φ-lattices on X/R}. (3.2.3.1)

Let V be a continuous R-linear representation of πét
1 (X, Φ, x). For n ≥ 1, let Gn be the

image of πét
1 (X, Φ, x) in GL(V/πnV ), which corresponds to a Galois cover Y (n) → X and

πn : Y
(n)
n → Xn its lifting to Rn. Moreover, each isomorphism F{i} uniquely lifts to an iso-

morphism F{i} : F ∗
i,X(Y(n)

n ) ∼−→ Y
(n)
n , which commute with each other. As in [Cre87], we consider

a locally free OXn-module (respectively, OX-module)

Mn := πn,∗(OY
(n)
n

)⊗Rn[Gn] V/πnV, M := lim←−Mn.

Then the isomorphism F{i} induces an isomorphism F ∗
i,X(Mn) ∼−→Mn and gives rise to a unit-root

partial Frobenius structure

ϕi : F ∗
i,X(M) ∼−→M.

In this way, we obtain the functor ι as in (3.2.3.1).
Conversely, given a unit-root Φ-lattice (E , ϕi) on X/R, the associated unit-root F -lattice

(E , ϕ) defines a lisse R-sheaf L on X by [Cre87, Theorem 2.2]. The partial Frobenius structures
ϕi define isomorphisms φi : F ∗

i (L) ∼−→ L commuting with each other. Then we obtain a continuous
R-representation of π1(X, Φ, x) on Lx. The above construction is functorial and defines a quasi-
inverse of ι.

Lemma 3.2.4. The isomorphism ϕi is horizontal with respect to the canonical convergent
connection ∇ on M rig (see [Cre87, Proposition 2.3]).

Proof. Let Δ be the formal completion of the diagonal map X→ X×R X and p1, p2 : Δ→ X

the natural projections. For n ≥ 1, we set Δn := Δ⊗R Rn. Let p∗i Y
(n)
n be the fiber product

Y
(n)
n ×Xn,pi Δn. The map Y

(n)
n → Xn

diag−−→ Δn gives rise to formal thickenings Y
(n)
n → p∗i Y

(n)
n .

Recall (see [Cre87, Proposition 2.3]) that, since Y
(n)
n → Xn is étale, there exists a unique

isomorphism p∗1Y
(n)
n

∼−→ p∗2Y
(n)
n which fits into the following diagram.

p∗1Y
(n)
n

��

∼
����

��
��

��
�

Y
(n)
n

��

��

Δn p∗2Y
(n)
n

��

By uniqueness, this isomorphism is compatible with the Gn-action, the partial Frobenius maps
on Y

(n)
n , and the canonical connection on M . Then the lemma follows. �

3.2.5. Proof of Proposition 3.2.2. By the above lemma, we have a fully faithful functor

{Unit-root Φ-lattices on X/R} ⊗R K → {Unit-root Φ-isocrystals on X/K}.

It suffices to show that the functor in Proposition 3.2.2 is essentially surjective.
Let (M , ϕi) be a unit-root Φ-isocrystal on X/K and (L, φi) the associated data in

Proposition 3.1.8. There exists a R-lattice L◦ of L such that φL induces an isomorphism
F ∗

X(L◦) ∼−→ L◦. As ϕi is unit-root, we claim there exist integers r, s such that for every integer
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m ≥ 0, we have
prL◦ ⊂ φm

i (Fm,∗
i L◦) ⊂ psL◦.

Indeed, let x ∈ |X| be a closed point with degree [kx : k] = a. The linear action of φa
i,x on the

fiber L◦
x is unit-root and satisfies the above properties [Cre87, Proposition 1.11]. Then the claim

follows.
Following [Cre87], we consider

L′ :=
∑
m≥0

Im φm
i : L◦ → psL and Li := ∩m≥1 Im φm

i : L′ → L′.

Then φi induces an isomorphism F ∗
i Li

∼−→ Li.
By repeating the above argument to each φi, we obtain a R-lattice L̃ of L such that φi induces

an isomorphism F ∗
i (L̃) ∼−→ L̃ for every i. Then the data (L̃, φi) descend to a representation of

πét
1 (X, Φ, x). In view of Proposition 3.1.8, this defines a quasi-inverse of the previous construction.

The proposition follows. �

3.3 Original Drinfeld’s lemma
Following an argument of Drinfeld and Kedlaya [DK17, Appendix B], we recover the original
Drinfeld’s lemma from Theorem 2.2.4 and Proposition 3.2.2.

3.3.1. We say a representation of Repcont
K (πét

1 (X, Φ, x)) is smooth if the action of πét
1 (X, Φ, x)

factors through a finite quotient. In view of étale descent for overconvergent F -isocrystals, the
canonical functor

Repsmooth
K (πét

1 (X, Φ, x))→ Φ-Isoc(X) (3.3.1.1)

factors through Φ-Isoc†(X). It induces canonical homomorphisms:

πΦ-Isoc
1 (X)→ πΦ-Isoc†

1 (X)→ πét
1 (X, Φ, x). (3.3.1.2)

Since the functor (3.3.1.1) is fully faithful, the composition is an epimorphism.
Writing Fet(Xi) for the category of finite étale schemes over Xi, the canonical functor

Fet(Xi)→ C(X, Φ), Ti �→
∏
j �=i

Xj ×k Ti

induces a canonical homomorphism p̃i : πét
1 (X, Φ, x)→ πét

1 (Xi, xi), where xi := pi(x). In view of
the construction, the above morphism is compatible with the projection, that is, the following
diagram commutes.

πΦ-Isoc†
1 (X) ��

p◦i
��

πét
1 (X, Φ, x)

p̃i

��

πF-Isoc†
1 (Xi) �� πét

1 (Xi, xi)

(3.3.1.3)

Theorem 3.3.2. (i) The homomorphisms (3.3.1.2) induce isomorphisms

π0(πΦ-Isoc
1 (X)) ∼−→ π0(πΦ-Isoc†

1 (X)) ∼−→ π1(X, Φ, x).

(ii) If we apply π0 to the isomorphism (2.2.4.1), we obtain the original Drinfeld’s lemma:

π1(X, Φ, x) ∼−→
n∏

i=1

πét
1 (Xi, xi).
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Proof. (i) We first show that for any finite group Γ, any tensor functor

Rep
Qp

(Γ)→ Φ-Isoc(X) (3.3.2.1)

factors through Repcont
Qp

(π1(X, Φ, x)). By Proposition 3.2.2, it suffices to show that objects in

the essential image of the above functor are unit-root at each point of |X|. This can be shown
by a similar argument to [DK17, Proposition B.4.1].

Moreover, we deduce that the above functor factors through Repsmooth
Qp

(π1(X, Φ, x)) as in

[DK17, Proposition B.4.1].
Hence, the kernel of the canonical epimorphism πΦ-Isoc

1 (X) � π1(X, Φ, x) is the neutral
component of πΦ-Isoc

1 (X). We obtain the isomorphism π0(πΦ-Isoc
1 (X)) ∼−→ π1(X, Φ, x).

By a full faithfulness result à la Kedlaya (Proposition 3.3.3), πΦ-Isoc†
1 (X)→ π1(X, Φ, x) is an

epimorphism. Then by [DK17, Lemma B.7.4], we deduce the isomorphism π0(πΦ-Isoc†
1 (X)) ∼−→

π1(X, Φ, x).
(ii) Assertion (ii) follows from assertion (i), Theorem 2.2.4, and the commutative diagram

(3.3.1.3). �

Proposition 3.3.3. (i) The canonical functor ιΦ : Φ-Isoc†(X/K)→ Φ-Isoc(X/K) is fully
faithful.

(ii) For i = 1, . . . , n, let Ui ⊂ Xi be an open immersion with dense image and set U :=∏n
i=1 Ui. Then the following restriction functors are fully faithful:

Φ-Isoc(X/K)→ Φ-Isoc(U/K), Φ-Isoc†(X/K)→ Φ-Isoc†(U/K).

Proof. (i) Consider the following diagram.

Φ-Isoc†(X)
ιΦ ��

��

Φ-Isoc(X)

��

F-Isoc†(X)
ιF �� F-Isoc(X)

The vertical arrows are faithful and ιF is fully faithful [Ked04b]. Hence, it remains to show the
fullness of ιΦ.

Given two objects (E , ϕi), (E ′, ϕ′
i) of Φ-Isoc†(X) and a morphism f : E → E ′ of Φ-Isoc(X),

f extends to a morphism f † : E → E ′ of overconvergent F -isocrystals by the full faithfulness
of ιF . Since the canonical functor Isoc†(X)→ Isoc(X) is faithful, we deduce that f † is
compatible with partial Frobenius structures.

(ii) By assertion (i), it suffices to prove the assertion for convergent Φ-isocrystals. By [Ked22a,
Theorem 5.3] and a similar argument as in assertion (i), it suffices to show its fullness.

Given two objects (E , ϕi), (E ′, ϕ′
i) of Φ-Isoc(X/K) and a morphism f : E → E ′ of

Φ-Isoc(U/K). Then f extends to a morphism g : E → E ′ of convergent F -isocrystals
on X. The compatibility between f and partial Frobenius structures follows from [Ked22a,
Theorem 5.3]. �

3.4 Partial Frobenius slope filtrations
Theorem 3.4.1. Suppose that an object E of Φ-Isoc(X/K) has a constant diagonal Newton
polygon on |X|. Then for i = 1, . . . , n, E admits a filtration

0 = E
(i)
0 ⊂ · · · ⊂ E

(i)
l = E
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in Φ-Isoc(X/K) and an ascending sequence μ1 < · · · < μl of rational numbers such that for

j = 1, . . . , l, the ith partial Frobenius slope of E
(i)
j /E

(i)
j−1 equals to μj . Moreover, the filtration

and sequence are both uniquely determined by this condition. (We call it the ith partial slope
filtration of E .)

Lemma 3.4.2. Suppose that E ∈ Φ-Isoc(X/K) is diagonally unit-root.
(i) Then there exists a decomposition in Φ-Isoc(X/K)

E �
⊕

d1,...,dn

Ed1,...,dn ,

indexed by tuples (d1, . . . , dn) ∈ Qn with d1 + · · ·+ dn = 0, in which Ed1,...,dn has the constant
partial Frobenius slopes (d1, . . . , dn) on |X|.

(ii) After taking extension of scalars, each Φ-isocrystal Ed1,...,dn is isomorphic to successive
extensions of Φ-isocrystals E1 � E2 � · · ·� En, where Ei ∈ F-Isoc(Xi/K) is isoclinic of slope di.

Proof. (i) Let (L, φi) be the data associated to E in Proposition 3.1.8. Let x ∈ |X| be a closed
point of degree a and (V = Lx, ρ) the associated π1(X, x)-representation. Since φi,x commute
with each other, V admits a decomposition

V �
⊕

(d1,...,dn)

Vd1,...,dn ,

according to partial Frobenius slopes of (φ1,x, . . . , φn,x). It remains to show that each component
is invariant under the π1(X, x)-action. Note that each φi,x preserves Vd1,...,dn , as then does their
composition φL,x.

Since F a
X induces an identity on étale fundamental groups F a

X : π1(X, x) = π1(X, x), φa
L,x is

an automorphism of the representation (V, ρ). Since φa
L,x commutes with the action of π1(X, x)

on V , we deduce that the π1(X, x)-action also preserves each component Vd1,...,dn . Then assertion
(i) follows.

(ii) After taking extension of scalars and twisting, we may assume F = Ed1,...,dn is unit-root.
We prove the assertion by induction on n. Let x be a geometric point of X. By Proposition 3.2.2
and Theorem 3.3.2, E corresponds to a continuous K-linear representation V of π1(X1, x)× · · · ×
π1(Xn, x). Let W be an irreducible sub-π1(Xn, x)-representation of V . Then W corresponds
to a unit-root F -isocrystal Fn on Xn, and Homπ1(Xn,x)(W, V ), viewed as a π1(X1, x)× · · · ×
π1(Xn−1, x)-representation, corresponds to a unit-root Φ-isocrystal E ′ on X1 ×k · · · ×k Xn−1. We
obtain a monomorphism E ′ � Fn → F . Applying the induction hypothesis to E ′, then assertion
(ii) follows. �
Lemma 3.4.3. Let E , E ′ be two objects of Φ-Isoc(X/K) with constant partial Frobenius slopes
(μi)n

i=1, (μ
′
i)

n
i=1 respectively.

(i) If HomΦ-Isoc(X/K)(E ′, E ) �= 0, then μi = μ′
i for every i = 1, . . . , n.

(ii) If ExtΦ-Isoc(X/K)(E ′, E ) �= 0, then μi ≥ μ′
i for every i = 1, . . . , n.

Proof. (i) Let i be an integer, X ′ :=
∏

j �=i Xj and k′ a closed point of X ′. We apply the exact and
faithful functor (2.2.9.1) to the pullback along Spec(k′)→ X ′ to obtain convergent F -isocrystals
on Xi,k′/K ′. Then the assertion follows from the corresponding assertion for convergent
F -isocrystals.

(ii) We will deduce this vanishing result of Ext from the case of F -isocrystals, which is
known (it follows from the existence of the usual slope filtration). We set F := H om(E ′, E ). By
Lemma 3.4.2(ii), we may reduce to the case where F � F1 � · · ·� Fn, with Fi ∈ F-Isoc(Xi/K)
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after taking extension of scalars. Suppose μ′
i > μi for some integer i ∈ [1, n]. We consider the

extension group Ext1Fi- Isoc(X/K)(E
′, E ), which fits into the following diagram.

0→ H0(X, F )/(ϕi − id)→ Ext1Fi- Isoc(X/K)(E
′, E )→ H1(X, F )ϕi=id → 0 (3.4.3.1)

Since the slope of Fi is > 0, we obtain the vanishing of H0(Xi, Fi)ϕi=id, H0(Xi, Fi)/
(ϕi − id), and H1(Xi, Fi)ϕi=id; note that the last case follows from the assertion (ii) for con-
vergent F -isocrystals. We conclude that the middle term of (3.4.3.1) vanishes by the Künneth
formula [Abe14, Lemma 4.5]. Then the assertion follows. �
3.4.4. Proof of Theorem 3.4.1. By Theorem 3.1.10, each partial Newton polygon of E is also
constant. Then we apply Lemma 3.4.2 to the successive quotients of the diagonal slope filtration;
this yields a filtration in which each successive quotient has the property that every ith partial
Frobenius slope has a fixed value, but these values may not occur in ascending order. However,
using Lemma 3.4.3 we can reorder the successive quotients to enforce this condition. �

3.5 Drinfeld’s lemma for convergent Φ-isocrystals
Recall that the category F-Isoc(X/K)⊗K Qp (respectively, Φ-Isoc(X/K)⊗K Qp) is denoted
by F-Isoc(X) (respectively, Φ-Isoc(X)) and is neutral Tannakian over Qp. With the notation of
§ 2.2.3, we show a version of Drinfeld’s lemma for convergent F -isocrystals as in Theorem 2.2.4.

Theorem 3.5.1. Assume Xi is a smooth geometrically connected k-variety. The following
canonical homomorphism is an isomorphism:

n∏
i=1

p◦i : πΦ-Isoc
1 (X) ∼−→

n∏
i=1

πF-Isoc
1 (Xi). (3.5.1.1)

Proposition 3.5.2. The pullback functor:

p∗i : F-Isoc(Xi)→ Φ-Isoc(X)

is fully faithful and its essential image is closed under subquotients.

Proof. We may assume i = n and set X ′ :=
∏n−1

i=1 Xi.
(i) We first prove the full faithfulness. By Proposition 3.3.3, we may assume each Xi is affine

and admits a smooth formal lifting Xi over OK . Let (E , ϕ) be an object of F-Isoc(Xn). Since
each Xi is smooth and geometrically connected, the canonical morphism

H0(Xn, E ) ∼−→ H0(X, p∗n(E ))

is an isomorphism by the Künneth formula for the sheaf of differential operators [Abe14,
Lemma 4.5] and for quasicoherent modules. Then we deduce a canonical isomorphism:

H0(Xn, E )ϕ=id → H0(X, p∗n(E ))Φ=id.

The full faithfulness follows from the above isomorphism applied to internal homomorphisms.
(ii) Next we treat the second assertion. Let E be an object of F-Isoc(Xn) and p∗n(E )→ F

a surjection in Φ-Isoc(X). By enlarging k (2.2.2.1), we may assume there exists a k-point x
of X ′. We will show that the surjection E → G := (x×k idXn)∗(F ) over Xn is isomorphic to
p∗n(E )→ F after pullback via p∗n.

Let U be a dense open subset of X such that the diagonal Newton polygon of F is constant,
which is preserved by partial Frobenius morphisms. By Drinfeld’s lemma for open immersions
[Lau04, Lemma 9.2.1], [Ked19, Theorem 4.3.6], and Proposition 3.3.3, we may assume that the
diagonal Newton polygons of p∗n(E ) and F are constant on |X| after shrinking Xi. Then the set
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of each partial Newton polygon of F is also constant on |X|. To show the claim, we may reduce
to the case where the Frobenius slopes of E are constant on Xn by applying Theorem 3.1.10 to
p∗n(E )→ F . Moreover, we may assume E is unit-root by twisting. Then F is also a unit-root
Φ-isocrystal. By Proposition 3.2.2 and Theorem 3.3.2, for a geometric point y of X, the action
of

∏n−1
i=1 π1(Xi, y) on p∗n(E )y is trivial. Then the same holds for F and the assertion follows. �

Proposition 3.5.3. (i) The functor p∗i : F-Isoc(Xi)→ Φ-Isoc(X) admits a right adjoint pi,∗.
Moreover, the canonical morphism id→ pi,∗p∗i is an isomorphism and p∗i pi,∗ → id is injective.

(ii) The functor pi,∗ commutes with the base change of g : Y → Xi.

Proof. (i) Let E be an object of Φ-Isoc(X). By Proposition 3.5.2, the collection of subobjects
of E which belong to the essential image of p∗i has a maximal element F . Then we define pi,∗(E )
to be the object of F-Isoc(Xi) of which F is a pullback.

Let f : E1 → E2 be a morphism of Φ-Isoc(X). Let G be the image of p∗i (pi,∗(E1)) in E2.
By Proposition 3.5.2, G belongs to the essential image of p∗i and the functoriality of pi,∗ follows.
The second assertion is clear.

(ii) By Lemma 3.3.3, we may assume that the diagonal Newton polygon of E is constant
on |X|. By Theorem 3.1.10, we may moreover assume that E is diagonally unit-root after twisting
the ith partial Frobenius structure. Then pi,∗(E ) is unit-root and p∗i (pi,∗(E )) lies in the unit-root
component E(0,...,0) of E (cf. Lemma 3.4.2). Moreover, the unit-root F -isocrystal pi,∗(E ) over Xi

can be identified with the
∏

j �=i π1(Xj , x)-invariant part of the π1(X, Φ, x)-representation associ-
ated to E(0,...,0) via Proposition 3.2.2. The base change property follows from this identification
in view of Theorem 3.3.2. �
3.5.4. Proof of Theorem 3.5.1. The proof is similar to that of § 2.2.11(a). We keep the notation
of § 2.2.11. It suffices to show the exactness of the following sequence:

πΦ-Isoc
1 (X ′, Φ′) u◦

−→ πΦ-Isoc
1 (X, Φ)

p◦1−→ πF-Isoc
1 (X1).

We verify the exactness using Theorem 2.1.4.
Condition (i) follows from Proposition 3.5.2. Conditions (ii) and (iii)(c) can be verified in

the same way as in § 2.2.11(a). Finally, as in § 2.2.11, we verify conditions (iii)(a) and (b) using
functor pi,∗ and its base change property Proposition 3.5.3. This finishes the proof. �
Remark 3.5.5. The functor Φ-Isoc†(X)→ Φ-Isoc(X) induces a canonical morphism
πΦ-Isoc

1 (X)→ πΦ-Isoc†
1 (X), which fits into the following diagram.

πΦ-Isoc
1 (X)

∏n
i=1 p◦i

∼
��

��

∏n
i=1 πF-Isoc

1 (Xi)

��

πΦ-Isoc†
1 (X)

∏n
i=1 p◦i

∼
�� ∏n

i=1 πF-Isoc†
1 (Xi)

In view of the above diagram, the pushforward functor for convergent Φ-isocrystals is compatible
with that for overconvergent Φ-isocrystals.

Corollary 3.5.6. Any object E of Isoc††(X, Φ) (respectively, Φ-Isoc†(X), respectively,
Φ-Isoc(X)) is a subobject (or quotient) of an object of the form �n

i=1Ei, where each Ei is
an object of Isoc††(Xi) (respectively, F-Isoc†(Xi), respectively, F-Isoc(X)).

Proof. It suffices to show the assertion about the quotient. By induction, we can reduce to the
case where n = 2. We set G := πIsoc††

1 (X, Φ), Gi := πIsoc†
1 (Xi). Let V be a representation of
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G � G1 ×G2 corresponding to E . We have morphisms of G1 ×G2-representations:

(V ⊗ V ∨)G2 ⊗ V ↪→ V ⊗ V ∨ ⊗ V
idV ⊗ ev−−−−−→ V,

where G1 only acts at the first component of V ⊗ V ∨ ⊗ V and G2 acts diagonally. By composing
with V

coev⊗ id−−−−−→ V ⊗ V ∨ ⊗ V , we see that the above composition is surjective. This finishes the
proof. �

4. A variant for Π̂mot

In [Dri18], Drinfeld considered the �-adic pro-semisimple completion of the étale fundamental
group and showed this object is independent of � up to conjugation by elements of the neutral
component. In this section, we incorporate Drinfeld’s lemma in that setting.

Throughout § 4, we assume (k, σ) = (Fq, idOK
), let Xi be smooth geometrically connected

k-varieties for i = 1, . . . , n and set X :=
∏n

i=1 Xi.

4.1 On semisimplicity of the monodromy group
In this subsection, we discuss the semisimplicity of the monodromy group for an overconvergent
Φ-isocrystal following [Del80, Cre92].

An n-twist is a Φ-isocrystal on Spec(k)/K of rank 1. Let χ := (χi)n
i=1 be an n-twist and E an

overconvergent Φ-isocrystal. We denote by E (χ) the tensor product E ⊗ f∗(χ), where f : X →
Spec(k) is the structure morphism. We first prove a result in the rank one case, generalizing a
result of Abe [Abe18a, Lemma 6.1].

Lemma 4.1.1. Let E be an overconvergent Φ-isocrystal of rank one over X. Then there exists
an n-twist χ such that E (χ) has finite order.

Proof. After twisting, we may assume E is unit-root. Let ρ be the character of π1(X, Φ, x) asso-
ciated to E (Proposition 3.2.2) and ρi the restriction of ρ to π1(Xi, x) (Theorem 3.3.2). We
may shrink each Xi and, in particular, we may assume that Xi admits a smooth compactifi-
cation Xi → X i such that the complement is a simple normal crossing divisor. Using [Shi11b,
Theorem 4.3], [KL81, Theorem 2], and the same argument of [Cre87, Corollary 4.13], one can
show that some power E ⊗N is geometrically trivial, i.e. its underlying overconvergent isocrystal
is trivial. Then ρ⊗N factors through the quotient π1(X, Φ, x)→ Ẑn and each ρ⊗N

i is also geo-
metrically trivial. Hence, the unit-root convergent F -isocrystal Ei over Xi associated to ρi is
overconvergent. We may take suitable twists χi such that each Ei(χi) has finite order [Abe18a,
Lemma 6.1]. Then the assertion follows. �

This allows us to conclude the following corollary.

Corollary 4.1.2. Let E be an overconvergent Φ-isocrystal over X. After taking a finite exten-
sion of K, there exist an integer m ≥ 1, n-twists χi for 1 ≤ i ≤ m, and a decomposition of the
semisimplification of E :

E ss �
m⊕

i=1

Fi(χi),

where Fi is an irreducible overconvergent Φ-isocrystal of finite order determinant for each i.

Definition 4.1.3. We say E is untwisted if we can choose each χi to be the trivial Φ-isocrystal
on Spec(k) in the above corollary.
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4.1.4. Let E be an object of Φ-Isoc†(X). We denote by Ggeo(E ) (respectively, Garith(E ))
its geometric (respectively, arithmetic) monodromy group over Qp, which is defined by the
Tannakian full subcategory of Φ-Isoc†(X) (respectively, Isoc†(X)) whose objects are subquo-
tients of E ⊗m ⊗ E ∨,⊗n for some m, n. Recall that the radical of Ggeo(E ) is unipotent [Cre92,
Theorem 4.9].

Given a field E, by a semisimple group (respectively, reductive group) over E, we mean
an algebraic group of finite type over E whose neutral component is semisimple (respectively,
reductive).

By a similar argument to [D’Ad20, Theorem 3.4.7], we conclude the following result for
Φ-isocrystals.

Proposition 4.1.5. The following properties are equivalent.

(i) The neutral component of Garith(E )/Ggeo(E ) is unipotent.
(ii) The radical of Garith(E ) is unipotent.
(iii) The object E is untwisted.

Corollary 4.1.6. Let E be a semisimple object of Φ-Isoc†(X).

(i) The geometric monodromy group Ggeo(E ) is semisimple.
(ii) If the determinant of each irreducible component of E has finite order, then Garith(E ) is

semisimple.

Proof. Assertion (i) follows from the fact that the radical of Ggeo(E ) is unipotent and the
argument of [Del80, Corollaire 1.3.9]. Assertion (ii) can be shown in a similar way using
Proposition 4.1.5. �

4.2 Pro-semisimple completion of the fundamental group of a smooth variety with
partial Frobenius
4.2.1. Let E be an algebraically closed field. We refer to [Dri18, § 2.1.1] for the notion of pro-
semisimple groups and pro-reductive groups. Following [Dri18, § 1.2.3], Pro-red(E) denotes the
groupoid whose objects are pro-reductive groups over E and whose morphisms are as follows:
a morphism G1 → G2 is an isomorphism of group schemes G1

∼−→ G2 defined up to composing
with automorphisms of G2 of the form x �→ gxg−1, g ∈ G◦

2. Let Pro-ss(E) ⊂ Pro-red(E) be the
full subcategory formed by pro-semisimple groups.

For any pro-algebraic group G over E, we denote by Gred (respectively, Gss) its pro-reductive
(respectively, pro-semi-simple) quotient.

4.2.2. Fix an algebraic closure Q of Q. Let λ be a non-Archimedean place of Q, � the prime that
λ divides �, Qλ the direct limit of Eλ for subfields E ⊂ Q finite over Q. Let (X̃, Φ) (respectively,
X̃i) be the universal cover of the category C(X, Φ) (3.2.1) (respectively, the universal étale cover
of Xi) and Π(X, Φ) the automorphism group of (X̃, Φ)/X, which is isomorphic to π1(X, Φ, x)
after choosing a base point. When n = 1, we write Π(X) for Π(X, Φ).

Following Drinfeld, we define a pro-semisimple group Π̂λ(X, Φ) over Qλ as follows.

(i) When � = p, we denote by Tλ(X, Φ) the full subcategory of Φ-Isoc†(X) of semisimple objects
M such that the determinant of each irreducible component of M has finite order. This
category is a Tannakian full subcategory of Φ-Isoc†(X) and we denote by Π̂λ(X, Φ) its
Tannakian group. By Corollary 4.1.6, the quotient πΦ-Isoc†

1 (X)→ Π̂λ(X, Φ), induced by the
inclusion functor, identifies with the pro-semisimple quotient of πΦ-Isoc†

1 (X).
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(ii) When � �= p, we define Π̂�(X, Φ) to be the �-adic pro-semisimple completion of Π(X, Φ) and
set Π̂λ(X, Φ) = Π̂�(X, Φ)⊗Q�

Qλ (see [Dri18, § 1.2.1]).
There is an equivalent definition: we define a full subcategory Tλ(X, Φ) of the category

of lisse Qλ-sheaves on X with a partial Frobenius structure, formed by semisimple objects
M such that the determinant of each irreducible component of M has finite order as in
part (i). It is a Tannakian category over Qλ and the associated Tannakian group is isomorphic
to Π̂λ(X, Φ) (cf. [Dri18, § 3.6] in the case n = 1).

The embedding Q→ Qλ induces an equivalence [Dri18, Proposition 2.2.5]:

Pro-ss(Q) ∼−→ Pro-ss(Qλ). (4.2.2.1)

We denote by Π̂(λ)(X, Φ) the object of Pro-ss(Q) associated to Π̂λ(X, Φ) by above equivalence.
When n = 1, we omit Φ from the above notation.

By Drinfeld’s lemma, there exists a canonical isomorphism over Qλ:

Π̂λ(X, Φ) ∼−→
n∏

i=1

Π̂λ(Xi).

When λ divides p, it follows from taking the pro-semisimple quotient of (2.2.4.1); when λ does
not divide p, it follows from (3.3.2.1) and taking the �-adic pro-semisimple completion. Via the
equivalence (4.2.2.1), we obtain an isomorphism over Q:

Π̂(λ)(X, Φ) ∼−→
n∏

i=1

Π̂(λ)(Xi). (4.2.2.2)

4.2.3. We review some constructions in [Dri18]. For each i, let |X̃i|◦ be the set of closed points
of X̃i. We have a canonical Π(Xi)-equivariant map [Dri18, (1.1)]:

|X̃i|◦ → Π(Xi), x̃ �→ Fx̃,

where Fx̃ denotes the geometric Frobenius automorphism at x̃.
The set Π(Xi) contains a dense subset ΠFr(Xi) formed by the elements Fn

x̃ for x̃ ∈ |X̃i|◦ and
n ∈ Z≥0. The group Π(Xi) acts on ΠFr(Xi) by conjugation. We denote by Π̃Fr(Xi) := Z≥0 × |X̃|◦.
One has the canonical Π(Xi)-equivariant surjection:

Π̃Fr(Xi) � ΠFr(Xi), (n, x̃) �→ Fn
x̃ . (4.2.3.1)

For any pro-reductive group G, let [G] denote the geometric invariant theory (GIT) quo-
tient of G by the conjugation action of the neutral component G◦. By Theorem 3.3.2, we
have an adjoint action of Π(X, Φ) on [Π̂(λ)(X, Φ)] and a canonical Π(X, Φ)-equivariant map
[Π̂(λ)(X, Φ)] � Π(X, Φ).

The map (4.2.3.1) has a canonical lift to a Π(Xi)-equivariant map (cf. [Dri18, §§ 7.2.4, 7.3.5])

Π̃Fr(Xi)→ [Π̂(λ)(Xi)](Qλ), (n, x̃) �→ Fn
x̃ . (4.2.3.2)

By the companion theorem [Abe18b, AE19, Ked22b, Ked23b], the above map factors as [Dri18,
Corollary 7.4.2]

Π̃Fr(Xi) � ΠFr(Xi)→ [Π̂(λ)(Xi)](Q) ↪→ [Π̂(λ)(Xi)](Qλ).

For any non-Archimedean place λ of Q, we have the following diagram of sets.

ΠFr(Xi)→ [Π̂(λ)(Xi)](Q) � Π(Xi)
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Via the isomorphism (4.2.2.2), we obtain the following diagram of sets.

n∏
i=1

ΠFr(Xi)→ [Π̂(λ)(X, Φ)](Q) � Π(X, Φ) (4.2.3.3)

The result of [Dri18, Theorem 1.4.1] can be generalized as follow.

Proposition 4.2.4. Let λ, λ′ be non-Archimedean places of Q. There exists a unique
isomorphism

Π̂(λ)(X, Φ) ∼−→ Π̂(λ′)(X, Φ)

in the category Pro-ss(Q) which sends the diagram (4.2.3.3) to the corresponding diagram
for Π̂(λ′).

Proof. When n = 1 (i.e. we do not consider partial Frobenius structures), Drinfeld proved the
above result for higher-dimensional smooth geometrically connected k-varieties if λ, λ′ do not
divide p and the result in the curve case when λ or λ′ divides p (see [Dri18, Theorem 1.4.1, 5.2.1]).
Now we can obtain the full generality of the theorem in the case n = 1 using the recent break-
through in the companion theorem for p-adic coefficients [AE19, Ked22b, Ked23b] over smooth
k-varieties and the same argument of [Dri18].

In general, the isomorphism
∏n

i=1 Π̂(λ)(Xi)
∼−→

∏n
i=1 Π̂(λ′)(Xi), obtained in the case n = 1,

induces an isomorphism Π̂(λ)(X, Φ) ∼−→ Π̂(λ′)(X, Φ), which fits into the following diagram.

Π̂(λ)(X, Φ)
∼ ��

∼
��

∏n
i=1 Π̂(λ)(Xi)

∼
��

Π̂(λ′)(X, Φ)
∼ �� ∏n

i=1 Π̂(λ′)(Xi)

In view of the definition of (4.2.3.3), the required properties and the uniqueness follows from the
case n = 1. �

Corollary 4.2.5. The neutral component Π̂◦
(λ)(X, Φ) is simply connected.

Proof. We may assume that λ is coprime to p. Then the statement follows from isomorphism
(4.2.2.2) and [Dri18, Proposition 3.3.4]. �

4.2.6. Let λ be a non-Archimedean place of Q. In [Dri18, § 6], Drinfeld defined a pro-
reductive group Π̂mot

(λ) over Q (independent of λ up to unique isomorphisms) and introduced
an unconditional definition of motivic Langlands parameters proposed by V. Lafforgue [Laf18].

Now we introduce its variant Π̂mot
(λ) (X, Φ) with partial Frobenius. Let Wp ⊂ Q

× denote
the subgroup of p-Weil numbers. For every n ≥ 1, we set Dn := Hom(Wp, G

n
m) and Dn,λ :=

Dn ⊗Q
Qλ (see [Dri18, § 6.1]). Note that the group π0(Dn) identifies with the group Hom(μ∞(Q),

Gn
m) � Ẑn.

On the other hand, we have a canonical surjection:

Π(X, Φ) � Gal(k/k)n � Ẑn.
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Following [Dri18, § 6.1], we define Π̂mot
(λ) (X, Φ) as the fiber product of Π̂(λ)(X, Φ) and Dn

over Ẑn. Then we can upgrade the isomorphism (4.2.2.2) to be an isomorphism in Pro-red(Q):

Π̂mot
(λ) (X, Φ) ∼−→

n∏
i=1

Π̂mot
(λ) (Xi). (4.2.6.1)

Note that the above isomorphism is independent of λ by Proposition 4.2.4.

5. Local Drinfeld’s lemma over polyannuli

We assume (k, σ) = (Fq, idOK
). For a connected subinterval I of (0,∞), we denote by AK [I] the

rigid annulus |t| ∈ I over K. Recall that the Robba ring R over K is defined as

R := lim
ε→1

O(AK [ε, 1[).

Let n be a positive integer. We consider the n-fold Robba ring Rn over K:

Rn := lim
ε1,...,εn→1

O

( n∏
i=1

AK [εi, 1[
)

=
{ ∑

I=(i1,...,in)

aIt
I ; |aI |ρI → 0 (|i1|+ · · ·+ |in| → ∞),∀ρi ∈ [εi, 1[ for some εi ∈ ]0, 1[

}
,

where tI := ti11 · · · tinn and ρI := ρi1
1 · · · ρin

n . For any algebraic extension L/K, we set

Rn
L := Rn ⊗K L.

Let h be an integer ≥ 1, and σ a continuous automorphism of Qp lifting the hth Frobenius
on k and preserving each finite extension L of K. We denote by φi : Rn → Rn the K-linear
endomorphism defined by ti �→ tp

h

i and tj �→ tj if j �= i.
We consider the category MIC(Rn/K) of free Rn-modules of finite rank equipped with an

integrable K-linear connection and we denote by MICuni(Rn/K) its full subcategory consisting
of unipotent objects, which is isomorphic to a successive extension of the trivial connection
over Rn.

A partial Frobenius structure of order h (respectively, a partial Frobenius structure) on
an object (M,∇) of MIC(Rn/K) consists of isomorphisms ϕi : (σ ◦ φi)∗(M,∇) � (M,∇) of
MIC(Rn/K) commuting with each other (respectively, without specifying order h). We denote
by MIC(Rn/K, Φ) the full subcategory of MIC(Rn/K) consisting of objects whose irreducible
subquotients can be equipped with a partial Frobenius structure (of order h′ with h|h′). Note
that a unipotent object lies in MIC(Rn/K, Φ).

Let Kur be the maximal unramified extension of K in Qp. We can extend above definition to
free Rn

Kur-modules of finite rank with an integrable Kur-linear connection. Note that an object
of MIC(Rn

Kur/Kur) comes from the extension of scalars of an object of MIC(Rn
L/L) for an

unramified finite extension L/K.
Let K := k((t)), GK := Gal(K/K), and IK the inertia subgroup of the Galois group GK. We

reformulate the local monodromy theorem for MIC(Rn/K, Φ) (see [Ked22c, Theorem 3.3.6]) as
follows; this generalizes André’s result [And02, Théorème 7.1.1] to polyannuli.

Theorem 5.0.1. The category MIC(Rn
Kur/Kur, Φ) is a neutral Tannakian category over Kur

and its Tannakian group is isomorphic to (IK ×Ga)n.
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5.1 Unipotent connections on polyannuli
Proposition 5.1.1. The functor (V, N1, . . . , Nn) �→ (V ⊗K R,∇N ), where the connection ∇N
is defined by

∇N (v ⊗ 1) :=
n∑

i=1

Niv ⊗
dti
ti

,

induces an equivalence of tensor categories between the category of finite dimensional
K-vector spaces with n commuting nilpotent operators N = (N1, . . . , Nn) and the category
MICuni(Rn/K).

Proof. We construct a quasi-inverse of the above functor. Let (M,∇) be a unipotent connection
on a polyannulus

∏n
i=1 AK [εi, 1[. The operators ∂i := ∇(ti(d/dti)) on M commute with each

other; set ∂ := ∂1 ◦ · · · ◦ ∂n. Since (M,∇) is unipotent, the K-vector space V := ∪n≥1(Ker ∂)n

has the same rank as M . We claim that the operator ∂i is nilpotent on V . Indeed, if x is a point
of the polyannulus

∏
j �=i AK [εj , 1[, then its fiber (Mx,∇x) is a unipotent connection over the

annulus AK(x)[εi, 1[. We deduce that ∂i is nilpotent on V ⊗K K(x) and the claim follows. Then

(M,∇) �→ (∪n≥1(Ker ∂)n, ∂1, . . . , ∂n)

defines a quasi-inverse functor. The proposition follows. �
Remark 5.1.2. Unlike the case of an annulus [Mat02, Lemma 4.3], a unipotent object on a
polyannulus may not admit a Frobenius structure.

5.1.3 . Proof of Theorem 5.0.1. Let (M,∇) be an object of MIC(Rn
Kur/Kur, Φ) defined

on a polyannulus
∏n

i=1 AKur [εi, 1[. By [Ked22c, Theorem 3.3.6], there exist eligible étale
covers {Yi → AKur [εi, 1[}ni=1 such that the pullback of (M,∇) to

∏n
i=1 Yi is unipotent. Then

by Proposition 5.1.1, we obtain a fiber functor:

ω : MIC(Rn
Kur/Kur, Φ)→ VecKur ,

by forgetting nilpotent operators. This makes MIC(Rn
Kur/Kur, Φ) into a neutral Tannakian

category over Kur. In this way, we obtain a continuous action of In
K on ω(M,∇) via In

K →∏
Aut(Yi/AKur [I]), which commutes with the action of nilpotent operators. Then the theorem

follows. �

5.2 Construction of Weil–Deligne representations
In this subsection, we briefly review representations of a self-product of the Weil group
of K associated to differential modules with a partial Frobenius structure on polyannuli,
following [Mar08].

5.2.1. Recall that q = ps is the cardinality of k. We denote by Φ-MIC(Rn/K) the category of
free modules over Rn equipped with an integrable K-linear connection and a partial Frobenius
structure of order s.

We denote by DelKur(Gn
K) the category of triples (V, ϕ1, . . . , ϕn, N1, . . . , Nn) consisting of

a continuous semilinear representation of Gn
K on a finite-dimensional Kur-vector space V (with

discrete topology), σ-semilinear equivariant Frobenius isomorphisms {ϕi}ni=1 on V commuting
with each other, and equivariant monodromy operators {Ni : V → V }ni=1 commuting with each
other satisfying Niϕj = qδijϕjNi for i, j = 1, . . . , n.

The proof of Theorem 5.0.1 shows that there exists a canonical tensor functor:

Φ-MIC(Rn/K)→ DelKur(Gn
K).
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5.2.2. Let WK be the Weil group of K and vi : Wn
K → Z the projection on the ith component. We

consider the category RepKur(WDn
K) of pairs (V, N1, . . . , Nn) consisting of a continuous linear

representation ρ of Wn
K on a finite-dimensional Kur-vector space V (with discrete topology),

monodromy operators {Ni}ni=1 commuting with each other satisfying Niρ(g) = qvi(g)ρ(g)Ni for
i = 1, . . . , n, and g ∈Wn

K. When n = 1, this is the category of Weil–Deligne representations
of WK.

We have a Frobenius linearization functor

L : DelKur(Gn
K)→ RepKur(WDn

K),

sending (V, ϕi, Ni) to a continuous linear representation ρ of Wn
K on V defined by

ρ(g)(m) := g

( n∏
i=1

ϕ
vi(g)
i (m)

)
,

together with monodromy operators {Ni}ni=1. In summary, we obtain a tensor functor:

Φ-MIC(Rn/K)→ RepKur(WDn
K).
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