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Abstract

A connected, locally finite graph Γ is a Cayley–Abels graph for a totally disconnected, locally compact
group G if G acts vertex-transitively on Γ with compact, open vertex stabilizers. Define the minimal
degree of G as the minimal degree of a Cayley–Abels graph of G. We relate the minimal degree in
various ways to the modular function, the scale function and the structure of compact open subgroups.
As an application, we prove that if Td denotes the d-regular tree, then the minimal degree of Aut(Td) is d
for all d ≥ 2.
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1. Introduction

Let G be a compactly generated, totally disconnected, locally compact (cgtdlc) group.
A locally finite, connected graph Γ on which G acts vertex-transitively with compact,
open vertex stabilizers is called a Cayley–Abels graph for G. Cayley–Abels graphs
were introduced by Abels [1] in the context of Specker compactifications of locally
compact groups. A totally disconnected, locally compact group has a Cayley–Abels
graph if and only if it is compactly generated. The relation between G and a
Cayley–Abels graph Γ is in many ways similar to the relation between a finitely gener-
ated group and its Cayley graph with respect to a finite generating set; see [19]. In this
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work we are interested in the minimal degree md(G) of a Cayley–Abels graph for G.
The following general questions seem natural starting points for an investigation of this
invariant.

(1) What does the minimal degree tell us about the group?
(2) How does the minimal degree relate to other properties of the group?
(3) What is the minimal degree for some interesting groups?

We tackle all of these questions to some extent.
If md(G) = 0, 1, 2 we can characterize G: the first two parts of the following theorem

are obvious facts, the third is a part of Theorem 4.1.

THEOREM A. Let G be a cgtdlc group. Then md(G) is:

(1) equal to 0 if and only if G is compact;
(2) never equal to 1;
(3) equal to 2 if and only if G has a compact, open, normal subgroup K such that

G/K is isomorphic to Z or the infinite dihedral group D∞.

The characterization in the third part resembles the characterization of finitely gen-
erated groups with two ends. In a companion paper to this work [3], vertex-transitive
group actions on cubic graphs with infinite vertex stabilizers are studied. These results
have consequences for groups with minimal degree 3; for example, if G is a cgtdlc
group with minimal degree 3 and does not have a compact, open, normal subgroup
then G is not uniscalar (that is, there exists an element in G that does not normalize a
compact, open subgroup of G).

In Section 3 we elaborate on groups having a compact, open, normal subgroup. We
prove that this property can be detected from a minimal-degree Cayley–Abels graph.

THEOREM B (Corollary 3.10). Let G be a cgtdlc group. If G has a compact, open,
normal subgroup, then G acts on some minimal-degree Cayley–Abels graph with a
compact, open, normal kernel.

Our investigation of the second question starts with a study of the modular function
and its relationship to the action of a group on a Cayley–Abels graph; see Section 5.1.
Many of the results in Section 5.1 are contained in the first author’s master’s thesis [2].
We present a method to ‘read’ the values of the modular function off the graph and
generalize a theorem by Praeger to higher dimensions. Furthermore, we get a bound on
the minimal degree based on the modular function of which the following is a special
case.

THEOREM C (Theorem 5.4). Let G be a noncompact, cgtdlc group. Assume the image
of the modular function is generated by p/q, where p and q are coprime, positive
integers. Then md(G) ≥ p + q.

Then we turn to the relationship of the minimal degree with the local structure of the
group (that is, the structure of compact, open subgroups); see Section 6. We introduce a

https://doi.org/10.1017/S1446788722000040 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000040


[3] Cayley–Abels graphs and invariants 147

new local invariant, the local simple content, that is inspired by the local prime content
introduced by Glöckner [12]. It is the set of all (isomorphism classes of) finite, simple
groups that appear as composition factors of every compact, open subgroup. To treat
this concept, a Jordan–Hölder theorem for profinite groups is needed (Theorem 6.2).

THEOREM D (Theorem 6.6). Let G be a cgtdlc group. Assume that G does not have
any compact, normal subgroup. Then the local simple content of G is finite. Moreover,
md(G) is strictly bigger than the smallest n such that every element of the local simple
content is a subquotient of the symmetric group Sn.

This is a refinement of a theorem about the local prime content by Caprace et al.
from [8]. We relate their result to the values of the scale function. If p is the largest
prime that occurs as a factor in any value of the scale function then md(G) ≥ p + 1
(see Corollary 6.15); this holds, in particular, for nonuniscalar p-adic Lie groups
(Corollary 6.16).

The archetypal totally disconnected, locally compact groups are the automor-
phism groups of regular trees. Theorems E and F are simple applications of Theo-
rems D and C, except for the result in part (1) of Theorem E in the case of Aut(T5).
A special argument for Aut(T5) is necessary because the alternating group A4 is not
simple. Proving that md(Aut(T5)) = 5 is surprisingly tricky and is done in Section 7.

THEOREM E (Corollaries 6.7, 5.5, Example 5.6, Theorem 7.1). Let Td be a regular
tree of degree d ≥ 2. Let ω be an end of Td.

(1) The tree Td is a minimal-degree Cayley–Abels graph for the automorphism group
Aut(Td) and the end stabilizer Aut(Td)ω. In particular, md(Aut(Td)) = d.

(2) Let Aut+(Td) be the index-2 subgroup of Aut(Td). Then md(Aut+(Td)) ≤ 2d + 2
and md(Aut+(Td)ω) = (d − 1)2 + 1.

More generally, for biregular trees we prove the following result.

THEOREM F (Example 5.6, Corollary 5.5). Let Td,d′ be a biregular tree of degrees
d > d′ ≥ 2. Let ω be an end of Td,d′ . Then the automorphism group Aut(Td,d′)
satisfies md(Aut(Td,d′)) ≤ d + d′ + 2 and the end stabilizer Aut(Td,d′)ω satisfies
md(Aut(Td,d′)ω) = (d − 1)(d′ − 1) + 1.

The authors conjecture that md(Aut(Td,d′)) = d + d′ + 2.

2. Notation and preliminaries

2.1. Graphs. An (undirected) graph Γ is defined as a pair (VΓ, EΓ), where VΓ is
the set of vertices and EΓ is a set of two-element subsets of VΓ, whose elements we
call the edges of Γ. Our graphs thus have neither loops nor multiple edges. The set of
arcs of Γ, denoted by AΓ, is the set of all ordered pairs (α, β) such that {α, β} ∈ EΓ.
Two vertices α and β are called adjacent, or neighbours, if {α, β} is an edge. The set of
neighbours of a vertex α is denoted by Γ(α) and the degree of α is the cardinality of
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Γ(α). A graph is regular if all vertices have the same degree d, and then we say that d
is the degree of the graph. A graph is locally finite if every vertex has finite degree.

We also consider digraphs (directed graphs). A digraph consists of a vertex set VΓ
and a subset AΓ ⊆ VΓ × VΓ that does not intersect the diagonal. Elements of VΓ are
called vertices and elements of AΓ are called arcs. The underlying undirected graph
of a digraph Γ has the same vertex set as Γ and the set of edges is the set of all pairs
{α, β} where (α, β) or ( β,α) is an arc in Γ. If α ∈ VΓ in a digraph Γ we define the
set of in-neighbours as ∈ (α) = {β ∈ VΓ | (β,α) ∈ AΓ} and the set of out-neighbours as
out(α) = {β ∈ VΓ | (α, β) ∈ AΓ}. The cardinality of in(α) is the in-degree of α and the
cardinality of out(α) is the out-degree of α. A digraph is regular if any two vertices
have the same in-degree and also the same out-degree.

For an integer s ≥ 0 an s-arc in Γ (here Γ can be an undirected graph or a digraph)
is an (s + 1)-tuple (α0, . . . ,αs) of vertices such that for every 0 ≤ i ≤ s − 1 the ordered
pair (αi,αi+1) is an arc in Γ, and αi−1 � αi+1 for all 1 ≤ i ≤ s − 1. Infinite arcs come in
three different shapes. There are one-way infinite arcs (α0,α1, . . .) and (. . . ,α−1,α0),
and there are two-way infinite arcs (. . . ,α−1,α0,α1, . . .). In all cases we insist that
(αi,αi+1) is an arc in Γ, and αi−1 � αi+1 for all i.

A graph Γ is said to be connected if for every pair of vertices α and β in Γ there exists
an s-arc (α0, . . . ,αs) with α = α0 and β = αs. The smallest possible s is the distance
between α and β and is denoted by dΓ(α, β). A digraph is said to be connected if the
underlying undirected graph is connected.

2.2. Group actions. Let Sym(Ω) denote the group of all permutations of the set
Ω. By a permutation group on Ω we mean a subgroup of Sym(Ω). An action of a
group G on a set Ω is defined as a homomorphism π : G→ Sym(Ω). We write our
group action on the right so that if α ∈ Ω and g ∈ G then αg denotes the image of
α under the permutation π(g). The kernel of the action (that is, the kernel of the
homomorphism π) is equal to the set K = {g ∈ G | αg = α, for all α ∈ Ω}. If K = {1},
we say that the action is faithful. Set GΩ = G/K. The homomorphism π induces an
injective homomorphism GΩ → Sym(Ω) giving an action of GΩ on Ω. This action is
clearly faithful and thus we can think of GΩ as a permutation group on Ω. We call GΩ

the permutation group on Ω induced by the action of G. If the action π is faithful, then
GΩ = G and we can think of G itself as a permutation group.

The stabilizer in G of α ∈ Ω is the subgroup Gα = {g ∈ G | αg = α}. For a set A ⊆ Ω
the pointwise stabilizer of A is defined as the subgroup

G(A) = {g ∈ G | αg = α for all α ∈ A}

and the setwise stabilizer is defined as the subgroup G{A} = {g ∈ G | Ag = A}.
The orbit of a point α ∈ Ω under G is the set αG = {αg | g ∈ G}, and for S ⊆ G we

define the S-orbit of α as the set αS = {αg | g ∈ S}. The orbits of Gα are called suborbits
of G. An action is said to be transitive if for any two points α, β ∈ Ω there is an element
g ∈ G such that αg = β, that is, every orbit under G is all of Ω. A permutation group G
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[5] Cayley–Abels graphs and invariants 149

on a set Ω is called free (or semiregular) if Gα = {1} for all points α ∈ Ω and regular
if it is free and transitive.

Let Γ and Δ be graphs (or digraphs). A graph morphism (or a digraph morphism)
ϕ : Γ→ Δ is a map ϕ : VΓ→ VΔ such that if (α, β) ∈ AΓ then (ϕ(α),ϕ( β)) ∈ AΔ. If
a graph morphism ϕ : Γ→ Γ is bijective and ϕ induces a bijective map AΓ→ AΓ,
then ϕ is an automorphism of Γ. The set of all automorphisms of Γ is a group, the
automorphism group of Γ, denoted by Aut(Γ). We think of Aut(Γ) as a permutation
group on VΓ, and the action on the vertex set induces actions on the set of edges and the
set of arcs. When we say that ‘a group G acts on a graph Γ’ we always mean an action
by automorphisms. Such an action is described by a homomorphism G→ Aut(Γ). The
permutation group on the vertex set induced by G is denoted by GΓ.

A graph or a digraph Γ is vertex-transitive if the automorphism group acts transi-
tively on the vertex set. We say that Γ is edge-transitive (arc-transitive, s-arc-transitive)
if the automorphism group acts transitively on the edge set (the arc set, the set of
s-arcs). When the automorphism group is s-arc-transitive for all s, then Γ is said to be
highly arc-transitive.

Consider now a group G that acts vertex-transitively on a graph Γ. Let α ∈ VΓ. The
stabilizer Gα clearly leaves the set Γ(α) invariant and thus induces an action on it. The
kernel of this action is G(Γ(α)) ∩ Gα and the quotient GΓ(α)

α = Gα/(G(Γ(α)) ∩ Gα) embeds
as a subgroup into Sym(Γ(α)). Now let α′ be another vertex of Γ. By assumption there
exists g ∈ G with αg = α′, and Gα′ = g−1Gαg acts on Γ(α′). The actions of Gα on
Γ(α) and Gα′ on Γ(α′) = Γ(α)g are conjugate via g and hence isomorphic. Thus, the
following definition is independent of the choice of α.

DEFINITION 2.1. Let Γ be a graph of degree d on which a group G acts
vertex-transitively. Let α ∈ VΓ. The local action of G on Γ is the conjugacy class
of the group Gα/(G(Γ(α)) ∩ Gα), seen as a subgroup of the symmetric group Sd.

Given a group G acting on a set Ω, we say that an equivalence relation on Ω is a
G-congruence if αg is equivalent to βg if and only if α is equivalent to β. The orbits of
a normal subgroup N � G form the equivalence classes of a G-congruence.

When ∼ denotes an equivalence relation on the vertex set of a graph (or a digraph)
Γ we can form the quotient graph (quotient digraph) Γ/∼. The vertex set of Γ/∼ is the
set of ∼-classes. The arc set is defined as follows: if A and B are two ∼-classes, then
(A, B) is an arc in Γ/∼ if and only if there is a vertex α ∈ A and a vertex β ∈ B such
that (α, β) is an arc in Γ. If H is a subgroup of Aut(Γ) then Γ/H denotes the quotient
graph of Γ with respect to the equivalence relation whose classes are the H-orbits on
the vertex set. If G acts on Γ and ∼ is a G-congruence then G has a natural action on the
set of ∼-classes that gives an action on the quotient digraph Γ/∼ by automorphisms.

2.3. The permutation topology. When G is a group acting on a set Ω, for example
the automorphism group of a graph Γ acting on the vertex set VΓ, we can endow G with
the permutation topology; see, for instance, [23, 40]. One description of this topology
is as follows. A neighbourhood basis of the identity element consists of all subgroups
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of the form G(Φ), where Φ ranges over all finite subsets of Ω. Thus a subgroup is open
if and only if it contains the pointwise stabilizer of some finite subset of Ω. Another
way to describe this topology is to think of Ω as having the discrete topology and
then the permutation topology is the compact-open topology on G. The compact-open
topology has the property that the action map Ω × G→ Ω; (α, g) �→ αg is continuous.
If the group G already has a topology and the stabilizer Gα of a point α ∈ Ω is open,
then the permutation topology is a subset of the topology on G. If the action of G is
faithful then G is totally disconnected.

Various topological properties of the permutation topology have natural descrip-
tions in terms of the group’s action. For instance, a sequence {gi} of elements in G
converges to an element g ∈ G in the permutation topology if and only if for each
element α ∈ Ω there is a number Nα such that if i ≥ Nα then αgi = αg. We say that
G is closed in the permutation topology if GΩ is closed in Sym(Ω) with respect to
the permutation topology on Sym(Ω). Compactness and cocompactness have natural
descriptions in the permutation topology.

LEMMA 2.2. Let G be a group acting transitively on a countable set Ω. Endow G with
the permutation topology. Assume G is closed in the permutation topology. Assume
also that all suborbits are finite. Then the following assertions hold.

(1) [40, Lemma 1] The stabilizer of a point α ∈ Ω is compact.
(2) [40, Lemma 2] A subset A in G has compact closure if and only if all orbits of A

are finite.
(3) [25, Proposition 1], see [22, Lemma 7.5] A subgroup H of G is cocompact, that

is, G/H is compact, if and only if H has only finitely many orbits on Ω.

Suppose that G already has a given topology and acts transitively on a set Ω and the
stabilizers of points are compact open subgroups. Then any compact subset of G will
also be compact in the permutation topology and thus have finite orbits on Ω.

From the above it also follows that if G is a closed subgroup of the automorphism
group of a locally finite graph Γ, then G with the permutation topology is a totally
disconnected, locally compact group. The reader may also find it reassuring to know
that if G is a permutation group on a countable set Ω, then the permutation topology is
metrizable. Enumerate the points in Ω as α1,α2, . . . . Take two elements g, h ∈ G. Let
n be the smallest number such that αng � αnh or αng−1 � αnh−1. Set d(g, h) = 1/2n.
Then d is a metric on G that induces the permutation topology.

2.4. Cayley–Abels graphs. Central in this work is the concept of a Cayley–Abels
graph for a cgtdlc group. Recall that a fundamental theorem of van Dantzig [35]
says that every totally disconnected, locally compact group contains a compact open
subgroup.

DEFINITION 2.3. Let G be a totally disconnected, locally compact group. A con-
nected, locally finite graph on which G acts vertex-transitively such that the stabilizers
of vertices are compact open subgroups is called a Cayley–Abels graph for G.
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The following graph-theoretical lemma is well known but is stated here with a
sketch of a proof to assist the reader.

LEMMA 2.4. Let Γ be a locally finite connected graph. Suppose that α is a vertex in
Γ and that there exist automorphisms g1, . . . , gd such that {αg1, . . . ,αgd} = Γ(α). Then
the group H = 〈g1, . . . , gd〉 acts transitively on VΓ.

PROOF (Sketch). The H-orbit of α contains every neighbour of α. It follows by using
conjugation that if β is a vertex in the H-orbit of α then the orbit contains every
neighbour of β. Since the graph Γ is connected, we conclude that the H-orbit of α
contains every vertex in Γ. �

A Cayley–Abels graph for a totally disconnected, locally compact group exists if
and only if the group is compactly generated. Let Γ be a Cayley–Abels graph for G.
Suppose that α is a vertex and g1, . . . , gd are elements in G such that {αg1, . . . ,αgd} =
Γ(α). By Lemma 2.4, the subgroup H = 〈g1, . . . , gd〉 is vertex-transitive and the
compact set Gα ∪ {g1, . . . , gd} generates G. As a consequence we see that if g1, . . . , gk

are elements in G such that the set {αg1, . . . ,αgk} contains a representative of every
orbit of Gα on Γ(α), then the set Gα ∪ {g1, . . . , gk} generates G. These facts are used
repeatedly. Two different ways of constructing a Cayley–Abels graph for a cgtdlc group
G are described below.

The first construction (see [19, Construction 1]) goes as follows. Start with the set
G/U of right cosets of some compact open subgroup U of G. This is the vertex set of
our graph. Then choose group elements g1, . . . , gn such that G = 〈U, g1, . . . , gn〉 and
finally take some element α ∈ G/U and let the edge set be the union of the G-orbits
{α,αg1}G, . . . , {α,αgn}G. The resulting graph is a Cayley–Abels graph for G.

The second construction is in Abels’ paper [1, Beispiel 5.2] (see also [19,
Construction 2]). Start by taking a compact generating set S and a compact open
subgroup U. Then construct the Cayley graph with respect to this generating set S,
and finally contract the right cosets of U. After all this, we are left with a locally finite,
connected graph on which G acts transitively. The stabilizers of this graph’s vertices
are U and its conjugates.

In both constructions the constructor has choices and thus there is always more than
one possible Cayley–Abels graph. But they are all locally finite and thus the following
concept is well defined.

DEFINITION 2.5. Let G be a cgtdlc group. The number md(G) denotes the minimal
degree of a Cayley–Abels graph for G.

REMARK 2.6. Any two Cayley–Abels graphs for a compactly generated, totally
disconnected group G are quasi-isometric to each other (see [19, Theorem 2.7]). This
implies that the two graphs have the same ‘large-scale’ properties; for example, any
two Cayley–Abels graphs of a group G have the same number of ends. In this work we
do not need the concept of quasi-isometry, except that it appears again in remarks in
Sections 3 and 4.
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2.5. The scale function and tidy subgroups. The pioneering paper of Willis [37]
started a new wave of interest in totally disconnected, locally compact groups. The
fundamental concepts of Willis’s theory are the scale function and tidy subgroups. In a
later paper [38], Willis gave the following simple definitions of these fundamental con-
cepts and showed that these new definitions are equivalent to his original definitions
in [37].

DEFINITION 2.7 (see [38, Theorem 3.1]). Let G be a totally disconnected, locally
compact group. The scale function on G is defined as

s(g) = min{|U : U ∩ g−1Ug| | U compact open subgroup of G}.

A compact open subgroup U of G is said to be tidy for g if and only if this minimum
is attained at U, that is, s(g) = |U: U ∩ g−1Ug|.

The following proposition allows us to compute the scale function of elements by
using an action of the group on a set.

PROPOSITION 2.8 [22, Corollary 7.8]. Let G be a totally disconnected, locally
compact group and let U be a compact open subgroup of G. Consider the action of
G on the set of right cosets Ω = G/U. Set α = U and think of α as a point in Ω. If
g ∈ G then

s(g) = lim
n→∞
|(αgn)Gα|1/n,

and, furthermore, s(g) = 1 if and only if there is a constant C such that |(αgi)Gα| ≤ C
for all i = 0, 1, 2, . . . .

3. Discrete actions

Every discrete group is trivially a totally disconnected, locally compact group, but
then the topology carries no information about the group. It is useful to know when the
given group topology, or the permutation topology arising from the action of a group
on a Cayley–Abels graph, carries additional information about the group and its action
on a Cayley–Abels graph.

DEFINITION 3.1. An action of a group G on a set Ω is said to be discrete if the
stabilizers in GΩ of points in Ω are finite.

If the action of G on Ω is discrete, then there is a finite set Φ ⊆ Ω such that the
pointwise stabilizer in GΩ of Φ is trivial. In particular, the permutation topology on
GΩ is discrete. The pointwise stabilizer in G of Φ is then a compact open, normal,
subgroup of G, where G has the permutation topology, and is equal to K, the kernel
of the action. If the action is discrete and faithful, the permutation topology on G is
discrete.

DEFINITION 3.2. A topological group is said to be nearly discrete if it has a compact,
open, normal subgroup.

https://doi.org/10.1017/S1446788722000040 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000040


[9] Cayley–Abels graphs and invariants 153

Following Cornulier in [9], we call an action of G on a set Ω block-discrete if there
is a G-congruence ∼ on Ω with finite classes such that the stabilizers in GΩ/∼ of points
in Ω/∼ are finite.

LEMMA 3.3 (see [9, Fact 5.6]). Let G be a topological group acting transitively on a
set Ω such that the stabilizers of points are compact, open subgroups. Then G is nearly
discrete if and only if the action of G on Ω is block-discrete.

PROOF. Suppose that G is nearly discrete and that N is a compact, open, normal
subgroup. The N-orbits ωN with ω ∈ Ω are finite. They form the classes of a
G-congruence on Ω. Denote the quotient space by Ω/N. Let ω ∈ Ω and U = GωN ,
where ωN ∈ Ω/N. Then U = G{ωN} with ωN ⊆ Ω. But ωN is finite, hence U is a
compact open subgroup of G. The kernel K of the action of G on Ω/N contains N and
is contained in GωN . Thus K is both open and compact. In particular, G/K is discrete
and the image of U in G/K is finite. Hence, the action of G on Ω is block-discrete.

Assume now that the action of G on Ω is block-discrete. Hence, there is a
G-congruence ∼ on Ω with finite classes such that the stabilizers in GΩ/∼ are finite.
Let K be the kernel of the action of G on Ω/∼. The action of G on Ω/∼ is discrete
and thus there is a finite set Φ ⊆ Ω/∼ such that G(Φ) = K. But G(Φ) is a compact, open
subgroup of G. Thus K is a compact, open, normal subgroup of G and G is nearly
discrete. �

The following nice result of Schlichting, here rephrased using our terminology,
gives further connections between the action and the property that a group with the
permutation topology is nearly discrete.

THEOREM 3.4 [30]. Let G be a group acting transitively on a set Ω. Endow G with the
permutation topology. Then G is nearly discrete if and only if there is a finite upper
bound on the sizes of its suborbits.

Turning to Cayley–Abels graphs, we get the following corollary.

COROLLARY 3.5. Let G be a cgtdlc group. Then G is nearly discrete if and only if G
has a discrete action on some Cayley–Abels graph.

PROOF. Suppose that G is nearly discrete and that K is a compact, open, normal
subgroup. Assume Γ is a Cayley–Abels graph for G. Then the graph Γ/K is connected
and locally finite (recall that by part (2) of Lemma 2.2 the orbits of K are finite). Hence,
Γ/K is also a Cayley–Abels graph for G and the action of G on Γ/K is discrete.

Conversely, if G has a discrete action on some Cayley–Abels graph then we have
already seen that G is nearly discrete. �

REMARK 3.6. Let G be a cgtdlc group and Γ a Cayley–Abels graph for G. Let H ≤ G
be a closed, cocompact subgroup. Then H itself is compactly generated and every
Cayley–Abels graph for H is quasi-isometric to Γ; see [19, Corollary 2.11]. Suppose
now that K is a compact, normal subgroup of G. Then Γ/K is a Cayley–Abels graph
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for both G and G/K. Thus Γ and Γ/K are quasi-isometric. The conclusion is that all
Cayley–Abels graphs for G, H and G/K are quasi-isometric.

If G is nearly discrete then one can show by using a construction of Sabidussi [28,
Theorem 4], that there is a Cayley–Abels graph Γ such that GΓ acts regularly on Γ.

In some cases one can determine from the local action on a Cayley–Abels graph
that the action on the graph is discrete.

LEMMA 3.7. Let G be a cgtdlc group. Let Γ be a Cayley–Abels graph for G. If the
local action of G is trivial then GΓ acts regularly on Γ. If the local action of GΓ is free
then GΓ acts freely on the arcs of Γ and, in particular, G acts discretely on Γ.

PROOF. We first consider the case where the local action is trivial. If α ∈ VΓ, then Gα
fixes every vertex in Γ(α). If β ∈ Γ(α), then Gα fixes β and thus every vertex in Γ( β) is
also fixed. Since the graph Γ is connected we see that Gα fixes every vertex in Γ, that
is, GΓ acts regularly.

Suppose that the action of Gα on Γ(α) is free. Let β be a vertex in Γ(α). By
assumption Gα,β fixes every vertex in Γ(α) and also every vertex in Γ( β). The
conclusion now follows again from the connectivity of Γ. �

Next we look at compact, normal subgroups in relation to minimal-degree
Cayley–Abels graphs. The following lemma is well known.

LEMMA 3.8. Let Γ be a locally finite graph and G ≤ Aut(Γ) a vertex-transitive
subgroup. Suppose that N is a normal subgroup of G. Then the degree of Γ is greater
than or equal to the degree of Γ/N. Equality holds if and only if no vertices of distance
at most 2 from each other lie in the same N-orbit.

PROOF. Consider two adjacent vertices A and B in Γ/N. Since A and B are adjacent
in Γ/N there are vertices α, β ∈ VΓ such that α ∈ A, β ∈ B and α and β are adjacent
in Γ. Both A and B are N-orbits in VΓ and hence we see that every vertex in A has a
neighbour in B. Hence, the degree of Γ/N is at most equal to the degree of Γ.

The degree of Γ equals the degree of Γ/N if and only if for every vertex α ∈ VΓ its
neighbours belong to different N-orbits and none of them belongs to the N-orbit of α.
Thus the stabilizer of α in N must act trivially on the neighbourhood of α in Γ. The
same argument as in the proof of Lemma 3.7 now shows that the stabilizer in N of a
vertex in Γ acts trivially on Γ. �

Lemma 3.8 directly implies the following result.

COROLLARY 3.9. Let G be a cgtdlc group. Suppose that Γ is a Cayley–Abels graph
for G with minimal degree. If N is a compact, normal subgroup of G, then the orbits of
N on VΓ are finite, NΓ acts freely on VΓ and no two vertices in the same N-orbit are
adjacent. In particular, NΓ is finite.

COROLLARY 3.10. Let G be a cgtdlc group. If G is nearly discrete, then G acts
discretely on some minimal-degree Cayley–Abels graph.
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PROOF. Let Γ be some minimal-degree Cayley–Abels graph. If K is a compact, open,
normal subgroup then Γ/K is also a minimal-degree Cayley–Abels graph for G and G
acts discretely on Γ/K. �

4. Groups with minimal degree 2 or 3

In this section we first characterize those cgtdlc groups G with md(G) = 2. Note
that a 2-regular minimal-degree Cayley–Abels graph can only be the infinite line. We
also look at the case when the minimal degree is equal to 3; for proofs of those results
the reader is referred to the companion paper [3].

Let Γ be any graph. A ray is a one-way infinite arc such that all its vertices are
different. An end of Γ is an equivalence class of rays, where the ray (α0,α1, . . .)
is equivalent to ( β0, β1, . . .) if and only if there is a ray (γ0, γ1, . . .) such that the
intersections {γi | i ≥ 0} ∩ {αi | i ≥ 0} and {γi | i ≥ 0} ∩ { βi | i ≥ 0} are both infinite.

If two graphs are quasi-isometric then they have the same number of ends; see [21,
Proposition 1]. As any two Cayley–Abels graphs of a group G are quasi-isometric (see
[19, Theorem 2.7]), we can define the number of ends of a cgtdlc group as the number
of ends of a Cayley–Abels graph.

THEOREM 4.1. For a cgtdlc group G the following assertions are equivalent.

(1) The minimal degree of a Cayley–Abels graph for G is 2.
(2) The group G has precisely two ends.
(3) There is a continuous surjective homomorphism with a compact, open kernel

from G onto the infinite cyclic group or the infinite dihedral group (both with the
discrete topology).

(4) The group G has a cocompact cyclic discrete subgroup.

PROOF. First note that (1) implies (2) trivially because if md(G) = 2 then the integer
graph Z is a Cayley–Abels graph for G, so G has two ends. Then (2) implies (3) by
[1, Satz 4.5]; see also [24, Proposition 3.2]. To prove that (3) implies (1), note that the
groups Z and D∞ both have regular actions on the integer graph Z. From this we see
that G has an action on the integer graph Z with a compact, open kernel and thus Z is
a Cayley–Abels graph for G.

Finally, we note that (2) and (4) are equivalent. This can be seen, for example, from
results in Section 5 in the paper by Jung and Watkins [16] or in Abels’s paper [1, Satz
3.10]. A self-contained proof of this fact can be found in [3, Appendix C]. �

REMARK 4.2. In the case of a finitely generated group acting on a locally finite Cayley
graph it follows from results of Hopf [15, Satz 5] and Wall [36, Lemma 4.1] that
conditions (2), (3) and (4) in the theorem above are equivalent.

In [3] cgtdlc groups that have minimal degree 3 are studied. The first part of the
following theorem was previously known by experts.

https://doi.org/10.1017/S1446788722000040 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000040


156 A. S. Árnadóttir, W. Lederle and R. G. Möller [12]

THEOREM 4.3 [3, Sections 3 and 4]. Let G be a cgtdlc group that is not nearly discrete.
Assume that md(G) = 3 and let Γ be a minimal-degree Cayley–Abels graph for G. Then
one of the following statements is true.

(1) The action of G is transitive on the edges and Γ is a tree.
(2) The action of G has precisely two orbits on the edges of Γ. For every s ≥ 1, the

group G acts with precisely two orbits on the set of s-arcs whose underlying edges
lie alternately in the two edge orbits of G.

A totally disconnected, locally compact group G is said to be uniscalar if the scale
function is constant, that is, s(g) = 1 for all g ∈ G. Equivalently, every element in the
group normalizes some compact, open subgroup.

THEOREM 4.4 [3, Theorem 6.2]. Suppose that G is a cgtdlc group that is not nearly
discrete. If md(G) = 3 then G is not uniscalar.

If a totally disconnected, locally compact group G has a compact open normal
subgroup then G is uniscalar. Bhattacharjee and Macpherson [6, Section 3] (following
up on work by Kepert and Willis [17]), constructed an example of a cgtdlc group that
has no compact, open, normal subgroup, but every element normalizes some compact
open subgroup.

COROLLARY 4.5 [3, Corollary 6.3]. Let G be a cgtdlc group having a 3-regular
Cayley–Abels graph. If every g ∈ G normalizes a compact open subgroup of G then G
has a compact, open, normal subgroup.

5. Cayley–Abels graphs and the modular function

Let G be a locally compact group and μ a right-invariant Haar measure on G. The
modular function is the map Δ : G→ R+ such that for every measurable subset A ⊆ G
and for every g ∈ G we have μ(gA) = Δ(g)μ(A); it is well known that the modular
function exists and is a homomorphism. A group is unimodular if Δ(g) = 1 for all
g ∈ G.

5.1. Reading the modular function off the edges. The following result linking the
modular function and sizes of suborbits was proved by Schlichting [29, Lemma 1]; see
also [33, Theorem 1].

LEMMA 5.1. Let G be a totally disconnected, locally compact group and Δ the modular
function on G. If U is a compact open subgroup of G and g ∈ G then

Δ(g) =
|U : U ∩ g−1Ug|
|g−1Ug : U ∩ g−1Ug|

.

Suppose that G acts on a set Ω with compact, open point stabilizers. If α ∈ Ω and
g ∈ G then

Δ(g) =
|Gα : Gα ∩ g−1Gαg|
|g−1Gαg : Gα ∩ g−1Gαg|

=
|(αg)Gα|
|αGαg|

. (5-1)
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Furthermore, the image of the modular function is a subgroup of the multiplicative
group of positive rational numbers.

If G acts on a set Ω with compact point stabilizers and if for g, h ∈ G there is an
α ∈ Ω with αg = αh, then it follows from (5-1) that Δ(g) = Δ(h). If in addition G is
unimodular and its point stabilizers are open, then |(αg)Gα| = |αGαg| for all g in G and
all α ∈ Ω.

The following idea originates from the paper by Bass and Kulkarni [4, Section 3]
and enables us to ‘read’ the values of the modular function for a cgtdlc group G off a
Cayley–Abels graph Γ. Label an arc (α, β) in Γ with the number

Δ(α,β) =
| βGα|
|αGβ|

.

Note that Δ( β,α) = Δ
−1
(α,β). This arc labelling is clearly invariant under the action of G

on the set of arcs. Combining these observations, we see that if Δ(α,β) � 1 then there
cannot exist g ∈ G such that (α, β)g = ( β,α). If g ∈ G satisfies αg = β then Lemma 5.1
readily implies that

Δ(g) =
| βGα|
|αGβ|

= Δ(α,β). (5-2)

Now let γ be a neighbour of β and take h ∈ G with αh = γ. Set g′ = g−1h ∈ G. Then
βg′ = (αg)g−1h = γ. Hence, αh = αgg′ and we see that

Δ(h) = Δ(gg′) = Δ(g)Δ(g′) = Δ(α,β)Δ( β,γ).

Inductively, we get that if α, β ∈ Γ are arbitrary vertices, g ∈ G satisfies αg = β and
(α0, . . . ,αs) is an s-arc with α0 = α and αs = β, then

Δ(g) = Δ(α0,α1) · · · · · Δ(αs−1,αs).

Thus the labelled Cayley–Abels graph completely describes the modular function on
G. We have now proved the following theorem.

THEOREM 5.2. Let G be a cgtdlc group, Δ the modular function on G, and Γ a
Cayley–Abels graph for G. If g ∈ G and (α0, . . . ,αs) is an s-arc in Γ such that α0g = αs,
then Δ(g) = Δ(α0,α1) · · ·Δ(αs−1,αs). In particular, the image of Δ is generated by the labels
of the arcs.

COROLLARY 5.3. Let G be a cgtdlc group, Δ the modular function on G and Γ a
Cayley–Abels graph for G. For a vertex α in Γ, let B1, . . . , Bn be the orbits of Gα on
the neighbours of α and choose, for each i, an element gi ∈ G with αgi ∈ Bi. Then

im(Δ) =
〈 |(αg1)Gα|
|(αg−1

1 )Gα|
, . . . ,

|(αgn)Gα|
|(αg−1

n )Gα|

〉
≤ Q+.

The image of Δ is a finitely generated, free abelian subgroup of the multiplicative
subgroup of the positive rational numbers.
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PROOF. Recall that G = 〈Gα, g1, . . . , gn〉. Lemma 5.1 implies that Gα is contained in
the kernel of the modular function. Thus im(Δ) is generated by Δ(g1), . . . ,Δ(gn). Note
that |αGαgi | = |α(g−1

i Gαgi)| = |(αg−1
i )Gα|. So (5-2) gives us Δ(gi) = |αgiGα|/|αg−1

i Gα|.
The last statement follows since finitely generated subgroups of the multiplicative
subgroup of positive rational numbers are free abelian. �

5.2. Minimal degree and the modular function. The observations in the previous
subsection relating the modular function and Cayley–Abels graphs allow us to get a
lower bound on the minimal degree of a Cayley–Abels graph in terms of the values of
the modular function.

THEOREM 5.4. Let G be a noncompact, cgtdlc group. Let H ≤ Q+ be the image of
the modular function on G. Then every Cayley–Abels graph of G has degree at least
min(A), where

A =
{ k∑

i=1

(pi + qi)
∣∣∣∣∣ p1, . . . , pk, q1, . . . , qk ∈ N∗,

〈 p1

q1
, . . . ,

pk

qk

〉
= H
}
⊆ N∗.

In particular, if H is cyclic and generated by p/q, where p, q ∈ N* are relatively prime,
then md(G) ≥ p + q.

PROOF. Let Γ be a Cayley–Abels graph for G and let α ∈ VΓ. Think of Γ as a labelled
digraph as in Section 5.1. The group G has finitely many orbits E1, . . ., En on its edges.
By vertex-transitivity, we can take an edge ei = {α, βi} ∈ Ei and set pi = | βiGα| and
qi = |αG βi |. The label of the arc (α, βi) is pi/qi. These numbers are independent of
the choice of the representative ei of Ei. Suppose that gi ∈ G is such that αgi = βi.
Set γi = αg−1

i . Then qi = |αG βi | = |(αg−1
i )Gα| = |γiGα| and the label of the arc (α, γi)

is qi/pi. If pi � qi then the arcs (α, βi) and (α, γi) have different labels and thus belong
to different orbits of G. Therefore, the Gα-orbits βiGα and (αg−1

i )Gα are distinct and
disjoint and are both contained in Γ(α). The contribution of Ei to the degree of α is
at least pi + qi. Hence, the degree of Γ is at least equal to the sum of all pi + qi with
pi � qi. Corollary 5.3 now says that

H =
〈 p1

q1
, . . . ,

pn

qn

〉

and the result follows. �

The lower bound provided in Theorem 5.4 is far away from being sharp in general.
For a unimodular group the bound provided is 2 but the minimal degree of a
unimodular group can be arbitrarily large.

Theorem 5.4 does not say anything about the minimal degrees of unimodular
groups, such as the automorphism groups of regular or biregular trees. (A tree is said
to be biregular, or more precisely (d, d′)-biregular, if all the vertices in one part of the
natural bipartition have degree d and all the vertices in the other part have degree d′.)
But Theorem 5.4 can be applied to the stabilizer of an end in a regular or biregular tree.
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Ends of graphs are defined in Section 4, but in the special case of trees the definition
has a simpler form. Two rays (α0,α1, . . .) and ( β0, β1, . . .) in a tree T are said to be
equivalent if and only if they have the same infinite tail, that is, there exist k, l ≥ 0 such
that (αk,αk+1,αk+2, . . .) = ( βl, βl+1, βl+2, . . .). An end of a tree T is an equivalence class
of rays. Given an end ω of a tree, it is easy to show that for each vertex α in T there
is a unique ray Rα in ω that has α as its initial vertex. It is obvious that Aut(T) acts
on the set of ends of T. If ω is an end of T, then the stabilizer of the end ω, the group
Aut(T)ω, is a closed subgroup of Aut(T). Hence, if T is locally finite, the stabilizer in
Aut(T) of an end is a totally disconnected, locally compact group.

COROLLARY 5.5.

(1) Let Td denote the d-regular tree and let ω be an end of Td. Set G = Aut(Td)ω.
Then md(G) = d.

(2) Let Td,d′ be a biregular tree for some distinct integers d, d′ ≥ 2. Suppose that ω
is an end of Td,d′ and set G = Aut(Td,d′)ω. Then md(G) = (d − 1)(d′ − 1) + 1.

(3) Let Aut+(Td) denote the index-2 subgroup of Aut(Td) that leaves each part of
the natural bipartition of VTd invariant. Suppose that ω is an end of Td and set
G = Aut+(Td)ω. Then md(G) = (d − 1)2 + 1.

PROOF. Clearly (3) is a special case of (2) with d = d′ and (1) follows from (2) by
looking at Td,2. It is left to prove (2).

Denote by V1 one of the classes of the natural bipartition of Td,d′ . Construct a new
graph T with vertex set V1 and edge set {{α, β} | dTd,d′ (α, β) = 2 and β ∈ Rα}. It is easy
to see that this new graph is isomorphic to the ((d − 1)(d′ − 1) + 1)-regular tree. The
end ω of Td,d′ corresponds to an end of T and G acts on T fixing that end. Clearly
G acts vertex- and edge-transitively on T. So, T is a Cayley–Abels graph for G and
md(G) ≤ (d − 1)(d′ − 1) + 1.

Let {α, β} be an edge in T such that β ∈ Rα. Suppose that g ∈ G and αg = β. Then

Δ(g) =
| βGα|
|αGβ|

=
1

(d − 1)(d′ − 1)

and by edge-transitivity this rational number generates the image of Δ. Proposition
5.3 and Theorem 5.4 say that md(G) ≥ (d − 1)(d′ − 1) + 1. We conclude that md(G) =
(d − 1)(d′ − 1) + 1. �

EXAMPLE 5.6. Set H = Aut+(Td). We do not know the exact value of md(H). But H
acts transitively on the edge set of Td and thus the line graph of Td is a Cayley–Abels
graph for H. (The line graph of a graph Γ has the set of edges in Γ as a vertex set,
and two vertices in the line graph, that is, edges in Γ, are adjacent in the line graph
if and only if they have a common end vertex.) The degree of the line graph of Td

is 2d − 2, and hence md(H) ≤ 2d − 2. When d ≥ 3 we see that md(H) grows at most
linearly with d and is strictly smaller than the minimal degree of the subgroup fixing
an end, which grows quadratically with d.
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The line graph of Td,d′ is a Cayley–Abels graph for H = Aut(Td,d′). The degree of
the line graph is d + d′ − 2, and hence md(H) ≤ d + d′ − 2. If d, d′ ≥ 3 then md(H) is
strictly smaller than the minimal degree of the subgroup fixing an end.

5.3. Digraphs and the modular function. One of the first applications of the
modular function to the study of graphs and their automorphism groups was by Praeger
in 1991 [26]. (She does not use explicitly the term modular function but defines a
function in terms of sizes of suborbits as in (5-1) in Lemma 5.1.)

Let �Z be the digraph with vertex set Z and arc set {(i, i + 1) | i ∈ Z}. Similarly, we
define �Zn as the digraph with vertex set Zn, in which ((x1, . . . , xn), (y1, . . . , yn)) is an arc
if and only if there is 1 ≤ j ≤ n such that yj = xj + 1 and xi = yi for all i � j. A digraph
is said to have Property Z if a surjective digraph morphism Γ→ �Z exists. A fibre of a
map is the preimage of a point.

THEOREM 5.7 [26]. Let Γ be an infinite, connected, vertex- and arc-transitive digraph
with finite but unequal in- and out-degrees. Then there exists a surjective graph
morphism ϕ : Γ→ �Z, that is, Γ has Property Z. The fibres of ϕ are all infinite.

Note that, since �Z is vertex-transitive with in- and out-degree 1, a digraph morphism
from a connected digraph to �Z is uniquely determined by the image of one vertex and
this image can be chosen arbitrarily.

Praeger’s theorem can be generalized to digraphs with more than one orbit on
arcs. The proof resembles the proof of Praeger’s theorem found in Evans’s paper [10,
Theorem 3.2].

THEOREM 5.8. Let Γ be a locally finite digraph. Let G ≤ Aut(Γ) be a closed subgroup
acting vertex-transitively on Γ. Assume G is not unimodular and denote by Δ the
modular function on G. Suppose that G has n orbits on the arcs of Γ and that im(Δ)
is a free abelian group of rank n. Then there exists a surjective digraph morphism
ϕ : Γ→ �Zn with infinite fibres.

PROOF. Fix a vertex α in Γ. By vertex-transitivity we can choose representatives
(α, β1), . . . , (α, βn) for the n orbits on the arcs of Γ. Then we find elements gi ∈ G such
that αgi = βi. Since G = 〈Gα, g1, . . . , gn〉 we see that 〈Δ(g1), . . . ,Δ(gn)〉 = im(Δ) � Zn

and the Cayley digraph Θ of im(Δ) with respect to this generating set is isomorphic
to �Zn.

For a vertex β in Γ find g ∈ G such that αg = β and set ϕ( β) = Δ(g). By Lemma 5.1
the value of ϕ( β) is independent of the choice of g, so the map ϕ : VΓ→ VΘ is well
defined.

Let ( β, γ) ∈ AΓ. Find g ∈ G and 1 ≤ i ≤ n such that (α, βi)g = ( β, γ). Then
αgig = γ. Thus ϕ( β) = Δ(g) and ϕ(γ) = Δ(gig) = Δ(gi)Δ(g) = Δ(g)Δ(gi). The image
under ϕ of the arc ( β, γ) is the pair (Δ(g),Δ(g)Δ(gi)) that is indeed an arc in Θ. Hence,
ϕ is a morphism of digraphs.

Consider the digraph with vertex set VΓ and arc set (α, β1)G. Set H = 〈Gα, g1〉. Let
Γ′ be the component of this digraph that contains α. The group H acts arc-transitively
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on Γ′, and ϕ restricted to Γ′ gives a graph morphism whose image is isomorphic to �Z.
By Theorem 5.7 and the explanation following it ϕ has infinite fibers. �

COROLLARY 5.9. Let Γ be a digraph satisfying the conditions in Theorem 5.8. Then:

(1) there exists a surjective digraph morphism ϕ : Γ→ �Z, that is to say, Γ has
Property Z; and

(2) Γ is bipartite.

PROOF. The map �Zn → �Z; (x1, . . . , xn) �→ x1 + · · · + xn is clearly a surjective digraph
morphism. The composition of this map with the digraph morphism ϕ from Theorem
5.8 is a surjective digraph morphism Γ→ �Z.

By the first part the digraph �Z is the image of Γ under a surjective morphism. Since
�Z is bipartite the digraph Γ must also be bipartite. �

EXAMPLE 5.10. (1) Let p, q be positive, coprime integers. Let T be the regular directed
tree with in-degree 2 and out-degree p + q. Colour its arcs red and blue such that each
vertex has p red outgoing arcs, q blue outgoing arcs and one incoming arc of each
colour. Clearly, Aut(T) is vertex- and arc-transitive. Let G ≤ Aut(T) be the subgroup
that has the two colour classes as its arc orbits and let Δ denote the modular function
on G. By Theorem 5.2, im(Δ) is generated by {p, q}, and is therefore a free abelian
group of rank 2. Thus, by Theorem 5.8, there is a surjective digraph morphism from T
to �Z2 with infinite fibres. Theorem 5.4 implies that the underlying undirected graph of
T, the (p + q + 2)-regular tree, is a minimal-degree Cayley–Abels graph for G.

(2) Let T1, . . . , Tn be regular directed trees with in-degree 1 and out-degrees
d1, . . . , dn such that the di are distinct prime numbers. Let Γ = T1� · · ·�Tn be the Carte-
sian product, that is, the vertex set is VT1 × · · · × VTn and ((α1, . . . ,αn), ( β1, . . . , βn))
is an arc if and only if there is i such that (αi, βi) is an arc in Ti and αj = βj for
all j � i. In other words, Γ is the 1-skeleton of the cube complex T1 × · · · × Tn,
remembering the directions on the factors. Let G = Aut(Γ). It can be shown that
G = Aut(T1) × · · · × Aut(Tn); this is a consequence of the fact that two adjacent arcs
are ‘parallel to the same tree Ti’ if and only if they are not sides of the same
(undirected) square (see also [14, Corollary 6.12] for a more general version). It is easy
to see that G has n orbits on the arcs of Γ. Further, if Δ denotes the modular function on
G, then im(Δ) = 〈d1, . . . , dn〉 is a free abelian group of rank n (since the di are distinct
primes) and so there exists a surjective digraph morphism, ϕ : Γ→ �Zn, with infinite
fibres. Again, Theorem 5.4 shows that Γ is a minimal-degree Cayley–Abels graph
for G.

The following proposition can be seen as an addendum to Theorem 5.7.

PROPOSITION 5.11. Let Γ be a locally finite digraph and G ≤ Aut(Γ) a subgroup
acting arc- and vertex-transitively on Γ. If the in- and out-degrees of Γ are coprime
then G is highly arc-transitive. Furthermore, the subdigraph induced by the set of
descendants of any vertex is a tree.
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PROOF. We may assume that G is closed, since replacing G with its closure in Aut(Γ)
does not change the orbits on vertices or s-arcs. Let q denote the in-degree of Γ and let
p denote the out-degree. Take vertices α and β in Γ such that (α, β) is an arc. Choose
some element g ∈ G such that β = αg. The second formula for the modular function in
Lemma 5.1 now says that

Δ(g) =
| βGα|
|αGβ|

=
p
q

.

Then

|(αgn)Gα|
|αGαgn | = Δ(gn) = Δ(g)n =

( p
q

)n
=

pn

qn .

Note that (α,αg, . . . ,αgn) is an n-arc in Γ. There are pn distinct n-arcs in Γ that start
at α, and each vertex in the orbit (αgn)Gα is the terminal vertex of such an arc. Thus
|(αgn)Gα| ≤ pn. But since |(αgn)Gα|/|αGαgn | = pn/qn and p and q are coprime we see
that |(αgn)Gα| = pn and |αGαgn | = qn.

If γ is the terminal vertex of some n-arc starting at α then the orbit of γ under Gα
has precisely pn elements. The number of n-arcs starting at α is pn, and we see that Gα
acts transitively on the set of n-arcs starting at α. As G acts transitively on VΓ we see
that G acts transitively on the n-arcs in Γ. Hence, Γ is highly arc-transitive.

Every arc in the subgraph induced by the set of descendants of α is contained in
some n-arc starting at α. No two distinct n-arcs starting at α have a common terminal
vertex. Thus the subgraph induced by the set of descendants of α is a tree. �

In [22] the scale function and tidy subgroups are analysed by using graph-theoretical
concepts. A prominent role in this analysis is played by highly arc-transitive digraphs
such that the subgraph induced by the set of descendants of a vertex is a tree. It is
therefore not surprising that the above proposition can be interpreted as a result about
tidy subgroups.

COROLLARY 5.12. Let G be a totally disconnected, locally compact group. Suppose
that g ∈ G and U is a compact, open subgroup of G such that |U : U ∩ g−1Ug| and
|U : U ∩ gUg−1| are coprime. Then U is tidy for g and s(g) = |U : U ∩ g−1Ug|.

PROOF. We define a digraph Γ such that the vertex set is the set of cosets G/U and the
set of arcs is the G-orbit (α, β)G where α = U and β = Ug. Note that Gα = U. Then Γ is
an arc- and vertex-transitive digraph. The out-degree is equal to p = |U : U ∩ g−1Ug|
and the in-degree is equal to q = |U : U ∩ gUg−1|. Since the in- and out-degrees are
coprime, by Proposition 5.11 the digraph Γ is highly arc-transitive and the subgraph
induced by the set of descendants of a vertex is a tree. We also see that

|U : U ∩ g−nUgn| = |(αgn)Gα| = pn = |U : U ∩ g−1Ug|n.

Now [22, Corollary 3.5] says precisely that U is tidy for g. �
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The following proposition is an n-dimensional version of Proposition 5.11 and can
be proved in a similar way.

PROPOSITION 5.13. Let Γ be a connected, locally finite digraph. Let G ≤ Aut(Γ) be
a vertex-transitive subgroup with n orbits A1, . . . , An on the arcs of Γ and denote by
d−1 , . . . , d−n , d+1 , . . . , d+n the respective in- and out-degrees of these orbits at any given
vertex. Let f : AΓ→ {1, . . . , n} be the unique map satisfying f (Ai) = i and denote by
f s the induced map from the set of s-arcs of Γ to {1, . . . , n}s.

If each of the numbers d−1 , . . . , d−n is coprime with each of the numbers d+1 , . . . , d+n ,
then G acts transitively on each fibre of f s.

6. Simple composition factors and the scale function

In this section we study the interplay between the structure of compact, open
subgroups, the scale function and the minimal degree of a Cayley–Abels graph.
In order to do so we must first prove a version of the Jordan–Hölder theorem for
second countable, profinite groups and study the composition factors of compact open
subgroups. For the reader not familiar with these terms it is enough to know that every
compact subgroup of the automorphism group of a locally finite, connected graph is
second countable and profinite.

6.1. The profinite Jordan–Hölder theorem. A composition series for a second
countable, profinite group G is a countable descending subnormal series

G = G0 	 G1 	 G2 	 · · ·

consisting of closed subgroups such that
⋂

i≥0 Gi = {1} and such that each composition
factor Gi−1/Gi is simple. The number of times that a composition factor appears, up
to isomorphism, is called its multiplicity. The multiplicity can be finite or countably
infinite. It is well known that every profinite group has a neighbourhood basis
consisting of open, normal subgroups. It is also well known that closed subgroups and
Hausdorff quotients of profinite groups are again profinite. These two facts together
imply that the Gi are open subgroups of G and the composition factors are finite. By
[39, Lemma 0.3.1(h)] the Gi form a neighbourhood basis of the identity.

For finite groups, composition series and composition factors are intimately tied
with the classical Jordan–Hölder theorem. An analogue of this theorem holds for
profinite groups. This is well known to experts, but due to the lack of a suitable
reference we give a proof here.

REMARK 6.1. The only published mention we found of the Jordan–Hölder theorem
for profinite groups was [18, Section 2.2], but without proof. The authors are grateful
to Benjamin Klopsch for pointing out to us the argument presented here and to Colin
Reid for some consultation concerning the theorem. For a slightly different proof, see
his mathoverflow post [27].
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A refinement of a subnormal series is a series that contains each subgroup of the
original series. In particular, the series G 	 {1} and G 	 G 	 {1} are refinements of each
other.

THEOREM 6.2 (Jordan–Hölder theorem for profinite groups). Let G be a profinite
group.

(1) Every descending subnormal series of G can be refined into a composition series.
In particular, G has a composition series.

(2) If G is second countable, then any two composition series have, up to isomor-
phism and permutation, the same composition factors appearing with the same
(finite or countably infinite) multiplicity.

PROOF. The first part can be proven verbatim as in the finite case, together with the
classical fact that G has a neighbourhood basis of the identity consisting of open,
normal subgroups.

For the second part, let G = G0 	 G1 	 G2 	 · · · and G = H0 	 H1 	 H2 	 · · · be two
composition series for G. Let A be a finite simple group. Let n1, n2 ∈ N ∪ {∞} be the
multiplicities of A in the first and the second composition series, respectively. By
symmetry, it is enough to show that n2 ≥ n1. Let n ∈ N with n ≤ n1. Choose k ≥ 0
such that A appears at least n times as a quotient in the series G0 	 · · · 	 Gk. Recall
that since Gk is open, it has finite index in G, so it has finitely many G-conjugates
and N =

⋂
g∈G g−1Gkg is an open, normal subgroup of G. Now recall that the Hi form

a neighbourhood basis of the identity, so there exists 
 ≥ 1 such that H
 ≤ N. Now
setting N′ =

⋂
g∈G g−1H
g, we get two finite subnormal series:

G = G0 	 G1 	 G2 	 · · · 	 Gk 	 N 	 H1 ∩ N 	 · · · 	 H
 ∩ N = H
 	 N′,
G = H0 	 H1 	 H2 	 · · · 	 H
 	 N′.

We can refine those subnormal series so that they have simple subquotients. Let n′

and n′′ be the multiplicities of A in a composition series for the finite groups G/N′

and H
/N′, respectively. By the Jordan–Hölder theorem for finite groups and the third
isomorphism theorem, A has to appear n′ times as a quotient in the refinement of
G = H0 	 H1 	 H2 	 · · · 	 H
 	 N′ and n′′ times in the refinement of H
 	 N′. But note
that n2 ≥ n′ − n′′ ≥ n. Since n ≤ n1 was arbitrary, we are done. �

By the above theorem the following concept is well defined.

DEFINITION 6.3. Let G be a second countable, profinite group. A finite, simple group
is a composition factor of G with multiplicity n ∈ N ∪ {∞} if it is a composition factor
with multiplicity n in one (and hence every) composition series of G.

6.2. The local simple content. Let G be a totally disconnected, locally compact
group. We are interested in the simple groups that appear as composition factors of
every open subgroup of G. The following definition is inspired by Glöckner’s concept
of the local prime content; see [12], and the work of Caprace et al. in [8].
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DEFINITION 6.4. The local simple content of a second countable, totally discon-
nected, locally compact group G is the set of finite, simple groups (up to isomorphism)
that are composition factors of every compact, open subgroup of G.

The following lemma allows us to detect the local simple content by only looking
at one composition series of one compact, open subgroup.

LEMMA 6.5. Let A be a finite simple group. Let G be a second countable, totally
disconnected, locally compact group. The following assertions are equivalent.

(1) The group A is in the local simple content of G.
(2) There exists a compact, open subgroup U ≤ G such that A is a composition factor

with infinite multiplicity in U.
(3) For every compact open subgroup U ≤ G, the group A is a composition factor

with infinite multiplicity in U.

PROOF. First we prove that (1) implies (3). Assume that A is in the local simple
content of G. Let U be a compact open subgroup of G and let U = U0 	 U1 	 · · · be a
composition series for U. Then, for every k ≥ 0, the series Uk 	 Uk+1 	 Uk+2 	 · · · is a
composition series for Uk and A has to appear as composition factor. Consequently, A
appears as composition factor of U infinitely often.

It is obvious that (3) implies (2).
To show that (2) implies (1), assume that U is a compact, open subgroup of G and

U = U0 	 U1 	 · · · is a composition series for U such that A appears as composition
factor infinitely often. Let V be a compact open subgroup of G and V = V0 	 V2 	 · · ·
be a composition series for V. Since the Vi form a neighbourhood basis of the identity,
there exists m0 ≥ 1 with Vm0 ≤ U0. Now the series

V = V0 	 · · · 	 Vm0 = Vm0 ∩ U0 	 Vm0 ∩ U1 	 Vm0 ∩ U2 	 · · ·

is a new composition series for V. By the Jordan–Hölder theorem for profinite groups,
it has the same composition factors as the original series for V. But the Ui form a
neighbourhood basis of the identity, so for large n the equality Vm0 ∩ Un = Un holds.
Since A appears as quotient of the subnormal series Un 	 Un+1 	 . . . , we see that A is a
composition factor of V. �

The following considerations rely heavily on the proof of [8, Proposition 4.6]. A
subquotient of a group H is a quotient of a subgroup of H. Let G be a cgtdlc group and
let U ≤ G be a compact, open subgroup. Let Γ be a Cayley–Abels graph for G such that
U = Gα for some vertex α ∈ VΓ. We can use Γ to produce a subnormal series for U.
Namely, take subgraphs Γ0 ⊆ Γ1 ⊆ Γ2 ⊆ · · · of Γ as follows.

(1) The subgraph Γ0 consists only of the vertex α.
(2) For i ≥ 1, choose a vertex αi ∈ VΓi−1 satisfying the following conditions.

• The set of neighbours of αi is not contained in VΓi−1.
• αi is a vertex in Γi−1 with the above property that is closest to α.
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(3) Now define Γi to be the subgraph of Γ induced by Γi−1 and Γ(αi).

Note that the second condition on αi ensures that
⋃

i≥0 VΓi = VΓ.
Write Gi = G(Γi). The sequence

U = G0 	 G1 	 G2 	 · · ·

is a descending subnormal series for U. Note that there could be repetitions in the
series. The condition

⋃
i≥0 VΓi = VΓ implies that

⋂
i≥0 Gi = K, where K is the kernel

of the action of G on Γ. Note that Gi−1 permutes those neighbours of αi that are not
already contained in Γi−1 and the kernel of this action is Gi, so for i ≥ 2 the group
Gi−1/Gi is a subgroup of the symmetric group Sd−1. More precisely, let βi ∈ VΓi−1 be a
neighbour of αi; then Gi−1/Gi is a subquotient of the stabilizer of βi in the local action
of G on Γ. Quotienting every subgroup in the given subnormal series for U by K gives
a subnormal series for U/K, which by the Jordan–Hölder theorem for profinite groups
can be refined into a composition series for U/K. This provides, together with Lemma
6.5, a proof of the following theorem.

THEOREM 6.6 (see [8, Proposition 4.6]). Let G be a cgtdlc group and let Γ be a
Cayley–Abels graph for G of degree d. Define K as the kernel of the action of G on Γ.
Let L ≤ Sd be the local action of G on Γ.

Suppose that A is an element of the local simple content of G/K. Then A is a
subquotient of a point stabilizer in L, that is, there exist i ∈ {1, . . . , d} and N � H ≤ Li

with H/N � A. In particular, H/N is a subquotient of Sd−1.

We apply this theorem to the automorphism group of a regular tree.

COROLLARY 6.7. Let d ≥ 2 be a positive integer and assume d � 5. Let Td be the
d-regular tree. Then md(Aut(Td)) = d and Td is a minimal Cayley–Abels graph for
Aut(Td).

PROOF. First it is clear that Td is a Cayley–Abels graph for Aut(Td).
For d = 2 we refer to Theorem 4.1.
Now let d ≥ 3, but d � 5. We can use the method described before Theorem 6.6

with Γ = Td to obtain a subnormal series for a vertex stabilizer. The quotients of this
subnormal series are all, except the first, isomorphic to Sd−1, which has the composition
factors Ad−1 and Z/2Z. By Lemma 6.5 the local simple content of Aut(Td) consists of
Ad−1 and Z/2Z. Recall, or prove as an exercise, that d − 1 is the minimal number k such
that Ad−1 is a subquotient of Sk. Recall as well, or prove using facts from Section 7,
that Aut(Td) does not have any nontrivial compact, normal subgroups. Now Theorem
6.6 concludes the proof. �

This argument fails for the 5-regular tree, because A4 is not simple. In fact Aut(T4)
and Aut(T5) have the same local simple content. The result also holds for Aut(T5), but
the proof turned out to be surprisingly tricky and is given in Section 7. The proof above
also provides an alternative proof for part (1) in Corollary 5.5 for d � 5.
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REMARK 6.8. In Theorem 6.6 we cannot replace ‘subquotient’ by ‘subgroup’. The
reason is simply that a simple subquotient of a finite, simple group might not be
isomorphic to a subgroup. Concrete examples can be found, for example, among
sporadic simple groups. The McLaughlin group McL is a subquotient of the Conway
group Co3. In [20] Mazurov gives for each sporadic finite simple group the minimal
number of points on which it admits a nontrivial action. The group Co3 acts
nontrivially on a set with 270 points, but McL cannot act nontrivially on a set with
fewer than 275 points. Then McL also cannot be a subgroup of Co3.

To turn this into an actual counterexample to Theorem 6.6 with ‘subgroups’ instead
of ‘subquotients’, let N � C ≤ S270 satisfy C/N � McL. It suffices to find a graph Γ
of degree 271 and a vertex-transitive subgroup G ≤ Aut(Γ) such that Gi−1/Gi � C for
infinitely many i. Then McL is contained in the local simple content of G, but it is not
contained in S270.

For a concrete example, we can use Burger–Mozes universal groups U(F) acting
on trees. The interested reader can find the definition and basic properties in [11]. It
is not hard to see that the local simple content of U(F) is the set of all composition
factors of point stabilizers in F. Taking F � C × {1}, by the above T271 is a 271-regular
Cayley–Abels graph for U(F).

6.3. The local prime content and the scale function. In this section we apply
Theorem 6.6 to other invariants.

DEFINITION 6.9 [12, Definition 6.1]. The local prime content of a totally discon-
nected, locally compact group G is the set of all prime numbers p such that every
compact, open subgroup U of G contains a compact open subgroup V ≤ U with
p | |U : V |.

The following lemma gives the connection between the local prime content and the
local simple content. If G is not second countable, we do not know whether 6.2(2) still
holds (see [27]), so in the definition of composition factors, the ‘and hence every’ part
needs to be left out. This subtlety is, however, not relevant for us.

LEMMA 6.10. Let G be a totally disconnected, locally compact group. Then the local
prime content of G contains the set of all prime numbers dividing the order of an
element of the local simple content.

Equality holds if, for every compact open subgroup U ≤ G, every prime number in
the local prime content divides the order of at most finitely many composition factors
of U (without counting multiplicities). In particular, this is true if G acts faithfully on
a Cayley–Abels graph.

PROOF. Assume that p divides the order of a finite, simple group A that is in the local
simple content of G. Let U be a compact, open subgroup. Let U = G0 	 G1 	 · · · be a
composition series of U and let n ≥ 1 be such that Gn/Gn+1 = A. Then p divides the
index |U : Gn+1|.
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For the other direction, let p be in the local prime content. Let U ≤ G be a compact,
open subgroup. There exist compact, open subgroups U = V0 ≥ V1 ≥ V2 ≥ · · · such
that p divides the index |Vi−1 : Vi| for all i ≥ 1. By replacing Vi by

⋂
g∈U g−1Vig we

can assume that Vi is normal in U; note that the above intersection is finite because
Vi has finite index in U and

⋂
i∈N Vi = {1}. By Theorem 6.2(1) this subnormal series

can be refined to a composition series. The prime number p divides infinitely many
composition factors, so by assumption, these infinitely many composition factors fall
into only finitely many isomorphism classes of finite simple groups. By Lemma 6.5
one of them has to be in the local simple content (note that (1) implies (3) implies (2)
is also true for groups that are not second countable). �

EXAMPLE 6.11. The group
∏

n≥5 An, where An denotes the alternating group on n
symbols, is compact and second countable. Its local simple content is empty, because
each An is a composition factor with multiplicity 1, but its local prime content is the
set of all primes.

This lemma allows us to draw the following conclusion from Theorem 6.6.

COROLLARY 6.12 [8, Proposition 4.6]. Let p be a prime number that is in the
local prime content of G/K for every compact, normal subgroup K � G. Then
md(G) ≥ p + 1.

The connection between the scale function and the local prime content is given in
the following lemma by Glöckner.

LEMMA 6.13 [12, Proposition 6.2]. Let G be a totally disconnected, locally compact
group. Let g ∈ G and let p be a prime number dividing s(g). Then p is contained in the
local prime content of G.

The next lemma is contained in a more general statement in [7, Theorem C(c)], but
for completeness a proof is included here.

LEMMA 6.14. Let G be a totally disconnected, locally compact group and K a compact,
normal subgroup of G. Denote the scale function on G by s and the scale function on
G/K by sG/K. If g ∈ G, then sG/K(gK) = s(g).

PROOF. Suppose that Ω is a set on which G acts transitively such that the stabilizers
of points are compact open subgroups of G, for example Ω = G/U for some compact,
open subgroup U ≤ G. Since K is compact in the given topology on G it is also
compact in the permutation topology on G constructed from the action onΩ and thus K
has finite orbits onΩ; see the discussion after Lemma 2.2. Since K is normal, G has an
action on Ω/K and the stabilizers in G of points in Ω/K are compact open subgroups
of G. Let α be a point in Ω/K. Note that the homomorphism G→ Sym(Ω/K)
factors through G/K, thus (α(gK))(G/K)α = (αg)Gα for every g ∈ G. Now, by applying
Proposition 2.8 to the action of G/K on Ω/K and to the action of G on Ω/K, we get

sG/K(gK) = lim
n→∞
|(α(gK)n)(G/K)α|1/n = lim

n→∞
|(αgn)Gα|1/n = s(g). �
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We are now in a position to derive a lower bound for the minimal degree in terms
of the scale function.

COROLLARY 6.15. Let G be a cgtdlc group. If p is the largest prime that occurs as a
factor of any of the values s(g) for g ∈ G, then md(G) ≥ p + 1.

PROOF. Let K be a compact normal subgroup of G. By Lemma 6.14, the prime number
p is also the largest prime factor of any of the values in the image of the scale function
of G/K. Lemma 6.13 says that the prime p is contained in the local prime content of
G/K. The result now follows from Corollary 6.12. �

The following is a simple application of the above results.

COROLLARY 6.16. Let G be a compactly generated p-adic Lie group. If G is not nearly
discrete, then md(G) ≥ p + 1.

PROOF. Glöckner and Willis have shown in [13, Theorem 5.2] that for a p-adic Lie
group the condition that it is not nearly discrete is equivalent to the condition that the
group is not uniscalar. From the work of Glöckner (see [13, Theorem 2.1]) we know
that every value of the scale function is a nonnegative power of p. The result now
follows from the previous corollary. �

7. The automorphism group of a 5-regular tree

In Corollary 6.7 it is shown that if d ≥ 2 and d � 5 then the minimal degree of
a Cayley–Abels graph for the automorphism group of the d-regular tree is d. The
1-regular tree consists only of a single edge, so its automorphism group is compact
and md(Aut(T1)) = 0. What is left is to determine the minimal degree of Aut(T5).

THEOREM 7.1. Let T5 be the 5-regular tree. Then md(Aut(T5)) = 5. In particular, T5
is a Cayley–Abels graph of minimal degree for Aut(T5).

As a preparation for the proof of this theorem, we recall a few well-known facts
about groups acting on trees. First we remind the reader of the classical fact due to Tits
[32, Proposition 3.2] that there are three types of automorphisms of a tree.

PROPOSITION 7.2. If g is an automorphism of a tree T, then exactly one of the
following assertions is true.

(1) g fixes some vertex α.
(2) g leaves some edge {α, β} invariant and switches the vertices α and β.
(3) There is a two-way infinite arc L in T invariant under g and g induces a nontrivial

translation on L such that if α is a vertex in L then the unique s-arc (α0, . . . ,αs)
with α0 = α and αs = αg is an s-arc in L. In this case L is called the translation
axis of g and s is called the translation length of g.

For an automorphism g of a tree T we denote by VTg the set of vertices that are
fixed by g. It is easy to see that in case (1) of Proposition 7.2 the set VTg is the vertex
set of a subtree of T.

https://doi.org/10.1017/S1446788722000040 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788722000040


170 A. S. Árnadóttir, W. Lederle and R. G. Möller [26]

A group G is said to act on a tree T without inversion if none of its elements satisfy
case (2). If we replace T with the first barycentric division of the tree (for example, we
replace T5 by the biregular tree T5,2), we can be sure that we have an action without
inversion.

LEMMA 7.3 [31, Proposition 26 (incl. proof)]. Let T be a tree and let g and h be
automorphisms of T. Suppose that VTg � ∅ and VTh � ∅. Then gh fixes a vertex if and
only if VTg ∩ VTh � ∅. Otherwise gh is a translation and the unique s-arc (α0, . . . ,αs)
with α0 ∈ VTg but α1 � VTg, and with αs ∈ VTh but αs−1 � VTh, is contained in the
translation axis of gh.

The following lemma is a consequence of the simple fact that a compact group
acting continuously on a discrete set has finite orbits.

LEMMA 7.4. Let T be a tree and G ≤ Aut(T) a compact subgroup. There is a vertex or
an edge in T that is stabilized by every element of G.

We now present a lemma that can be deduced from various ‘rigidity’ results for
automorphism groups of trees (for example, [5, Corollary 4.8(c)]), but for complete-
ness we include a direct proof.

LEMMA 7.5. Let d � d′ be nonnegative integers, greater than or equal to 3. Then Td′

cannot be a Cayley–Abels graph for Aut(Td).

PROOF. Suppose that G = Aut(Td) acts transitively on Td′ and the stabilizers of
vertices are compact open subgroups of G. Recall (or prove as an exercise using
Lemma 7.4) that G does not have any nontrivial, compact, normal subgroups, so this
action is faithful. As a consequence of Lemma 7.4, the automorphism group of an
infinite, regular tree has two conjugacy classes of maximal compact subgroups. One
conjugacy class consists of the stabilizers of vertices and the other conjugacy class
consists of the stabilizers of edges. A compact open subgroup of G acting on Td′ has
to fix a vertex or stabilize an edge in Td′ . Thus for every vertex α ∈ VTd we can find a
vertex α′ ∈ VTd′ with Gα ≤ Gα′ or an edge e′ in Td′ with Gα ≤ Ge′ . By maximality of
Gα, such an inclusion has to be an equality.

First we consider the case when Gα = Ge′ for a vertex α in Td and an edge e′ in Td′ .
Let α′ be an end vertex of e′. Similar considerations to those in the previous paragraph
imply that there exists an edge e of Td with Gα′ = Ge. From the orbit–stabilizer theorem
we see that |Ge′ : Gα′ ∩ Ge′ | = |α′Ge′ | ≤ 2. However, |Gα : Ge ∩ Gα| ≥ d and this is a
contradiction.

We are left with the other case. The above allows us to construct a bijective map
ϕ : VTd → VTd′ such that if α ∈ VTd then Gϕ(α) = Gα. In particular, for all vertices
α, β ∈ VTd we have | βGα| = |Gα : Gα ∩ Gβ| = |Gϕ(α) : Gϕ(α) ∩ Gϕ( β)| = |ϕ( β)Gϕ(α)|.
Also note that, because Td is a tree, |γGα| ≥ | βGα| whenever β lies on the unique s-arc
from γ to α; the same statement holds for vertices in Td′ . In particular, fixing α and
varying γ � α in Td, the cardinality |γGα| is minimal if and only if γ is a neighbour of
α. In Td′ we can only say that among those vertices γ′ � α′ with |γ′Gα′ | minimal there
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exists a neighbour of α′. These considerations imply that for every vertex α ∈ VTd the
map ϕ sends some neighbour β of α to a neighbour of ϕ(α). Note that every element
of ϕ( β)Gϕ(α) has to be a neighbour of ϕ(α). But then d = | βGα| = |ϕ( β)Gϕ(α)| shows
that ϕ sends all neighbours of α to neighbours of ϕ(α). Hence, ϕ defines a graph
homomorphism Td → Td′ . But a graph morphism between trees that is bijective on the
vertices has to be an isomorphism. This concludes the proof. �

The same proof works for automorphism groups of biregular trees and, in particular,
for Aut+(Td), the index-2 subgroup of Aut(Td) fixing the bipartition on the vertices of
Td. Another way to describe Aut+(Td) is to say that it is the subgroup generated by the
vertex stabilizers in G. It is well known that Aut+(Td) is the only noncompact, proper,
open subgroup of Aut(Td) and that it is simple; see [32].

PROOF OF THEOREM 7.1. Set G = Aut(T5). Assume (seeking a contradiction) that Γ
is a minimal-degree Cayley–Abels graph for G and the degree of Γ is less than 5. Fix
a vertex α0 of Γ and write B = Gα0 .

Claim 1. The degree of Γ is 4 and the local action is S3. The subgroup Aut+(T5) of G
cannot have a Cayley–Abels graph of degree less than 4.

PROOF. Recall that G does not have any nontrivial, compact, normal subgroups. The
local simple content of G consists of the cyclic groups of order 2 and 3, so by Theorem
6.6 the degree of Γ is equal to 4. The local simple content of Aut+(T5) is the same as the
local simple content of G and thus the degree of any Cayley–Abels graph for Aut+(T5)
is at least 4. By Theorem 6.6, the cyclic groups of order 2 and 3 are composition factors
of subgroups of point stabilizers of the local action. This is only possible if the local
action is S3 or S4. However, [34, Proposition 3.1] implies that if the local action is S4,
then Γ has to be a tree. That contradicts Lemma 7.5. �

Let β1, β2, β3, β4 denote the neighbours of α0 such that β4 is the neighbour that is
fixed by B.

Claim 2. The group G has two orbits on the edges of Γ. For i = 1, 2, 3, 4 there exists
gi ∈ G with (α0, βi)gi = ( βi,α0). Furthermore, it is possible to choose g1, g2 and g3 so
that there exists b ∈ B with gi+1 = b−1gib for i = 1, 2.

PROOF. Choose an element g4 ∈ G such that α0g4 = β4. It is well known that G is uni-
modular and thus, by Lemma 5.1, we see that |α0Gα0g4 | = |(α0g4)Gα0 | = | β4Gα0 | = 1.
This implies that {α0, β4} is fixed by G β4 . But also {α0, β4}g4 is fixed by
g−1

4 Gα0 g4 = G β4 . Since there is only one fixed point in the local action, we get
{α0, β4}g4 = {α0, β4}.

From this we also see that G has two orbits on the edges, because if there did exist
an element g ∈ G such that {α0, β4}g = {α0, β1} then either g or g4g would fix α0 and
take β4 to β1 contrary to assumptions. We say that the edges in the orbit {α0, β4}G are
red and the edges in the other orbit {α0, β1}G are blue.
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Now let h1 ∈ G be such that α0h1 = β1. Because the edge {α0, β4}h1 = { β1, β4h1}
is fixed by h−1

1 Gα0 h1 = G β1 , the edge {α0, β1}h1 = { β1, β1h1} is not fixed by G β1 . So
there exists h ∈ G β1 with β1h1h = α0. We can now set g1 = h1h; this element satisfies
(α0, β1)g1 = ( β1,α0).

By Claim 1 there exists b ∈ B with β1b = β2 and β1b2 = β3. Clearly gi = b−ig1bi

satisfies (α0, βi)gi = (α0b−ig1bi, βib−ig1bi) = ( βi,α0) for i = 1, 2. �

Claim 3. Write A = {g1, g2, g3, g4} and A′ = {g1, g2, g3}. Then BA′B = BA′ = A′B and
Bg4B = Bg4 = g4B. Furthermore, G = 〈A, B〉 = 〈g1, g4, B〉, and 〈A′, B〉 = 〈g1, B〉 and
〈g4, B〉 are compact open subgroups of G.

PROOF. Note that the set of vertices { β1, β2, β3} is invariant under B. We show that
BA′ = {g ∈ G | α0g ∈ { β1, β2, β3}}. Indeed, if α0g = βi then gg−1

i fixes α0 and thus
gg−1

i ∈ B and g ∈ Bgi ⊆ BA′. This implies BA′B ⊆ BA′, and the direction BA′ ⊆ BA′B
holds because B contains the identity. Note that the invariance of blue edges under G in
particular implies that BA′ = (BA′)−1. We know that g2

i ∈ B for i = 1, 2, 3 and therefore
giB = g−1

i B and (BA′)−1 = A′−1B = A′B.
The same kind of argument can be used to show that Bg4B = Bg4.
Since one can move the vertex α0 to any of its neighbours by using an element from

A, the standard graph-theoretical argument described in Lemma 2.4 shows that the
group 〈A, B〉 acts transitively on Γ. As 〈A, B〉 contains the vertex stabilizer B, we see
that G = 〈A, B〉. Denote by Γ′ the connected component of the graph (VΓ, {α0, β1}G)
(the graph with the same vertex set as Γ but where the red edges have been removed)
that contains α0. The group C = 〈A′, B〉 is an open subgroup of G (contains the open
subgroup B) and acts transitively on the vertices of Γ′. Thus Γ′ is a Cayley–Abels graph
for C, and it has degree 3. But C is an open subgroup of G and if C is not compact then
C = G or C = Aut+(T5). By Claim 1 neither of these groups can have a Cayley–Abels
graph of degree 3. Thus C must be compact.

Note that 〈g4, B〉 leaves the edge {α0, β4} in Γ invariant and is equal to its stabilizer.
Hence, 〈g4, B〉 is a compact open subgroup of G. �

The next step is to relate the action of G on Γ to the action of G on T5. To ease
the presentation we replace T5 with its barycentric subdivision T = T5,2 and consider
the action of G on T instead of the action on T5. This has the benefit that elements
in G that act like inversions on T5 now fix a vertex. An element in G that acts like a
translation on T5 also acts like a translation on T, but an element that does not act like
a translation on T5 always fixes a vertex in T. In particular, every compact subgroup of
G fixes some vertex in T.

Claim 4. Both groups C = 〈g1, B〉 and D = 〈g4, B〉 fix a vertex in T.

The elements g1 and g4 do not fix a common vertex in T. Therefore, g1g4 acts like a
translation on T. Similarly, g2g4 and g3g4 are also translations.
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PROOF. The groups C and D are both compact by Claim 3 and thus each of them fixes
a vertex in T.

Let γ1 denote a vertex in T that is fixed by C and let γ4 denote a vertex that is fixed
by D. Suppose that some vertex γ in T is fixed by both g1 and g4. Then g1 fixes every
vertex on the unique s1-arc P1 from γ1 to γ and g4 fixes every vertex on the unique
s4-arc P4 from γ4 to γ. But B is contained in both C and D, hence fixes both γ1 and γ4,
and thus fixes every vertex in the unique s14-arc P14 from γ1 to γ4. Since T is a tree,
P1, P4 and P14 have a common vertex, and that common vertex is fixed by g1, g4 and
the group B. It is thus fixed by G = 〈g1, g4, B〉 = Aut(T) and we reach a contradiction.
From Lemma 7.3 it now follows that g1g4 acts like a translation on T. The statements
about g2g4 and g3g4 follow by symmetry. �

Claim 5. For i = 1, 2, 3, let Li be the translation axis of ti = gig4 and let F be the fixed
tree of B. Then L1 ∩ L2 ∩ L3 ∩ F contains at least one arc.

PROOF. Let Fi be the fixed tree of gi for i = 1, 2, 3, 4. By Lemma 7.4 a tree
automorphism generates a subgroup with noncompact closure if and only if it is a
translation. Since C is compact, it has a nonempty fixed tree, which is contained
in the intersection F ∩ F1 ∩ F2 ∩ F3. In particular, this intersection is nonempty and
F1 ∪ F2 ∪ F3 is a tree. The same argument shows that F ∩ F4 is nonempty. In the
last claim we showed that Fi and F4 are disjoint for i = 1, 2, 3. Thus also the s-arc
from F1 ∪ F2 ∪ F3 to F4 has positive length. This s-arc is contained in F because F
is connected and both F ∩ F1 ∩ F2 ∩ F3 and F ∩ F4 are nonempty. Note also that by
Lemma 7.3 the orientation of this arc fits with the orientation of all the translation
axes. �

Claim 6. There is a vertex γ in L1 ∩ L2 ∩ L3 ∩ F such that γt1, γt2 and γt3 are all
different.

PROOF. Suppose that γ is a vertex in L1 ∩ L2 ∩ L3 ∩ F and that γt1 = γt2. We
know from Claim 2 that there is an element b ∈ B such that g2 = b−1g1b and g3 =

b−2g1b2. Then γb = γ implies γg1g4 = γt1 = γt2 = γg2g4 = γb−1g1bg4 = γg1bg4 and
thus γg1b = γg1. Hence, γt3 = γg3g4 = γb−2g1b2g4 = γg1b2g4 = γg1g4 = γt1. This
shows that γt1 = γt2 = γt3 ∈ L1 ∩ L2 ∩ L3 and we see that if any two of the vertices
γt1, γt2 and γt3 are equal, then all three are equal. In particular, they are contained in
L1 ∩ L2 ∩ L3.

Next we prove that if γt1 = γt2 = γt3 then γ ∈ F. Let g ∈ B. By Claim 3 there are
g′, g′′ ∈ B with g4g = g′g4 and g1g′ = g′′gi for some i ∈ {1, 2, 3}. Recall that γg′′ = γ
by definition of F. Hence

γt1g = γg1g4g = γg1g′g4 = γg′′gig4 = γgig4 = γti = γt1.

Thus γt1 is fixed by B and therefore γt1 ∈ L1 ∩ L2 ∩ L3 ∩ F.
However, ti is a translation and F is finite. This implies that there exists a vertex

γ ∈ L1 ∩ L2 ∩ L3 ∩ F such that γt1 � L1 ∩ L2 ∩ L3 ∩ F. By the above γt1, γt2 and γt3
must all be different. �
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H

L1 ∩ L2 ∩ L3 ∩ T0

Ht1

γ γ′

γt1

Ht3

Ht2

γt3

γt2

FIGURE 1. The three translation axes splitting up.

Claim 7 (see Figure 1). Let γ be a vertex in L1 ∩ L2 ∩ L3 ∩ F such that γt1, γt2 and
γt3 are all different. There is a unique vertex γ′ such that (γ′, γ) is an arc which
lies in the intersection L1 ∩ L2 ∩ L3. Removing the edge {γ, γ′} would divide T into
two connected components (‘half-trees’); let H be the component containing γ. Set
R = {t1, t2, t3} and write Rk = {s1 · · · sk | s1, . . . , sk ∈ {t1, t2, t3}} for k ≥ 0. Then for every
r ∈ Rk with k ≥ 1 the vertex γr is contained in exactly one of Ht1, Ht2 and Ht3.
If r = r′tj with r′ ∈ Rk−1, then γr ∈ Htj.

PROOF. Recall that L1, L2 and L3 are two-way infinite arcs. By an abuse of notation
we talk about the intersection L1 ∩ L2 ∩ L3 as an s-arc for some s ≥ 1. Thus γr′ ∈ H.
Since γt1, γt2 and γt3 are all different by assumption, the half-trees Ht1, Ht2 and Ht3
are all disjoint. For every r′ ∈ Rk−1 and i = 1, 2, 3 we have Hr′ti ⊆ Hti. This proves the
claim. �

Claim 8. For every k ≥ 0 we have γRkB = γRk.

PROOF. Note that R1 = A′g4. The equation RkB = BRk follows directly from Claim 3.
Now we are done since γ ∈ F. �

CONCLUSION OF PROOF. Think of T as a rooted tree with γ as a root. We say that
vertices α � β in T are siblings if they have a common neighbour, and this common
neighbour is closer to γ than α and β. Since B is open, there exists a finite subtree F′

of T with G(F′) ≤ B. It is possible to choose F′ such that the vertex set of F′ consists of
γ and all vertices at distance at most 
 from γ for some number 
. In particular, for all
vertices α � F′, the orbit αB contains all the siblings of α. The automorphisms t1, t2, t3
are translations, so there is a number k0 ≥ 0 such that four vertices that are siblings
of each other are contained in γRk0 B = γRk0 (see Claim 8). We assume that k0 is
minimal.
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First we note that k0 � 0 because R0 = {1}. One can also exclude the possibility that
k0 = 1 since γR1 = {γt1, γt2, γt3} has only three elements. Write γ1, γ2, γ3, γ4 ∈ γRk0

for the four siblings. Thus there are elements p1, p2, p3, p4 ∈ Rk0−1 and s1, s2, s3, s4 ∈
{t1, t2, t3} such that γi = γpisi. Since k0 > 1 there is some i ∈ {1, 2, 3} such that
{γ1, γ2, γ3, γ4} ⊆ Hti; here we are using that the γi are siblings. Claim 7 implies
that s1 = s2 = s3 = s4 = ti. Now γp1, γp2, γp3, γp4 are the images of the four siblings
γ1, γ2, γ3, γ4 under the tree automorphism t−1

i . In particular, because k0 ≥ 2, they are
also siblings, and they are contained in γRk0−1. This means that k0 was not minimal,
and we have reached our final contradiction. �
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