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Abstract
To estimate accurately the parameters of a regression model, the sample size must be large enough relative to
the number of possible predictors for the model. In practice, sufficient data is often lacking, which can lead to
overfitting of the model and, as a consequence, unreliable predictions of the outcome of new patients. Pooling data
from different data sets collected in different (medical) centers would alleviate this problem, but is often not feasible
due to privacy regulation or logistic problems. An alternative route would be to analyze the local data in the centers
separately and combine the statistical inference results with the Bayesian Federated Inference (BFI) methodology.
The aim of this approach is to compute from the inference results in separate centers what would have been found if
the statistical analysis was performed on the combined data. We explain the methodology under homogeneity and
heterogeneity across the populations in the separate centers, and give real life examples for better understanding.
Excellent performance of the proposed methodology is shown. An R-package to do all the calculations has been
developed and is illustrated in this article. The mathematical details are given in the Appendix.

Highlights
What is already known

• Statistical models that are estimated based on small data sets, are very likely to suffer from overfitting.
• If multiple data sets cannot be combined into one data set, the statistical analysis could be performed in a

federated manner.

What is new

• This article describes a method for performing Bayesian federated inference (BFI) for homogeneous and
heterogeneous multicenter data. In each center, the data is analyzed only once. The local inference results
are centrally combined to obtain the parameter estimates without any need for repeated “cycling” across
centers.

• An R software package implementing the proposed methodology is available and a manual is described in
the article.

This article was awarded Open Data badge for transparent practices. See the Data availability statement for details.

*The article has been updated since original publication. A notice detailing the change has also been published.
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Potential impact for RSM readers outside the authors’ field

• The proposed methodology can be applied if data sets cannot be combined, also if the data are not of a
medical nature.

• The BFI estimates are more accurate than the estimates obtained from a single center analysis.

1. Introduction

Prediction models aim to predict the outcome of interest for individuals (or subjects), based on their
values of the covariates in the model. To build a prediction model by selecting covariates and estimating
the corresponding regression parameters, the sample size should be sufficiently large. If too many
variables (possible covariates) relative to the number of events or observations are included, the model
may become overly flexible and erroneously ‘explain’ noise or random variations in the data, rather than
estimating meaningful relationships between the covariates and the outcome. This is called overfitting
and may lead to unreliable predictions of the outcome for new individuals.1 To overcome overfitting a
minimum of 10 observations or events per variable (EPV) is often advised.2,3 Based on this criterion,
data sets are often too small to take all available variables in consideration. Merging different data
sets from different (medical) centers could in principle alleviate the problem, but is often difficult for
regulatory and logistic reasons. An alternative route would be to analyse the local data in the centers
and combine the obtained inference results intelligently. With this approach the (individual) data do
not need to be shared across centers. In this article, we focus on methodology to combine the local
inference results for estimating parametric regression models for a general population of interest. The
data sets in the centers are considered as samples from this population.

In literature, several methods have been described. Probably the best-known strategy to obtain
effect estimates from different inference results, is meta-analysis.4 In a meta-analysis, relevant, already
published results are combined. Here we consider the situation where the local analyses have yet to
be performed. This means that the collaborating centers discuss in advance which local analyses will
be performed and what inference results should be shared to build the final combined model. It also
means that more information can be shared than is usually available in publications, like the estimated
covariance matrix of the estimators of the model parameters.

Federated Learning (FL) is a machine learning approach that was developed several years ago,
mainly for analyzing data from different mobile devices.5 It aims to construct from the inference results
obtained in the separate centers, what would have been found if the analysis was performed on the
combined data set. With this approach, the local data stay at their owners’ centers, only parameter
estimates are cycled around and updated based on the local data until a convergence criterion is met.
In recent years the FL approach has improved quite a bit (e.g., on optimization in the local centers and
the aggregation of the local results, dealing with heterogeneity and client-drift,6,7,8,9 methodology for
causality related research questions10,11). Also FL in a Bayesian setting for deep learning models has
been proposed.12,13,14,15 The posterior distributions are estimated in the local centers and communicated
to the central server for aggregation. However, practically this Bayesian procedure is challenging,
especially for deep learning models due to the high dimensionality of the parameters. An overview
of the most important recent developments and a list of references is given in Liu et al.16 FL
performs excellently in e.g., image analysis17,18,19 or for data from mobile devices, but has clearly
some drawbacks in other applications. For instance, apart from obvious ones such as data security
and convergence problems, if one aims to estimate statistical models based on inference results from
different medical centers, one needs to handle challenges like heterogeneity of the populations across
centers, clustering of centers, center-specific covariates (like location), missing covariates in the data,
and the fact that data may be stored in different ways (covariates are named differently or are even
defined differently). Furthermore, most FL strategies require many iterative inference cycles across
the local centers. In case the centers are hospitals (the situation we are considering here), a cycling
mechanism is complex and may lead to considerable extra work; a one-shot approach is preferred.
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Also in the field of distributed statistical inference, multiple strategies have been proposed to
combine inference results from different computers (centers).20 To cope with massive data sets which
can not be analyzed on a single computer, a data set is divided into smaller data sets, which are
analyzed separately and the results are combined afterwards. An interesting one-shot algorithm has been
proposed by Jordan et al.21 They proposed a communication-efficient surrogate likelihood framework
for distributed statistical inference for homogeneous data. Instead of maximizing the full likelihood
for regular parametric models or the penalized likelihood in high-dimensional models, this surrogate
likelihood is maximized. The surrogate likelihood expression was determined so that only a minimum
amount of information is transferred from the local machines to the central server (of the order 𝑂 (𝑑)
bits where d is the dimension of the parameter space). Later, the method was generalized to be able to
deal with certain forms of heterogeneity.22

In this article we describe the BFI framework for parametric regression models. This methodology
was developed especially for combining inference results from different centers to estimate statistical
(regression) models without the need for repeated communication rounds with the local centers.
In every center the data are analysed only once and the inference results (parameter and accuracy
estimates) are sent to a central server, where the local inference results are combined. Explicit
expressions for the combined (BFI) estimators in terms of the local inference results have been derived.
Via these expressions the BFI estimates can be easily updated at a later moment if the data collection
or the analysis in several centers are delayed, without contacting all other centers again (this would not
be possible when using an iterative updating mechanism). The fact that only one communication round
is sufficient is important in our (medical) setting, since assistance from the local medical and technical
staff are needed every time local analyses are performed.

The BFI estimates are defined as the maximizers of a surrogate expression of the full log posterior
density. This expression depends on the local estimates and is different from the one proposed by
Jordan (2018).21 In the BFI framework more information (of the order 𝑂 (𝑑2)) is shared with the
central server than would normally be acceptable in a FL or distributed statistical inference setting. This
additional information improves the accuracy of the estimator. The BFI methodology was developed for
estimating (low-dimensional) GLMs. High dimensional models (with large d), typically the models of
interest in FL and distributed statistical inference, are not the focus of the BFI methodology; estimation
accuracy is more important than communication efficiency.

The mathematical theory of the BFI methodology for parameteric models, like GLMs, was published
by the authors in Jonker et al.23 In this article, we extend the theory further to allow for different
kinds of heterogeneity between the centers. Among others, we consider the situation in which there
is heterogeneity in the population characteristics, there is clustering, the distribution of the outcome
variable is shifted, and the regression or nuisance parameters differ between the centers. The asymptotic
distributions of the BFI estimators are derived and it is proven that the estimators are asymptotically
efficient. Asymptotically, no information is lost if the data from the centers cannot be combined. These
asymptotic distributions of the estimators are used for the construction of credible intervals. For finite
samples (by means of simulation studies) and asymptotically, the BFI estimators are compared to the
estimators that are obtained by averaging the local estimators (weighted for local sample size). In this
article, we also focus on applications: a data example is given and the R code (from our R package
BFI24) for analyzing the data with the BFI methodology is explained.

This article is organized as follows. In Section 2 the BFI framework for generalized linear models
for homogeneous sub-populations in the local centers is explained. In Section 3 different types of
heterogeneity across these sub-populations and data sets are described and, moreover, it is explained
how the BFI methodology can be adjusted to takes these into account. To study the performance of
the BFI method in different settings, the results of simulation studies are described in Section 4. In the
same section also the analysis of a heterogeneous data set using the BFI methodology is described. A
discussion is given in Section 5. The article ends with three appendices. In the first appendix we explain
how to do the analysis with our R package, the second appendix contains the mathematical details of
the derivation of the estimators and in the third appendix the asymptotic distributions of the BFI and
the weighted average estimators are derived and compared.
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2. The Bayesian Federated Inference (BFI) framework

Suppose that data of L medical centers are locally available, but these data sets cannot be merged to a
single integrated data set for statistical analysis. The data for individual i from center ℓ is denoted as
the pair (xℓ𝑖 , 𝑦ℓ𝑖) with xℓ𝑖 a vector of covariates and 𝑦ℓ𝑖 the outcome of interest. Let Dℓ denote the data
subset in center ℓ:

Dℓ = {(xℓ1, 𝑦ℓ1), . . . , (xℓ𝑛ℓ , 𝑦ℓ𝑛ℓ )},

where 𝑛ℓ denotes the number of individuals in subset ℓ, ℓ = 1, . . . , 𝐿, and let D be the fictive combined
data set (the union of the subsets D1, . . . ,D𝐿).

The data pair (xℓ𝑖 , 𝑦ℓ𝑖) is the realisation of the stochastic pair (Xℓ𝑖 , 𝑌ℓ𝑖). Suppose that the variables
(Xℓ𝑖 , 𝑌ℓ𝑖), 𝑖 = 1, . . . , 𝑛ℓ , ℓ = 1, . . . , 𝐿 are independent and identically distributed, and that Xℓ𝑖 and 𝑌ℓ𝑖
are linked via a generalized linear model (GLM) with link function h:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 , 𝜼, 𝜷)

)
= 𝜷𝑡Xℓ𝑖 ,

where 𝛽 is a vector of unknown regression parameters and 𝜂 a vector of unknown nuisance parameters.
If the first element in the covariate vector Xℓ𝑖 equals one for all individuals, the model includes an
intercept.i

For 𝜃1 := (𝜂, 𝛽), the conditional density of𝑌ℓ𝑖 | (Xℓ𝑖 = x, 𝜃1) is given by 𝑦 |x, 𝜃1 → 𝑝(𝑦 |x, 𝜃1) and for
the vector of covariates Xℓ𝑖 |𝜃2 this is x|𝜃2 → 𝑝(x|𝜃2), for 𝜃2 a parameter vector.ii Then, for 𝜃 := (𝜃1, 𝜃2)
it follows that the density of 𝑦, x|𝜃 can be written as 𝑦, x|𝜃 → 𝑝(𝑦, x|𝜃) = 𝑝(𝑦 |x, 𝜃1)𝑝(x|𝜃2). We
work in a Bayesian setting; 𝜃 is stochastic as well. For mathematical simplicity, we assume statistical
independence between 𝜃1 and 𝜃2. Thus, 𝑝(𝜃1, 𝜃2) = 𝑝(𝜃1)𝑝(𝜃2) in the combined data set D and
𝑝ℓ (𝜃1, 𝜃2) = 𝑝ℓ (𝜃1)𝑝ℓ (𝜃2) in center ℓ, for all ℓ (the “ℓ” in the subscript refers to the center). We
choose the prior parameter distributions for 𝜃1 and 𝜃2 to be Gaussian with mean zero and inverse
covariance matrices 𝚲1 and 𝚲2, respectively, in the combined data set, and 𝚲1,ℓ and 𝚲2,ℓ in center ℓ,
ℓ = 1, . . . , 𝐿. For parameters that are positive by definition, like the variance of the error term in the
linear regression model, a mean zero Gaussian prior is assumed for a transformation (e.g., the logarithm)
of the parameter.

The maximum a posteriori (MAP) estimate of 𝜃 = (𝜃1, 𝜃2) maximizes the a posteriori density of the
data with respect to 𝜃, by definition. For the combined data set D, this estimate is denoted as �̂� = (�̂�1, �̂�2)
and, for the local data set Dℓ the notation �̂�ℓ = (�̂�1,ℓ , �̂�2,ℓ) is used. If the prior density is chosen to be
non-informative (large prior variances), the MAP estimates will be close to the maximum likelihood
estimates. The estimator �̂� is fictive as the data set D can not be created. In the following we derive
expressions for �̂� in terms of the MAP estimators based on the local data sets Dℓ . Once the estimates
in the separate centers have been found, these expressions tell us how to combine them to obtain (an
approximation of) �̂�.

For the fictive combined data set D the log posterior density can be written as

log
{
𝑝(𝜽 |D)

}
= log

{
𝑝(D|𝜽)𝑝(𝜽)
𝑝(D)

}
= log

{
𝑝(𝜽)

}
+ log

{
𝑝(D|𝜽)

}
− log

{
𝑝(D)

}
= log

{
𝑝(𝜽)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 , xℓ𝑖 |𝜽)

}
− log

{
𝑝(D)

}
= log

{
𝑝(𝜽1)

}
+ log

{
𝑝(𝜽2)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝(D)

}
(1)
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by Bayes’ rule (first equality), independence between the observations (third equality), and, among
others, independence between 𝜃1 and 𝜃2 (fourth equality). Similarly, the logarithm of the posterior
density in center ℓ can be written as

log
{
𝑝ℓ (𝜽 |Dℓ )

}
= log

{
𝑝ℓ (𝜽1)

}
+ log

{
𝑝ℓ (𝜽2)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝ℓ (Dℓ)

}
. (2)

The log posterior densities log{𝑝(𝜃 |D)} and log{𝑝ℓ (𝜃 |Dℓ )} are decomposed into terms that depend on
either 𝜃1 or on 𝜃2, but never on both. As a consequence, maximization with respect to 𝜃1 and 𝜃2 to
obtain their MAP estimators can be performed independently. By reordering the terms in expression
(2), we find

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
= log

{
𝑝ℓ (𝜽 |Dℓ )

}
− log

{
𝑝ℓ (𝜽1)

}
− log

{
𝑝ℓ (𝜽2)

}
+ log

{
𝑝ℓ (Dℓ)

}
.

The right hand side of this expression can be inserted into expression (1). Then, the log posterior density
for the full data set log{𝑝(𝜃 |D)} is written as a sum of the local log posterior densities in the centers
and the log prior densities (more details are given in Appendix II.A). For deriving the BFI estimators
of the parameters, the local log posterior densities are approximated by second order Taylor expansions
around the local MAP estimates. Instead of maximizing the full log posterior density for the combined
data, the quadratic approximation is maximized with respect to the parameters. The parameter value
where the maximum is attained is defined as the BFI estimate. For Â1,ℓ and Â2,ℓ the second derivatives
of − log{𝑝ℓ (𝜃 |Dℓ )} with respect to 𝜃1 and 𝜃2 and evaluated in the local MAP estimators �̂�1,ℓ and �̂�2,ℓ ,
in center ℓ, the BFI estimators equal

�̂�1,BFI :=
(
Â1,BFI

)−1
𝐿∑
ℓ=1

Â1,ℓ �̂�1,ℓ , Â1,BFI :=
𝐿∑
ℓ=1

Â1,ℓ + 𝚲1 −
𝐿∑
ℓ=1

𝚲1,ℓ , (3)

�̂�2,BFI :=
(
Â2,BFI

)−1
𝐿∑
ℓ=1

Â2,ℓ �̂�2,ℓ , Â2,BFI :=
𝐿∑
ℓ=1

Â2,ℓ + 𝚲2 −
𝐿∑
ℓ=1

𝚲2,ℓ , (4)

see Appendix II.A for the derivation. With these expressions we can compute approximations of �̂�1 and
�̂�2 a posteriori from the inference results on the subsets and there is no need to do inference on the
(fictive) combined data set D to find the BFI estimates. In the calculations of the BFI estimators, we
assume independence between the parameters 𝜃1 and 𝜃2. This assumption was made for mathematical
convenience, as the log posterior density splits into terms that are a function of 𝜃1 or of 𝜃2, but never
of both, and as a consequence, separate expressions for �̂�1,BFI and �̂�2,BFI are found. This independence
assumption is not essential. If the parameters are dependent, the calculations can be performed in a
similar way and a single expression for the BFI estimator for (𝜃1, 𝜃2) is found.

In Appendix III.B we prove that under the assumption of no model misspecification (including
homogeneity between the centers), the BFI estimators �̂�1,BFI and �̂�2,BFI are asymptotically Gaussian
and efficient (minimum asymptotic variance). For 𝑛ℓ , ℓ = 1, . . . , 𝐿 the local sample sizes and 𝑛 =
𝑛1 + . . . + 𝑛𝐿 the total sample size, it is proven that

√
𝑛
(
�̂�1,BFI − 𝜽1

)
� N

(
0,

( 𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ

)−1)
, with 𝑤ℓ = lim

𝑛1 ,...,𝑛ℓ→∞

𝑛ℓ
𝑛
,
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and 𝐼1,ℓ the Fisher information matrix in center ℓ (the notation ‘�’ means convergence in distribution).
The matrix

∑𝐿
ℓ=1 𝑤ℓ 𝐼1,ℓ equals the Fisher information matrix for estimating 𝜃1 in the combined data

set (see Appendix III.A). The BFI estimator asymptotically follows the same distribution as the MAP
and the Maximum Likelihood estimators on the combined data. Apparently, no information is lost as a
consequence of the fact that the data sets cannot be shared. In the homogeneous setting 𝐼1,ℓ = 𝐼1, ℓ =
1, . . . , 𝐿, independent of ℓ, and

∑𝐿
ℓ=1 𝑤ℓ 𝐼1,ℓ = 𝐼1. Further, since 𝑛−1Â1,BFI converges in probability to∑𝐿

ℓ=1 𝑤ℓ 𝐼1,ℓ (see Appendix III.B), the asymptotic covariance matrix can be estimated by the inverse of
𝑛−1Â1,BFI. Similar results hold for the BFI estimator �̂�2,BFI.

It follows that for a sufficiently large total sample size, the BFI estimators �̂�1,BFI and �̂�2,BFI are
approximately Gaussian with mean 𝜃1 and 𝜃2 and with covariance matrices that can be estimated by
Â−1

1,BFI and Â−1
2,BFI. From this, credible intervals for 𝜃1 and 𝜃2 can be constructed. Let 𝜃1, (𝑘) be the 𝑘 𝑡ℎ

element of 𝜃1. This parameter is estimated by �̂�1,BFI(𝑘) , the 𝑘 𝑡ℎ element of �̂�1,BFI and its approximate
(1 − 2𝛼)100% credible interval equals �̂�1,BFI(𝑘) ± 𝜉𝛼

(
Â−1

1,BFI
)1/2
𝑘,𝑘 , for 𝜉𝛼 the upper 𝛼-quantile of the

standard Gaussian distribution and
(
Â−1

1,BFI
)1/2
𝑘,𝑘 equal to the square root of the (𝑘, 𝑘)𝑡ℎ element of the

inverse of the estimator Â1,BFI. Hypothesis testing is also straightforward by the asymptotic normality.

3. Heterogeneity across centers

In the derivation of the estimators for the aggregated BFI model in (3) and (4), homogeneity of the
populations across the different centers is assumed. This assumption means that the parameters 𝜃1 and
𝜃2 are the same in every center. This assumption may not be true, and the BFI approach has to be
adjusted to take this heterogeneity into account. This is the topic of the present section.

In order to explain different types of heterogeneity, a specific example is used throughout the article.
This example is also used in Section 4 and Appendix I to illustrate the BFI methodology and to study its
performance. Here we give only a brief description, a more extensive description is given in Section 4.2.
The example data come from a hypothetical study on stress among nurses on different wards in different
hospitals.26 The data were simulated from a linear mixed effects model. The outcome of interest is
job-related stress. For every nurse, information on stress, age, experience (in years), gender, wardtype
(general, special care), hospital, and hospital size (small, medium, large) is available.

Heterogeneity in the populations across multiple centers may occur if, for instance, some medical
centers are located in large cities and others in more rural areas. It might also be that in some hospitals
the stress level among nurses is significantly higher than in others due to factors that are not nurse
specific, like the size of the hospital or management decisions within a hospital (which are not in the
data). In this section the following types of heterogeneity are considered:

1. Heterogeneity of population characteristics in the centers, e.g., the age distributions of the nurses
differ. Then, the values of the parameter 𝜃2 differ across centers. This is considered in Section 3.1.

2. Heterogeneity across centers in outcome mean. This may happen if the mean stress-level of the
nurses vary across the centers due to factors that have not been measured (e.g., type of management).
This is considered in Section 3.2.

3. Heterogeneity across centers due to interaction effects; the effect of a covariate varies across the
centers. For instance, it might be that the effect of the wardtype on the outcome differs across medical
centers. This means that the regression coefficient for wardtype is center-specific. This situation is
considered in Section 3.3.

4. Heterogeneity across centers due to center-specific nuisance parameters; e.g., the variance of the
error term in a linear regression model. See Section 3.4.

5. Heterogeneity across centers due to clustering; e.g., clustering by the location of the hospitals. This
situation is considered in Section 3.5.
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6. Heterogeneity across centers due to center-specific covariates. An example of such a covariate is
hospital size, which is the same for every nurse in a hospital, but may vary across hospitals. See
Section 3.6

These types of between-center heterogeneity are due to center-specific parameters (types 1–4), due
to clustering (type 5) and due to missing covariates (type 6). There may be more forms of heterogeneity
that can be taken into account with the BFI methodology. The aim of the BFI approach is to increase
the sample size relative to the parameter dimension to overcome overfitting. By significantly increasing
the number of parameters in the BFI model, to account for heterogeneity, the very objective of the BFI
approach would thereby be undermined.

3.1. Heterogeneity of population characteristics

Characteristics of the populations who visit the L centers may differ, for instance because the centers
are located in different countries or regions. In the example, the fractions of female nurses differ across
the centers.

The parameter 𝜃 was decomposed in 𝜃1 and 𝜃2. The parameter 𝜃2 describes the distribution of
the covariates X, whereas the parameter 𝜃1 describes the relationship between the covariates and the
outcome (so the regression coefficients and the nuisance model parameters). Under the assumption that
𝜃1 and 𝜃2 are independent, the local log posterior densities were decomposed into terms that depend
on either 𝜃1 or 𝜃2, but never on both (see expression (2)). As a consequence, when calculating the
MAP estimates of 𝜃1 and 𝜃2, separate functions have to be maximized. Therefore, even if we would
take into account that the populations vary across the centers, the expressions of the BFI estimators
�̂�1,BFI and Â1,BFI in (3) would not change and �̂�1,BFI is still asymptotically unbiased. However, because
the estimators depend on (summary statistics) of the covariates, the estimates �̂�1,BFI and in particularly
its accuracy, which is represented by Â1,BFI, may and often do change. This is investigated in the
next section using simulation studies. For �̂�2,BFI in (4) new expressions can be derived that take the
heterogeneity into account. The exact expressions depend on the simultaneous distributions of the
covariates and the type of heterogeneity that is assumed. Therefore, it is not possible to provide new,
explicit expressions that are universally valid. In the simplest case, the covariates are assumed to be
independent (which is usually not the case in practice). Then, if it is also assumed that the priors
of the coordinates of 𝜃2 are independent, the part of the log-likelihood function that is related to
the parameter 𝜃2 can be written as a sum of terms, where the distribution parameters corresponding
to the covariates are present in distinct terms. Now new expressions for the BFI estimators of the
coordinates of 𝜃2 and therefore also for the vector 𝜃2 can be calculated along the same lines as in the
Appendices II.B and II.C.

3.2. Heterogeneity across outcome means

If the combined data would be available for analysis, a multi-level model that includes a random center
effect for possible unmeasured heterogeneity across centers would be considered. As an alternative one
could include a fixed effect for the different centers. In both cases, this means that every center has its
own center-specific intercept. At a local level, so within a center, it is not possible to estimate a center-
effect. When combining the MAP estimators from the different centers into a BFI estimator for the
combined model, different intercepts across the centers can be allowed in the model. This is explained
below and the mathematical derivation can be found in Appendix II.B.

Suppose a regression model is fitted in every center based on the local data only. The BFI
strategy as explained before, combines the fitted models to a model with a single general intercept. In
Appendix II.B the BFI calculations are given for combining the local models in the situation that one or
multiple regression parameters may vary across the centers and center-specific parameters are adopted
in the aggregated BFI model. By taking this “varying regression parameter” to be the intercept in the
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resulting combined BFI model, every center has its own estimated intercept (and there is no general
intercept). To be more specific, an estimate of the following aggregated BFI generalized linear model
is obtained for an individual in center ℓ

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝜼, 𝜷, 𝜸)

)
=

𝐿∑
𝑗=1
𝛽 𝑗1{ℓ= 𝑗 } + 𝜸𝑡xℓ𝑖 = 𝛽ℓ + 𝜸𝑡xℓ𝑖 , (5)

where the indicator function 1{ℓ= 𝑗 } equals 1 if ℓ = 𝑗 and 0 if ℓ ≠ 𝑗 . The parameters 𝛽1, . . . , 𝛽𝐿 are
the center-specific intercepts and 𝛾 is the vector of regression parameters. The vector of covariates xℓ𝑖
does not include a 1 for the intercept. So, the aggregated BFI model for a nurse from center ℓ has
an intercept 𝛽ℓ , which is specific for that center. The model can be easily rewritten into a form with
a general intercept and parameters for the effect relative to the reference center which is taken to be
center 1:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝜼, 𝜷, 𝜸)

)
= 𝛽1 +

𝐿∑
𝑗=2
𝛽★𝑗 1{ℓ= 𝑗 } + 𝜸𝑡xℓ𝑖 = 𝛽1 + 𝛽★ℓ + 𝜸𝑡xℓ𝑖 ,

where 𝛽★ℓ = 𝛽ℓ − 𝛽1, for ℓ = 2, . . . , 𝐿, with 𝛽ℓ as in model (5). So, by allowing different intercepts
when combining the fitted local models, the BFI model accounts for a “center-effect”.

3.3. Heterogeneity due to center interaction effects

Next suppose that the effect of a covariate (a regression parameter) may vary across the centers. For
instance, suppose that the effect of wardtype on job related stress may differ across the centers. In
the regression model for the combined data, an interaction between the covariate wardtype and the
hospital would be included. To obtain these estimates with the BFI approach, the calculations from
Appendix II.B can be followed again, but this time for a regression parameter instead of the intercept.
That gives an aggregated BFI model of the form:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝑧ℓ𝑖 , 𝜼, 𝜷, 𝜸)

)
= 𝛾0 +

𝐿∑
𝑗=1
𝛽 𝑗 𝑧ℓ𝑖1{ℓ= 𝑗 } + 𝜸𝑡xℓ𝑖 ,

where 𝛾0 is the intercept, 𝛽 𝑗 the wardtype effect on stress in center j, 𝑧ℓ𝑖 the indicator function that
indicates whether nurse i from hospital ℓ is from a special care ward (0 general, 1 special care), 𝛾 the
remaining regression parameters and xℓ𝑖 the vector of covariates (so without wardtype).

3.4. Heterogeneity due to having distinct nuisance parameters

The nuisance parameter of the statistical model, for example the variance of the error term in a linear
regression model, may differ between the medical centers. Here too, the calculations for the BFI
estimator in Appendix II.B can be applied. This yields an estimated aggregated BFI model with a
specific nuisance parameter for each center.

3.5. Heterogeneity due to center-clustering

Local centers can be clustered based on, for example, geospatial regions, type of center (e.g.,
academic/non-academic hospital) or its size (small/medium/large). If the data can be combined,
clustering can be taken into account by including a categorical variable in the model that represents
this clustering. Within a center, this is not possible, because all persons in the center are in the same
cluster and thus have the same variable value (which would lead to collinearity with the intercept);
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the regression model must be fitted without the corresponding variable. In this local model, the
estimated intercept includes the clustering effect. When combining the models with the BFI approach,
we must take this clustering into account. New expressions for the BFI estimators have been derived
(Appendix II.C). For K giving the number of clusters, the resulting BFI model has categorical specific
intercepts:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝑧ℓ , 𝜼, 𝜷, 𝜸)

)
=

𝐾∑
𝑘=1

𝛽𝑘1{𝑧ℓ=𝑘 } + 𝜸𝑡xℓ𝑖 ,

with 𝛽𝑘 the intercept for the 𝑘 𝑡ℎ cluster, 𝑧ℓ represents the cluster of center ℓ, and 1{𝑧ℓ=𝑘 } is an indicator
function that equals 1 if 𝑧ℓ = 𝑘 and 0 if 𝑧ℓ ≠ 𝑘 . As before, this model can be easily reformulated to a
model with an intercept and a reference group.

3.6. Heterogeneity due to center-specific covariates

Covariates that are included in the local models are also included in the aggregated BFI model. If a
variable does not vary within a center (e.g., the size of the medical staff or the percentage of female
patients) it can not be included in the regression model for the center and is, therefore, not automatically
included in the BFI model. The effect of such a variable is then hidden in the intercepts of the local
models. In this subsection we explain how the BFI approach can be adjusted to estimate a (combined)
BFI model that includes this center-specific covariate. Although the problem is the same for categorical
and continuous variables, the statistical solutions are not. This has to do with the way the variable
is included in the aggregated BFI model. If the variable is categorical, one or more binary dummy
variables need to be included in the model to represent every category (minus 1). If the variable is
included in the model as a continuous variable, only one variable needs to be included (under the
assumption of linearity) that holds for all centers.

If the variable is categorical and every center has its own specific category, we are in the situation
as described in Section 3.2, where the aggregated model has a center-specific intercept. If the number
of categories is lower than the number of centers and multiple centers are in the same category, we
actually have to deal with clustering as described in Section 3.5.

If the center-specific variable is continuous, for example the number of patients that is yearly treated
in the corresponding center or the percentage of female patients, we actually want to fit a BFI model
(based on all data) of the form:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝑧ℓ , 𝜼, 𝜈0, 𝜈1, 𝜸)

)
= 𝜈0 + 𝜈1𝑧ℓ + 𝛾𝑡xℓ𝑖 , (6)

where 𝜈0 is the intercept, 𝑧ℓ is the continuous center-specific variable, and 𝜈1 its corresponding
unknown regression coefficient. The question is how to estimate the model parameters, and especially
𝜈0 and 𝜈1. This is explained below.

First all local models without this variable are fitted as described before. Next, the models are
combined with the BFI methodology under the assumption that all intercepts may be different (the
calculations are given in Appendix II.B and is also explained in Section 3.2). This yields an estimate of
the model with a center-specific intercept:

ℎ
(
E(𝑌ℓ𝑖 |Xℓ𝑖 = xℓ𝑖 , 𝜼, 𝜷, 𝜸)

)
= 𝛽ℓ + 𝜸𝑡xℓ𝑖 ,

for center ℓ. The effect of the continuous variable is hidden in this intercept: 𝛽ℓ = 𝜈0 + 𝜈1𝑧ℓ . To estimate
𝜈0 and 𝜈1 based on the estimated intercepts 𝛽ℓ , ℓ = 1, . . . , 𝐿 and 𝑧ℓ , ℓ = 1, . . . , 𝐿, one could make
a scatter plot of the points (𝑧1, 𝛽1), . . . , (𝑧𝐿 , 𝛽𝐿). Next, after fitting the least squares line through the
points, the parameter 𝜈0 can be estimated by the intercept of the least square line and 𝜈1 by its slope.
This approach ignores differences in the precision of the estimates of the hospital-specific intercepts.
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This precision can be taken into account as follows. For sufficiently large samples, the (local) MAP
estimators are approximately normally distributed, with a mean and a variance that can be estimated as
described in the article. For each center, a value is randomly drawn from this distribution and based on
the obtained values, 𝜈0 and 𝜈1 are estimated as described above. This procedure is repeated many times
(B), yielding B estimates of 𝜈0 and 𝜈1. Final estimates for 𝜈0 and 𝜈1 can be computed by taking their
averages.

3.7. Asymptotic performance of the BFI estimator under heterogeneity

For both the homogeneous and the heterogeneous settings, the asymptotic distributions of the BFI
estimators are derived in Appendix III. In the homogeneous setting, it turns out that the BFI estimator
is asymptotically zero-mean Gaussian with covariance matrix equal to the inverse of the Fisher
information matrix; the BFI estimator is asymptotically efficient. This distribution is equal to the
asymptotic distribution of the MAP and maximum likelihood estimators that would have been based
on the combined data; hence asymptotically no information is lost if the data cannot be merged.

In the heterogeneous setting with center-specific parameters, the parameters of interest can be
split into those that are the same between the centers and that are center-specific. Expressions of the
corresponding BFI estimators are given in (A.9) and (A.10) in Appendix II.B. In Appendix III.C it
is proven that both BFI estimators are asymptotically Gaussian with covariance matrices that equal
those for the MAP estimators and MLEs that would have been based on the combined data. Also
in the heterogenous setting the BFI estimators are asymptotically efficient. Again asymptotically no
information is lost if the data sets cannot be combined. In Appendix III.C it is proved that the BFI
estimator for the center-specific parameter is asymptotically more accurate than the MAP estimator
based on the local data of the center only. This is because the BFI estimator uses information from all
centers to estimate the parameters that are the same across centers, while the MAP estimator uses local
data only. A more accurate estimate of the shared parameters leads to a more accurate estimate of the
non-shared parameters.

Expressions of the BFI estimators for the setting in which the centers can be clustered are given
in Appendix II.C. These expressions are complicated. Therefore, the derivation of the asymptotic
distribution is not given here, but can be derived in the same way as for the setting with center-specific
parameters.

Since the BFI estimator of 𝜃1 is asymptotically Gaussian and the asymptotic covariance matrix can
be estimated by the inverse of Â1,BFI, credible intervals can be easily constructed, as explained for the
homogeneous setting. Hypotheses can be tested using the Wald test.

3.8. Methods for checking heterogeneity

In this article we extend the BFI methodology to account for heterogeneity between centers. Before
combining the local estimates, we should verify whether this heterogeneity is actually present and
whether it is necessary to account for it.

Suppose we want to investigate whether it is necessary to take into account the heterogeneity of
the intercepts. Then, first the MAP estimates of the local intercepts, say 𝛽ℓ , ℓ = 1, . . . , 𝐿, should be
compared. However, there will always be differences between the estimates. The question is whether the
observed differences are due to randomness or whether the true values of the intercepts are sufficiently
different to take this into account in the modelling. The latter can be verified by constructing credible
intervals. In order to compare the parameter estimates between two centers, say centers k and ℓ, a
credible interval for the difference of the two intercepts can be constructed. Such a calculation is based
on the statistical independence of the estimators 𝛽𝑘 and 𝛽ℓ (since the data from the different centers are
assumed to be independent) and the fact that 𝛽𝑘 and 𝛽ℓ are approximately Gaussian with mean 𝛽𝑘 and
𝛽ℓ and standard deviations

(
Â−1

1,𝑘
)1/2

1,1 and
(
Â−1

1,ℓ
)1/2

1,1 , respectively, (if the first element of the parameter
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vectors 𝜃1,𝑘 and 𝜃1,ℓ correspond to the intercept). Then, the (1 − 2𝛼)100% credible interval for the
difference 𝛽𝑘 − 𝛽ℓ equals

𝛽𝑘 − 𝛽ℓ ± 𝜉𝛼

√(
Â−1

1,𝑘
)

1,1 +
(
Â−1

1,ℓ
)

1,1,

for 𝜉𝛼 equal to the upper 𝛼-quantile of the standard Gaussian distribution. With the latter interval we
can verify whether the parameters in the centers k and ℓ are different. If the sample sizes in the centers
are small, the credible intervals may be wide and it may be difficult to conclude on hetereogeneity.

Similarly, the (1 − 2𝛼)100% credible intervals for the difference between the true 𝛽-value in all
centers except ℓ and the true parameter value in center ℓ equals:

𝛽−ℓ,BFI − 𝛽ℓ ± 𝜉𝛼

√(
Â−1

1,BFI,−ℓ
)

1,1 +
(
Â−1

1,ℓ
)

1,1,

where subscript −ℓ means that the BFI estimator was computed not including the estimator from center
ℓ. With this interval we can verify whether the intercept in center ℓ differs from the intercepts in the
other centers assuming that these intercepts equal.

In the same way, one can check whether it is necessary to take into account any of the other types of
heterogeneity.

4. Performance of BFI methodology

The BFI methodology for GLMs was introduced in Jonker et al23 and extended to survival models for
homogeneous populations in Pazira et al.25 Simulation studies in those papers show good performance
of the methodology in the homogeneous setting. In this article we focus on different types of
heterogeneity. The results of simulation studies (Section 4.1) and data analyses (Section 4.2) are
described below.

4.1. Simulation studies

4.1.1. One-shot estimators for comparison
As explained in the introduction, we are only interested in one-shot estimators, i.e., estimators that
can be calculated after a single communication with the centers, like the BFI estimator. To enable
performance comparison for the BFI estimator, we consider two one-shot estimators. The most
interesting one is the weighted average estimator (WAV) which is defined as the weighted average
of the local MAP estimators with the weights equal to 𝑛ℓ/𝑛 (where 𝑛 =

∑𝐿
ℓ=1 𝑛ℓ); estimates based on

larger data-sets are given larger weights. The weighted average estimator for 𝜃 is defined as:

�̂�WAV =
𝐿∑
ℓ=1

𝑛ℓ
𝑛

�̂�ℓ .

In case of clustering, the WAV estimator for the parameter that is specific for a particular cluster is
defined as the weighted average of the local MAP estimators of the centers in that cluster. If a parameter
may vary between all centers, the corresponding WAV estimator is defined as the MAP estimator in the
local center. The second one-shot estimator for 𝜃 is the single center estimator �̂�single, defined as the
MAP estimator in the center with the largest local sample size. The single center estimator cannot be
defined in case of center or cluster specific parameters.

In Appendix III the asymptotic distributions of the weighted average and the single center estimators
are derived. As expected, the asymptotic variance of the single center estimator is larger than the one
of the BFI estimator, because it is based on fewer data points. In the homogeneous setting, the WAV
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estimator turns out to be asymptotically efficient (minimum variance) and it follows asymptotically the
same distribution as the BFI estimator. In the heterogeneous setting, the WAV estimator of the parameter
that differs between the centers is defined as the (corresponding) single center estimator. As explained
in Section 3.7, the BFI estimator has a smaller asymptotic variance than this estimator. In this section
the finite sample behaviour of the estimators are compared by means of simulation studies.

4.1.2. Performance measures for finite samples
Since the BFI methodology tries to reconstruct from local inferences what would have been obtained
if the data sets had been merged, the BFI estimators by definition cannot do better than the MAP
estimators based on the combined data. Therefore, the parameter estimates and outcome predictions
obtained by the BFI approach are compared to those found after combining the data. For completeness,
we also compare the estimates with the true parameter values.

In the next subsection, the simulation procedure is explained. In brief, B times data sets are simulated
from a chosen model, for every center separately. In every cycle the parameters are estimated with the
three one-shot estimators, and also by the MAP estimator based on the combined data. Performance is
measured with the MSE𝜃𝑘 ,BFI defined as

MSE𝜃𝑘 ,BFI =
1
𝐵

𝐵∑
𝑏=1

(
�̂�
(𝑏)
BFI,𝑘 − �̂�

(𝑏)
com,𝑘

)2
,

where �̂� (𝑏)BFI,𝑘 is the BFI estimated value of the kth coordinate of 𝜃 in the bth iteration, and �̂� (𝑏)com,𝑘 the
estimate using all data. The MSE’s for the other estimators are defined similarly:

MSE𝜃𝑘 ,WAV =
1
𝐵

𝐵∑
𝑏=1

(
�̂� (𝑏)WAV,𝑘 − �̂�

(𝑏)
com,𝑘

)2
, MSE𝜃𝑘 ,single =

1
𝐵

𝐵∑
𝑏=1

(
�̂�
(𝑏)
single,𝑘 − �̂�

(𝑏)
com,𝑘

)2
.

If the MSE is small, the estimates based on the local inference results are similar to the estimates based
on the combined data, and thus only little information is lost. For the BFI estimator we also computed
the MSE compared to the true parameter value; denoted as MSET𝜃𝑘 ,BFI (where the T stands for “true
value”).

4.1.3. Simulation settings and results
We assume that there are four centers with data of 𝑛1, 𝑛2, 𝑛3, and 𝑛4 individuals. For each individual,
data of three independent covariates are simulated: two from a Gaussian distribution and one from a
binomial distribution. The outcome variables given the covariates are assumed to be independent and
are simulated from a logistic regression model. We consider the following situations: 1) the populations
are homogeneous, 2) the distributions of the covariates differ across the centers, 3) the intercepts
(prevalence) differ across the centers, and 4) centers are clustered. For the sample sizes we consider
two settings: small sample sizes (𝑛1 = 𝑛2 = 50, 𝑛3 = 𝑛4 = 100) and large sample sizes (𝑛1 = 𝑛2 = 100,
𝑛3 = 𝑛4 = 200) and we set the covariance matrices of the Gaussian prior equal to diagonal matrices
with 𝜆 = 0.001 or 𝜆 = 0.01 (or a mix) on the diagonal. This corresponds to variances that equal 1, 000
and 100 respectively; the prior distributions are almost non-informative. The first covariate is sampled
from a Gaussian distribution with mean zero and standard deviation equal to 1. The second covariate is
Gaussian as well, but with mean 2 and standard deviation 5. The third covariate comes from a binomial
distribution with probability 0.25. In the setting with heterogeneous populations, different covariate
distributions have been used across the centers. In all cases the regression parameters equal 1.0 for the
intercept and 2.0,−1.0, and 0.5 for the three covariates.

For every setting, we simulate 𝐵 = 1, 000 data sets, compute the BFI, weighted average and single
center estimates (the latter one only if relevant), and compute the MSEs. The simulation results in the
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Table 1. Homogeneous setting.

102 × MSE𝛽,BFI 102 × MSE𝛽,WAV 102 × MSE𝛽,single 102 × MSET𝛽,BFI

(𝑛1, 𝑛2, 𝑛3, 𝑛4) (𝜆12, 𝜆34) 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4

(25,25,50,50) (0.001, 0.001) 14.42 41.14 9.81 24.52 496.6 1322 387.6 325.4 997.9 2495 636.5 1069 21.36 35.42 6.81 59.52
(0.01, 0.01) 10.83 32.6 8.11 14.92 79.93 198.8 65.92 64.8 229.5 432.2 103.4 387.2 21.03 36.28 6.62 64.46

(0.01, 0.001) 12.76 36.91 9.36 17.37 271.7 760.1 219.9 224.8 1234 2485 686.2 1136 20.60 34.99 6.66 62.83
(50,50,100,100) (0.001, 0.001) 3.54 11.47 2.74 3.73 74.45 225.8 63.5 77.21 62.93 279.17 51.37 196.6 8.38 14.58 2.72 24.62

(0.01, 0.01) 3.51 9.91 2.55 2.73 18.50 45.73 12.43 18.67 44.10 81.51 15.89 94.96 8.56 14.02 2.62 24.50
(0.01, 0.001) 3.60 10.89 2.74 3.33 19.72 57.89 15.27 20.66 50.25 119.2 25.19 105.9 9.14 14.22 2.54 26.64

(100,100,200,200) (0.001, 0.001) 0.77 2.49 0.61 0.54 3.25 10.49 2.25 2.87 10.80 16.10 3.05 31.73 4.39 6.32 1.11 11.72
(0.01, 0.01) 0.80 2.64 0.64 0.60 2.21 6.94 1.64 2.76 10.92 19.25 3.08 34.88 4.21 6.30 1.07 11.92

(0.01, 0.001) 0.82 2.72 0.66 0.60 2.12 6.60 1.52 2.22 12.78 21.11 3.87 34.10 4.43 6.25 1.08 13.02
(200,200,400,400) (0.001, 0.001) 0.17 0.60 0.14 0.12 0.27 0.88 0.21 0.39 4.72 7.16 1.08 14.48 2.16 3.02 0.49 6.21

(0.01, 0.01) 0.18 0.59 0.14 0.11 0.29 0.87 0.21 0.35 5.16 7.26 1.21 14.96 2.04 2.93 0.48 6.91
(0.01, 0.001) 0.20 0.65 0.16 0.14 0.30 0.94 0.23 0.39 5.30 7.31 1.22 16.31 2.00 2.87 0.50 6.53

Note: The MSEs for the BFI, weighted average and the single center estimators, and MSET for the BFI estimator. The prior inverse covariance matrices are diagonal with the diagonal element equal to 𝜆12 in centers 1
and 2, and the value 𝜆34 in centers 3 and 4. The single center estimates are based on data from center 4 only.
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Table 2. Heterogeneous setting.

102 × MSE𝛽,BFI 102 × MSE𝛽,WAV 102 × MSE𝛽,single 102 × MSET𝛽,BFI

(𝑛1, 𝑛2, 𝑛3, 𝑛4) (𝜆12, 𝜆34) 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4 𝛽1 𝛽2 𝛽3 𝛽4

(50,50,100,100) (0.001, 0.001) 3.22 8.96 2.28 3.27 133.8 169.9 38.34 100.3 1093 1245 272.2 879.9 14.33 9.93 2.76 19.63
(0.01, 0.01) 3.31 8.55 2.27 2.89 64.24 46.38 10.43 35.90 534.5 242.9 53.92 340.5 14.71 9.35 2.75 20.03

(0.01, 0.001) 3.01 8.20 2.09 2.65 107.7 128.2 27.23 73.06 955.5 923.5 192.5 668.4 14.62 9.84 2.59 18.75
(100,100,200,200) (0.001, 0.001) 0.64 1.82 0.49 0.53 14.99 6.15 1.10 9.42 125.5 38.34 6.43 115.4 8.30 4.09 1.21 10.13

(0.01, 0.01) 0.66 1.84 0.50 0.51 16.26 7.50 1.37 8.21 148.7 49.35 9.34 100.80 7.48 4.03 1.16 9.74
(0.01, 0.001) 0.60 1.87 0.49 0.63 17.03 7.15 1.35 11.62 149.1 50.89 9.37 134.70 7.86 4.20 1.28 9.81

Note: The MSEs for the BFI, weighted average and the single center estimators, and MSET for the BFI estimator. The distributions of the covariates differ across the centers. The first covariate is Gaussian with mean
0, 1, 2, and 3 in the four centers, and standard deviation 1. The second covariate is Gaussian as well with mean 2, but now the standard deviation varies: 1, 2, 3, and 4 in the four centers. The third covariate comes from a
binomial distribution with probability 0.35, 0.30, 0.25, and 0.20 in the four centers. In all cases the prior inverse covariance matrix equals diagonal matrices with the diagonal element equal to 𝜆12 in the centers 1 and 2,
and the value 𝜆34 in the centers 3 and 4. The single center estimates are based on data from center 4 only.
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four different settings are given in Table 1 (homogeneity between centers), Table 2 (different covariate
distributions), Table 3 (different intercepts between centers) and Table 4 (clustering).

From the results in the tables it can be seen that for all estimators the MSEs decrease for increasing
sample size. For the BFI estimator the decrease is stronger for the MSEs than for the MSETs. A decrease
is as expected as a larger sample size yields more accurate estimates.

Further, the results show that the MSEs for the BFI estimates are smaller than those for the weighted
average and the single-center estimates. This also holds MSET (the MSET𝛽,WAV and MSET𝛽,single
are left out from the tables, due to a lack of space.) The relative differences between MSE𝛽,BFI and
MSE𝛽,WAV decrease with increasing sample size. This was expected, as (in the homogeneous setting)
the asymptotic distributions of the BFI and the WAV estimators are identical. For finite sample sizes
the differences in MSE are still considerable.

In all settings the MSE𝛽,BFI is smaller than the MSET𝛽,BFI. This is as expected, as the randomness in
the observations is reflected in the estimate based on the combined data, but not in the actual parameter
values. An important observation is that within every setting and for all combinations of sample sizes,
the MSET𝛽,BFI is rather stable for the different combinations of 𝜆-values. Since the actual parameter
values are independent of the choice of 𝜆, we can conclude that the BFI estimates are not very sensitive
to the values of 𝜆 (considered here). However, the MSE for the three estimators decreases (slightly) for
increasing 𝜆 (a smaller prior variance), especially when the sample size is small. For larger values of
𝜆, the MAP estimates have shrunk further to zero, leading to smaller MSEs. The latter does not imply
that the estimates are more similar to the actual values.

When comparing the MSEs of the different regression parameters (within the same setting and set of
sample sizes), it is clear that some regression parameters can be estimated more accurately than others.
For example, comparing the MSEs for the regression coefficients of the first and the second covariate
(i.e., for 𝛽2 and 𝛽3 in Table 2) it can be seen that the MSEs for the coefficients for the second covariate
are smaller, probably because the variation in this covariate is larger than in the first one. This applies
to all estimators. When comparing the values of MSET𝛽,BFI in Tables 1 and 2, we see that the estimates
of the regression parameters (except the intercept) are more accurate in the heterogeneous setting
with different covariate distributions across the centers. Again, this is probably due to the increased
variation in the covariate values. An opposite effect is seen for the WAV estimator; more variability in
the covariates leads to larger MSE.

Also in settings with center-specific intercepts (different prevalence in the centers) and clustering,
the BFI estimators clearly perform better than the weighted average estimators, this is especially true
for the center-specific and the cluster specific intercepts. Within the BFI methodology, these estimates
use information from all centers for estimation. This is not the case for the weighted average estimator.

4.2. Data analysis

4.2.1. Description of the data
The data come from a hypothetical study on stress among nurses in hospitals.26 The data set consists of
simulated data of 1,000 nurses working on different wards in 25 hospitals.iii The outcome of interest is
job-related stress among nurses. Additionally, for every nurse the following variables are available: age
(years), experience (years), gender (0 = male, 1 = female), the type of ward in which the nurse works (0
= general care, 1 = special care), hospital (1, 2, . . ., 25), and hospital size (small, medium, large). In the
data, the number of nurses per hospital runs from 36 to 52. Further, for the covariates, the averages of
the ages of the nurses in the different hospitals run from 39.2 to 46.3 years, the fraction of female nurses
from 0.61 to 0.85, the number of years of experience from 14.9 to 18.5, and the fraction of nurses on
a special care ward runs from 0.48 to 0.51. For some of these variables there is hardly any variation
across the hospitals, whereas for other variables the variation is much larger, like the fraction of female
nurses. So, there seems to be some heterogeneity of the population characteristics across the centers (see
Section 3.1). Further, there are nine small hospitals, 12 medium sized hospitals, and four large hospitals.
The stress level in hospitals seems to increase with the size of the hospital; there is heterogeneity due to
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Table 3. Heterogeneous setting.

102 × MSE𝛽,BFI 102 × MSE𝛽,WAV 102 × MSET𝛽,BFI

(𝜆12, 𝜆34) 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽6 𝛽7

(0.001, 0.001) 7.45 10.29 2.41 4.21 14.33 3.60 5.90 703.17 1193.88 24.94 163.43 352.73 94.05 103.72 42.35 44.94 19.27 22.94 12.47 3.04 32.63
(0.01, 0.01) 4.00 6.66 1.96 3.39 12.41 3.08 4.10 120.80 266.14 21.43 46.34 73.79 19.59 25.15 41.36 42.99 20.09 20.96 11.7 2.82 34.23
(0.01, 0.001) 4.77 7.76 2.49 4.63 14.04 3.48 5.29 130.48 241.2 51.51 230.56 186.45 50.05 71.33 36.99 40.48 19.13 23.19 11.47 2.71 33.52
(0.001, 0.001) 0.72 1.36 0.44 0.76 3.19 0.80 0.82 37.03 80.79 4.82 8.34 19.85 5.08 7.32 18.80 19.56 9.64 9.92 5.24 1.27 15.63
(0.01, 0.01) 0.44 1.20 0.36 0.75 3.02 0.75 0.96 19.57 46.91 4.93 7.26 8.88 2.26 4.27 17.85 19.10 9.79 10.87 5.49 1.30 16.05
(0.01, 0.001) 0.45 1.30 0.41 0.79 3.14 0.78 0.91 25.72 47.00 5.71 8.38 11.27 2.81 4.72 17.35 19.37 9.51 11.59 5.26 1.19 15.77

Note: The MSEs for the BFI and weighted average estimators, and MSET for the BFI estimator. The intercepts differ across the centers. The parameters 𝛽1 , . . . , 𝛽4 are the center-specific intercepts for the four centers
(with true values 0.0, 1.0, 0.5, and −1.0). The parameters 𝛽5 , . . . , 𝛽7 are the regression coefficients for the three covariates. For the upper three lines in the table, the local sample sizes equal (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4) =
(50, 50, 100, 100) , and for the lower three lines they equal (𝑛1 , 𝑛2 , 𝑛3 , 𝑛4) = (100, 100, 200, 200) . The MSE for the single center estimator has been left out, because this estimator can estimate one intercept only.
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Table 4. Heterogeneous setting.

102 × MSE𝛽,BFI 102 × MSE𝛽,WAV 102 × MSET𝛽,BFI

(𝑛1, 𝑛2, 𝑛3, 𝑛4) (𝜆12, 𝜆34) 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5

(50,50,100,100) (0.001, 0.001) 8.17 14.82 13.69 3.38 5.45 814.44 151.48 333.89 86.33 114.08 24.23 20.82 11.71 2.97 30.59
(0.01, 0.01) 5.24 12.91 12.21 3.03 4.24 126.42 44.30 62.15 16.21 26.07 23.92 21.60 12.55 2.94 32.55
(0.01, 0.001) 5.55 13.08 12.35 3.14 4.35 136.91 105.72 92.36 24.71 31.79 23.71 22.37 12.45 3.06 34.42

(100,100,200,200) (0.001, 0.001) 1.22 3.34 3.19 0.78 0.90 44.17 6.49 15.55 3.79 7.41 9.59 9.54 4.89 1.11 14.02
(0.01, 0.01) 1.19 3.07 2.97 0.73 0.72 24.54 6.49 8.54 2.12 3.79 10.06 9.56 5.16 1.25 14.4
(0.01, 0.001) 1.30 3.38 3.21 0.79 0.75 26.25 7.23 9.38 2.24 3.65 10.54 10.28 5.45 1.31 15.02

Note: The MSEs for the BFI and weighted average estimators, and MSET for the BFI estimator. The centers 1 and 2 and the centers 3 and 4 are clustered. The parameter 𝛽1 and 𝛽2 are the cluster specific intercepts
(true values 1.0 and 2.0). The parameters 𝛽3 , 𝛽4 and 𝛽5 are the regression parameters of the three covariates. The MSE for the single center estimator has been left out, because the intercept for a single cluster can be
estimated.
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a hospital size clustering effect (see Section 3.5). The variation of the stress levels of nurses in the data
across the centers (the averages vary between 3.6 and 5.8) may also be due to non-measured hospital
effects like location and patient population (see Sections 3.2 and 3.6). In every hospital we fitted a
linear regression model and estimated the variance of the error term. The estimated variances vary from
0.17 to 1.16. It seems that there may be heterogeneity in this variance parameter (see Section 3.4). In
Section 4.2 we estimate linear regression models with the BFI methodology, adjusted for these types of
heterogeneity.

For better comparison and interpretation of the estimates of the regression parameters, we standard-
ized the continuous variables age, experience and stress: from each observed value we subtracted the
full sample mean and divided the result by its full sample standard deviation. This is not required for
the BFI method. However, note that this can be easily done without combining all data, since the full
sample mean and standard deviation can be easily reconstructed from the local sample means and local
standard deviations (and thus only these values need to be shared with the central server).

4.2.2. Model estimation under heterogeneity
In this subsection we analyse the data from the 25 centers with the BFI methodology and we compare
the estimated aggregated BFI model to the model that would have been found if the data had been
combined before fitting the model. As described in the previous subsection we have different types of
heterogeneity. We start with a relatively simple linear regression model and combine the local MAP
estimates with the BFI methodology under the assumption of homogeneity across the centers. In a
second analysis we also include a clustering effect for the variable hospital size, in the third analysis we
allow a center-specific intercept, and in the last step we also allow for difference variances of the error
term. In Appendix I it is explained how these analyses can be performed in R with our R-package BFI.

In the first analysis we only include nurse-specific variables: age, gender, experience (exp), and
wardtype. We fit a linear regression model of the form:

stressℓ𝑖 = 𝛽0 + 𝛽1 ageℓ𝑖 + 𝛽2 genderℓ𝑖 + 𝛽3 expℓ𝑖 + 𝛽4 wardtypeℓ𝑖 + 𝜀ℓ𝑖 ,

where the subscript “ℓ𝑖” refers to the 𝑖𝑡ℎ person in center ℓ. The last term, 𝜀ℓ𝑖 , is the measurement
error in the outcome variable, which is assumed to be Gaussian with mean zero and variance 𝜎2. In
the analyses based on the combined data and in the centers we take Gaussian priors with a diagonal
inverse covariance matrix Λ with either 𝜆 = 0.001 or 𝜆 = 0.1 on the diagonal. For these values of 𝜆
the corresponding variances of the parameter priors are equal to 1, 000 and 10, respectively. For a prior
variance equal to 1, 000, the MAP estimates are close to the maximum likelihood estimates, since the
prior density is almost flat.

The results are given in Table 5. It can be seen that the value of 𝜆 hardly effects the estimates of
the parameters; possibly because the total sample size is high. The BFI estimates for the regression
parameters for the covariates age, gender and experience are similar to those obtained based on the
combined data. For wardtype the estimates are close in absolute sense, but from the estimates and
the relative large standard deviations it is clear that the contribution of this covariate to the model
is minimal. The estimates of the intercept and the variance of the error term, 𝜎2, seem to differ
substantially. This is possibly caused by the presence of heterogeneity across centers (e.g., varying
hospital size and variances) for which is not corrected in the models (but will be in the next analysis).
In the centers, the hospital size is taken into account via the intercept. This leads to different estimates
of these intercepts across the centers and small variances of the error term. The BFI methodology
combines the local estimates to a single estimate under the incorrect assumption of homogeneity, which
leads to the differences of 𝛽BFI and 𝛽com. In the next analysis, heterogeneity due to varying hospital
sizes is taken into account and we will see that the differences between the estimates obtained with the
two procedures will (almost) disappear. For the BFI methodology, but also if pooled data is available, it
is important to correct for possible heterogeneity. We moreover leave out the covariate wardtype from
the model.
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Table 5. The BFI estimates of the parameters in the linear regression model, 𝛽BFI, and the MAP estimates obtained from the analysis after combining
the data, 𝛽com.

𝜆 intercept age gender experience wardtype 𝜎2

𝜆 = 0.001 𝛽BFI (sd) 0.522 (0.043) 0.263 (0.034) −0.502 (0.044) −0.386 (0.034) −0.011 (0.039) 0.539
𝛽com (sd) 0.332 (0.066) 0.233 (0.052) −0.503 (0.068) −0.352 (0.052) 0.075 (0.060) 0.907

𝜆 = 0.1 𝛽BFI (sd) 0.523 (0.043) 0.264 (0.034) −0.503 (0.044) −0.386 (0.034) −0.011 (0.039) 0.537
𝛽com (sd) 0.332 (0.066) 0.233 (0.052) −0.503 (0.068) −0.352 (0.052) 0.075 (0.060) 0.907

Note: The corresponding estimated standard deviations (sd) are given within the brackets. The prior inverse covariance matrices are diagonal with the diagonal elements equal to either 𝜆 = 0.001 or 𝜆 = 0.1. In the
last column the estimates of 𝜎2, the variance of the error term, are given.
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Because the size of the hospital is predictive for the stress level, we want to add this variable to
the model as well. This variable is a categorical variable with three categories (small, medium, large).
For the combined data, the linear regression model that includes the variable hospital size via category
specific intercepts, is given by:

stressℓ𝑖 = 𝛽11{𝑧ℓ = small} + 𝛽21{𝑧ℓ = medium} + 𝛽31{𝑧ℓ = large} + 𝛽4 ageℓ𝑖
+ 𝛽5 genderℓ𝑖 + 𝛽6 expℓ𝑖 + 𝜀ℓ𝑖 ,

with 𝑧ℓ the category of the hospital size in hospital ℓ (so small, medium or large) and 1{𝑧ℓ = small} is
defined as 1 if hospital ℓ is small and zero otherwise. The functions 1{𝑧ℓ = medium} and 1{𝑧ℓ = large}
are defined in a similar way. There is no general intercept in the model; this is hidden in the three
intercepts. The model can be reformulated in a model that includes a general intercept (as was explained
in Section 3). To obtain a BFI aggregated model with category specific intercepts, we apply the BFI
approach as described in Section 3.5. The estimates are given in Table 6. From the results we see that
the estimates of the regression parameters obtained with the BFI methodology are very similar to those
obtained based on the combined data; also for the three intercepts 𝛽1, 𝛽2, and 𝛽3. However, there are still
some differences between the estimates for 𝜎2, but these are smaller than in the first analysis. Possibly
more (unknown) variables need to be included in the model or there is heterogeneity in the variances
across the centers. From the estimates of the intercepts, it is clear that there is a positive relationship
between stress and the size of the hospital (adjusted for the other variables in the model): nurses in large
hospitals seem to experience more stress than nurses in small hospitals.

In a third analysis we include a hospital specific intercept in the model. Now, the variable hospital
size is redundant as this effect is included in the hospital effect. The model for the combined data is
given by:

stressℓ𝑖 =
25∑
𝑗=1
𝛽 𝑗1{ℓ= 𝑗 } + 𝛽26 ageℓ𝑖 + 𝛽27 genderℓ𝑖 + 𝛽28 expℓ𝑖 + 𝜀ℓ𝑖 ,

with 1{ℓ= 𝑗 } an indicator function defined as 1 if hospital ℓ is the 𝑗 𝑡ℎ hospital and zero otherwise. That
means that for hospital ℓ,

∑25
𝑗=1 𝛽 𝑗1{ℓ= 𝑗 } = 𝛽ℓ . So, every hospital has its own specific intercept and

there is no general intercept. We fit the model after merging the data and by combining the estimates in
the different hospitals with the BFI methodology, as described in Section 3.2. The results are given in
Table 7. Since the number of intercepts is large (for each hospital one intercept), we decided to leave out
these estimates from the table, but made a scatter plot instead for comparison (not presented). The plot
shows almost perfect agreement between the estimated intercepts based on the BFI methodology and
the estimates found after combining the data. The estimates of the remaining parameters obtained with
the two estimation procedures, shown in Table 7, show nice agreement as well; also for the variance 𝜎2.

Next, we consider the situation with heterogeneity in the variance of the error term in the linear
regression model. We allow center-specific intercepts and center-specific variances of the error term in
the model. The estimates of the regression parameters hardly change (data not presented here). Taking
into account heterogeneity across the centers can improve the results, but increases the number of model
parameters that need to be estimated.

4.2.3. Prediction
In the previous subsection we studied the performance of the BFI methodology for estimating the model
parameters. In this subsection we focus on prediction.

4.2.3.1. Heterogenous populations. To study the performance of a prediction model that has been
estimated with the BFI strategy, we follow the steps:
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Table 6. The BFI estimates of the parameters in the linear regression model with a cluster effect for hospital size, 𝛽BFI, and the MAP estimates
obtained from the analysis after combining the data, 𝛽com.

𝜆 I(small) I(medium) I(large) age gender experience 𝜎2

𝜆 = 0.001 𝛽BFI (sd) 0.004 (0.058) 0.497 (0.043) 0.958 (0.061) 0.270 (0.035) −0.478 (0.046) −0.381 (0.036) 0.581
𝛽com (sd) −0.024 (0.066) 0.490 (0.063) 0.917 (0.086) 0.237 (0.049) −0.493 (0.064) −0.352 (0.049) 0.799

𝜆 = 0.1 𝛽BFI (sd) 0.004 (0.057) 0.497 (0.043) 0.958 (0.061) 0.270 (0.035) −0.478 (0.046) −0.381 (0.035) 0.580
𝛽com (sd) −0.024 (0.066) 0.490 (0.063) 0.916 (0.086) 0.237 (0.049) −0.492 (0.064) −0.352 (0.049) 0.799

Note: The estimated standard deviations (sd) are given within the brackets. The prior inverse covariance matrices are diagonal with the diagonal elements equal to either 𝜆 = 0.001 or 𝜆 = 0.1. The abbreviations
“I(small)”, “I(medium)” and “I(large)” stand for the three intercepts for the categories small, medium, large. In the last column the estimates of 𝜎2, the variance of the error term, are given.

https://doi.org/10.1017/rsm
.2025.6 Published online by Cam

bridge U
niversity Press

https://doi.org/10.1017/rsm.2025.6


404 Jonker et al.

Table 7. The BFI estimates of the parameters in the linear regression model with hospital
specific intercepts, 𝛽BFI, and the MAP estimates obtained from the analysis after combining
the data, 𝛽com.

𝜆 age gender experience 𝜎2

𝜆 = 0.001 𝛽BFI (sd) 0.268 (0.036) −0.452 (0.047) −0.364 (0.036) 0.581
𝛽com (sd) 0.247 (0.043) −0.474 (0.057) −0.357 (0.044) 0.614

𝜆 = 0.1 𝛽BFI (sd) 0.268 (0.036) −0.452 (0.047) −0.364 (0.036) 0.580
𝛽com (sd) 0.247 (0.043) −0.471 (0.057) −0.357 (0.044) 0.614

Note: The corresponding estimated standard deviations (sd) are given within the brackets. The 25 estimated intercepts are not
presented in the table. The prior inverse covariance matrices are diagonal with the diagonal elements equal to either 𝜆 = 0.001 or
𝜆 = 0.1. In the last column the estimates of 𝜎2, the variance of the error term, are given.

1. In every hospital we randomly select the data of approximately 10% of the nurses for the test-set.
The remaining data form the training-set. The data of the nurses in this set will be used to estimate
the BFI prediction model. The data in the test-set will be used to test the performance of the model.

2. In every hospital we compute the MAP estimates of the model parameters based on the local data
from the training sets only.

3. Based on the inference results from the hospitals, we compute the BFI estimates of the model
parameters with the BFI methodology.

4. Based on this estimated BFI model we predict the outcome (stress level) of the nurses in the test
sets based on their covariate values. The prediction for the ith nurse in the ℓth hospital is denoted as
𝑌BFI,ℓ𝑖 .

5. Parallel to this, we merge all data from the training sets and fit the regression model by MAP
estimation.

6. With this model we predict the outcomes of the nurses in the combined test data set based on their
covariate values. The predicted outcome for the ith nurse from hospital ℓ is denoted as 𝑌com,ℓ𝑖 .

7. We plot the points (𝑌com,ℓ𝑖 , 𝑌BFI,ℓ𝑖) in a scatter plot.

The steps above are repeated 50 times and all points are plotted in the same figure, see Figure 1 for
three different settings. The predictions in the plot on the left were found based on the fitted model with
the covariates age, gender, and experience. For the plot in the middle the covariate hospital size was
included as well (as described in Section 3.5). In both cases 𝜆 = 0.1. From the left plot we see that
for the model that does not include the covariate hospital size, the BFI predictions are slightly higher
than those found with the prediction model estimated based on the combined data. This is caused by
the estimates of the intercept; in Table 5 we already had seen that the intercept in the model fitted with
the BFI method is higher than the estimated intercept in the model based on all data. This difference
is due to heterogeneity of the data that is not taken into account in the model (see Section 4.2 for a
discussion). After adding the variable hospital size to the model this discrepancy disappears and there
is a very strong agreement between the predictions obtained with the two methods. The variation in the
predictions has increased which indicates a higher explained variance by the inclusion of the variable
hospital size.

4.2.3.2. Homogeneous populations. In the previous subsection we considered prediction accuracy of
the BFI prediction model based on the data of nurses from the 25 hospitals. As mentioned before the
nurses in the different hospitals may come from different populations. In this subsection we aim to
study the performance of the BFI prediction model for homogeneous (nurse) populations. To be sure
that the populations are homogeneous we randomize all nurses over the hospitals, keeping the sample
sizes in the hospitals fixed. Now, the populations in the different hospitals can be seen as samples
from the same population. Next, we follow the steps given in the previous subsection. This, including
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Figure 1. Outcome predictions based on the BFI strategy (vertical axis) versus those based on the
MAP estimates from the analysis obtained after combining the training data sets (horizontal axis).
Left: Heterogeneous populations. Predictions are based on the model that includes the covariates
age, gender, experience. Middle: Heterogeneous populations. Predictions are based on the model
that includes the covariates hospital size, age, gender, experience. Right: Homogeneous populations.
Predictions are based on the model that includes the covariates age, gender, experience. Perfect
agreement corresponds to all points on the diagonal (yellow line). Here, 𝜆 = 0.1. The plots look similar
for other values of 𝜆.

the randomization, is repeated 50 times. The variables we included in the model are age, gender, and
experience. It can be seen that the agreement between the predictions is very strong. The scatter plot
on the left in Figure 1 was obtained for the same model, but for the heterogeneous setting. In that
case we saw some discrepancy between the predictions from the two models. Since this is not seen in
the homogeneous setting and also not in the scatter plot for the models that take the hospital size into
account, we conclude that the discrepancy was due to the heterogeneity that was not taken into account
in the first simulation.

5. Discussion

In this article, we have extended the BFI methodology for homogeneous to heterogeneous populations.
The aim of the BFI methodology is to construct from the inference results obtained in multiple separate
centers, what would have been found if the analysis had been performed on the combined data set. The
key merit is that no individual data need to be transferred from the local centers to a central server. As
a consequence, Data Transfer Agreement (DTA) for data sharing, can be simplified significantly. This
may improve collaboration between researchers from different institutes and accelerate research.

In the BFI framework, statistical models are fitted in the separate centers based on local data only.
So, in every center someone with sufficient knowledge of statistics and R needs to be available to do
the analysis. Of course, the statistician who is concerned with combining the separate inference results
can assist and can even provide code to be sure that the analyses in the separate centers are consistent.
It is therefore important that a single communication with the local centers is sufficient to calculate the
BFI estimators.

For different types of heterogeneity, new expressions of the BFI estimators have been derived.
Asymptotically, the BFI estimators have been proven to be efficient (minimum variance) and we show
that no information is lost as a consequence of the fact that the data cannot be combined. Simulation
studies have shown that the performance of the BFI estimator is also good for finite samples, and
better than that of the weighted average estimator. Furthermore, in this article it is explained how to do
the analyses in R with the software package BFI that we developed to make the methodology easily
accessible for the user. The mathematical details are given in two appendices, and can be ignored if
one’s interest is solely in the application of BFI.
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It may happen that communication between the central server and some data centers is intermittent
or delayed. In that case, the BFI estimators can be calculated based on the estimation results available so
far. As soon as more centers have sent their results, the BFI estimators can be recalculated, including the
results from the delayed centers. This can be easily done by using the expression of the BFI estimators
and will result in exactly the same final estimate compared to the estimate that would have been found
if all centers had sent their local estimates at the same time. Also, if a center wishes to participate in
the study at a later date, the BFI estimate can be easily updated, as just described. Ideally, however, it
would be decided in advance which centers will participate in the study, to avoid researchers selecting
centers based on local estimates. In many other federated analysis methods, in contrast, estimates are
found by cycling around the centers and updating parameter estimates based on the local data. Then,
if one or more centers are included in the estimation process at a later moment, the entire optimization
process needs to be repeated, which can be a rather time-consuming process.

The prior of the parameters is taken equal to a zero-mean Gaussian distribution. This assumption
allows the derivation of explicit expressions for the BFI estimators. For other prior distributions this
may not be the case. If a Gaussian prior is not suitable for a parameter, for example because it is positive
by definition, it can be transformed (e.g., via a log transformation). For example, for the variance of the
error term in a linear regression model, the Gaussian prior for the log transformation of the parameter
is used and implemented in the R package. The Gaussian prior corresponds to a ridge penalty, which
is often used in practice to reduce overfitting. If one also wants to do selection, a lasso penalty is more
common and a different prior distribution must be assumed. Then the BFI estimates must be found by
numerical optimization.

For the centers different covariance matrices for the Gaussian prior may be chosen. One reason to
do this could be the local sample size. The smaller the variance of the Gaussian prior, the more the
estimates are shrunken to zero. Also if there is a difference in reliability of the data across the centers
(data in some centers are “cleaner” than in others), different prior covariances can be used. It is up to
the user to decide whether to assume equal priors or not.

The sets of variables available for fitting a regression model may differ across the centers. This
happens, for instance, if some patients’ or individuals’ characteristics are measured and documented
in most centers, but not in all. If a missing variable may be predictive for the outcome, a single or
multiple regression method can be applied to impute the missing values.27 Then, a regression model
with this missing variable as an outcome and the original outcome variable and the remaining variables
as covariates is fitted, by applying the BFI approach in the centers in which this “missing variable” has
been measured. Next, this estimated regression model is used to predict the variable values in the center
in which the variable was not measured. After a single or a multiple imputation, the BFI strategy as
described before can be used.

The BFI estimators are defined as the maximizers of an approximation of the log posterior
density (second order Taylor expansions) for the merged data set. In the homogeneous case, these
approximations are known to be accurate if the total sample size is sufficiently large (compared to the
dimension of parameter space). However, if parameters are assumed to be distinct across centers, the
local sample sizes need to be sufficiently large as well. If the total or local sample sizes are small or if
the dimension of the parameter space is large, a higher order approximation (third or higher order of
the Taylor expansion) may yield more accurate results. This and regularization methods to overcome
overfitting will be studied in a new project. The same holds for the BFI estimates of the asymptotic
covariance matrix and, thus, for the standard deviations.

The theory for the BFI approach has been developed for parametric models, including generalized
linear models (GLMs) and survival models,25 and has been tested for multiple data sets. In case of
possible (unmeasured) heterogeneity between centers, a multilevel model including random center
effects and random slopes could be considered if the data from the different centers can be combined.
The BFI methodology also applies to these types of models, but the corresponding BFI software has
not yet been developed. Heterogeneity can be taken into account, as described in this article. The R
package BFI will be continuously developed and will include multilevel models in the near future.24
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The BFI methodology makes it possible to obtain the statistical power of the combined data set
without actually combining the data. DTA’s can hence be simplified and collaboration between centers
may increase.
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Appendix I. Bayesian Federated Inference in R

We have written the software package BFI in R for doing the BFI calculations.24 Here we explain how
to do BFI analyses.

MAP estimation

To compute the MAP estimates of the parameters in a regression model, the command MAP.estimation
can be used. To apply this command, the data has to be in a specific form and the inverse covariance
matrix of the Gaussian prior needs to be chosen. The analysis below is for the combined data set Nurse.
The estimates in the separate hospitals can be obtained with the same commands, but with the local
data sets instead.

library(BFI)
M <- data.frame(age=Nurses$age,gender=Nurses$gender,exp=Nurses$experien,

wardtype=Nurses$wardtype)
Lambda <- inv.prior.cov(M,lambda=0.01,family="gaussian")
fit <- MAP.estimation(Nurses$stress,X=M,family="gaussian",Lambda)

The command inv.prior.cov creates a diagonal inverse covariance matrix for the prior distribu-
tion of the correct dimension. Based on the characteristics of the covariates (continuous or categorical)
in M and the number of nuisance parameters, the number of model parameters is computed (the number
of regression parameters for a categorical variable equals the number of levels minus one and a linear
model (family="gaussian") has one nuisance parameter, the variance of the measurement error).
The argument lambda=0.01 means that all elements on the diagonal of Λ equal 0.01. The arguments
of MAP.estimation are the outcome variable Nurses$stress, the covariate data in M, the type of
the model (family="gaussian") and the matrix Lambda. The inference results are stored in the list
fit. A summary of it can be found with summary(fit).

When applying the BFI approach, the analyses are performed in every hospital and the results in
fit are sent to the central server. There, the results from the different hospitals are combined. This is
explained below.
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BFI for homogeneous populations

Suppose that all hospitals have sent their output to the central server. For ease of notation, we assume
these outputs are stored in fit1, fit2, . . ., fit25. From every output the relevant elements need
to be selected and combined. If the number of hospitals is high, it is easier to work with a for-loop.
With the following code, all relevant elements of 25 local centers are created and combined by the
main function bfi():

Ms <- fits <- thetahats <- Ahats <- priors <- Lambdas <- list()
for (l in 1:25) {

Ms[[l]] <- data.frame(age = Nurses$age[Nurses$hospital==l],
gender = Nurses$gender[Nurses$hospital==l],
exp = Nurses$experien[Nurses$hospital==l],
wardtype = Nurses$wardtype[Nurses$hospital==l])

Lambdas[[l]] <- inv.prior.cov(Ms[[l]], lambda=0.01, family="gaussian")
fits[[l]] <- MAP.estimation(y=Nurses$stress[Nurses$hospital==l], X=Ms[[l]],

family="gaussian", Lambda=Lambdas[[l]])
thetahats[[l]] <- fits[[l]]$theta_hat
Ahats[[l]] <- fits[[l]]$A_hat
priors[[l]] <- fits[[l]]$Lambda

}
priors_all <- append(priors,list(Lambda))
fitbfi_homo <- bfi(theta_hats=thetahats, A_hats=Ahats, Lambda=priors_all)
summary(fitbfi_homo)

Here Lambda is the inverse covariance matrix of the prior for the (fictive) combined data. The
command bfi combines the estimates from the different hospitals into the BFI estimates. The outcome
fitbfi_homo is a list with the BFI estimates �̂�BFI and ÂBFI. The command summary(fitbfi_homo)
gives the BFI estimates (and more information).

BFI for heterogeneous populations

Different types of heterogeneity have been discussed in Section 3. Below we will explain how to do the
analyses in R.

Heterogeneity of population characteristics
Heterogeneity across population characteristics in the centers implies that the value of the parameter 𝜃2
differs across centers. Because the bfi-command estimates the parameter 𝜃1 (and its curvature matrix
𝐴1), and these estimates are not affected by 𝜃2, the R-code explained in the previous subsection can
still be applied.

Heterogeneity across outcome means
Suppose the intercepts differ across hospitals. To take this variation into account we allow a hospital
specific intercept in the regression model. Instead of one general intercept there are 𝐿 = 25 intercepts;
an increase of 𝐿 − 1 parameters. The dimension of the inverse covariance matrix Lambda for the fictive
combined data set changes as well. For a diagonal matrix with 0.01 at the diagonal, this matrix can be
obtained by

Lambda <- inv.prior.cov(M,lambda=0.01,stratified=TRUE,strat_par=1,L=25)
priors_all <- append(priors,list(Lambda))

These commands replace the two corresponding commands above. The argument L=25 has to be
added to indicate the number of centers, and thus the number of location specific intercepts. This matrix
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should be appended to the list priors instead. The MAP estimates can be obtained with the command
bfi, but it needs to be made explicit that the hospitals may have different intercepts:

fitbfi_hetero <- bfi(thetahats,Ahats,priors_all,stratified=TRUE,strat_par=1)

For this stratified analysis extra arguments have been added: stratified=TRUE and strat_par=1.
The first argument indicates that the full model stratifies with respect to the different hospitals. The
default is stratified=FALSE. If strat_par=1 there is stratification with respect to the intercept and
if strat_par=2 this is the case for the variance of the measurement error in a linear regression model.
A summary of the results can be obtained by |summary(fitbfi_hetero)|.This gives a list with
estimates, starting with the hospital specific intercepts.

Heterogeneity due to clustering
An example of a cluster variable is hospital size. For all nurses in a hospital this covariate is constant
and, as a consequence, the effect of hospital size on stress cannot be estimated within a hospital.
However, the model for the (fictive) combined data could include this covariate if there is variation
across the hospitals (Section 3.5). Here we explain how to do the analyses in R. In practice, every
local hospital sends its size (small, medium, large) to the central server. Then, a vector with all sizes is
defined in R. Suppose this vector is named Hsize. After fitting the local models (like explained before),
the estimated model for the (fictive) combined data can be obtained with:

Hsize <- c()
for (i in 1:25)

Hsize[i] <- Nurses[Nurses$hospital==i,]$hospsize[1]
LambdaCom <- inv.prior.cov(Mi,lambda=0.01,stratified=TRUE,

center_spec=Hsize,L=25)
priors_all <- append(priors,list(LambdaCom))
fitbfi_hetero <- bfi(thetahats,Ahats,priors_all,stratified=TRUE,

center_spec=Hsize)
summary(fitbfi_hetero)

The commands return a list with categorical specific intercepts and the estimates of the remaining
parameters.

Appendix II. Mathematical derivations of the BFI estimators

In this appendix the mathematical derivations of the BFI estimators are given for three settings:
Appendix II.A: Homogeneity across centers.
Appendix II.B: Heterogeneity across centers, center-specific parameter, e.g., the intercept.
Appendix II.C: Heterogeneity across centers, due to clustering, e.g., geospatial regions.

Appendix II.A. Homogeneity across centers

In this appendix we derive expressions of the BFI estimators under the assumption that the variables
(Xℓ𝑖 , 𝑌ℓ𝑖), 𝑖 = 1, . . . , 𝑛ℓ , ℓ = 1, . . . , 𝐿 are independent and identically distributed. In equations (1) and
(2) in Section 2 we have seen that the log posterior densities for the (fictive) combined data set D and
for the subset Dℓ equal

log
{
𝑝(𝜽 |D)

}
= log

{
𝑝(𝜽1)

}
+ log

{
𝑝(𝜽2)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝(D)

}
(A.1)

https://doi.org/10.1017/rsm.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.6


Research Synthesis Methods 411

log
{
𝑝ℓ (𝜽 |Dℓ )

}
= log

{
𝑝ℓ (𝜽1)

}
+ log

{
𝑝ℓ (𝜽2)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝ℓ (Dℓ)

}
. (A.2)

By reordering the terms in equation (A.2), it follows that for every center ℓ

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
= log

{
𝑝ℓ (𝜽 |Dℓ )

}
− log

{
𝑝ℓ (𝜽1)

}
− log

{
𝑝ℓ (𝜽2)

}
+ log

{
𝑝ℓ (Dℓ)

}
.

Next, summing over all centers yields

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |xℓ𝑖 , 𝜽1)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
=

𝐿∑
ℓ=1

log
{
𝑝ℓ (𝜽 |Dℓ )

}
− log

{ 𝐿∏
ℓ=1

𝑝ℓ (𝜽1)
}
− log

{ 𝐿∏
ℓ=1

𝑝ℓ (𝜽2)
}
+ log

{ 𝐿∏
ℓ=1

𝑝ℓ (Dℓ )
}
. (A.3)

By inserting the right hand side of equation (A.3) into the right hand side of equation (A.1) this yields

log
{
𝑝(𝜽 |D)

}
=

𝐿∑
ℓ=1

log
{
𝑝ℓ (𝜽 |Dℓ)

}
+ log

{
𝑝(𝜽1)∏𝐿
ℓ=1 𝑝ℓ (𝜽1)

}

+ log

{
𝑝(𝜽2)∏𝐿
ℓ=1 𝑝ℓ (𝜽2)

}
− log

{
𝑝(D)∏𝐿

ℓ=1 𝑝ℓ (Dℓ)

}
. (A.4)

We expressed the log posterior densities of the combined data, log{𝑝(𝜃 |D)}, in terms of the log
posterior densities of the local data sets, log{𝑝ℓ (𝜃 |Dℓ )}. However, the final aim is to express the MAP
estimator �̂� based on the (fictive) combined data set D in terms of the MAP estimators based on the
local data sets Dℓ . This will be done next. We approximate the log posterior densities for the data set
Dℓ by a Taylor expansion up to the quadratic order in 𝜃 around the MAP estimator �̂�ℓ :

log
{
𝑝ℓ

(
𝜽 |Dℓ

)}
= log

{
𝑝ℓ

(
�̂�ℓ |Dℓ

)}
− 1

2
(
𝜽 − �̂�ℓ

) 𝑡 Âℓ (𝜽 − �̂�ℓ
)
+𝑂 𝑝

(
‖�̂�ℓ − 𝜽 ‖3) ,

with Âℓ equal to minus the second derivative of log{𝑝ℓ (𝜃 |Dℓ )} with respect to 𝜃, evaluated at �̂�ℓ . The
linear term in the Taylor expansion is equal to zero and therefore missing in the expansion; the MAP
estimator maximizes the log posterior density and the first derivative evaluated at �̂�ℓ is therefore equal
to zero. The last term in the Taylor expansion is equal to 𝑂 𝑝 (‖�̂�ℓ − 𝜃‖3) = ‖�̂�ℓ − 𝜃‖3𝑂 𝑝 (1), where
𝑂 𝑝 (1) represents a term that is bounded in probability for the sample size going to infinity.28 For 𝜃 in a
small neighborhood of �̂�ℓ , the term ‖�̂�ℓ − 𝜃‖3 will be close to zero (in probability), and the remainder
term 𝑂 𝑝 (‖�̂�ℓ − 𝜃‖3) is small compared to the other terms in the Taylor expansion which are of an order
of at most ‖�̂�ℓ − 𝜃‖2.

Since the log posterior density in equation (A.2) is decomposed in terms that depend on either 𝜃1 or
𝜃2, but never on both, the matrices Âℓ , ℓ = 1, . . . , 𝐿 are diagonal block matrices:

Âℓ =
(
Â1,ℓ 0

0 Â2,ℓ

)
,
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with the blocks Â1,ℓ and Â2,ℓ equal to minus the second derivative matrices for 𝜃1 and 𝜃2, respectively,
and the log posterior densities can be approximated by

log
{
𝑝ℓ

(
𝜽 |Dℓ

)}
= log

{
𝑝ℓ

(
�̂�ℓ |Dℓ

)}
− 1

2
(
𝜽1 − �̂�1,ℓ

) 𝑡 Â1,ℓ
(
𝜽1 − �̂�1,ℓ

)
− 1

2
(
𝜽2 − �̂�2,ℓ

) 𝑡 Â2,ℓ
(
𝜽2 − �̂�2,ℓ

)
+𝑂 𝑝

(
‖�̂�ℓ − 𝜽 ‖3) .

By substituting this expansion for log{𝑝ℓ (𝜃 |Dℓ )}, ℓ = 1, . . . , 𝐿, into the relation (A.4), we obtain:

log
{
𝑝(𝜽 |D)

}
= − 1

2

𝐿∑
ℓ=1

(
𝜽1 − �̂�1,ℓ

) 𝑡 Â1,ℓ
(
𝜽1 − �̂�1,ℓ

)
− 1

2

𝐿∑
ℓ=1

(
𝜽2 − �̂�2,ℓ

) 𝑡 Â2,ℓ
(
𝜽2 − �̂�2,ℓ

)
+ log

{
𝑝(𝜽1)∏𝐿
ℓ=1 𝑝ℓ (𝜽1)

}
+ log

{
𝑝(𝜽2)∏𝐿
ℓ=1 𝑝ℓ (𝜽2)

}
+ 𝐵 + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�ℓ − 𝜽 ‖3
)
.

(A.5)

where B is a term that depends on the data, but is not a function of 𝜃 = (𝜃1, 𝜃2). Now choose the prior
densities 𝜃1 → 𝑝(𝜃1) and 𝜃2 → 𝑝(𝜃2) in the combined data set and 𝜃1 → 𝑝ℓ (𝜃1) and 𝜃2 → 𝑝ℓ (𝜃2)
in center ℓ to be Gaussian with mean zero and inverse covariance matrices 𝚲1 and 𝚲2 in the combined
data set, and 𝚲1,ℓ and 𝚲2,ℓ in center ℓ: e.g., 𝑝(𝜃1) = (det𝚲1/(2𝜋)𝑑)1/2 exp(− 1

2 𝜃
𝑡
1𝚲1𝜃1). Inserting the

expressions of the densities into (A.5) yields

log
{
𝑝(𝜽 |D)

}
= − 1

2

𝐿∑
ℓ=1

(
𝜽1 − �̂�1,ℓ

) 𝑡 Â1,ℓ
(
𝜽1 − �̂�1,ℓ

)
− 1

2

𝐿∑
ℓ=1

(
𝜽2 − �̂�2,ℓ

) 𝑡 Â2,ℓ
(
𝜽2 − �̂�2,ℓ

)
− 1

2𝜽
𝑡
1

(
𝚲1 −

𝐿∑
ℓ=1

𝚲1,ℓ

)
𝜽1 − 1

2𝜽
𝑡
2

(
𝚲2 −

𝐿∑
ℓ=1

𝚲2,ℓ

)
𝜽2 + 𝐵′ + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�ℓ − 𝜽 ‖3
)

=: ΩBFI(𝜃) + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�ℓ − 𝜽 ‖3
)
, (A.6)

for 𝐵′ a term that depends on the data, but not of 𝜃1 and 𝜃2. The function 𝜃 → ΩBFI(𝜃) in equation
(A.6) is quadratic function of 𝜃1 and 𝜃2. Maximizing 𝜃 → ΩBFI(𝜃) with respect to 𝜃 = (𝜃1, 𝜃2) yields
the BFI estimators

�̂�1,BFI :=
(
Â1,BFI

)−1
𝐿∑
ℓ=1

Â1,ℓ �̂�1,ℓ , Â1,BFI :=
𝐿∑
ℓ=1

Â1,ℓ + 𝚲1 −
𝐿∑
ℓ=1

𝚲1,ℓ ,

�̂�2,BFI :=
(
Â2,BFI

)−1
𝐿∑
ℓ=1

Â2,ℓ �̂�2,ℓ , Â2,BFI :=
𝐿∑
ℓ=1

Â2,ℓ + 𝚲2 −
𝐿∑
ℓ=1

𝚲2,ℓ ,

where Â1,BFI and Â2,BFI equal minus the second derivative of ΩBFI with respect to 𝜃1 and 𝜃2. In
Appendix III.B the asymptotic distribution of the BFI estimators are derived.

Appendix II.B. Heterogeneity across centers, center-specific parameter

Suppose that the vector of regression parameters can be subdivided into two parts. One part is equal
across the centers and the other part may vary. A special case is the situation in which the intercepts
vary. In the calculations of the BFI estimator, we assume that the covariates are statistically independent
between the individuals within and across the centers. We, moreover, assume that the outcome variables
given the covariates and the center are independent.
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Suppose that the vector 𝜃 can be decomposed as 𝜃 = (𝜃1, 𝜃2) = (𝜃1𝑎, 𝜃1𝑏 , 𝜃2), where, as before, 𝜃2 is
the vector of parameters that specifies the distribution of the covariates. The parameter 𝜃1 = (𝜃1𝑎, 𝜃1𝑏)
is decomposed so that 𝜃1𝑎 is the vector of (regression) parameters that is assumed to be equal across
the centers, and 𝜃1𝑏 is the vector of (regression) parameters that may vary. In this appendix we consider
the situation in which every center has its own specific vector of parameters: 𝜃1𝑏,1, . . . , 𝜃1𝑏,𝐿 for the L
centers. The vector of parameters in the combined data set is equal to 𝜃 = (𝜃1𝑎, 𝜃1𝑏,1, . . . , 𝜃1𝑏,𝐿 , 𝜃2),
where 𝜃1𝑏,ℓ is the parameter vector in center ℓ. If only the intercepts vary across the centers, 𝜃1𝑏,ℓ is
one-dimensional, but for now we allow 𝜃1𝑏,ℓ to be a vector.

For simplicity of notation we assume that 𝜃1𝑎, 𝜃1𝑏 and 𝜃2 are independent: 𝑝(𝜃) = 𝑝(𝜃1𝑎)𝑝(𝜃2)
∏𝐿
ℓ=1

𝑝(𝜃1𝑏,ℓ ) for the combined data set, and in center ℓ: 𝑝ℓ (𝜃1𝑎, 𝜃1𝑏,ℓ , 𝜃2) = 𝑝ℓ (𝜃1𝑎)𝑝ℓ (𝜃1𝑏,ℓ )𝑝ℓ (𝜃2). As
before, the log posterior densities can be written as

log
{
𝑝(𝜽 |D)

}
= log

{
𝑝(𝜽1𝑎)

}
+

𝐿∑
ℓ=1

log
{
𝑝(𝜽1𝑏,ℓ )

}
+ log

{
𝑝(𝜽2)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |𝜽1𝑎, 𝜽1𝑏,ℓ , xℓ𝑖)

}
+

𝐿∑
ℓ=1

𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝(D)

}
,

and

log
{
𝑝ℓ (𝜽1𝑎, 𝜽1𝑏,ℓ , 𝜽2 |Dℓ )

}
= log

{
𝑝ℓ (𝜽1𝑎)

}
+ log

{
𝑝ℓ (𝜽1𝑏,ℓ)

}
+ log

{
𝑝ℓ (𝜽2)

}
+
𝑛ℓ∑
𝑖=1

log
{
𝑝(𝑦ℓ𝑖 |𝜽1𝑎, 𝜽1𝑏,ℓ , xℓ𝑖)

}
+
𝑛ℓ∑
𝑖=1

log
{
𝑝(xℓ𝑖 |𝜽2)

}
− log

{
𝑝ℓ (Dℓ)

}
.

Previously, and in the formulas above, we see that the log posterior density is decomposed into terms
that depend on 𝜃1 or 𝜃2, but never on both. That means that the BFI estimator for 𝜃1 is not affected
by the estimator 𝜃2 and vice versa. Therefore, in this setting, the BFI estimator �̂�2 can be expressed in
terms of the local MAP estimators �̂�2,ℓ and Â2,ℓ as in (4). In the remainder of the derivation we focus
on 𝜃1 only and leave out the terms with 𝜃2 from the expressions.

Like in the homogeneous setting, the log posterior density in the full data set can be written in terms
of the local log posterior densities:

log
{
𝑝(𝜽 |D)

}
=

𝐿∑
ℓ=1

log
{
𝑝ℓ (𝜽1𝑎, 𝜽1𝑏,ℓ |Dℓ )

}
+ log

{
𝑝(𝜽1𝑎)∏𝐿
ℓ=1 𝑝ℓ (𝜽1𝑎)

}
+ log

{ ∏𝐿
ℓ=1 𝑝(𝜽1𝑏,ℓ)∏𝐿
ℓ=1 𝑝ℓ (𝜽1𝑏,ℓ)

}
+ 𝐵

(A.7)

with B a term that depends on the data and on 𝜃2, but is not a function of 𝜃1.
Let �̂�1𝑎,ℓ and �̂�1𝑏,ℓ be the MAP estimators of 𝜃1𝑎 and 𝜃1𝑏,ℓ based on the data set Dℓ . Moreover,

let Â1𝑎,ℓ and Â1𝑏,ℓ be minus the second derivative of log{𝑝ℓ (𝜃 |Dℓ )} with respect to 𝜃1𝑎 and 𝜃1𝑏,ℓ
respectively, and let Â1𝑎𝑏,ℓ be minus the second derivative with respect to both 𝜃1𝑎 and 𝜃1𝑏,ℓ all
evaluated at �̂�1,ℓ = (�̂�1𝑎,ℓ , �̂�1𝑏,ℓ ).

The Taylor expansions up to the quadratic term of log{𝑝ℓ (𝜃1𝑎, 𝜃1𝑏,ℓ |Dℓ )} around �̂�1,ℓ is given by

log
{
𝑝ℓ

(
𝜽1𝑎, 𝜽1𝑏,ℓ |Dℓ

)}
= log

{
𝑝ℓ

(
�̂�1𝑎,ℓ , �̂�1𝑏,ℓ |Dℓ

)}
− 1

2
(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎,ℓ
(
𝜽1𝑎 − �̂�1𝑎,ℓ

)
− 1

2
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

) 𝑡 Â1𝑏,ℓ
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

)
−

(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎𝑏,ℓ
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

)
+ 𝑂 𝑝

(
‖�̂�1,ℓ − 𝜽1‖3) .

Next, we insert the Taylor expressions into (A.7). For the combined data D we assume a Gaussian prior
with mean zero and inverse covariance matrix 𝚲1𝑎 for 𝜃1𝑎, and a zero mean Gaussian prior with inverse
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covariance matrix 𝚲1𝑏ℓ for 𝜃1𝑏,ℓ , ℓ = 1, . . . , 𝐿. For center ℓ, also zero mean Gaussian priors are chosen,
but with inverse covariance matrices 𝚲1𝑎,ℓ and 𝚲1𝑏,ℓ . The dimension of 𝚲1𝑏ℓ and 𝚲1𝑏,ℓ depends on
the number of parameters that may vary across the centers. If only the intercepts vary, the matrices are
scalars. After inserting these densities in expression (A.7) as well, we obtain

log
{
𝑝(𝜽 |D)

}
= − 1

2

𝐿∑
ℓ=1

(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎,ℓ
(
𝜽1𝑎 − �̂�1𝑎,ℓ

)
− 1

2𝜽
𝑡
1𝑎

(
𝚲1𝑎 −

𝐿∑
ℓ=1

𝚲1𝑎,ℓ

)
𝜽1𝑎

− 1
2

𝐿∑
ℓ=1

(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

) 𝑡 Â1𝑏,ℓ
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

)
− 1

2

𝐿∑
ℓ=1

𝜽 𝑡1𝑏,ℓ
(
𝚲1𝑏ℓ − 𝚲1𝑏,ℓ

)
𝜽1𝑏,ℓ −

𝐿∑
ℓ=1

(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎𝑏,ℓ
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

)
+ 𝐵′ + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�1,ℓ − 𝜽1‖3
)

=: ΩBFI (𝜽1) +𝑂 𝑝
( 𝐿∑
ℓ=1

‖�̂�1,ℓ − 𝜽1‖3
)

(A.8)

with 𝐵′ representing a term that does not depend on 𝜃1. The function 𝜃1 → ΩBFI(𝜃1) is a quadratic
function of 𝜃1. Maximization of this function with respect to 𝜃1 by setting its derivative equal to zero,
yields the BFI estimators

�̂�1𝑎,BFI :=
(
Â1𝑎,BFI −

𝐿∑
ℓ=1

Â1𝑎𝑏,ℓ (Â1𝑏,ℓ,BFI)−1 (Â1𝑎𝑏,ℓ,BFI)𝑡
)−1

×

𝐿∑
ℓ=1

[(
Â1𝑎,ℓ − Â1𝑎𝑏,ℓ (Â1𝑏,ℓ,BFI)−1 (Â1𝑎𝑏,ℓ )𝑡

)
�̂�1𝑎,ℓ + Â1𝑎𝑏,ℓ

(
1 − (Â1𝑏,ℓ,BFI)−1Â1𝑏,ℓ

)
�̂�1𝑏,ℓ

]
(A.9)

with 1 the unit matrix and the matrices Â1𝑎,BFI and Â1𝑏,ℓ,BFI as given in (A.11) below and

�̂�1𝑏,ℓ,BFI :=
(
Â1𝑏,ℓ,BFI

)−1
[
Â1𝑏,ℓ �̂�1𝑏,ℓ +

(
Â1𝑎𝑏,ℓ

) 𝑡 (
�̂�1𝑎,ℓ − �̂�1𝑎,BFI

) ]
(A.10)

with

Â1𝑎,BFI :=
𝐿∑
ℓ=1

Â1𝑎,ℓ + 𝚲1𝑎 −
𝐿∑
ℓ=1

𝚲1𝑎,ℓ , Â1𝑏,ℓ,BFI := Â1𝑏,ℓ + 𝚲1𝑏ℓ − 𝚲1𝑏,ℓ , Â1𝑎𝑏,ℓ,BFI := Â1𝑎𝑏,ℓ ,

(A.11)

where Â1𝑎,BFI, Â1𝑏,ℓ,BFI and Â1𝑎𝑏,ℓ,BFI equal minus the second derivatives of ΩBFI with respect to
𝜃1𝑎, 𝜃1𝑏 and the mix 𝜃1𝑎 and 𝜃1𝑏 .

Appendix II.C. Heterogeneity across centers due to clustering

In this appendix we consider the situation in which the centers are clustered by, for example, due to
location or type (academic / non-academic medical center). Another example is the covariate hospital
size in the nurse-data set, where the clusters are: small, medium, large. Within a hospital/center, all
nurses are in the same cluster and have the same covariate value, so that the covariate can not be
included in the local regression model as it is collinear with the intercept.

In the calculations of the BFI estimators, we assume that the covariates are independent between
the individuals within and across the centers. We, moreover, assume that the outcome variables given
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the covariates and the cluster level are independent. Suppose that the vector of model parameters in
center ℓ is equal to 𝜃ℓ = (𝜃1𝑎, 𝜃1𝑏,ℓ , 𝜃2), where, as before, 𝜃2 is the parameter vector that specifies
the distribution of the covariates. The parameter 𝜃1𝑎 is the vector of regression parameters which are
assumed to be equal in all centers, but excluding the intercept which may vary across the centers. The
parameter 𝜃1𝑏,ℓ ∈ {𝜃1𝑏1, . . . , 𝜃1𝑏𝐾 } for ℓ = 1, . . . , 𝐿 and with 𝐾 ≤ 𝐿 is the intercept of the model in
center ℓ. So, 𝜃1𝑏,ℓ (with a comma in the subscript) is the parameter in center ℓ, whereas 𝜃1𝑏𝑘 (without a
comma in the subscript) is the parameter for the kth category of the center-specific covariate. If 𝐾 = 𝐿,
𝜃1𝑏,ℓ ≠ 𝜃1𝑏,ℓ′ for ℓ ≠ ℓ′ and we are in the situation of Appendix II.B, where every center has its own
specific intercept value. If 𝐾 < 𝐿, there are centers ℓ and ℓ′ with ℓ ≠ ℓ′ with 𝜃1𝑏,ℓ = 𝜃1𝑏,ℓ′ . In the
example, the covariate “hospital size” has three levels (small, medium, large). That means that 𝐾 = 3
and the three parameters represent the three intercepts for the three classes of centers. The parameter
vector in the (fictive) combined data set D is defined as 𝜃 = (𝜃1𝑎, 𝜃1𝑏1, . . . , 𝜃1𝑏𝐾 , 𝜃2).

For simplicity of notation we assume (again) that 𝜃1𝑎, 𝜃1𝑏 and 𝜃2 are independent: 𝑝(𝜃) =
𝑝(𝜃1𝑎)𝑝(𝜃2)

∏𝐾
𝑘=1 𝑝(𝜃1𝑏𝑘 ) for the combined data set, and locally 𝑝ℓ (𝜃1𝑎, 𝜃1𝑏,ℓ , 𝜃2) = 𝑝ℓ (𝜃1𝑎)𝑝ℓ

(𝜃1𝑏,ℓ )𝑝ℓ (𝜃2) in data subset ℓ. For the combined data D we assume a Gaussian prior with mean zero and
inverse covariance matrices 𝚲1𝑎 for 𝜃1𝑎, and a zero mean Gaussian prior with inverse variance 𝚲1𝑏𝑘 for
𝜃1𝑏𝑘 , 𝑘 = 1, . . . , 𝐾 . Also for center ℓ zero mean Gaussian priors are chosen, but with inverse covariance
matrix 𝚲1𝑎,ℓ and inverse variance 𝚲1𝑏,ℓ . Similar notation and calculations as in Appendix II.B lead to
the equation below, instead of the equation (A.8):

log
{
𝑝(𝜽 |D)

}
= − 1

2

𝐿∑
ℓ=1

(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎,ℓ
(
𝜽1𝑎 − �̂�1𝑎,ℓ

)
− 1

2𝜽
𝑡
1𝑎

(
𝚲1𝑎 −

𝐿∑
ℓ=1

𝚲1𝑎,ℓ

)
𝜽1𝑎

− 1
2

𝐿∑
ℓ=1

(
𝜃1𝑏 − �̂�1𝑏,ℓ

)
𝐴1𝑏,ℓ

(
𝜃1𝑏,ℓ − �̂�1𝑏,ℓ

)
− 1

2

𝐾∑
𝑘=1
𝜃1𝑏𝑘Λ1𝑏𝑘𝜃1𝑏𝑘 + 1

2

𝐿∑
ℓ=1
𝜃1𝑏,ℓΛ1𝑏,ℓ𝜃1𝑏,ℓ

−
𝐿∑
ℓ=1

(
𝜽1𝑎 − �̂�1𝑎,ℓ

) 𝑡 Â1𝑎𝑏,ℓ
(
𝜽1𝑏,ℓ − �̂�1𝑏,ℓ

)
+ 𝐵′ + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�1,ℓ − 𝜽1‖3
)

=: ΩBFI(𝜽1) + 𝑂 𝑝

( 𝐿∑
ℓ=1

‖�̂�1,ℓ − 𝜽1‖3
)

with 𝐵′ representing a term that does not depend on 𝜃1. Let 𝑧ℓ denote the category of center ℓ for the
center-specific covariate. So 𝑧ℓ ∈ {1, . . . , 𝐾}. Differentiating ΩBFI(𝜃1) with respect to 𝜃1𝑎 and 𝜃1𝑏 and
setting the derivatives equal to zero, yields the BFI estimators:

�̂�1𝑎,BFI :=
(
Â1𝑎,BFI −

𝐾∑
𝑘=1

Â1𝑎𝑏𝑘,BFI
(
𝐴1𝑏𝑘,BFI

)−1 (Â1𝑎𝑏𝑘,BFI)𝑡
)−1

×
(
𝐿∑
ℓ=1

Â1𝑎,ℓ �̂�1𝑎,ℓ +
𝐿∑
ℓ=1

Â1𝑎𝑏,ℓ �̂�1𝑏,ℓ

−
𝐾∑
𝑘=1

Â1𝑎𝑏𝑘,BFI
(
𝐴1𝑏𝑘,BFI

)−1
[ 𝐿∑
ℓ=1:𝑧ℓ=𝑘

𝐴1𝑏,ℓ �̂�1𝑏,ℓ +
𝐿∑

ℓ=1:𝑧ℓ=𝑘
(Â1𝑎𝑏,ℓ )𝑡 �̂�1𝑎,ℓ

] )

with Â1𝑎,BFI, 𝐴1𝑏𝑘,BFI and Â1𝑎𝑏𝑘,BFI as given in (A.12) below and the estimator �̂�1𝑏𝑘,BFI, 𝑘 = 1, . . . , 𝐾
is given by
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�̂�1𝑏𝑘,BFI :=(
𝐴1𝑏𝑘,BFI

)−1
[ 𝐿∑
ℓ=1:𝑧ℓ=𝑘

𝐴1𝑏,ℓ �̂�1𝑏,ℓ +
𝐿∑

ℓ=1:𝑧ℓ=𝑘
(Â1𝑎𝑏,ℓ )𝑡 �̂�1𝑎,ℓ − (Â1𝑎𝑏𝑘,BFI)𝑡 �̂�1𝑎,BFI

]
.

with minus the second derivatives of ΩBFI equal to

Â1𝑎,BFI :=
𝐿∑
ℓ=1

Â1𝑎,ℓ + 𝚲1𝑎 −
𝐿∑
ℓ=1

𝚲1𝑎,ℓ ,

𝐴1𝑏𝑘,BFI :=
𝐿∑

ℓ=1:𝑧ℓ=𝑘
𝐴1𝑏,ℓ + Λ1𝑏𝑘 −

𝐿∑
ℓ=1:𝑧ℓ=𝑘

Λ1𝑏,ℓ , (A.12)

Â1𝑎𝑏𝑘,BFI :=
𝐿∑

ℓ=1:𝑧ℓ=𝑘
Â1𝑎𝑏,ℓ ,

and 0 for the remaining terms.

Appendix III. Asymptotic theory of the BFI and WAV estimators

In this appendix we compute the asymptotic distribution of the BFI and WAV estimators under the
assumption of homogeneity and heterogeneity. In the calculations we assume that the number of clusters
L is fixed, but the sample sizes within the clusters, 𝑛1, . . . , 𝑛𝐿 , increase to infinity such that, for 𝑛 =
𝑛1 + . . .+𝑛𝐿 , the fraction 𝑛ℓ/𝑛→ 𝑤ℓ , with 0 ≤ 𝑤ℓ ≤ 1, ℓ = 1, . . . , 𝐿. In all cases we assume no model-
misspecification and the independence assumptions stated in Appendix II. This Appendix consists of

Appendix III.A: Asymptotic distribution of the MAP estimator based on the combined data.
Appendix III.B: Asymptotic distribution of the BFI and WAV estimators in a homogeneous setting.
Appendix III.C: Asymptotic distribution of the BFI and WAV estimators in a heterogeneous setting.

Appendix III.A. Asymptotic distribution of the MAP estimator based on the combined data

In this section we study the asymptotic distribution of the MAP estimator �̂�1 = (�̂�1𝑎, �̂�1𝑏) for 𝜃1 =
(𝜃1𝑎, 𝜃1𝑏) in the combined data set. The asymptotic distribution for the MAP estimator for 𝜃2 can be
derived similarly.

From literature (Bernstein–Von Mises Theorem28) it is known that the MAP estimator is asymptoti-
cally Gaussian:

√
𝑛

((
�̂�1𝑎
�̂�1𝑏

)
−

(
𝜽1𝑎
𝜽1𝑏

))
� N

(
0, 𝐽−1

1
)
,

where “�” means convergence in distribution for the sample size to infinity. Further, 0 is a vector of
zeroes, and 𝐽−1

1 is the inverse Fisher information matrix for the combined populations from all centers.
The Fisher information matrix and its inverse have the form

𝐽1 =

(
𝐽1𝑎 𝐽1𝑎𝑏

(𝐽1𝑎𝑏)𝑡 𝐽1𝑏

)

(𝐽1)−1 =

(
𝐻 − 𝐻𝐽1𝑎𝑏 (𝐽1𝑏)−1

−(𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡𝐻 (𝐽1𝑏)−1 + (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡𝐻𝐽1𝑎𝑏 (𝐽1𝑏)−1

)
with 𝐻 = (𝐽1𝑎 − 𝐽1𝑎𝑏 (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡 )−1 and where 𝐽1𝑎 and 𝐽1𝑏 equal the expectation of the second
derivatives of − log{𝑝(D|𝜃)} with respect to 𝜃1𝑎 and 𝜃1𝑏 , evaluated at the true value of 𝜃1. The matrix
𝐽1𝑎𝑏 equals the expectation of the derivative of − log{𝑝(D|𝜃)} with respect to 𝜃1𝑎 and 𝜃1𝑏 , evaluated
at the true value of 𝜃1.
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In the following we rewrite the four submatrices of (𝐽1)−1 in terms of the Fisher information matrices
in the local centers. In the next appendices it will be proven that the asymptotic covariance matrices of
the BFI-estimators equal these expressions and the BFI estimators are therefore asymptotically efficient.

The data from the different centers are independent. Therefore, the Fisher information matrix can
be written as a weighted sum of the Fisher information matrices in the different centers. By the law of
large numbers

𝐽1 = lim
𝑛1 ,...,𝑛𝐿→∞

𝜕2

𝜕𝜽2
1

(
− 1
𝑛

log
{
𝑝(D|𝜽1)

})
= lim
𝑛1 ,...,𝑛𝐿→∞

𝜕2

𝜕𝜽2
1

(
−

𝐿∑
ℓ=1

1
𝑛

log
{
𝑝(Dℓ |𝜽1)

})

= lim
𝑛1 ,...,𝑛𝐿→∞

𝐿∑
ℓ=1

𝑛ℓ
𝑛

𝜕2

𝜕𝜽2
1

(
− 1
𝑛ℓ

log
{
𝑝(Dℓ |𝜽1)

})
=

𝐿∑
ℓ=1
𝑤ℓ𝐽1,ℓ

with 𝐽1,ℓ the Fisher information matrix for 𝜃1 in center ℓ and 𝑛ℓ/𝑛 → 𝑤ℓ if 𝑛ℓ , 𝑛 → ∞. So 𝐽1 =∑𝐿
ℓ=1 𝑤ℓ𝐽1,ℓ .
In the homogeneous setting all parameters are included in 𝜃1𝑎 (there is no parameter 𝜃1𝑏). Then, for

𝐼1,ℓ the Fisher information matrix for 𝜃1𝑎 in center ℓ, it follows that 𝐽1,ℓ = 𝐼1,ℓ = 𝐼1, ℓ = 1, 2, . . . , 𝐿 and

𝐽1 =
𝐿∑
ℓ=1
𝑤ℓ𝐽1,ℓ =

𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ = 𝐼1, (𝐽1)−1 =

( 𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ

)−1
= (𝐼1)−1. (A.13)

The heterogeneous setting is more complex. Suppose the parameter 𝜃1𝑎 is assumed to be same across
all centers, but 𝜃1𝑏 = (𝜃1𝑏,1, . . . , 𝜃1𝑏,𝐿) is a vector with center-specific parameters (the index refers to
the center). The log likelihood function for center ℓ is a function of 𝜃1𝑏,ℓ , but not of 𝜃1𝑏,𝑘 with 𝑘 ≠ ℓ.
Therefore, for the Fisher information matrix 𝐽1,ℓ for (𝜃1𝑎, 𝜃1𝑏) = (𝜃1𝑎, 𝜃1𝑏,1, . . . , 𝜃1𝑏,𝐿) in center ℓ,
the columns and rows that are related to 𝜃1𝑏,𝑘 , 𝑘 ≠ ℓ contain zeroes only. The matrix 𝐼1,ℓ is the Fisher
information matrix for (𝜃1𝑎, 𝜃1𝑏,ℓ) in center ℓ (so not of (𝜃1𝑎, 𝜃1𝑏) like 𝐽1,ℓ), with the blocks 𝐼1𝑎,ℓ , 𝐼1𝑏,ℓ
and 𝐼1𝑎𝑏,ℓ , defined in a similar way as in 𝐽1. Since 𝜃1𝑎 is the same across the centers, 𝐽1𝑎,ℓ = 𝐼1𝑎,ℓ .
However, 𝐽1𝑏,ℓ ≠ 𝐼1𝑏,ℓ , since 𝐽1𝑏,ℓ is the Fisher information matrix for 𝜃1𝑏 = (𝜃1𝑏,1, . . . , 𝜃1𝑏,𝐿) in
center ℓ, whereas 𝐼1𝑏,ℓ is the Fisher information matrix for 𝜃1𝑏,ℓ in center ℓ; the dimensions of the
matrices are different.

Since the parameter 𝜃1𝑏 is a vector with center-specific parameters, the matrix 𝐽1𝑏 has a block
diagonal matrix with center-specific blocks. Because of this form, it follows that

𝐽1𝑎𝑏 (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡 =
𝐿∑
ℓ=1
𝑤ℓ 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡 .

Since 𝐽1𝑎 =
∑𝐿
ℓ=1 𝑤ℓ𝐽1𝑎,ℓ =

∑𝐿
ℓ=1 𝑤ℓ 𝐼1𝑎,ℓ (the parameter vector 𝜃1𝑎 is shared across all centers),

𝐽1𝑎 − 𝐽1𝑎𝑏 (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡 =
𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

)
and the asymptotic covariance matrix for �̂�1𝑎 is equal to

(
𝐽1𝑎 − 𝐽1𝑎𝑏 (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡

)−1
=

( 𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

) )−1
. (A.14)
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The asymptotic covariance matrix for the MAP estimator �̂�1𝑏 equals:

(𝐽1𝑏)−1 + (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡
(
𝐽1𝑎 − 𝐽1𝑎𝑏 (𝐽1𝑏)−1(𝐽1𝑎𝑏)𝑡

)−1
𝐽1𝑎𝑏 (𝐽1𝑏)−1. (A.15)

For parameter 𝜃1𝑏,ℓ the asymptotic covariance matrix equals the ℓth diagonal block of this matrix. The
corresponding block of the matrix 𝐽1𝑏 equals 𝑤ℓ 𝐼1𝑏,ℓ . By the structure of 𝐽1𝑏 and the equation (A.14)
it follows that ℓ𝑡ℎ diagonal block of the matrix in (A.15) is given by

(
𝑤ℓ 𝐼1𝑏,ℓ

)−1 +
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘

(
𝐼1𝑎,𝑘 − 𝐼1𝑎𝑏,𝑘 (𝐼1𝑏,𝑘 )−1(𝐼1𝑎𝑏,𝑘

)
)𝑡
)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1
. (A.16)

Appendix III.B. Asymptotic distribution in homogeneous setting

Asymptotic distribution BFI estimator
In Appendix II.A we have derived an expression for the BFI estimator in the homogeneous setting. In
this setting, all parameters are included in the vector 𝜃1𝑎; there is no vector 𝜃1𝑏 . The BFI estimator
�̂�1,BFI is defined as

�̂�1,BFI =
(
Â1,BFI

)−1
𝐿∑
ℓ=1

Â1,ℓ �̂�1,ℓ with Â1,BFI =
𝐿∑
ℓ=1

Â1,ℓ + 𝚲1 −
𝐿∑
ℓ=1

𝚲1,ℓ .

Below, we derive the asymptotic distribution of
√
𝑛
(
�̂�1,BFI − 𝜃1

)
:

√
𝑛
(
�̂�1,BFI − 𝜽1

)
=
√
𝑛
{( 𝐿∑

ℓ=1
Â1,ℓ + 𝚲1 −

𝐿∑
ℓ=1

𝚲1,ℓ

)−1 ( 𝐿∑
ℓ=1

Â1,ℓ �̂�1,ℓ

)
− 𝜽1

}

=
√
𝑛
{( 𝐿∑

ℓ=1

1
𝑛

Â1,ℓ +
1
𝑛
𝚲1 −

𝐿∑
ℓ=1

1
𝑛
𝚲1,ℓ

)−1 ( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ �̂�1,ℓ

)
− 𝜽1

}
.

Because the term ( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ +
1
𝑛
𝚲1 −

𝐿∑
ℓ=1

1
𝑛
𝚲1,ℓ

)−1
=

( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ

)−1
+𝑂 𝑝

(1
𝑛

)
,

it holds that

√
𝑛
(
�̂�1,BFI − 𝜽1

)
=
√
𝑛
{( 𝐿∑

ℓ=1

1
𝑛

Â1,ℓ

)−1 ( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ �̂�1,ℓ

)
− 𝜽1

}
+𝑂 𝑝

( 1
√
𝑛

)

=
( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ

)−1 ( 𝐿∑
ℓ=1

1
𝑛

Â1,ℓ
√
𝑛
(
�̂�1,ℓ − 𝜽1

) )
+𝑂 𝑝

( 1
√
𝑛

)

=
( 𝐿∑
ℓ=1

𝑛ℓ
𝑛

1
𝑛ℓ

Â1,ℓ

)−1 ( 𝐿∑
ℓ=1

√
𝑛ℓ√
𝑛

1
𝑛ℓ

Â1,ℓ
√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

) )
+𝑂 𝑝

( 1
√
𝑛

)
.

Asymptotically, the MAP estimator and the maximum likelihood estimator are equivalent. It
follows that the MAP estimator in center ℓ, �̂�1,ℓ , is asymptotically normal28,29: √𝑛ℓ (�̂�1,ℓ − 𝜃1,ℓ) �
N(0, (𝐼1,ℓ)−1) for 𝐼1,ℓ the Fisher information matrix in center ℓ. Remember that Â1,ℓ is defined as the
second derivative of − log{𝑝(Dℓ |𝜃1)} evaluated at �̂�1,ℓ . If this second derivative is sufficiently smooth

https://doi.org/10.1017/rsm.2025.6 Published online by Cambridge University Press

https://doi.org/10.1017/rsm.2025.6


Research Synthesis Methods 419

near 𝜃1,ℓ , it follow by the law of large numbers, that 𝑛−1
ℓ Â1,ℓ converges in probability to 𝐼1,ℓ .28,29 By

Slutsky’s lemma, it follows that, for every center ℓ
1
𝑛ℓ

Â1,ℓ
√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
= 𝐼1,ℓ

√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
+ 𝑜𝑃 (1) � N

(
0, 𝐼1,ℓ

)
.

Since the data across the L centers are assumed to be independent, it follows that
𝐿∑
ℓ=1

√
𝑛ℓ√
𝑛

1
𝑛ℓ

Â1,ℓ
√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
=

𝐿∑
ℓ=1

√
𝑤ℓ 𝐼1,ℓ

√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
+ 𝑜𝑃 (1) � N

(
0,

𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ

)
.

Further, the term ( 𝐿∑
ℓ=1

𝑛ℓ
𝑛

1
𝑛ℓ

Â1,ℓ

)−1
=

( 𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ

)−1
+ 𝑜𝑝 (1).

Combining the results, yields

√
𝑛
(
�̂�1,BFI − 𝜽1

)
� N

(
0,

( 𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ

)−1)
.

The asymptotic covariance matrix equals 𝐽−1
1 as defined in (A.13), which equals the asymptotic covari-

ance matrix of the MAP estimator based on the combined data. The BFI estimator is asymptotically
efficient; no information is lost if the data from the centers can not be combined. Under homogeneity
the matrices 𝐼1,ℓ = 𝐼1 = 𝐽1, ℓ = 1, . . . , 𝐿, and because

∑𝐿
ℓ=1 𝑤ℓ = 1,

√
𝑛
(
�̂�1,BFI − 𝜽1

)
� N

(
0,

(
𝐼1

)−1
)
.

Further, we have seen that the BFI estimator

1
𝑛

Â1,BFI =
1
𝑛

𝐿∑
ℓ=1

Â1,ℓ +
1
𝑛
𝚲1 −

1
𝑛

𝐿∑
ℓ=1

𝚲1,ℓ

=
𝐿∑
ℓ=1

𝑛ℓ
𝑛

1
𝑛ℓ

Â1,ℓ + 𝑂 𝑝

(1
𝑛

)
=

𝐿∑
ℓ=1
𝑤ℓ 𝐼1,ℓ + 𝑜𝑝 (1),

converges in probability to
∑𝐿
ℓ=1 𝑤ℓ 𝐼1,ℓ .

If the number of centers L increases to infinity as well, but 𝐿 = 𝑜𝑝 (𝑛) (i.e., the number of centers is
smaller in rate than the total sample size), the asymptotic results remain valid, but the derivation needs
to be adjusted slightly.

Asymptotic distribution of the WAV and Single center estimators
Suppose the MAP estimator �̂�1,ℓ in center ℓ is used for estimating the parameter 𝜃1, then we obtain

√
𝑛
(
�̂�1,ℓ − 𝜽1

)
=

√
𝑛

√
𝑛ℓ

√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
� N

(
0,

(
𝑤ℓ 𝐼1,ℓ

)−1
)
,

if 𝑤ℓ > 0. That means that the single-center estimator is not optimal for estimating 𝜃1 unless 𝑤ℓ = 1
(there is only one center).

For the weighted average estimator
∑𝐿
ℓ=1

𝑛ℓ
𝑛 �̂�1,ℓ for estimating 𝜃1, we find

√
𝑛
( 𝐿∑
ℓ=1

𝑛ℓ
𝑛

�̂�1,ℓ − 𝜽1

)
=

𝐿∑
ℓ=1

𝑛ℓ
𝑛

√
𝑛
(
�̂�1,ℓ − 𝜽1

)
=

𝐿∑
ℓ=1

√
𝑛ℓ√
𝑛

√
𝑛ℓ

(
�̂�1,ℓ − 𝜽1

)
� N

(
0,

𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1,ℓ

)−1
)
,
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with, in the homogeneous setting 𝐼1,ℓ = 𝐼1, ℓ = 1, . . . , 𝐿

𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1,ℓ

)−1 = (𝐼1)−1 = (𝐽1)−1

as defined in (A.13). In the homogeneous setting, the weighted average estimator is asymptotically
efficient as well.

Appendix III.C. Asymptotic distribution of the BFI estimator in heterogeneous setting

Asymptotic distribution BFI estimator
Let Â1𝑎,ℓ and Â1𝑏,ℓ be the second derivatives of − log{𝑝ℓ (𝜃1 |Dℓ )} with respect to 𝜃1𝑎 and 𝜃1𝑏 ,
respectively, and let Â1𝑎𝑏,ℓ be the second derivative with respect to both 𝜃1𝑎 and 𝜃1𝑏 , all evaluated
at the MAP estimator �̂�1,ℓ . If these second derivatives are sufficiently smooth in the neighborhood of
𝜃1, it follows by the law of large numbers that

1
𝑛ℓ

Â1𝑎,ℓ → 𝐼1𝑎,ℓ
1
𝑛ℓ

Â1𝑏,ℓ → 𝐼1𝑏,ℓ
1
𝑛ℓ

Â1𝑎𝑏,ℓ → 𝐼1𝑎𝑏,ℓ ,

with the matrices 𝐼1𝑎,ℓ , 𝐼1𝑏,ℓ , and 𝐼1𝑎𝑏,ℓ for center ℓ.

Asymptotic behaviour of the BFI estimator for 𝜃1a
In Appendix II.B we computed that, under the assumption that Λ1𝑏ℓ = Λ1𝑏,ℓ , the BFI estimator for 𝜃1𝑎
is equal to:

�̂�1𝑎,BFI :=
( 𝐿∑
ℓ=1

(
Â1𝑎,ℓ − Â1𝑎𝑏,ℓ (Â1𝑏,ℓ )−1(Â1𝑎𝑏,ℓ )𝑡

)
+ 𝚲1𝑎 −

𝐿∑
ℓ=1

𝚲1𝑎,ℓ

)−1
×

𝐿∑
ℓ=1

(
Â1𝑎,ℓ − Â1𝑎𝑏,ℓ (Â1𝑏,ℓ)−1(Â1𝑎𝑏,ℓ )𝑡

)
�̂�1𝑎,ℓ . (A.17)

Define Γ̂ℓ := 𝑛−1
ℓ Â1𝑎,ℓ − 𝑛−1

ℓ Â1𝑎𝑏,ℓ (𝑛−1
ℓ Â1𝑏,ℓ )−1(𝑛−1

ℓ Â1𝑎𝑏,ℓ)𝑡 . Then,

�̂�1𝑎,BFI =
( 𝐿∑
ℓ=1

𝑛ℓ
𝑛

Γ̂ℓ +
1
𝑛
𝚲1𝑎 −

𝐿∑
ℓ=1

1
𝑛
𝚲1𝑎,ℓ

)−1 𝐿∑
ℓ=1

𝑛ℓ
𝑛

Γ̂ℓ �̂�1𝑎,ℓ . (A.18)

If the derivatives are sufficiently smooth, it follows by the law of large numbers, continu-
ous mapping theorem, and Slutsky’s lemma,28 that Γ̂−1

ℓ converges in probability to
(
𝐼1𝑎,ℓ −

𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡
)−1, which equals the left-upper block of the inverse of the Fisher information

matrix 𝐼1,ℓ in center ℓ. Now, based on similar calculations as in the homogeneous setting

√
𝑛
(
�̂�1𝑎,BFI − 𝜽1𝑎

)
� N

(
0,

( 𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

) )−1)
,

with the asymptotic covariance matrix equal to the asymptotic covariance matrix of the MAP estimator
based on all data, given in Equation (A.14). The BFI estimator �̂�1𝑎,BFI is asymptotically efficient for
estimating 𝜃1𝑎.

If 𝐼1𝑎,ℓ , 𝐼1𝑏,ℓ and 𝐼1𝑎𝑏,ℓ equal across the centers:

( 𝐿∑
ℓ=1
𝑤ℓ

{
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

})−1
=

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

)−1
.
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Asymptotic behaviour of the BFI estimator of 𝜃1b,ℓ
Under the assumption that 𝚲1𝑏ℓ = 𝚲1𝑏,ℓ and 𝑤ℓ > 0, the BFI estimator for 𝜃1𝑏,ℓ is given by

�̂�1𝑏,ℓ,BFI =
(
Â1𝑏,ℓ

)−1
[
Â1𝑏,ℓ �̂�1𝑏,ℓ +

(
Â1𝑎𝑏,ℓ

) 𝑡 (
�̂�1𝑎,ℓ − �̂�1𝑎,BFI

) ]
= �̂�1𝑏,ℓ +

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡 (

�̂�1𝑎,ℓ − �̂�1𝑎,BFI
)
.

Then,

√
𝑛
(
�̂�1𝑏,ℓ,BFI − 𝜽1𝑏,ℓ

)
=

√
𝑛
(
�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ

)
+

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡√
𝑛
(
�̂�1𝑎,ℓ − �̂�1𝑎,BFI

)
=

√
𝑛(�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) +

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
+

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡√
𝑛
(
𝜽1𝑎 − �̂�1𝑎,BFI

)
. (A.19)

We first leave out the last term and consider the asymptotic behaviour of

√
𝑛
(
�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ

)
+

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
.

As explained before, this term equals

√
𝑛
(
�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ

)
+

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
+ 𝑜𝑝 (1)

= 𝑤−1/2
ℓ

√
𝑛ℓ

(
�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ

)
+ 𝑤−1/2

ℓ

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡√
𝑛ℓ

(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
+ 𝑜𝑝 (1).

In center ℓ the MAP estimator �̂�1,ℓ is asymptotically normal (Bernstein–Von Mises Theorem28):

√
𝑛ℓ

((
�̂�1𝑎,ℓ
�̂�1𝑏,ℓ

)
−

(
𝜽1𝑎
𝜽1𝑏,ℓ

))
� N

(
0, (𝐼1,ℓ)−1) ,

Define the function 𝑔(𝜃1𝑎, 𝜃1𝑏,ℓ) = 𝜃1𝑏,ℓ +
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡
𝜃1𝑎. Then, by the continuous mapping

theorem

√
𝑛ℓ (�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) +

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡√
𝑛ℓ

(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
=

√
𝑛ℓ

(
𝑔

(
�̂�1𝑎,ℓ
�̂�1𝑏,ℓ

)
− 𝑔

(
𝜽1𝑎
𝜽1𝑏,ℓ

))

� N
(
0, 𝑔′(𝜽1𝑎, 𝜽1𝑏,ℓ)𝑡

(
𝐼1,ℓ

)−1
𝑔′(𝜽1𝑎, 𝜽1𝑏,ℓ)

)
with 𝑔′(𝜃1𝑎, 𝜃1𝑏,ℓ) the derivative of the function g in (𝜃1𝑎, 𝜃1𝑏,ℓ). Straightforward calculations show
that

𝑔′(𝜽1𝑎, 𝜽1𝑏,ℓ)𝑡
(
𝐼1,ℓ

)−1
𝑔′(𝜽1𝑎, 𝜽1𝑏,ℓ) = (𝐼1𝑏,ℓ)−1,

which equals the asymptotic covariance matrix of the Gaussian limit distribution for �̂�1𝑏,ℓ if the
parameter 𝜃1𝑎 is known. Apparently, leaving out the last term in equation (A.19), means that we assume
that the BFI estimator for 𝜃1𝑎 is (almost) equal to the true value 𝜃1𝑎, and thus that 𝜃1𝑎 is (almost) known.
The result is interesting; the asymptotic accuracy of the BFI estimator for 𝜃1𝑏,ℓ is increased, because
the parameter 𝜃1𝑎 can be estimated more accurately with the BFI estimator (and thus using information
from the other centers) compared to the situation in which 𝜃1𝑎 is estimated based on data from center ℓ
only.
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We go back to the expression in (A.19):
√
𝑛(�̂�1𝑏,ℓ,BFI − 𝜽1𝑏,ℓ) =

√
𝑛(�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) +

(
Â1𝑏,ℓ

)−1 (Â1𝑎𝑏,ℓ
) 𝑡√
𝑛
(
�̂�1𝑎,ℓ − �̂�1𝑎,BFI

)
=

√
𝑛(�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) −

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡×(( 𝐿∑
𝑘=1

𝑛𝑘
𝑛

Γ̂𝑘
)−1 𝐿∑

𝑘=1

𝑛𝑘
𝑛

Γ̂𝑘
√
𝑛
(
�̂�1𝑎,𝑘 − �̂�1𝑎,ℓ

))
+ 𝑜𝑃 (1)

=
√
𝑛(�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) −

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡×(( 𝐿∑
𝑘=1
𝑤𝑘 Γ𝑘

)−1 𝐿∑
𝑘=1,𝑘≠ℓ

𝑤𝑘 Γ𝑘
(√
𝑛(�̂�1𝑎,𝑘 − 𝜽1𝑎) −

√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎)

))
+ 𝑜𝑃 (1)

=
√
𝑛(�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ) +

√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎

) (
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘 Γ𝑘

)−1 𝐿∑
𝑘=1,𝑘≠ℓ

𝑤𝑘 Γ𝑘

−
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘 Γ𝑘

)−1 𝐿∑
𝑘=1,𝑘≠ℓ

𝑤𝑘 Γ𝑘
√
𝑛
(
�̂�1𝑎,𝑘 − 𝜽1𝑎

)
+ 𝑜𝑃 (1).

The asymptotic distribution can be obtained with the continuous mapping theorem and Slutky’s lemma
again. The third and last term depends on data from all centers except from center ℓ. Since the data
from the different centers are assumed to be independent, it is sufficient to show that the asymptotic
distributions of the sum of the first and second terms and of the third term are asymptotically normal
and next add the asymptotic mean (which are zero) and the variances. The asymptotic distribution of
the sum of the first and second term can obtained with the continuous mapping theorem, like before.
The third term is asymptotically normal:

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘 Γ𝑘

)−1 𝐿∑
𝑘=1,𝑘≠ℓ

√
𝑤𝑘 Γ𝑘

√
𝑛𝑘

(
�̂�1𝑎,𝑘 − 𝜽1𝑎

)
� N(0, Σ)

with

Σ =
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1 (∑
𝑘≠𝑙

𝑤𝑘Γ𝑘
) ( 𝐿∑

𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1

=
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘 − 𝑤ℓΓℓ

) ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1

=
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 (
𝐼 −

( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝑤ℓΓℓ

) ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1

=
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1

−
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝑤ℓΓℓ

( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1
.

If we sum up the variances of the asymptotic zero mean Gaussian distributions of all terms, we obtain

(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘Γ𝑘

)−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1 +
(
𝑤ℓ 𝐼1𝑏,ℓ

)−1
.
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So,
√
𝑛
(
�̂�1𝑏,ℓ,BFI − 𝜽1𝑏,ℓ

)
�

N
(
0,

(
𝑤ℓ 𝐼1𝑏,ℓ

)−1 +
(
𝐼1𝑏,ℓ

)−1 (
𝐼1𝑎𝑏,ℓ

) 𝑡 ( 𝐿∑
𝑘=1
𝑤𝑘

(
𝐼1𝑎,𝑘 − 𝐼1𝑎𝑏,𝑘 (𝐼1𝑏,𝑘 )−1(𝐼1𝑎𝑏,𝑘 )𝑡

) )−1
𝐼1𝑎𝑏,ℓ

(
𝐼1𝑏,ℓ

)−1
)
.

The BFI estimator follows, asymptotically, the same distribution as the MAP estimator based on the
combined data, see Equation (A.16), and is asymptotically efficient. If 𝚲1𝑏ℓ ≠ 𝚲1𝑏,ℓ the asymptotic
distribution of �̂�1𝑏,ℓ,BFI will not change, because 𝑛−1𝚲1𝑏ℓ and 𝑛−1𝚲1𝑏,ℓ converge to zero.

Like in the homogeneous setting, it can be directly seen that the BFI estimator 𝑛−1Â1𝑎,BFI converges
in probability to

∑𝐿
ℓ=1 𝑤ℓ 𝐼1𝑎,ℓ . Similarly, the BFI estimator 𝑛−1Â1𝑏,ℓ,BFI converges in probability to

𝑤ℓ 𝐼1𝑏,ℓ , and 𝑛−1Â1𝑎𝑏,ℓ,BFI to 𝑤ℓ 𝐼1𝑎𝑏,ℓ .

Asymptotic distribution of the WAV and single center estimators
If the parameter 𝜃1𝑎 is estimated by the MAP estimator from center ℓ, �̂�1𝑎,ℓ , the asymptotic distribution
equals

√
𝑛
(
�̂�1𝑎,ℓ − 𝜽1𝑎

)
� N

(
0, 𝑤−1

ℓ

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

)−1)
.

If the weighted average estimator
∑𝐿
ℓ=1

𝑛ℓ
𝑛 �̂�1𝑎,ℓ is used, the asymptotic distribution equals, like before

√
𝑛
( 𝐿∑
ℓ=1

𝑛ℓ
𝑛

�̂�1𝑎,ℓ − 𝜽1𝑎

)
� N

(
0,

𝐿∑
ℓ=1
𝑤ℓ

(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

)−1)
.

Asymptotically, both estimators are not efficient, unless 𝐼1,ℓ = 𝐼1, ℓ = 1, . . . , 𝐿. In that case the weighted
average estimator is asymptotically efficient as well.

If we estimate 𝜃1𝑏,ℓ by its MAP estimator in the corresponding center, the asymptotic distribution
equals:

√
𝑛
(
�̂�1𝑏,ℓ − 𝜽1𝑏,ℓ

)
�

N
(
0, 𝑤−1

ℓ

(
𝐼−1
1𝑏,ℓ +

(
𝐼1𝑏,ℓ

)−1 (𝐼1𝑎𝑏,ℓ)𝑡
(
𝐼1𝑎,ℓ − 𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1(𝐼1𝑎𝑏,ℓ)𝑡

)−1
𝐼1𝑎𝑏,ℓ (𝐼1𝑏,ℓ)−1

))
.

Since 𝜃1𝑏,ℓ is center-specific, the WAV estimator equals the single center estimator. The estimator
(�̂�1𝑎,ℓ , �̂�1𝑏,ℓ) is based on data from center ℓ only, and does not use any information from the other
centers for estimating the parameter 𝜃1𝑎. Using information from the other centers, 𝜃1𝑎 is estimated
more accurately and improves the estimation of 𝜃1𝑏 . That is why the BFI estimator �̂�1𝑏,ℓ,BFI is more
accurate than the weighted average estimator.

The asymptotic distribution of the BFI estimators for clustered data (Appendix II.C) can be derived
in a similar way, but this is more complicated due to the complex expressions of these estimators.
However, since the BFI estimators in the homogeneous and the heterogeneous case with center-specific
parameters have shown to be asymptotically efficient and these settings are special cases of the one with
clustered data, it is expected that the BFI estimators for the clustered data are asymptotically efficient
as well.
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