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Abstract
Much research shows that the ratings that critics, judges, and consumers assign to wines
are heteroscedastic. A rating observed is one draw from a latent distribution that is wine-
and judge-specific. Estimating the shape of a rating’s distribution by minimizing a sum of
cross entropies has been proposed and tested. This article proposes a method of improving
the accuracy of that estimate by using information about the context of a wine competition
or cross-section ratings data. Tests using the distributions implied by 90 blind triplicate
ratings show that the sum of squared errors for the solution using context or cross-section
information is 50% more accurate than not using such information and over 99% more
accurate than ignoring the uncertainty about a rating.
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I Introduction
A difficulty in wine-ratings-related research, and in calculating consensus among
judges, is that each rating is one observation drawn from a latent probability distri-
bution that is judge- and wine-specific. One draw from a latent distribution is a tiny
sample size so expert and consumer interpretations of wine ratings, analyses of rat-
ings, predictions of ratings, and calculations of consensus among judges are infused
with uncertainty that is difficult to quantify. Bodington (2022a) proposed to quantify
that uncertainty using amaximum information entropy estimate of the latent distribu-
tion of a wine rating. Tests using ratings assigned to 1,599 blind triplicates assessed by
judges at the California State Fair (CSF) Commercial Wine Competition and 30 blind
triplicates assessed by judges at a tasting in Stellenbosch reported by Cicchetti (2014)
showed that the result is much more accurate than ignoring the uncertainty about a
rating.

This article shows that using information about context or cross-section ratings data
improves the accuracy of an estimate of themaximumentropy distribution of the rating
that a judge assigns to a wine. Tests using the Stellenbosch blind triplicates show that
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Figure 1. Summary of noise and biases that affect blind wine ratings.

the resulting distribution has the shape, mean, and standard deviation (SD) that are
similar to the empirical distribution implied by blind triplicate ratings.

Section II of this short article presents a summary of the literature concerning the
randomnature of wine ratings and amaximumentropy estimate of the distribution of a
rating. Section III presents amodification of that estimate to include information about
context or cross-section data.Thatmodification is tested in Section IV, and conclusions
follow in Section V. The ratings data and MATLAB code concerning results reported
in this article are available on request.

II Background
Althoughwine ratings are notmerely random, evidence that ratings are heteroscedastic
is abundant in wine-related academic literature and in the wine-trade press. Bodington
(2022b) cites four experiments with blind replicates, three texts, andmore than 30 arti-
cles showing that wine- and judge-specific heteroscedasticity is caused by the factors
in Figure 1. And the uncertain nature of wine ratings is not unique. Kahneman et al.
(2021, p. 80–86, 215–258) describe variance in wine ratings and other areas of human
judgment including physicians’ diagnoses, radiologists’ assessments of x-rays, foren-
sic experts’ fingerprint identifications, and judges’ sentencings of criminals. Recently,
Barberá et al. (2023, p. 123) commented that wine rating procedures impose demands
on experts that “may result in poor-quality expressions of actual opinions.”

A difficulty with the heteroscedasticity of wine ratings is that analysis of ratings is
an inverse and ill posed problem. Inverse because parameters that describe the shape
of the latent distribution of a judge’s potential ratings on a wine must be inferred from
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ratings observed. Ill posed because, except in the rare case of replicates, only one draw
from the latent distribution is observed.With a sample size of one, there are not enough
observations to statistically identify a unique distribution. Building on information
theory developed by Shannon (1948), Jaynes (1957, p. 621–623) proposed that inverse
and ill posed problems could be solved by maximizing information entropy subject
to constraints that enforce what little may be known about the data. See numerous
applications of that notion in Golan et al. (1996).

Bodington (2022a) employed Jaynes’ notion to estimate the latent distribution of
a rating by minimizing the sum of cross entropies shown in Equations (1) and (2).
Any rating (x) can be assigned to wine “i” by judge “j” that is within a bounded set of
ordered ratings (min ≤ xij ≤ max). The rating observed, or the set of ratings observed
if there are replicates in a flight, is denoted xoij. Cross entropy (I) is the informational
difference between two bounded and discrete distributions (estimate p(xij) and tar-
get q(xij)) defined in Equation (1). The sample-size-weighted (nij) minimum of the
difference between an unknown distribution ( ̂p) and a uniform random distribution
(u), plus the difference between that same unknown distribution ̂p and the distribution
that is observed (q|x0

ij), is defined in Equation (2). Using Stellenbosch blind triplicate
data published by Cicchetti (2014) and CSF blind triplicate data provided by Robert
Hodgson, Bodington (2024) showed that the solution to Equation (2) has less than
10% of the error made by the common practice of ignoring the uncertainty about a
rating.

I (p, q) = − ∑
max

min
q (xij) ln (p (xij)) (1)

arg [ ̂p] = argmin [( 1
1 + nij

) ⋅ I (u, ̂p) + (
nij

1 + nij
) ⋅ I (q|x0

ij, ̂p) ] (2)

The information inputs to Equations (1) and (2) are the rating that a judge is
observed to assign to a wine (x0

ij) and the categories in an ordered rating system (min to
max). But that is too narrow a view of what may be known. This article proposes in the
next section to reconsider the random distribution u and then obtain a more precise
estimate of the latent distribution of an xoij using context or cross-section data.

III. More information
We do have information in addition to the observed value of x0

ij and the categories
in the rating system. That information includes the context of a tasting, and it may
include cross-section data when panels of judges assess flights of wines. Context
and cross-section data contain information that may enable a more precise, lower
entropy, estimate of the distribution of u in Equation (2). From here forward, that
more-informed distribution will be denoted as u′.

a. Context information
Information about the context for a rating may include the name and reputation of a
wine critic or a sponsoring organization and its judges. For example, the CSF judges
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Table 1. Distributions of CSF triplicates that include a specified ordinal category

Ordinal Category rank

Category n Rank Mean SD

Gold+ 10 1 3.3 2.6

Gold 486 2 5.0 3.1

Gold− 200 3 5.4 2.6

Silver+ 142 4 5.9 2.3

Silver 557 5 6.0 2.3

Silver− 301 6 6.4 2.2

Bronze+ 553 7 6.7 2.2

Bronze 708 8 6.9 2.3

Bronze− 160 9 7.9 1.9

No award 736 10 7.6 2.8

All 1,599 – 6.5 2.2

are trained and tested, and historical CSF data provide information about the past dis-
persions of judges’ ratings. The means and SDs of the ratings that judges assigned to
CSF blind triplicates appear in Table 1. For example, the pool of 557 triplicates that
included a gold medal has a mean rank of 5.0 and an SD of 3.1 ranks.

The data in Table 1 yield an estimate of u′. For example, using (x0
ij = Gold) ∼

u′ (5.0, 3.2) yields a solution to Equation (2) that is consistent with historical CSF
data. Whatever information may be available and employed, including information
about the expertise of a particular judge, u′ is an explicit and flexible description of
that information’s analytical impact on the estimated distribution of a rating.

b. Cross-section information
When a panel of judges assesses a flight ofwines, the result is cross-section information.
For every rating x0

ij, x0
i is the vector of ratings assigned to wine “i” by all the judges, x0

j is
the vector of ratings assigned to all the wines by judge “j,” and x0 is the union of ratings
assigned by all judges to all wines.

Weighting survey data to calculate estimates that are representative of a target pop-
ulation is a common practice. See, for example, Valliant and Dever (2018) and Mercer
et al. (2018). The target in this application is a maximum entropy estimate of the dis-
tribution of the ratings that one judge assigns to one wine (u′

ij) that, following Jaynes,
is consistent with known data (x0). A start on an estimate of u′

ij is the distribution
of the ratings assigned by all the judges to the subject wine (d|x0

i ). But the factors
in Figure 1, and Berg et al. (2022), show that some pairs of judges’ ratings are more
highly correlated than others, some judge’s ratings are uncorrelated with any other
judges, and some judges’ ratings are indistinguishable from randomassignments.Thus,
some judges within d|x0

i may not be representative of the target u′
ij. To evaluate a

survey of demographic and political views, Mercer et al. (2018, p. 4) dealt with unrep-
resentative observations by assessing the similarity of actual survey demographics to
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360 Jeffrey Bodington

target demographics, used the most similar observations, and “discarded” the rest. An
arithmetical variation of that approach is employed in this effort to estimate u′

ij. The
information, if any, in the set of ratings assigned by judge k (x0

k) about x
0
j is captured by

regressing x0
k on x0

j , using the regression parameters to estimate ̂x0
ij|k, and then weight-

ing the observed distribution of ̂x0
ijk (d| ̂x0

ij|k) by the coefficient of determination (R2
j|k)

for the respective regression. In Equation (3A), that approach has logical boundary
properties. If the regression fails to capture any explanatory information (R2

j|k = 0),
the weight applied to d| ̂x0

ij|k is zero. If the regression does capture explanatory informa-
tion (R2

j|k > 0), the weighting tends toward unity. That regression and weighting have
the effect of making u′

ij more representative of the target judge than merely d|x0
i .

Further support for the transform in Equation (3A) is a corollary to the defini-
tion of an intelligent machine set forth by Alan Turing. Turing (1950) proposed that a
computer can be described as an intelligent machine if, in a typewritten conversation,
a computer can imitate a human so well that a computer’s and a human’s responses
are indistinguishable. A corollary to that test suggested here is that if the ratings a
wine judge assigns are indistinguishable from random ratings, then that judge can be
described as one who assigns ratings randomly. This article takes the position that a
judge k who assigns ratings randomly should be ignored and, for R2

j|k = 0, such ratings
are disregarded in Equation (3A). In addition, Equation (3A) has the essential asymp-
totic properties that u′

ij = u for judge sample size nj = 0, that u′
ij tends to the weighted

sum of d| ̂x0
ij|k as the sum of information ∑J

k=1 R
2
j|k → ∞, and through Equation (3B),

that ̂pij → d|x0
ij as the replicate sample size nij → ∞.

u′
ij = ( 1

1 + ∑J
k=1 R

2
j|k

) ⋅ u + (
∑J

k=1 R
2
j|k

1 + ∑J
k=1 R

2
j|k

) ⋅ ( 1
∑J

k=1 R
2
j|k

) ⋅
J

∑
k=1

(R2
j|k ⋅ d| ̂x0

ij|k)

= ( 1
1 + ∑J

k=1 R
2
j|k

) ⋅ (u +
J

∑
k=1

(R2
j|k ⋅ d| ̂x0

ij|k)) (3A)

u′
ij = ( 1

1 + ∑J
k=1 R

2
j|k

) ⋅ u + (
∑J

k=1 R
2
j|k

1 + ∑J
k=1 R

2
j|k

) ⋅ ( 1
∑J

k=1 R
2
j|k

) ⋅
J

∑
k=1

(R2
j|k ⋅ d| ̂x0

ij|k)

(3B)
Standing back, the goal of the solution to Equation (2) was to obtain an estimate

of the distribution of x0
ij that is more accurate than ignoring uncertainty about x0

ij. The
goal of Equation (3) is to improve the accuracy of Equation (2) by considering what
information may be within cross-section ratings data about the latent distribution of
x0
ij. The results for tests of those objectives appear in Section VI.

VI. Tests
This section presents tests of the relative accuracy of ignoring uncertainty and the
solutions to Equations (2) and (3).

Cicchetti (2014) published the scores assigned to two flights of eight wines each at a
tasting in Stellenbosch, South Africa. Each flight was assessed by 15 judges, each judge
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Figure 2. Example of the “true,” observed, Equation (2), and Equation (3) distributions.

assigned a score within the range of 50 to 100 to each wine, and each flight contained
a set of blind triplicates. Although it probably understates true variance, assume here
that the distribution of the triplicate results for each judge describes the “true” distri-
bution of that judge’s ratings on a triplicate wine. But suppose that wine did not appear
in triplicate and that only one of the scores was observed (x0

ij where nij = 1). In that
case, ignoring the uncertainty about a rating is equivalent to assuming that x0

ij has a
degenerate or one-hot distribution. A measure of the error made when assuming the
rating has a one-hot distribution is the difference between the “true” distribution and
the one-hot distribution. Likewise, a measure of the error made when using the solu-
tion to Equation (2) or (3) is the difference between the “true” distribution and the
distribution implied by (2) or (3).

A visual explanation appears in Figure 2. Stellenbosch judge #2 assigned ratings
of 70, 75, and 80 to a blind triplicate of Pinotage. The “true” distribution implied by
those ratings is shown as the solid line in Figure 2. Suppose only a rating of 70 had
been observed. Ignoring uncertainty about that rating yields a one-hot distribution for
which the probability of observing 70 is 1.00 rather than approximately 0.022 according
to the “true” distribution. The solution to Equation (2) is less inaccurate but still much
broader than ‘true.” Adding the information within cross-section data, the solution to
Equation (3) moves substantially toward the “true” distribution.
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362 Jeffrey Bodington

Figure 3. Sums of squared errors for Stellenbosch blind triplicate data, 90 observations.

For all 90 Stellenbosch blind triplicates, the differences between the distributions
are quantified as sums of squared errors (SSEs) and shown in Figure 3. The error if
uncertainty about a rating is ignored, the SSE is the difference between the “true” dis-
tribution and a one-hot distribution. For the solutions to Equations (2) and (3), the
SSE is the difference between the “true” distribution and the distribution implied by
the solution to either Equation (2) or (3).

The striking implication of Figure 3 is that the solutions to Equations (2) and (3) are
substantially more accurate than the common practice of ignoring uncertainty about a
rating by assuming a one-hot distribution. And the solution to Equation (3) is usually
more accurate than the solution to Equation (2). In Figure 3, almost every dot moves
down to a lower-error asterisk.

Additional test results appear in Table 2. The sample mean and SD of the
Stellenbosch blind triplicates are, respectively, 78.4 and 4.7. The “true” distributions
estimated using Equation (3) have a mean and SD of, respectively, 78.0 and 7.1.
Ignoring the uncertainty about a rating yields an SSE of 0.971 and that is near
the theoretical maximum of 0.980.1 The solution to Equation (2) has a lower-than-
true mean, a higher-than-true SD, and a much lower average SSE of 0.006. It’s

1MaximumSSE is the difference between a one-hot distribution and a uniform randomdistribution. For a
score range of 50 through 100 thus 51 potential ratings, 50*((1/51) − 0.0)2)+1*((1/51) − 1.0)2 = 0.980.
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Table 2. Summary of errors in estimates of “true” distributions for Stellenbosch blind triplicates

Probability mass function, p (x0
ij)

Average error in estimate of “true,” SSE
Mean and SD of estimates, 𝜇 = 78.4and
𝜎 = 4.7

p (x0
ij) = “true” distribution of blind triplicate SSE = 0

Sample: 𝜇 = 78.4 and 𝜎 = 4.7
Equation (3): 𝜇 = 78.0 and 𝜎 = 7.1

p (x0
ij) = 1, ignore uncertainty about xoij SSE = 0.971, see dispersion in Figure 3.

𝜇 = 78.4 and 𝜎 ≡ 0

p (x0
ij) = f (x0

ij, u), solution to Equation (2) SSE = 0.006 see dispersion in Figure 3.
𝜇 = 76.3 and 𝜎 = 11.5

p (x0
ij) = (x0

ij, x0, u), solution to Equation (3) SSE = 0.003, see dispersion in Figure 3.
𝜇 = 77.8 and 𝜎 = 6.3

(1 − (0.006/0.971)) = 99% more accurate than ignoring uncertainty, but the SD indi-
cates that the distributions are too broad. The solution to Equation (3) has a more
accurate mean and SD, and the SD is within the range of the SD estimates for the “true”
distribution. And it’s (1 − (0.003/0.006)) = 50% more accurate than the solution to
Equation (2).

V. Conclusions and discussion
Solutions to Equations (2) and (3) show that context and cross-section data can
improve analyses of wine ratings. From Table 1, the reduction in error due considering
cross-section information compared to ignoring uncertainty is approximately 99%.

Regarding interpretation, the maximum entropy estimates are not assertions that
judges’ ratings are merely random. The distributions are assertions that they are the
most precise distributions that can be supported by evident knowledge about the rat-
ings observed, context, judges, and wines. They are maximum humility estimates of
what is known about a rating, they don’t assume the precision that is implicit when
uncertainty is ignored.

With an estimate of the distribution of each rating in hand, a next step is to use
those distributions to calculate a consensus among judges about a wine and/or a wine’s
ranking among otherwines.Themaximumentropy distributions could be employed to
apply Cochran (1937)’s inverse variance and to calculate expectations of sums, ranks,
Borda counts, Shapley values, the normalized aggregates proposed by Gergaud et al.
(2021), and the categories proposed by De Nicolò (2023). Analysis of those and other
applications, and replication of these results, are suggested here as future research.

Acknowledgments. The author thanks an anonymous reviewer and the attendees at the 16th Annual
Conference of the Association of American Wine Economists in Lausanne, Switzerland, for insightful and
constructive comments.
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