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SUMMARY

An analyss 1s made of the free and forced oscillations of a single degree
of freedom system damped by a multi-step friction damper It 1s shown
that 1n free oscillation the decay 1s similar to that obtained with viscous
damping, but 1n this case the frequency increases as the friction increases

In forced oscillation the exact solutton 1s little different from that
obtamned using an equivalent viscous damper if the ratio (natural frequency/
forcing frequency) 1s less than 1 37  For higher values the mass will remain
at rest during some part of the cycle if the friction 1s large enough , when
the above ratio 1s 3, 5, 7, etc, “ stops > occur, however small the friction
The variation of phase angle 1s unusual , under certamn conditions the
displacement leads the exciting force

On the basis of the results a criterion for the use of the equivalent
viscous damper 1n ground resonance calculations 1s suggested

(1) INTRODUCTION

On some helicopters dampers are fitted to the drag hinges which rely
upon shding friction, rather than flud wiscosity, to provide for energy
absorption The primary purpose of these dampers 1s to prevent ground
resonance, but 1t has not so far been possible to represent their characteristics
exactly 1n an analytical solution of the ground resonance problem Instead
1t 1s usual to assume that the friction damper can be replaced by an equivalent
viscous damper, z ¢, a viscous damper which absorbs the same energy per
cycle This assumption does make the analysis tractable, but since the
equivalent damping coeffictent 1s 1n general a function of the (unknown)
frequency, rotational speed and amplitude, some process of iteration 1s
necessary and the labour of calculation 1s long  Also, sice no exact solution
1s available for comparison, 1t 1s not possible to be sure that the answers
obtamned are correct either n detail or in principle It 1s, therefore, essential
to know under what conditions the assumption of viscous damping 1s valid
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As a preliminary approach, a study has been made of the free and forced
oscillations of a mass-spring system restramned by a multu-step friction
damper This 15 not, of course, a solution to the ground resonance problem,
but 1t 15 sufficient to show when and where errors might arise from the use
of the equivalent viscous damper It also applies directly to the problem
of the blade motion 1n the drag plane which occurs in forward flight

The calculation of the free oscillations of a mass-spring system with
Coulomb damping 1s well known and 1s discussed 1n several text-books on
vibration!:2  The calculation of the forced oscillations 1n that case 1s possible
under certain conditions, but the method of solution 1s less well known
This was first given by Den Hartog® , the results are summarised 1n his
book on Mechanical Vibrations* The method 1s to look for those solutions
which, when the steady state oscillation has been reached, have the same
period as the exciting force It 1s necessary to introduce a phase difference
between the peaks of the displacement and the excrting force and 1t 1s assumed
that a transient oscillation occurs at the instants when the velocity changes
sign  The solution 1s valid so long as there are no “ stops > , these occur
whenever, at the instant of coming to rest, the friction force exceeds the resul-
tant of the spring and exciting forces

An alternative approach has been described by Davidson®, but this
would seem to be mn error This assumption 1s that the (discontinuous)
variation of friction force with velocity can be represented by a Fourier
series having the same pertod as the exciting force The analysis 1s then
simple, but 1t leads to the curious result that friction has no influence on
the amplitude of motion unless viscous damping 1s also present  The fault
arises from the Fourier representation of the friction , on this basis the
friction 1s zero when the velocity 1s zero whereas 1 fact a true discontinuity
does occur and the friction may lie anywhere between zero and the Iimiting
value Numerical methods can, of course, be used and a very ingenious
semi-graphical technique, due to Meissner, has been used This method,
which 1s not widely known 1 this country, has been described by Kamke®

In this paper Den Hartog’s method 1s used In order to obtamn an
analytic solution 1t 1s necessary to assume that the friction force varies
Iimearly with amplitude , 1n other words the damper 15 assumed to have a
large number of small steps  If the number of steps 1s small, the analytical
approach 1s not convenient and either a graphical method or some type of
automatic computer must be used

(2) NortaTiON

M mass

K spring stiffness

P exciting force

E friction force

X displacement

X displacement at which last velocity sign change
occurred

t ume

k slope of friction force/displacement line

wy? K/M

f k/K
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w? (K 4 K)/M

a f/(1 + 5

A, B arbitrary constants

X mitial displacement

X, displacement after first half-cycle of free oscillation
a Py,/K

] phase angle

P (circular) frequency of exciting force
B awn?/(w? — p?)

n wlp

B equivalent viscous damping coefficient
[A] amplitude of “ equivalent > oscillation

(3) THEORY

General Fig 1 shows a mass M restraimned by a spring of stiffness K
and acted upon by an exciting force P and a friction force F The differential
equation of motion 1s then

Md%/di? + Ka =P —F 1

The variation of F with displacement 1s shown schematically in Fig 2a and
an approximate representation assumnng that the number of steps 1s large
1s shown in Fig 2b  Thus representation was first suggested by C H Jones?
as a simple means of calculating the equivalent viscous damper

At the pownt A, where the displacement 1s x,, the velocity changes sign
and the friction drops abruptly to zero at B As the mass M returns towards
1its mean position (0) the friction increases linearly until the mass again
comes to rest at C  If the velocity changes sign here then the force drops
again to zero (D) and increases once more as the mass moves towards O
The direction of F 1s always such as to oppose the motion

3L

4 k p
QN\NNJ\NN‘N\J M
P77 Fig 1
A
—
D lee— x
o i -
Actual variation of Cc
friction with displacement Assumed variation of
friction with displacement
Fig 2a Fig 2b
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Thus we may represent F analytically by a relation of the form
F = k(x £ ) 2

where k 1s the slope of the force/displacement line and x, 1s the displacement
at which the velocity last changed sign The positive sign 1s taken 1if the
velocity 1s positive , the negative sign 1s taken if the velocity 1s negative
With this choice of signs x, 1s always reckoned positive (Note that there
1s a difference between points (or instants) at which the mass comes to rest
and ponts at which 1ts velocity changes sign , 1t 1s possible for the mass to
come to rest mstantaneously and then to move on 1n the same direction )

Substituting (2) 1n (1) we get

Md%/de + (K + K)x = P - ko, (i . ) 3)

Free Oscillations  In this case P = 0 and (3) becomes

2. 11,2 . 4+ x—ve
MdZ%/de + (K + K)x = - kg, (_ i ve) @)
It will be seen that one effect of this type of friction 1s to mcrease the effective
stffness Equation (4) 1s very similar to that for the free oscillations of a
mass-spring system with Coulomb damping, but there 15 the difference that
the “ constant > term on the right hand side changes at the end of each

half-cycle
If we put K/M = w2 k/K = f then (4) becomes
X + w’x = 4+ fo,*xg, —x+ve) (5)
where dots denote differentiation with respect to time
The solutton of (5) 1s
+ x —ve
X = A cos wt + B s wt 4 ax, ‘ ) (6)
— X 1 V¢

At t = 0 let the mass be displaced to X, and then be released , if the
velocity 1s imtially zero the displacement 1s given by

x = (1 — &)X, cos wt + aX, )

The positive sign 1s taken because the mass moves towards the centre of
oscillation from a positive displacement

Equation (7) represents an oscillation of amphtude [(1 — a)X,] about
a pomnt which 1s displaced aX, from the origin , this oscillation continues
until x next changes sign at the end of the first half cycle, 1 e , when t = 7/w
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At thus instant the displacement 1s
— Xyl —2a) = — X, (say) (8)

Then during the next half-cycle when the velocity 1s positive the
displacement 1s given by

x = (1 — )X, cos wt — aX; )
At the second stopping wnstant (t = 27/w) the displacement 1s
Xy(1 — 2a) = X(1 — 20a)? (10)

Thus at the end of one cycle the amphitude has decreased by a factor
of (1 —2a)®> But

a=f/1 +f

and therefore at the end of the first cycle the displacement 1s
1 —HXo/(1 + £

From this pomnt the motion follows the same pattern (see Fig 3) At
the end of each half cycle the displacement 1s reduced by a factor (1 — f)/
(1 4+ f), ze, the successive peak displacements on any one side are m a
geometric progression of common ratto (1 — £)2/(1 + )2  The envelope of
the peaks 1s simular to that obtamned with viscous damping, but there the

T

X

N i

T v == o ————

e — -_——— =)

X;

Mode of free osclllation, X=0 2
Fig 3

peaks become more and more widely spaced as the damping increases until,
when the critical damping 1s reached, the oscillation degenerates mto a
subsidence  On the other hand, with multi-step friction damping, the effec-
tive stiffness increases and the peaks move closer together as the friction
increases It will be seen that the mass never actually comes to rest, but
that the amplitude decays until 1t becomes imperceptible These results
hold good provided that f < 10, z e, the “ stiffness > of the damper must
be less than the spring stiffness If the two stiffnesses are equal then the
mass 1s 1n neutral equilibrium If the damper “ suffness” exceeds the
spring stiffness no free oscillation 1s possible 1n one degree of freedom In
the absence of mechanical springing, this state of affairs will always occur
on a helicopter rotor at a sufficiently low rotational speed
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Provided that f « 1, there 1s some simiarity between the above results
and those given by Bishop® for the case of “ hysteretic” damping In fact
1t can be shown (see below, Section (4)—The Equivalent Viscous Damger)
that the equivalent viscous damper for a multi-step damper 1s of the * hyster-
etic ” type At one time 1t was thought that the type of damping represented
by Fig 2b might in some cases be a useful alternative to “ hysteretic ”
damping since the analysis 1s not complicated and there 1s no difficulty 1n
defining the frequency of oscillation, but unfortunately any advantage which
there may be does not extend to forced oscillations

Forced Oscillations  As 1n the case of viscous damping there 1s a phase
difference between the exciting force and the displacement It 1s convement
to mclude this phase difference 1n the expression for the exciting force
rather than 1n that for the motion, ¢ ¢, we put

P = P, cos(pt + ¢) = aw,? cos(pt + ¢) (11)
where a = Py/K (12)

and ¢ 1s the (as yet unknown) phase argle

Equation (1) then tecomes

X + wix = aw,? cos(pt + ¢) =+ foo, %, (+ ; o X:) (13)
- N
The solution of (13) 1s
x = A cos wt + B sin wt + B cos(pt + ¢) -+ axq, (i i : z:> (14)
where = aw}/(w? —p?) @ #p (15)

and A and B are arbitrary constants

Now when the forced motion first begins there will be a transient (free)
oscillation which will ultimately decay, leaving a steady oscillatton The
form of this transient depends only on the mitial conditions and 1t can be
suppressed altogether , but this does not mean that the  free » oscillation
terms 1n (14) are completely absent In fact they must be present since
each time the velocity changes sign the friction force 1s abruptly removed
and there 1s a discontinuity 1n the acceleration  Therefore we must assume
that the ultimate steady oscillation 1s made up partly from the free and
partly from the forced oscillation terms in (14)

In addition to the four unknowns A, B, ¢, x;, (14) contains an ‘‘ un-
certainty,” since either the positive or negative sign may be taken To
elminate thss, 1t 15 necessary to assume that the period of oscillation 1s the
same as that of the exciting force, 1 e, the overall period of (14) 1s 27/p
So far 1t has not been possible to prove that this 1s the only possible period,
1n fact when “ stops > occur 1t cannot be so, but for motions without stops
there 1s no reason to assume that 1t does not hold
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The instant at which the starting transient may be assumed to have
vanished 1s not known, but since the oscillation after that time 1s continuous
and steady, we may measure time from any instant we choose  This provides
a means of determining ¢ We therefore assume that when t = 0, x = x,,
x = 0,1 ¢, the orign 1s taken at an instant when the amplitude 15 a maximum
If the oscillation 1s steady and of constant amplitude, when t = #/p, x =0
and x = —x, By imposing these four conditions we are defiming a steady
oscillation as one in which the displacements and velocities at the starting
mstant are the exact reversals of those at the stopping mstant With this
defimition we need consider the motion in one half-cycle only, 7¢, 1n the
mterval 0 <<t < #/p

To obtamm A, B, ¢ and x5 , whent =0 put x = x¢, x =0

te, Xy = A + fcos ¢ + axy (16)
0 =wB—ppBsing (17
andwhen t =a/p putx = — Xy t = 7/p
1e, —x°= A cosnr + Bsmnnz—pcos¢ + ax, (18)
= — wA sin n7 -+ B cos nm +pPB sm ¢ (19)
where n = w/p (20)

From (16)—(19) we get

A = —xp @1)
B = — xja tan (n7/2) (22)
X, = B oos ¢ = B/[1 + a’n’tan’(nm/2)[ 23
tan ¢ = — a n tan (n7/2) (24)

These results are best shown in the form of a frequency response
diagram, but before doing this 1t must first be established that the solution
1s 1n fact vald To obtamn (21)—(24) 1t was necessary to impose certain
conditions and if these should lead to the result that the velocity changes
sign 1n the mterval 0 < t <C /p, then the solution 1s mvalid Also (14)
does not hold when the free oscillation and exciting frequencies are equal
(n = 1 0) and this case requires special study

(4) SpeciAL CASES

Apphcatihity of the Method On substituting (21)—(24) mn (15) and
differentiating, the expression for the velocity in the interval 0 <<t < @/p

becomes
0 — 0
— (an[sin n s 0 sin(nm/2)] cos 6}, ntl (25)
cos (nm/2)
where 6 = pt — #/2 te, —w2 < 6 < 72 (26)
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The first term on the right-hand side of (25) represents the modification
to the velocity due to fricion  If, for any value of 6 within the prescribed
range, this term 1s positive and exceeds cos 0 then a ““ stop ” will occur and
the solution no longer applies Evidently when n = 3, 5, 7, etc, this term
1s infimte however small the value of « so that the first restriction 1s that a
steady oscillation without “ stops > 1s not possible 1f the frequency of free
oscillation 1s an odd-integral multiple of the forcing frequency  For inter-
mediate values of n it can easily be shown that stops will occur if a exceeds
some value which depends on n, e g, when n = 2, a must not exceed 0 35
for the solution to be valid ~ As n decreases the value of a required to cause
stops increases rapidly and, since o cannot exceed unity, 1t follows that there
must be some value of n below which * stops ” do not occur, however large
the fricion  Calculation shows that this value of n 1s 1 37 approximately

80
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q
60
by - exct  soln X o©
— —— —equ ol t il Xaoiw
— — — ¢q val Al 30ln x =025
—-— —— stop boundary
40 o80
o¢
stop )
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20 40
R it ~ SR S _7-—/"“
=
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/ ~ 7
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Fig 4

In other words the solution given by (21)—(24) applies without restric-
tion provided that the frequency of free oscillation 1s less than 1 37 times
the exciting frequency For larger values of n the solution given 1s valid
provided that « lies below the boundary line shown in Fig 4

It 1s interesting to compare these results with those obtamed by Den
Hartog? for the case of Coulomb friction dampmg There too 1t was found
that stops will occur for n = 3, 5, 7, etc, however small the friction, but
1t was also found that stops will occur for all n providing that the friction
force 1s a suffictently large fraction of the (peak) exciung force In the
present case it will be seen from (25) that the ratio of the instantaneous
velocity to the maximum velocity 1s independent of $ so that the occurrence,
or non-occurrence, of stops 1s independent of the magnitude of the exciung
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force With Coulomb damping, however, since the amphtude 1s not
proportional to 8 and the friction 1s independent of amplitude, 1t follows
that stops will always occur under some conditions

Resonance In the special case when the free and exciting frequencies
are equal (ze, n = 1 0) the solution of (13) 15 —

x = (I — a)%, cos pt — (aw,?/2p?)sin pt + (aw,2/2p)t cos pt + ox, (27)

7a

where x, = 2 (28)

and the peaks of excrting force and displacement are 90° out of phase
The velocity 1s

X/px, = — (Sl“:rpft) {1 4 2%%} (29)

Smce the term 1 brackets 1s never negative 1t follows that  stops ”
do not occur at resonance however large the friction

The result (28) for the amplitude at resonance can also be obtamned
from (23) provided that the limit as n tends to unity 1s taken in the correct
manner

The Equivalent Viscous Damper The “ equvalent viscous damper »
1s defined as the viscous damper which absorbs the same energy per cycle
as the actual damper—assumng a sinusoidal oscillation

Energy absorbed per cycle by friction damper

Energy absorbed per cycle by equivalent viscous damper

= 7pB.x,? €29)
where B, 1s the equivalent viscous damping coefficient

Then from (30) and (31)

B, = — (32)

1 e , the equivalent viscous damping coefficient 1s ndependent of the amphitude
and nversely proportional to the frequency  But this 1s precisely the form

Assoctation of Gt Britain 6a

https://doi.org/10.1017/52753447200004431 Published online by Cambridge University Press


https://doi.org/10.1017/S2753447200004431

of the “ hysteretic ” damper described by Bishop® In the present notatton
Bishop’s results for the amplitude and phase are —

p
[A] = 16a* n? !
a | (33)
@+ f){l + 73 (1 — nz)zj
tan ¢ — 4_“_2312., (39)
7w n°—1

We now have sufficient information to plot a frequency response diagram
for the continuous oscillations with friction damping and to compare these
results with those obtamed for the equivalent viscous damper In Fig 4
the “ magnification factor » [x,/a] 1s plotted agamnst n and the variation of
“ phase > with n 1s shown 1n Fig 5 On both diagrams « has the values
01land025

(5) DiscussiIoN Or THE RESULTS

Since n = w/p 1t follows that resonance occurs when the frequency of
the (damped) free oscillation 1s equal to the exciting frequency, z¢, at a
frequency which 1s greater than that of the undamped free oscillations 1n
the ratio (1 +f) 1 For n < 137 the amplitude frequency curves are
of conventional form but for larger n this 1s no longer the case Consider
first the results for « = 0 10

As n increases beyond 1 37 the magmfication factor drops rapidly
towards unity but, from (25), the solution ceases to be valid whenn = 2 65
At this value of n the ““ stop ” boundary—shown dotted in Fig 4—intersects
the line @ = 0 10 and no continuous solution with the period of the exciting
force 1s possible until n = 3 35 when the “ stop ” boundary and « = 0 10
agam mtersect Contunuous solutions are then possible until n = 48
where a third intersection occurs  Further intersections will occur at higher
n but ultimately a value of n 1s reached beyond which no continuous solution
can occur at all  Thus 1s 1llustrated by the results for a = 025 The line
a = 0 25 mtersects the ““stop ” boundary at n &~ 2 2 and beyond this no
further intersections occur, z ¢, no continuous oscillations are possible if
n>22

In the viciity of n = 2, 4, etc , the magmification factor 1s the same as
for undamped oscillations but as n approaches 3, 5, etc, 1t decreases rapidly
For smaller values of « 1t 15 possible to mamtain continuous oscillations at
values of n which are closer to 3, 5, etc, but the accompanying decrease 1n
amplitude 1s then much more abrupt It 1s to be expected from these results
that the amplitude of an oscillation with “ stops ” will be considerably less
than that of the undamped vibration

Further, and perhaps more important, departures from conventional
behaviour at large n are shown by the phase-frequency curves Instead of
the phase angle remamning approximately constant at some positive value
for all large n 1t does 1n fact become zero at n = 2 for all a—provided that
the solution 1s valid  For larger n the phase angle becomes negative, ¢ ¢ , the
peaks of displacement then Jead the peaks of the exciting force In the
vicimty of n = 3 the solution 1s not valid but when n = 4 the lead angle
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15 180°, z ¢ , there 1s a phase change of 27 betweenn = O andn = 4 Beyond
n = 4 this cycle of phase change 1s repeated until continuous solution ceases
to be possible

Also shown on Figs 4, 5, are the corresponding results using the equiva-
lent viscous damper*  Up to the value of n where * stops ” first occur there
1s not much difference between the amplitudes of the “ equivalent ” and
“ exact ” solutions At resonance they are exactly equal , at other values
of n the exact amplitude 1s slightly larger, the difference increasing with
mcreasing a  The greatest differences occur when n & 3, 5, etc , when the

270

& ol
AN 180
o< 015 q)
900

e . M e X e — e e A — — — e — R

SO 40 "“’/P 30 //20 (X

o
/ -180
no comlmous;
/ solution
g

Fig 5

equivalent amplitude 1s about 509, greater than the exact  Since the phase-
frequency curve for the equivalent damper 1s of conventional form there s
a considerable difference between the phase angles given by the two methods

1.

(6) CONCLUSIONS

It has been shown that exact solutions can be obtamned for the free
and forced oscillations of a mass-spring system with a (stmplfied) multi-step
friction damper  Unlike Coulomb damping the multi-step damper does not
cause complete stops 1n the free oscillations, nor do stops occur at all frequen-~
cies m forced oscillations Stops will occur in forced oscillations if the
friction and/or the ratio between the free oscillation and exciting frequencies
1s large enough

* It 1s quite legitimate to plot the results for the equivalent viscous damper agamst
w/p and not aganst wn/p since the additional stiffness contributed by the friction
damper must still be taken into account
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The equivalent viscous damper gives a very good approximation to the
exact solution provided that the frequency of the (damped) free oscillations
1s less than about 1 37 times the exciting frequency At resonance the
amplitude and phase given by the two methods are exactly equal For
larger values of n the phase angles are completely different and errors of
509, or more mn amphtude are possible

It 1s evadent from these results that the equivalent viscous damper 1s
sufficiently accurate for ground resonance calculations only if the true
frequency of the blade oscillations 1s more than about 0 70 of the natural
frequency Therefore since the important blade oscillation frequency is
the difference between the chassis oscillation frequency and the rotational
speed and as the blade natural frequency 1s about 1/3 of the rotational speed
1t follows that the chassis frequency must be less than about 3/4 of the rota-
tional speed  If this condition 1s not satisfied stops will occur 1f the friction
1s large enough But even if stops are avoided the use of the equivalent
viscous damper may still lead to a large error since the occurrence of coupled
self-excited oscillations depends very much on achieving the correct phase
relationship  The model test results described by C H Jones? show that
the chassis frequency 1s only close to the rotational speed if the blade and
chassis motion, or the chassis motion alone, 1s undamped Otherwise the
chassts frequency 1s about 3/4 of the rotor speed and stops seem unlikely
to occur This cannot be regarded as a final answer however, since a
motion with stops may have very different characteristics (see Chap XI of
Ref 9)

The method of Section(3) on Forced Oscillations, could be extended todeal
with free, coupled, continuous oscillations but the calculation would probably
be very elaborate because of the several frequencies of the undamped free
oscillations  There i1s no doubt that the best way to solve this problem 1s
by means of an analogue computer (On this type of machine the multi-step
damper 1s 1n fact easier to simulate than the equivalent viscous damper )
Some work to this end has already begun, but the problem 1s complicated
by the fact that the periodic terms in the differential equations of motion
cannot now be eliminated by a transformatton of the type used by Coleman!®
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