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A conjecture strengthening the Zariski
dense orbit problem for birational maps
of dynamical degree one

Jason Bell and Dragos Ghioca

Abstract. We formulate a strengthening of the Zariski dense orbit conjecture for birational maps of
dynamical degree one. So, given a quasiprojective variety X defined over an algebraically closed field K
of characteristic 0, endowed with a birational self-map ϕ of dynamical degree 1, we expect that either
there exists a nonconstant rational function f ∶ X ⇢ P

1 such that f ○ ϕ = f , or there exists a proper
subvariety Y ⊂ X with the property that, for any invariant proper subvariety Z ⊂ X, we have that
Z ⊆ Y . We prove our conjecture for automorphisms ϕ of dynamical degree 1 of semiabelian varieties X.
Moreover, we prove a related result for regular dominant self-maps ϕ of semiabelian varieties X:
assuming that ϕ does not preserve a nonconstant rational function, we have that the dynamical degree
of ϕ is larger than 1 if and only if the union of all ϕ-invariant proper subvarieties of X is Zariski dense.
We give applications of our results to representation-theoretic questions about twisted homogeneous
coordinate rings associated with abelian varieties.

1 Introduction

1.1 The Zariski dense orbit conjecture

The following conjecture was advanced by Medvedev and Scanlon [MS14] and
Amerik and Campana [AC08] and was originally inspired by a conjecture of Zhang
[Zha06].

Conjecture 1.1 Let X be a quasiprojective variety defined over an algebraically closed
field K of characteristic 0, endowed with a rational dominant self-map ϕ. Then exactly
one of the following two conditions must hold:
(I) either there exists a nonconstant rational function f ∶ X ⇢ P

1 such that f ○ ϕ = f
(which is referred to as ϕ preserving a nonconstant rational function or fibration);

(II) or there exists a point x ∈ X(K) whose orbit under ϕ is well defined (i.e., for each
n ≥ 0, the nth iterate ϕn(x) lies outside the indeterminacy locus of ϕ) and Zariski
dense in X.
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It is easy to see that conditions (I) and (II) are mutually exclusive; the difficulty
lies in proving that in the absence of condition (I), one can always find a point with a
Zariski dense orbit as in (II). Various cases of the above conjecture are known:
• when K is uncountable (see [AC08] and also [BGR17]);
• when X = AN and ϕ is the coordinatewise action of one-variable polynomials (see

[MS14]);
• when X is a semiabelian variety and ϕ is a regular dominant self-map (see [GS19]

and also see [GS17, GS22] when X is an abelian variety);
• when X is a commutative, linear algebraic group and ϕ is a group endomorphism

(see [GH18] and also see [GX18]);
• when X is a surface (see [Xie]), and also for certain threefolds and higher-

dimensional varieties X (see [BGRS17]).
It is worth pointing out that when the field K has positive characteristic, one

would need to amend the statement of Conjecture 1.1 (see [BGR17, Example 6.2] and
especially [GS21, Conjecture 1.3]).

1.2 A strengthening of the conjecture in the case of birational maps of dynamical
degree one

We believe that there is a stronger form of Conjecture 1.1 when ϕ is a birational map of
dynamical degree 1. We recall that the dynamical degree λ1(ϕ) of a rational self-map
ϕ of a projective smooth variety X of dimension d is defined as

λ1(ϕ) ∶= lim
n→∞
((ϕn)∗L ⋅Ld−1)

1
n ,

where L is an ample line bundle on X. The above limit exists, and it is independent
of the choice of the ample divisor L; for more properties regarding the dynamical
degree for self-maps of projective varieties along with its connections to the arithmetic
degree, we refer the reader to [DGHLS22] and the references therein.

Now, before stating our main conjecture, we need the following definition.

Definition 1.2 Let ϕ ∶ X ⇢ X be a dominant rational self-map. A subvariety Y ⊂ X
(not necessarily irreducible) is called invariant under ϕ if the restriction ϕ∣Y induces
a dominant rational self-map of Y.

Conjecture 1.3 Let X be a smooth projective variety defined over an algebraically
closed field K of characteristic 0, and let ϕ ∶ X ⇢ X be a birational self-map of dynamical
degree 1. Then exactly one of the following two statements must hold:
(i) either there exists a nonconstant rational function f ∶ X ⇢ P

1 such that f ○ ϕ = f ;
(ii) or there exists a proper subvariety Y ⊂ X with the property that each proper

invariant subvariety Z ⊂ X must be contained in Y.

Remark 1.4 It is immediate to see that condition (i) in Conjecture 1.3 already
excludes condition (ii) since given a nonconstant rational function f ∶ X ⇢ P

1 invari-
ant under ϕ, then X is covered by the ϕ-invariant proper subvarieties f −1(α) (as
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we vary α ∈ P1). So, the difficulty in Conjecture 1.3 is proving that in the absence of
condition (i), then we must have that condition (ii) holds in Conjecture 1.3.

It is easy to see that condition (ii) in Conjecture 1.3 implies the weaker condition
(II) in Conjecture 1.1 (at least in the case ϕ is a regular morphism) since one can
choose a point x ∈ (X/Y)(K) and thus its orbit Oϕ(x) must be Zariski dense in X
because otherwise its Zariski closure would need to be contained in Y, which would
be a contradiction. Furthermore, we note below the following simple example, which
shows that oftentimes the subvariety Y from condition (ii) above is a nontrivial proper
subvariety of X.

Example 1.5 Let ϕ ∶ P2 → P
2 be given by ϕ ([x ∶ y ∶ z]) = [2x ∶ 3y ∶ z]; then,

clearly, there is no invariant fibration for ϕ since most points would have a Zariski
dense orbit under ϕ (for example, the orbit of [1 ∶ 1 ∶ 1] consists of all points of the
form [2n ∶ 3n ∶ 1], for n ≥ 0). However, there exists a (nontrivial) proper subvariety
Y ⊂ P2 containing all the proper ϕ-invariant subvarieties of X; indeed, Y consists of
three lines, as it is given by the equation x yz = 0 in P

2.

Furthermore, we believe the following statement would hold, which complements
Conjecture 1.3.

Conjecture 1.6 Let X be a smooth projective variety defined over an algebraically
closed field K of characteristic 0, and let ϕ ∶ X ⇢ X be a birational self-map. Assume
that there exists no nonconstant rational function f ∶ X ⇢ P

1 such that f ○ ϕ = f . Then
exactly one of the following two statements must hold:
(I) either the dynamical degree of ϕ equals 1;
(II) or the union of all ϕ-invariant proper subvarieties of X is Zariski dense.

1.3 Motivation for our conjectures

It is possible that neither item (i) nor item (ii) in Conjecture 1.3 holds if one does not
impose the constraint on the dynamical degree. For example, every automorphism of
A

2 of dynamical degree greater than one has a Zariski dense set of periodic points and
does not preserve a nonconstant fibration (see [Xie15, Theorem 1.1(i)]). On the other
hand, work of Cantat [Can10] and Diller and Favre [DF01], along with work of Xie
[Xie15, Theorem 1.1], shows that for birational maps ϕ of surfaces over algebraically
closed base fields of characteristic zero, exactly one of (i) and (ii) in Conjecture 1.6
must hold when ϕ has dynamical degree one (see Theorem 3.2 for details). Thus, any
counterexamples to either Conjecture 1.3 or Conjecture 1.6 must have dimension at
least 3.

Another important class of maps for which we can show that Conjecture 1.3 holds
is for automorphisms ϕ that lie in the connected component Aut0(X) of the identity
of the automorphism group of an irreducible complex algebraic variety X. In this case,
we consider the Zariski closure, H, of the subgroup of Aut0(X) generated by σ and
apply Chevalley’s theorem on constructible sets [Har95, Theorem 3.16] to deduce that
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if there is some point x whose orbit under H is Zariski dense, then the H-orbit contains
a dense open subset U of X. Thus, every point in U will have dense orbit under ϕ, and
so we see condition (ii) holds unless no point in X has a Zariski dense orbit, which in
turn implies that (i) holds.

Automorphisms ϕ lying in the connected component of the automorphism group
of X, as above, all have dynamical degree one, and one can regard rational self-maps of
dynamical degree one as being a natural generalization of this important class of self-
maps. The two classes mentioned above (rational self-maps of surfaces of dynamical
degree one and automorphisms in a connected algebraic group) give underpinning
to Conjecture 1.3.

In Section 4, we connect our results with results concerning the representation
theory of noncommutative algebras. In particular, we consider the class of algebras
called twisted homogeneous coordinate rings, which are constructed from a projective
variety X, an automorphism σ of X, and an ample invertible sheaf L. Here, it is known
that the Noetherian property for these algebras holds precisely when σ has dynamical
degree one, and the biregular case of Conjectures 1.3 and 1.6 for complex projective
varieties is equivalent to existing conjectures about the representation theory for this
class of algebras.

1.4 Our results

We prove Conjectures 1.3 and 1.6 (even in slightly stronger forms) for regular
self-maps of semiabelian varieties. We recall that a semiabelian variety (over an
algebraically closed field) is an extension of an abelian variety by a power of the
multiplicative group. Furthermore, in order to define the dynamical degree for a
self-map of a semiabelian variety X, one could consider a suitable compactification
of X; however, as explained in Section 1.5 (see Proposition 1.10), there is a simple
characterization of dominant regular self-maps of dynamical degree 1 for semiabelian
varieties.

Theorem 1.7 Let X be a semiabelian variety defined over an algebraically closed field
K of characteristic 0, and let ϕ ∶ X → X be an automorphism of dynamical degree 1.
Then exactly one of the following two statements must hold:
(1) either there exists a nonconstant rational function f ∶ X ⇢ P

1 such that f ○ ϕ = f ;
(2) or there exists no proper ϕ-invariant subvariety (equivalently, there exists no

proper irreducible subvariety Y ⊂ X which is periodic under the action of ϕ, i.e.,
ϕ�(Y) = Y for some � ∈ N).

Remark 1.8 The equivalence of the two statements from conclusion (2) in Theorem
1.7 is immediate since given an automorphism ϕ of some variety X, for any proper
invariant subvariety V, its irreducible components must be periodic under the action
of ϕ. A similar argument applies also for the equivalent statement appearing in our
next result.

On the other hand, if the dynamical degree of a regular self-map ϕ on a semiabelian
variety X is greater than 1, then we can prove that always (regardless whether ϕ
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preserves a nonconstant rational function or not) the union of the proper ϕ-invariant
subvarieties of X is Zariski dense.

Theorem 1.9 Let X be a semiabelian variety defined over an algebraically closed field
K of characteristic 0, and let ϕ ∶ X → X be a dominant regular self-map of dynamical
degree larger than 1. Then the union of all ϕ-invariant proper subvarieties of X is Zariski
dense; equivalently, the union of all irreducible proper ϕ-periodic subvarieties Y ⊂ X
(i.e., ϕ�(Y) = Y for some � ∈ N) is Zariski dense in X.

We prove Theorems 1.7 and 1.9 in Sections 2 and 3, respectively. We also discuss
further directions for studying Conjectures 1.3 and 1.6 in Section 4.

1.5 Strategy for our proof

In our proofs, for both Theorems 1.7 and 1.9, we will employ the following character-
ization of regular dominant self-maps of semiabelian varieties of dynamical degree
equal to 1. First, we recall that (regardless of characteristic of the field of definition,
as proved in [Iit76]) the regular self-maps of a semiabelian variety are compositions
of translations with algebraic group endomorphisms. Furthermore, for any group
endomorphism Ψ of a semiabelian variety, there exists a monic polynomial P ∈ Z[x]
such that P(Ψ) = 0; for more details, we refer the reader to [CGSZ21, Section 2.1].

Proposition 1.10 Let X be a semiabelian variety defined over a field of characteristic 0,
and let ϕ ∶= T ○Ψ be a regular dominant self-map of X, where T ∶ X → X is a
translation, whereas Ψ is an algebraic group endomorphism of X. Let P(x) be the
minimal polynomial for Ψ. Then the dynamical degree of ϕ equals 1 if and only if each
root of P(x) is a root of unity.

Proof The proof of this fact is essentially covered in [MS20]. First of all, the
dynamical degree of ϕ equals the dynamical degree of Ψ (since each iterate ϕn of
ϕ is a composition of Ψn with a suitable translation). Second, λ1(Ψ) = 1 if and only if
the spectral radius of Ψ∗∣H1(X) is equal to 1, and so all roots of the polynomial P must
have absolute value equal to 1 (for more details, see [MS20]). Then a classical theorem
of Kronecker regarding algebraic numbers whose Galois conjugates all have absolute
value equal to 1 yields that all roots of P(x)must be roots of unity, as desired. ∎

Assume now that the dynamical degree of ϕ ∶= T ○Ψ equals 1 (as in Theorem 1.7).
Then we get that there exist positive integers � and m such that

(Ψ� − idX)
m
= 0.(1.1)

Since the conclusion in Theorem 1.7 is unaltered if we replace our self-map ϕ by an
iterate of it (which can be seen by looking at the irreducible periodic subvarieties
Y ⊂ X, as in Remark 1.8), then replacing ϕ by ϕ� (see equation (1.1)), we may assume
that Ψ is an unipotent algebraic group endomorphism. Then employing [RRZ06,
Theorem 7.2] (along with [PR04, Theorem 3.1]) allows us to finish the proof of
Theorem 1.7; in the language of [RRZ06], the automorphism ϕ is wild (see Section 2.3),
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and so it does not have proper ϕ-invariant subvarieties. We also note that one
could obtain the desired conclusion from Theorem 1.7 by using alternatively more
combinatorial arguments akin to the ones employed in the proof from [GS21].

Finally, in order to prove Theorem 1.9 (whose conclusion is once again unchanged
if one replaces ϕ = T ○Ψ by a suitable iterate of it), we analyze the action of Ψ on X
according to the roots of its minimal polynomial P(x); for this part, our arguments
are somewhat similar to the ones employed in [GS17, GS19].

2 Proof of Theorem 1.7

2.1 General setup for our proof

In this subsection, we prove Theorem 1.7; so, we work under the hypotheses of
Theorem 1.7 for an automorphism ϕ of dynamical degree 1 of a semiabelian variety
X defined over an algebraically closed field K of characteristic 0. Furthermore, we
have that the automorphism ϕ is a composition of a translation T (i.e., for each
x ∈ X, we have T(x) = x + γ for some given point γ ∈ X(K)) with an algebraic group
automorphism Ψ. Furthermore, as explained in Section 1.5 (note that replacing ϕ
by an iterate does not change the set of ϕ-invariant subvarieties), at the expense of
replacing ϕ by a suitable iterate, we may assume that Ψ is unipotent, i.e.,

(Ψ − idX)
m = 0,(2.1)

for some positive integer m.
Moreover, from now on, we assume that ϕ does not preserve a nonconstant

fibration, i.e., condition (1) in Theorem 1.7 does not hold. Then we will prove that
there are no proper ϕ-invariant subvarieties.

2.2 Analyzing the unipotent part of the automorphism

We continue with our notation and convention for our automorphism ϕ = T ○Ψ of
the semiabelian variety X:
(a) ϕ preserves no nonconstant fibration;
(b) T is a translation by a point γ ∈ X(K); and
(c) Φ is a unipotent algebraic group automorphism, i.e., the map Φ0 ∶= Φ − IdX is

a nilpotent algebraic group endomorphism for X.
The following technical result (which is inspired by [RRZ06, Theorem 7.2]) will be

crucially employed in Section 2.3.

Proposition 2.1 We let X̄ ∶= X/Φ0(X), and for each point α ∈ X, we denote by
ᾱ its image under the natural projection map π ∶ X → X̄. Under the notation and
assumptions from conditions (a)–(c) above, we must have that the cyclic group generated
by γ̄ is Zariski dense in X̄.

Proof We argue by contradiction, and therefore assume that there exists a proper
algebraic subgroup Ȳ ⊂ X̄ containing γ̄. Then we let Y ∶= π−1 (Ȳ), which is a proper
algebraic subgroup of X. We claim that the projection map g ∶ X → X/Y is left
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invariant by our automorphism ϕ. Indeed, for any point x ∈ X, we have that

ϕ(x) − x = Φ0(x) + γ ∈ Y ,

and thus, g ○ ϕ = g, as claimed. Since g is not the trivial map (because Y is a proper
algebraic subgroup of X), we contradict condition (a) above; hence, γ̄ must generate
indeed X̄. This concludes our proof of Proposition 2.1. ∎

2.3 Wild automorphisms

The following notion was studied in [RRZ06].

Definition 2.2 An automorphism ϕ of some variety X is called wild if the orbit of
each point in X is Zariski dense.

It is immediate to see that if an automorphism ϕ ∶ X → X is wild, then there are
no proper ϕ-invariant subvarieties. So, we are left to show that our automorphism ϕ =
T ○Ψ of the semiabelian variety X is wild. However, since ϕ satisfies the conclusion
of Proposition 2.1 (note that we are working under the assumption (a) above saying
that ϕ leaves no nonconstant invariant rational function), then [RRZ06, Theorem 7.2]
delivers the desired conclusion that the automorphism ϕ must be wild.

Now, strictly speaking, [RRZ06, Theorem 7.2] is proved under the assumption that
X is an abelian variety. However, its proof goes verbatim in the case X is semiabelian
since the only part where the authors of [RRZ06] employed the assumption about X
being abelian was to infer that any irreducible ϕ-invariant subvariety of X must be a
translate of a (connected) algebraic subgroup. For this last result, indeed, they used the
fact that X was abelian, as in their proof from [RRZ06, Corollary 4.3]. However, we can
replace the use of [RRZ06, Corollary 4.3] with the use of [PR04, Theorem 3.1], which
would still guarantee that also in the semiabelian case, the irreducible ϕ-invariant
subvarieties must be cosets of algebraic subgroups. Indeed, the assumption (a) above
that ϕ admits no nonconstant invariant fibration means that ϕ does not induce a finite-
order automorphism of a nontrivial quotient of X, and therefore, according to [PR04,
Theorem 3.1], each ϕ-invariant irreducible subvariety Z of X must have trivial quotient
through its stabilizer W; hence, Z would be a coset of the algebraic subgroup W, as
desired.

So, indeed, ϕ ∶ X → X is a wild automorphism; therefore, there are no proper
ϕ-invariant subvarieties. This concludes our proof of Theorem 1.7.

3 Proof of Theorem 1.9

3.1 Generalities

We work under the hypotheses from Theorem 1.9; in particular, we let ϕ = T ○Ψ,
where T is a translation on the semiabelian variety X, whereas Ψ is an algebraic group
endomorphism.

In our proof of Theorem 1.9, we may replace ϕ by its conjugate Tα ○ ϕ ○ T−α (where
Tc always represents the translation-by-c map for any given point c ∈ X(K)) since this
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would not affect the dynamical degree of our map, nor the conclusion that the union
of all invariant subvarieties is Zariski dense; note that Z is ϕ-invariant if and only if
Z + α is invariant under Tα ○ ϕ ○ T−α .

3.2 The minimal polynomial

We let P(x) ∈ Z[x] be the (monic) minimal polynomial for Ψ. At the expense of
replacing ϕ by a suitable iterate (which, in particular, leads to replacing Ψ by the
corresponding iterate), we may assume that each root of P(x) is either equal to 1,
or it is not a root of unity (nor equal to 0, since Ψ must be an isogeny because ϕ is a
dominant map). Then we write

P(x) = (x − 1)r ⋅ Q(x),

for some nonnegative integer r (which is the order of the root 1 in P(x)) and some
(monic) polynomial Q(x) ∈ Z[x]. Now, since we assumed that ϕ (and therefore Ψ)
has dynamical degree larger than 1, then it means that P(x) has at least one root which
is not a root of unity, and so Q(x) must be a nonconstant polynomial (whose roots
are not roots of unity, by our assumption that all roots of unity appearing among the
roots of the polynomial P(x)must equal 1).

3.3 Decomposing the action of our map

We consider the following connected algebraic subgroups of X, defined as follows:
X2 ∶= (Ψ − IdX)

r (X) and also, let X1 ∶= Q(Ψ)(X). We note that if r = 0, then X1 is
the trivial semiabelian variety. On the other hand, since P(x) ≠ (x − 1)r (because the
dynamical degree of ϕ and thus of Ψ is not equal to 1), we know that

X2 is a nontrivial semiabelian variety.(3.1)

Since the polynomials (x − 1)r and Q(x) are coprime (and their product kills the
endomorphism Ψ), then arguing as in [GS17, Lemma 6.1] (see also the explanation
around [GS19, equation (4.0.2)]), we have that

X1 + X2 = X and X1 ∩ X2 is finite.(3.2)

So, letting our translation map T ∶ X → X correspond to the point γ ∈ X(K), then
we can find γ i ∈ X i(K) (for i = 1, 2) such that γ = γ1 + γ2. Moreover, Ψ induces
dominant algebraic group endomorphisms Ψi ∶= Ψ∣X i for i = 1, 2. Furthermore, the
minimal polynomial of Ψ1 (as an endomorphism of X1) is (x − 1)r , whereas the
minimal polynomial for Ψ2 (as an endomorphism of X2) is Q(x). For each i = 1, 2, we
let ϕ i ∶ X i → X i be given by the composition of the translation-by-γ i with the group
endomorphism Ψi . Finally, we have that for each point x ∈ X written as x = x1 + x2
for x i ∈ X i (see equation (3.2)), then we have

ϕ(x) = ϕ1(x1) + ϕ2(x2).(3.3)
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3.4 Conjugating one of the maps to a group endomorphism

Since the minimal polynomial of Ψ2 ∶ X2 → X2 does not have roots equal to 1
(actually, not even roots of unity), the algebraic group endomorphism Ψ2 − IdX2 (of
X2) must be dominant, and so there exists β2 ∈ X2(K) such that (Ψ2 − IdX2) (β2) =
γ2. Then conjugating ϕ2 by the translation Tβ2 given by β2 (i.e., replacing ϕ2 by
Tβ2 ○ ϕ2 ○ T−β2 ), we obtain the group endomorphism Ψ2.

So, at the expanse of conjugating ϕ by the translation-by-β2 map on X (note that
β2 ∈ X2 ⊆ X), we may assume that the dominant regular map ϕ2 ∶ X2 → X2 is an
algebraic group endomorphism (also note, as explained in Section 3.1, that we can
always replace our map with a conjugate of it by a translation map).

3.5 Periodic points for an algebraic group endomorphism

The following easy fact will be crucial in the conclusion of our proof from Section 3.6.

Proposition 3.1 Let Z be a semiabelian variety defined over a field of characteristic 0,
and let Φ be a dominant algebraic group endomorphism of Z. Then the set of periodic
points of Z is Zariski dense.

Proof Indeed, each torsion point of Z of order coprime with # ker(Φ) must be
periodic under the action of Φ; hence, there exists a Zariski dense set of Φ-periodic
points. ∎

3.6 Conclusion of our proof

We let X̃ ∶= X1 ⊕ X2 and let ϕ̃ be the dominant map on X̃ given by (ϕ1 , ϕ2). Then we
let the isogeny ι ∶ X1 ⊕ X2 → X (see also equation (3.2)) given by

ι(x1 , x2) = x1 + x2 .

It is immediate to check (see equation (3.3)) that we have a commutative diagram, i.e.,

ϕ ○ ι = ι ○ ϕ̃.(3.4)

Therefore, equation (3.4) yields that for any proper ϕ̃-invariant subvariety Z̃ ⊂ X̃, ι(Z̃)
is a proper ϕ-invariant subvariety of X.

On the other hand, Proposition 3.1 yields that there exists a Zariski dense set of ϕ̃-
invariant subvarieties of X̃ of the form X1 × S, where S ⊂ X2 is a finite set of periodic
points under the action of the endomorphism ϕ2; note that X2 is positive dimensional
(see equation (3.1)), and so, indeed, X1 × S is a proper subvariety of X̃. Therefore, the
set of proper ϕ-invariant subvarieties of X is Zariski dense.

This concludes our proof of Theorem 1.9.

3.7 Results for surfaces

We point out that Conjectures 1.3 and 1.6 were already known for surfaces, due to work
of Cantat [Can10], Diller and Favre [DF01], and Xie [Xie15]. We give an argument
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for the sake of completeness, although we stress that these results are well known to
experts.

Theorem 3.2 Conjectures 1.3 and 1.6 hold whenever X is a surface.

Proof By [Xie15, Theorem 1.1], if ϕ does not preserve a nonconstant rational
fibration, then either the dynamical degree of ϕ is one or the union of the periodic
points is Zariski dense, and exactly one of these alternatives hold. Furthermore, a
result of Cantat [Can10] shows that if ϕ does not preserve a nonconstant rational
fibration, then there are at most finitely many ϕ-periodic curves, and so in the case
that the dynamical degree of ϕ is one, there is a maximal invariant proper subvariety
of X, unless ϕ preserves a nonconstant fibration. ∎

4 Connections with irreducible representations of algebras

In this section, we explore connections between Conjecture 1.3 and representation-
theoretic questions concerning a class of associative algebras constructed from geo-
metric data. Much of this is connected with earlier work from [BRS10].

A classical construction in algebraic geometry is the homogeneous coordinate
ring R for a projective variety X over an algebraically closed field k. This ring R is
graded by the natural numbers and has the property that one can naturally identify
Proj(R) with the projective scheme X. In general, the homogeneous coordinate
ring is not uniquely defined and depends instead upon some embedding of X
into P

n . More precisely, one fixes an ample invertible sheaf L and one forms the
ring

R ∶= ⊕
n≥0

H0(X ,L⊗n).(4.1)

In the early 90s, it was observed that certain questions motivated by work in
mathematical physics could be approached by considering a twisted version of the
above construction [AV90, ATV90]. In this setting, one again has a projective
variety X and ample invertible sheaf L, but, in addition to these data, one fixes an
automorphism σ of X, which is used to “twist” the multiplication of the ring R. Here,
we take

Ln ∶= L⊗ σ∗(L) ⊗⋯⊗ (σ n−1)∗(L)

for n ≥ 0, where (σ i)∗(L) is the pullback of L along σ i and where we take L0 = OX
and we define

B(X ,L, σ) ∶= ⊕
n≥0

H0(X ,Ln),

and we endow this vector space with bilinear multiplication

⋆ ∶ H0(X ,Ln) ×H0(X ,Lm) → H0(X ,Ln+m)∗(L)

given by f ⋆ g = f ⋅ (σ n)∗(g) for f ∈ H0(X ,Ln) and g ∈ H0(X ,Lm), where ⋅ is the
usual bilinear map H0(X ,E) ×H0(X ,F) → H0(X ,E⊗ F) for invertible sheaves E

and F.
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Then, under this new multiplication, B(X ,L, σ) becomes an associative algebra,
which is called the twisted homogeneous coordinate ring of X (with respect to σ
and L).

There is a striking dichotomy that arises when one looks at the behavior of
these algebras in terms of the automorphism σ : when σ has dynamical degree one,
the twisted homogeneous coordinate ring is Noetherian and has finite Gelfand–
Kirillov dimension (a noncommutative analog of Krull dimension); and when σ has
dynamical degree strictly larger than one, the twisted homogeneous coordinate ring
is non-Noetherian and has exponential growth [Kee00]. The algebraic implication of
this dichotomy is that one expects the representation theory of twisted homogeneous
coordinate rings to be much nicer than in the case that the automorphism has
dynamical degree one.

One of the most important methods in studying an algebra A is to understand
the underlying structure of its irreducible representations (that is, the simple left A-
modules). In practice, it is often very difficult to obtain an explicit description of
these representations, and so one often settles instead for a coarser understanding
by characterizing the annihilators of simple modules.

These annihilator ideals of simple modules of an algebra are called the primitive
ideals, and they form a distinguished subset of the prime spectrum of the algebra.
Due to their structure-theoretic importance, their study enjoys a long history. The
first major achievement in this direction was the work of Dixmier [Dix77] and
Moeglin [Moe80], which shows that the primitive ideals of an enveloping algebra of a
finite-dimensional complex Lie algebra can be characterized in both topological and
algebraic terms.

Theorem 4.1 (Dixmier–Moeglin [Dix77, Moe80]) Let L be a finite-dimensional
complex Lie algebra, and let U(L) be its enveloping algebra. Then, for a prime ideal
P of U(L), the following are equivalent:
(1) P is primitive;
(2) {P} is an open subset of its closure in Spec(U(L)), where we endow the prime

spectrum with the Zariski topology; and
(3) U(L)/P has a simple Artinian ring of fractions whose center is the base field C.

There is a theory of noncommutative localization due to [MR01, Chapter 2], which
gives that if P is a prime ideal of a Noetherian k-algebra A, then A/P has a ring of
fractions, which we denote Frac(A/P), and which is a generalization of the field of
fractions construction for commutative integral domains. This ring of quotients is
of course not a field in general, but it is simple Artinian and hence isomorphic to
a matrix ring over a division k-algebra. In particular, its center is a field extension
of k. The third condition in the list of equivalent conditions given by Dixmier and
Moeglin then says that primitivity of P is in some sense equivalent to U(L)/P being as
“noncommutative as possible” in the sense of having a ring of fractions whose center
is as small as possible.

In general, given a Noetherian algebra A over an algebraically closed field k, we
say that a prime ideal P is rational if Frac(A/P) has center k; and we say that P is
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locally closed if {P} is an open subset of its closure in Spec(A). In honor of the work
of Dixmier and Moeglin, a k-algebra A for which the properties of being primitive,
locally closed, and rational are equivalent for all primes P ∈ Spec(A) is said to satisfy
the Dixmier–Moeglin equivalence.

The Dixmier–Moeglin equivalence is now known to hold for a large class of
Noetherian algebras, including many natural classes of quantum algebras and Hopf
algebras [BG02, GL00]. In general, the Dixmier–Moeglin equivalence holds for most
known examples of Noetherian algebras of finite Gelfand–Kirillov dimension; there
are exceptions, but they are somewhat rare and tend to be difficult to construct (see,
for example, [BLLM17]).

It has been conjectured that the Dixmier–Moeglin equivalence holds for Noethe-
rian twisted homogeneous coordinate rings B(X ,L, σ) [BRS10, Conjecture 8.5]. The
Noetherian property is equivalent to the automorphism σ having dynamical degree
one [Kee00]; this conjecture has been established when dim(X) ≤ 2.

In this setting, one can give a purely geometric characterization of the properties
of being primitive, rational, and locally closed in terms of σ-periodic irreducible
subvarieties of X.

Proposition 4.2 [BRS10, Theorem 8.1(1)] Let X be a complex irreducible projective
variety, let L be an ample invertible sheaf, and let σ ∈ AutC(X). Then B(X ,L, σ)
satisfies the Dixmier–Moeglin equivalence if σ has dynamical degree one, and for every
σ-invariant subvariety Y of X, the union of the σ-invariant proper subvarieties of Y is a
Zariski closed subset of Y.

In particular, applying Theorems 1.7 and 1.9 and using the criterion in Proposition
4.2, we can deduce that the Dixmier–Moeglin equivalence holds for Noetherian
twisted homogeneous coordinate rings of abelian varieties. We prove a more general
result for split semiabelian varieties. We recall that a semiabelian variety over an
algebraically closed field is split if it is isogenous to a direct product of an abelian
variety and a power of the multiplicative group.

Proposition 4.3 Let X be a split semiabelian variety over an algebraically closed field
of characteristic zero, let Φ be an algebraic group automorphism of X, let a ∈ X, and let
σ ∶ X → X be the map σ(x) = Φ(x) + a. Then:
(1) if σ has dynamical degree > 1, then there is a σ-invariant subvariety Y of X with

the property that the union of the σ-invariant proper subvarieties of Y is a Zariski
dense, proper subset of Y;

(2) if σ has dynamical degree 1, then every σ-invariant subvariety Y of X has the
property that the union of the σ-invariant proper subvarieties of Y is a Zariski
closed subset of Y.

Proof We prove this by induction on the dimension of X. When dim(X) = 0, there
is nothing to prove. Thus, we assume that (1) and (2) hold whenever dim(X) < d with
d ≥ 1 and consider the case when dim(X) = d.

By Theorems 1.7 and 1.9, we obtain both (1) and (2) if σ does not preserve a
nonconstant fibration. Indeed, Theorem 1.7 yields that if ϕ has dynamical degree 1,
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then there exist no proper σ-invariant subvarieties of X, and so conclusion (2) holds
trivially. On the other hand, if the dynamical degree of ϕ is larger than 1, then the
assumption that σ does not preserve a nonconstant fibration yields (according to
[GS19]) that there exists a point x ∈ X with a Zariski dense orbit; therefore, x would
not be contained in a proper σ-invariant subvariety Z ⊂ X. However, Theorem 1.9
yields that the union of all proper σ-invariant subvarieties of X would still be Zariski
dense in X; thus, conclusion (1) in Proposition 4.3 holds for X itself.

Therefore, from now on, we may assume that σ preserves a nonconstant fibration.
Since a variety is σ-periodic if and only if it is σ r-periodic, we may replace σ

by σ r . So, letting P(x) be the monic, minimal polynomial for the algebraic group
automorphism Φ, at the expense of replacing Φ by Φr (and thus, replacing σ by
σ r), we may assume that each root of P(x) is either equal to 1, or it is not a root of
unity.

By [GS22, Theorem 1.2], since σ preserves a nonconstant fibration, there exists
a nonconstant group endomorphism Ψ ∶ X → X such that Ψ ○ (Φ − Id) is 0 in the
endomorphism ring of X, and furthermore Ψ ○ σ = Ψ (i.e., a ∈ ker(Ψ)).

Let E denote the connected component (of the identity) of the kernel of Ψ; since Ψ
is nonconstant, then E ≠ X, and so E is a split semiabelian subvariety of dimension <
d. We let π be the quotient homomorphism π ∶ X → X/E, then π ○ σ = π. Then σ ∣E is
an automorphism of E, and if the dynamical degree of σ is strictly larger than one, then
the dynamical degree of σ ∣E is also strictly larger than one by Proposition 1.10 and the
fact that the minimal polynomial of Ψ∣E has all the roots of the minimal polynomial of
Ψ, except, possibly, the root equal to 1. Hence, by the induction hypothesis, we obtain
conclusion (1) in Proposition 4.3.

Now, we are left to prove conclusion (2) in Proposition 4.3. So, the dynamical
degree of σ is one, and suppose toward a contradiction that there is some σ-invariant
subvariety Y of X such that the union of the proper σ-invariant subvarieties of Y is
not a Zariski closed subset of Y. Then, since σ permutes the irreducible components
of Y, after replacing σ by a suitable iterate and taking a suitable irreducible component
of Y, we may assume without loss of generality that Y is irreducible.

Now, if π(Y) is a point, then (at the expense of replacing σ by a conjugate of
it by a suitable translation), we may assume that Y ⊆ E. By Proposition 1.10, σ ∣E
has also dynamical degree one, and so by the induction hypothesis, the union of
the proper invariant subvarieties of Y is Zariski closed, as desired in part (2) of
Proposition 4.3.

Therefore, the remaining case is when π(Y) is a positive-dimensional subvariety
of X/E. However, then σ ∣Y ∶ Y → Y preserves a nonconstant fibration, and so the
union of the proper σ-invariant subvarieties of Y equals the entire Y, as desired once
again in part (2) of Proposition 4.3.

This concludes our proof of Proposition 4.3. ∎

Proposition 4.3 yields the following corollary.

Corollary 4.4 Let X be a complex abelian variety, let L be an ample invertible sheaf,
and let σ ∈ AutC(X). If B(X ,L, σ) is Noetherian, then it satisfies the Dixmier–Moeglin
equivalence.

https://doi.org/10.4153/S0008439522000479 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439522000479


490 J. Bell and D. Ghioca

Proof By [Kee00, Theorem 1.3], B(X ,L, σ) is Noetherian if and only if σ has
dynamical degree one. The result now follows from Propositions 4.2 and 4.3. ∎

We note that in an earlier paper [BG19], we considered other dynamical questions
for endomorphisms of semiabelian varieties and used a similar translation of dynam-
ical results to obtain topological and algebraic characterizations of primitive ideals in
skew polynomial extensions of C[x±1

1 , . . . , x±1
d ] (see [BG19, Theorem 1.1]). This class

of algebras shares some commonalities with twisted homogeneous coordinate rings
of abelian varieties in that they are both constructed from a semiabelian variety along
with an automorphism of this variety, although in the latter case the ambient variety
is projective, whereas in the former case it is affine.
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