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Abstract. Let (D2, F, {0}) be a singular holomorphic foliation on the unit bidisc D2

defined by the linear vector field

z
∂

∂z
+ λw

∂

∂w
,

where λ ∈ C∗. Such a foliation has a non-degenerate singularity at the origin
0 := (0, 0) ∈ C2. Let T be a harmonic current directed by F which does not give mass
to any of the two separatrices (z = 0) and (w = 0). Assume T �= 0. The Lelong number
of T at 0 describes the mass distribution on the foliated space. In 2014 Nguyên (see [16])
proved that when λ /∈ R, that is, when 0 is a hyperbolic singularity, the Lelong number at
0 vanishes. Suppose the trivial extension T̃ across 0 is ddc-closed. For the non-hyperbolic
case λ ∈ R∗, we prove that the Lelong number at 0:
(1) is strictly positive if λ > 0;
(2) vanishes if λ ∈ Q<0;
(3) vanishes if λ < 0 and T is invariant under the action of some cofinite subgroup of

the monodromy group.

Key words: holomorphic foliation, harmonic current, non-hyperbolic linearizable singu-
larity, Lelong number
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1. Introduction
The dynamical properties of singular holomorphic foliations have recently drawn a great
deal of attention; see the discussions in [9, 11, 13, 15, 17, 18]. Let us mention one
of the remarkable results which establishes the unique ergodicity for general singular
holomorphic foliations on compact Kähler surfaces.
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THEOREM 1.1. (Dinh, Nguyên and Sibony [7]) Let F be a holomorphic foliation with
only hyperbolic singularities in a compact Kähler surface (X, ω). Assume that F admits
no directed positive closed current. Then there exists a unique positive ddc-closed current
T of mass 1 directed by F.

The first version was stated for X = P2 and proved by Fornæss and Sibony [12]. Later
Dinh and Sibony proved the unique ergodicity for foliations in P2 with an invariant curve
[8]. So one may expect to describe recurrence properties of leaves by studying the density
distribution of directed harmonic currents. One has the following result about leaves.

THEOREM 1.2. (Fornæss and Sibony [12]) Let (X, F, E) be a holomorphic foliation on
a compact complex surface X with singular set E. Assume that:
(1) there is no invariant analytic curve;
(2) all the singularities are hyperbolic;
(3) there is no non-constant holomorphic map C → X such that out of E the image of

C is locally contained in a leaf.
Then every harmonic current T directed by F gives no mass to each single leaf.

A practical way to measure the density of harmonic currents is to use the notion of
Lelong number introduced by Skoda [22]. Indeed Theorem 1.2 above is equivalent to the
statement that the Lelong number of T vanishes everywhere outside E. Another result
holds near hyperbolic singularities.

THEOREM 1.3. (Nguyên [16]) Let (D2, F, {0}) be a holomorphic foliation on the unit
bidisc D2 defined by the linear vector field Z(z, w) = z(∂/∂z)+ λw(∂/∂w), where λ ∈
C\R, that is to say, 0 is a hyperbolic singularity. Let T be a harmonic current directed by
F which does not give mass to any of the two separatrices (z = 0) and (w = 0). Then the
Lelong number of T at 0 vanishes.

Next, Nguyên applies this result to prove the existence of Lyapunov exponents for
singular holomorphic foliations on compact projective surfaces [20]. Very recently he
has proved in [19] that for every n � 2, the Lelong numbers of any directed harmonic
current which gives no mass to invariant hyperplanes vanishes near weakly hyperbolic
singularities in Cn. This result is optimal; see [10]. The mass-distribution problem
would be completed once we could understand the behaviour of harmonic currents near
non-hyperbolic non-degenerate singularities, and near degenerate singularities.

The present paper answers (partly) the problem in the non-hyperbolic linearizable
singularity case. Here is our first main result.

THEOREM 1.4. Let (D2, F, {0}) be a holomorphic foliation on the unit bidisc D2 defined
by the linear vector field Z(z, w) = z(∂/∂z)+ λw(∂/∂w), where λ ∈ R∗. Let T be a
harmonic current directed by F which does not give mass to any of the two separatrices
(z = 0) and (w = 0). Assume T �= 0. Then the Lelong number of T at 0:
• is strictly positive and could be infinite if λ > 0;
• vanishes if λ ∈ Q<0.
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For the foliation concerned (D2, F, {0}), a local leaf Pα , with α ∈ C∗, can be
parametrized by (z, w) = (e−v+iu, αe−λv+iλu), with u, v ∈ R. See the parametrization
(1) for details. The monodromy group around the singularity is generated by (z, w) �→
(z, e2πiλw). It is a cyclic group of finite order when λ ∈ Q∗, of infinite order when λ /∈ Q.

We are now ready to introduce the notion of periodic current, an essential tool in this
paper. A directed harmonic current T is called periodic if it is invariant under some cofinite
subgroup of the monodromy group, that is, under the action of (z, w) �→ (z, e2kπiλw) for
some k ∈ Z>0.

Observe that if λ = (a/b) ∈ Q∗ with a ∈ Z∗, b ∈ Z>0, then any directed harmonic
current is invariant under the action of (z, w) �→ (z, e2bπiλw), hence is periodic. But when
λ /∈ Q∗, the periodicity is a non-trivial assumption. It does not follow from the ergodicity
of irrational rotation because the current is only continuous on leaf parameters (u, v) for
each fixed α. It may not be continuous in variables (z, w).

We are in a position to state our second main result.

THEOREM 1.5. Using the same notation as above, the Lelong number of T at the
singularity is 0 when λ < 0 and the current is periodic, in particular, when λ ∈ Q<0.

It remains open to determine the possible Lelong number values of non-periodic T when
λ < 0 is irrational.

Section 2 reviews the definition of singular holomorphic foliations, directed harmonic
currents, the mass and the Lelong number. Section 3 describes the topology of leaves near
linearizable non-hyperbolic singularities, resolves the ambiguity of normalizing harmonic
functions on the leaves and provides practical formulas for the mass and the Lelong
number. Section 4 calculates the Lelong number when λ ∈ Q>0. Section 5 calculates the
Lelong number when λ ∈ R>0\Q, with an analysis on Poisson integrals of non-periodic
currents. Section 6 calculates the Lelong number when λ < 0, assuming that the currents
are periodic.

2. Background
2.1. Singularities of holomorphic foliations. To start with, recall the definition of
singular holomorphic foliation on a complex surface M.

Definition 2.1. Let E ⊂ M be some closed subset, possibly empty, such that M\E =
M . A singular holomorphic foliation (M , E, F ) consists of a holomorphic atlas
{(Ui , �i)}i∈I on M\E which satisfies the following conditions.
(1) For each i ∈ I , �i : Ui → Bi × Ti is a biholomorphism, where Bi and Ti are

domains in C.
(2) For each pair (Ui , �i) and (Uj , �j) with Ui ∩ Uj �= ∅, the transition map

�ij := �i ◦�−1
j : �j(Ui ∩ Uj ) → �i(Ui ∩ Uj )

has the form

�ij (b, t) = (�(b, t), 	(t)),
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where (b, t) are the coordinates on Bj × Tj , and the functions �, 	 are holomor-
phic, with 	 independent of b.

Each open set Ui is called a flow box. For each c ∈ Ti , the Riemann surface�−1
i {t = c}

in Ui is called a plaque. Property (2) above ensures that in the intersection of two flow
boxes, plaques are mapped to plaques.

A leaf L is a minimal connected subset of M such that if L intersects a plaque, it contains
that plaque. A transversal is a Riemann surface immersed in M which is transverse to each
leaf of M.

The local theory of singular holomorphic foliations is closely related to holomorphic
vector fields. One recalls some basic concepts in C2; see [5, 11, 17, 18].

Definition 2.2. Let Z = P(z, w)∂/∂z+Q(z, w)∂/∂w be a holomorphic vector field
defined in a neighbourhood U of (0, 0) ∈ C2. One says that Z is:
(1) singular at (0, 0) if P(0, 0) = Q(0, 0) = 0;
(2) linear if it can be written as

Z = λ1z
∂

∂z
+ λ2w

∂

∂w

where λ1, λ2 ∈ C are not simultaneously zero;
(3) linearizable if it is linear after a biholomorphic change of coordinates.

Suppose the holomorphic vector field Z = P(∂/∂z)+Q(∂/∂w) admits a singularity
at the origin. Let λ1, λ2 be the eigenvalues of the Jacobian matrix (Pz PwQz Qw

) at the origin.

Definition 2.3. The singularity is non-degenerate if both λ1, λ2 are non-zero. This
condition is biholomorphically invariant.

In this paper, all singularities are assumed to be non-degenerate. Then the foliation
defined by integral curves of Z has an isolated singularity at 0. Degenerate singularities
are studied in [5]. Seidenberg’s reduction theorem [21] shows that degenerate singularities
can be resolved into non-degenerate ones after finitely many blow-ups.

Definition 2.4. A singularity of Z is hyperbolic if the quotient λ := (λ1/λ2) ∈ C\R. It is
non-hyperbolic if λ ∈ R∗. It is in the Poincaré domain if λ ∈ C\R�0. It is in the Siegel
domain if λ ∈ R<0.

One can verify that the quotient is unchanged by multiplication of Z by any
non-vanishing holomorphic function.

One could consider λ−1 = λ2/λ1 instead of λ, but then λ /∈ R if and only if λ−1 /∈ R.
Thus, the notion of hyperbolicity is well defined. Also, being non-hyperbolic, in the
Poincaré domain or Siegel domain, is well defined. The complex number λwill be called an
eigenvalue of Z at the singularity, with an inessential abuse due to this exchange λ ↔ λ−1.
The unordered pair {λ, λ−1} is invariant under local biholomorphic changes of coordinates.

Consider a holomorphic foliation (M , E, F ) where E is discrete. When one tries to
linearize a vector field near an isolated non-degenerate singularity, one has to divide power
series coefficients by quantities m1 + λm2 − 1 and m1 + λm2 − λ where m1, m2 ∈ Z�0
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with m1 +m2 � 2. To ensure convergence, these quantities have to be non-zero and not
too close to zero.

These quantities are non-zero if and only if λ /∈ Q �=1. They do not have 0 as a limit if
and only if λ /∈ R�0, that is, the singularity is in the Poincaré domain.

We are now ready to state some linearization results in C2.

THEOREM 2.5. (Poincaré; see [2, Ch. 4, §1.2, pp. 72]) A singular holomorphic vector field
in C2 is holomorphically equivalent to its linear part if its eigenvalue λ ∈ (C\R�0)\Q �=1.

Remark 2.6. The linear part of a singular holomorphic vector field is

(az+ bw)
∂

∂z
+ (cz+ dw)

∂

∂w

for some a, b, c, d ∈ C with ad − bc �= 0 if the singularity is assumed to be
non-degenerate. It is non-linearizable if and only if the Jordan normal form of the
Jacobian matrix (a bc d) has a rank-2 block (a 1

0 a) with a �= 0. In this case λ = 1, hence
Poincaré’s theorem holds. The vector field is holomorphically equivalent to its linear part
(az+ w)∂/∂z+ aw(∂/∂w), but is not linearizable.

For the resonant case λ ∈ Q �=1 and the degenerate case, one may use the
Poincaré–Dulac normal form [2, Ch. 3, §3.2, pp. 54].

In particular, all hyperbolic singularities are linearizable.
To get linearization for λ in the Siegel domain, the following result assumes the more

advanced Brjuno condition.

THEOREM 2.7. (Brjuno [2, 4]) A singular holomorphic vector field with a non-resonant
linear part is holomorphically linearizable if its eigenvalue λ ∈ R satisfies the condition∑

n�1

log qn+1

qn
< ∞,

where pn/qn is the nth approximant of the continued fraction expansion of λ.

The golden ratio
√

5 − 1
2

= 1 + 1

1 + 1
1+···

is a Brjuno number. Indeed, any irrational number whose continued fraction expansion
ends with a string of 1s

α = a0 + 1

a1 + 1
···

= [a0, a1, . . . , ak , 1, 1, . . .] ∈ R\Q (a0 ∈ Z, a1, . . . , ak ∈ N),

is a Brjuno number. The Brjuno numbers are dense in R\Q. See [14, Propositions 1.2 and
1.3].

In this paper, all singularities are assumed to be linearizable.
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2.2. Directed harmonic currents. Let (D2, F, {0}) be a holomorphic foliation on the
unit bidisc D2 defined by the linear vector field Z = z∂/∂z+ λw(∂/∂w) with λ ∈ R∗.
One may assume 0 < |λ| � 1 after switching z and w if necessary. There are always two
separatrices {z = 0} and {w = 0}. Other leaves can be parametrized as

Lα := {(z, w) = ψα(ζ ) := (eiζ , αeiλζ ) = (e−v+iu, αe−λv+iλu)} (α �= 0), (1)

where ζ = u+ iv ∈ C. The map

� : C × C∗ −→ C2

(ζ , α) �−→ (eiζ , αeiλζ )

is locally biholomorphic. Here α is the coordinate on the transversal and ζ is the coordinate
on leaves. It is not injective since �(ζ + 2π , α) = �(ζ , αe2πiλ).

Two numbers α, β ∈ C∗ are equivalent α ∼ β if β = e2kπiλα for some k ∈ Z. The
following statements are equivalent:
• α ∼ β;
• Lα = Lβ ;
• ψα = ψβ ◦ (translation of 2kπ) for some k ∈ Z.

Let CF (respectively, C1,1
F ) denote the space of functions (respectively, forms of

bidegree (1, 1)) defined on leaves of the foliation which are compactly supported onM\E,
leafwise smooth and transversally continuous. A form ι ∈ C1,1

F is said to be positive if its
restriction to every plaque is a positive (1,1)-form.

A directed harmonic current T on F is a continuous linear form on C1,1
F satisfying the

following two conditions:
(1) i∂∂̄T = 0 in the weak sense, that is, T (i∂∂̄f ) = 0 for all f ∈ CF, where in the

expression i∂∂̄f one only considers ∂∂̄ along the leaves;
(2) T is positive, that is, T (ι) � 0 for all positive forms ι ∈ C1,1

F .
It is well known (see, for example, [3, 6, 11]) that a directed harmonic current T on a

flow box U ∼= B × T can be locally expressed as

T =
∫
α∈T

hα[Pα] dμ(α). (2)

The hα are non-negative harmonic functions on the local leaves Pα and μ is a Borel
measure on the transversal T. If hα = 0 at some point on Pα , then by the mean value
theorem hα ≡ 0. For all such α ∈ T, we replace hα by the constant function 1 and we set
dμ(α) = 0. Thus, we get a new expression of T where hα > 0 for all α ∈ T.

Such an expression is not unique since T = ∫
α∈T(hαg(α))[Pα]((1/g(α)) dμ(α)) for

any measurable positive function g : T → R>0 which is finite and non-zero almost
everywhere. The expression is unique after normalization, which means that for each
α ∈ T one fixes hα(z0, w0) = 1 at some point (z0, w0) ∈ Pα .

Each harmonic function hα on the leaf Vα can be pulled back by the parametrization �
as the harmonic function

Hα(u, v) := hα(e
−v+iu, αe−λv+iλu).

The domain of definition for u, v will be precisely described later in this section.
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In §1 the notion of periodic current was introduced. Here is an equivalent
characterization.

PROPOSITION 2.8. A directed harmonic current T is periodic if and only if there exists
some k ∈ Z>0 such that Hα(u+ 2kπ , v) = Hα(u, v) for all u, v and for μ-almost all α.

Proof. By definition T is invariant under (z, w) �→ (z, e2kπiλw) for some k ∈ Z>0, which
is equivalent to Hα(u+ 2kπ , v) = Hα(u, v) for all u, v and μ-almost all α.

A current T of the form (2) is ddc-closed on D2\{0}. But its trivial extension T̃ across
the singularity 0 is not necessarily ddc-closed on D2. It is true when T is compactly
supported, for example when T is a localization of a current on a compact manifold, by the
following argument (see [6, Lemma 2.5] for details).

Let T be a directed harmonic current onM\E, where M is a compact complex manifold
and E is a finite set. The current T can be extended by zero through E in order to obtain
the positive current T̃ on M. Next, we apply the following result.

THEOREM 2.9. (Alessandrini and Bassanelli [1, Theorem 5.6]) Let � be an open subset
of Cn and Y an analytic subset of � of dimension less than p. Suppose T is a negative
current of bidimension (p, p) on �\Y such that ddcT � 0. Then the following assertions
hold.
(1) The mass of T near Y is locally finite. In particular, T admits a trivial extension by 0

across Y, denoted by T̃ .
(2) ddcT̃ � 0 on �.

Here −T is a negative current of bidimension (1, 1) onM\E with ddc(−T ) � 0 and E
has dimension 0. So for the trivial extension T̃ on M one has ddc(−T̃ ) � 0. Moreover, T̃
is compactly supported since M is compact. Thus

〈ddcT̃ , 1〉 = 〈T̃ , ddc1〉 = 0.

Combining with ddcT̃ � 0 from the extension theorem, one concludes that ddcT̃ = 0
on M. Thus, locally near any singularity, the trivial extension T̃ is ddc-closed.

Let β := idz ∧ dz̄+ idw ∧ dw̄ be the standard Kähler form on C2. The mass of T on a
domain U ⊂ D2 is denoted by ‖T ‖U := ∫

U
T ∧ β. In this paper, all currents are assumed

to have finite mass on D2.

Definition 2.10. (See [19, §2.4]) Let T be a directed harmonic current on (D2, F, {0}). We
define the Lelong number by the limit

L(T , 0) = lim sup
r→0+

1
πr2 ‖T ‖rD2 ∈ [0, +∞].

The limit can be infinite when the trivial extension T̃ across the origin is not ddc-closed
[19, Example 2.11]. When T̃ is ddc-closed, the following theorem ensures the finiteness.

THEOREM 2.11. (Skoda [22]) Let T be a positive ddc-closed (1, 1)-current in D2. Then
the function r �→ 1/πr2‖T ‖rD2 is increasing with r ∈ (0, 1].
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In our case, the function

r �→ 1
πr2 ‖T̃ ‖rD2 = 1

πr2 ‖T ‖rD2

is increasing with r ∈ (0, 1]. In particular,

L(T , 0) = lim
r→0+

1
πr2 ‖T ‖rD2 ∈

[
0,

1
π

‖T ‖D2

]
.

In this paper, the symbols � and � stand for inequalities up to a multiplicative positive
constant depending only on λ. We write ≈ when both inequalities are satisfied.

3. Parametrization of leaves
Recall the parametrization of an arbitrary leaf Lα:

ψα(ζ ) = �(ζ , α) = (eiζ , αeiλζ ) (α ∈ C∗, ζ ∈ C).

To calculate the mass ‖T ‖D2 and the Lelong number L(T , 0), we shall study �−1(rD2)

for r ∈ (0, 1]. Define Pα := Lα ∩ D2 and P
(r)
α := Lα ∩ rD2. Define log+(x) :=

max{0, log(x)} for x > 0.

LEMMA 3.1. The range of (u, v) for a point (z, w) ∈ Pα and P (r)α is an upper half-plane
when λ > 0, or a horizontal strip when λ < 0. More precisely:
(1) when λ > 0,

(z, w) ∈ Pα ⇐⇒ v >
log+ |α|
λ

,

(z, w) ∈ P (r)α ⇐⇒
⎧⎨
⎩v >

log |α| − log r
λ

(|α| � r1−λ),

v > − log r (|α| < r1−λ);

(2) when λ < 0, Pα = ∅ for |α| � 1, P (r)α = ∅ for |α| � r1−λ and for the other α,

(z, w) ∈ Pα ⇐⇒ 0 < v <
log |α|
λ

,

(z, w) ∈ P (r)α ⇐⇒ − log r < v <
log |α| − log r

λ
.

Proof. Recall that (z, w) = (e−v+iu, αe−λv+iλu) on Lα . So for any r ∈ (0, 1], (z, w) ∈
P
(r)
α if and only if both |z| = e−v < r and |w| = |α|e−λv < r .

When λ > 0 one has v > − log r and v > (log |α| − log r)/λ. In particular, for r = 1,
one has v > 0 and v > log |α|/λ.

When λ < 0 one has − log r < v < (log |α| − log r)/λ. In particular, for r = 1, one
has 0 < v < log |α|/λ. If there is no solution for v then P (r)α = ∅.

When λ > 0, the range of v is unbounded for each fixed α ∈ C∗. See Figures 1 and 2.
When λ < 0, the range of v is bounded for each fixed α. See Figures 3 and 4.
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FIGURE 1. The region of (|α|, v) for Pα .

FIGURE 2. The region of (|α|, v) for P (r)α .

3.1. Positive case λ > 0. For any α ∈ C∗ fixed, the leaf Lα is contained in a real
three-dimensional Levi flat CR manifold† |w| = |α||z|λ, which can be viewed as a curve
in |z| = e−v , |w| = |α|e−λv coordinates. The norms |z| and |w| depend only on v. When
v → +∞, the point on the leaf tends to the singularity (0, 0) described by Figures 5 and 6.

If one fixes some v = − log r , then |z| = r and |w| = |α|rλ is fixed. The set T2
r :=

{(z, w) ∈ D2 : |z| = r , |w| = |α|rλ} is a torus and the intersection of the leaf Lα with this
torus is a smooth curve Lα,r := Lα ∩ T2

r .
When λ ∈ Q, this curve Lα,r is closed. See Figure 7.
When λ /∈ Q, this curve Lα,r is dense on the torus T2

r . See Figures 8 and 9.

† The name CR has its own history and interest in complex geometry, other than to say that CR stands both for
Cauchy–Riemann and for Complex–Real.

https://doi.org/10.1017/etds.2022.46 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.46


Directed harmonic currents 2237

FIGURE 3. The region of (|α|, v) for Pα .

FIGURE 4. The region of (|α|, v) for P (r)α .

In this case the two curves Lα,r and Lαe2πiλ,r are two different parametrizations of the
same image. The dashed curve in Figure 8 is not only the image of Lα,r for u ∈ [2π , 4π)
but also the image of Lαe2πiλ,r for u ∈ [0, 2π). This raises ambiguity while normalizing
harmonic functions on a leaf Lα .

Such ambiguity can be resolved once one restricts everything to an open subset Uε :=
{(z, w) ∈ D2 | arg(z) ∈ (0, 2π − ε), z �= 0, w �= 0} for some fixed ε ∈ [0, π). Any leafLα
on Uε decomposes into a disjoint union of infinitely many components:

Lα ∩ Uε =
⋃
k∈Z

{
(e−v+iu, αe2kπiλe−λv+iλu) | u∈ (0, 2π − ε), v>

log+ |α|
λ

}
.

For example, in Figure 10, the curve and the dashed curve are two distinct components of
L1,1 ∪ Uε .
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FIGURE 5. Case |α| < 1.

FIGURE 6. Case |α| � 1.

Such a parametrization is yet not unique. For example, for any k0 ∈ Z one can
parametrize

Lα ∩ Uε =
⋃
k∈Z

{
(e−v+iu, αe2kπiλe−λv+iλu) |u∈ (2k0π , 2k0π + 2π − ε), v >

log+ |α|
λ

}
.

The parametrization is unique once one fixes k0, for example, k0 = 0. I remark for the time
being that all other choices of k0 will be used for analysing non-periodic currents in §5.2.

3.2. Resolving ambiguity in the irrational case. Let λ /∈ Q. Let T be a harmonic current
directed by F. Then T |Pα has the form hα(z, w)[Pα]. One may assume that hα is nowhere
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FIGURE 7. A closed curve on a torus.

FIGURE 8. Two loops.

FIGURE 9. Twenty loops.

0 for every α. Let

Hα(u+ iv) := hα ◦ ψα
(
u+ iv + i

log+ |α|
λ

)
.

This is a positive harmonic function for μ-almost all α ∈ C∗ defined in a neighbourhood
of the upper half-plane H = {(u+ iv) ∈ C | v > 0}, determined by the Poisson integral
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FIGURE 10. Two components of L1,1 ∪ Uε .

formula

Hα(u+ iv) = 1
π

∫
y∈R

Hα(y)
v

v2 + (y − u)2
dy + Cαv.

One can normalize Hα by setting Hα(0) = 1. But by doing so one may normalize data
over the same leaf for multiple times. Indeed, any pair of equivalent numbers α ∼ β in
C∗, β = αe2kπiλ, may provide us with two different normalizations Hα and Hβ on the
same leaf Lα = Lβ . A major task is to find formulas for the mass and the Lelong number
independent by the choice of normalization.

The ambiguity is described by the following proposition.

PROPOSITION 3.2. If β = αe2kπiλ for some k ∈ Z, then the two normalized positive
harmonic functions Hα and Hβ satisfy

Hα(u+ iv) = Hα(2kπ)Hβ(u− 2kπ + iv).

In other words, they differ by a translation and a multiplication by a non-zero constant.

Proof. When |α| < 1, by definition

Hα(u+ iv) = hα(e
−v+iu, αe−λv+iλu), Hα(0) = hα(1, α).

Thus, the normalized harmonic function is

Hα(u+ iv) = hα(e
−v+iu, αe−λv+iλu)
hα(1, α)

,

and for the same reason

Hβ(u+ iv) = hβ(e
−v+iu, βe−λv+iλu)
hβ(1, β)

.

The two functions hα and hβ are the positive harmonic coefficient of T on the same leaf
Lα = Lβ , hence they differ up to multiplication by a positive constant C > 0:

hα(e
−v+iu, αe−λv+iλu) = C · hβ(e−v+iu, αe−λv+iλu)

= C · hβ(e−v+iu, βe−2kπiλe−λv+iλu)
= C · hβ(e−v+i(u−2kπ), βe−λv+iλ(u−2kπ)).
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FIGURE 11. Domain U in coordinates (z, w).

FIGURE 12. Domain U in coordinates (u, v).

Thus,

Hα(u+ iv) = hα(e
−v+iu, αe−λv+iλu)
hα(1, α)

= C · hβ(e−v+i(u−2kπ), βe−λv+iλ(u−2kπ))

C · hβ(1, α)

= hβ(e
−v+i(u−2kπ), βe−λv+iλ(u−2kπ))

hβ(1, β)
· hβ(1, β)
hβ(1, α)

= Hβ(u− 2kπ + iv) · hβ(1, β)
hβ(1, α)

.

When u = 2kπ and v = 0 one has Hα(2kπ) = hβ(1, β)/hβ(1, α). Thus, one gets the
equality. The proof for the case |α| > 1 is similar.

Take the open subset U := {(z, w) ∈ D2 | z /∈ R�0, w �= 0}. See Figures 11 and 12.
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Any leaf Lα in U is a disjoint union of infinitely many components. Once α is fixed,
there is a one-to-one correspondence between these components and strips in Figure 12.

Lα ∩ U =
⋃
k∈Z

L̃αe2kπiλ :=
⋃
k∈Z

{
(e−v+iu, αe2kπiλe−λv+iλu) |u∈ (0, 2π), v>

log+ |α|
λ

}
.

Normalizing Hαe2kπiλ on L̃αe2kπiλ avoids ambiguity. Thus, the mass

‖T ‖U =
∫
(z,w)∈U

T ∧ i∂∂̄(|z|2 + |w|2)

=
∫
α∈C∗

∫
v>log+ |α|/λ

∫ 2π

u=0
Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α)

=
∫
α∈C∗

∫
v>0

∫ 2π

u=0
Hα(u+ iv)‖ψ ′

α‖2 du dv dμ(α)

for some positive measure μ on C∗. Here, ‖ψ ′
α‖2 is the jacobian coming from the

(1, 1)-form i∂∂̄(|z|2 + |w|2) on Lα after a change of coordinates and a translation on v:

‖ψ ′
α‖2 =

{
2(e−2v + λ2|α|2e−2λv) (|α| < 1),

2(|α|−2/λe−2v + λ2e−2λv) (|α| � 1).
(3)

Since H is harmonic in a neighbourhood of H, it is continuous in H. So

‖T ‖U = lim
ε→0+

∫
α∈C∗

∫
v>0

∫ 2π+ε

u=0
Hα(u+ iv)‖ψ ′

α‖2 du dv dμ(α)

= lim
ε→0+ ‖T ‖ ⋃

k∈Z
L̃
αe2kπiλ

= ‖T ‖D2 .

Thus, we can express the mass by a formula independent of the choice of normalization

‖T ‖D2 =
∫
α∈C∗

∫
v>0

∫ 2π

u=0
Hα(u+ iv)‖ψ ′

α‖2 du dv dμ(α).

LEMMA 3.3. For each k0 ∈ Z fixed,

‖T ‖D2 =
∫
α∈C∗

∫
v>0

∫ 2k0π+2π

u=2k0π
Hα(u+ iv)‖ψ ′

α‖2 du dv dμ(α). (4)

Proof. The disjoint union Lα ∩ U = ⋃
k∈Z L̃αe2kπiλ can be parametrized in many other

ways. For instance,

Lα ∩ U =
⋃
k∈Z

{
(e−v+iu, αe2kπiλe−λv+iλu) | u ∈ (2k0π , 2k0π + 2π), v >

log+ |α|
λ

}
.

By the same argument as above one concludes.

3.3. Negative case λ < 0. As in the positive case, for any α ∈ C∗ fixed, the leaf Lα is
contained in a real three-dimensional analytic Levi-flat CR manifold |w| = |α||z|λ, which
can be viewed as a curve in |z|, |w| coordinates. The norms |z| and |w| depend only on v.
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FIGURE 13. Case λ < 0.

The difference is that in the negative case, no leaf Lα tends to the singularity (0, 0). For
r sufficiently small, the leaf Lα is outside of rD2. See Figure 13.

Like the positive case λ > 0, when one fixes |z| = r for some r ∈ (0, 1), |w| = |α||z|λ
is uniquely determined and the real two-dimensional leaf Lα becomes a real 1-dimensional
curve Lα,r := Lα ∩ T2

r on the torus T2
r := {(z, w) ∈ D2 | |z| = r , |w| = |α|rλ}. It is a

closed curve if λ ∈ Q, and a dense curve on T2
r if λ /∈ Q.

Let T be a harmonic current directed by F. Then T |Pα has the form hα(z, w)[Pα]. Let
Hα := hα ◦ ψα(u+ iv). It is a positive harmonic function for μ-almost all α ∈ D∗ defined
on a neighbourhood of a horizontal strip {(u, v) ∈ R2 | 0 < v < log |α|/λ}.

As in the case λ > 0, one only calculates the mass on an open subset U := {(z, w) ∈
D2 | z /∈ R�0, w �= 0}. For each α ∈ D∗ one normalizes Hα by setting Hα(0) = 1 to fix
the expression T := ∫

hα[Pα] dμ(α). Similarly to Lemma 3.3, for each k0 ∈ Z fixed,

‖T ‖D2 =
∫

0<|α|<1

∫ log |α|/λ

v=0

∫ 2k0π+2π

u=2k0π
Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α),

L(T , 0) = lim
r→0+

1
r2 ‖T ‖rD2

= lim
r→0+

1
r2

∫
0<|α|<r1−λ

∫ (log |α|−log r)/λ

v=− log r

∫ 2k0π+2π

u=2k0π

Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α).

These formulas will be calculated in later sections.

4. Positive rational case: λ = (a/b) ∈ Q, λ ∈ (0, 1]
Write λ = a/b where a, b ∈ Z�1 are coprime. Then in D2, for any α ∈ C∗, the unionLα ∪
{0} is the algebraic curve {wb = αbza} ∩ D2. In other words, every leaf is a separatrix. In
this section it will be shown that any directed harmonic current T has non-zero Lelong
number.
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The parametrization map ψα(ζ ) := (eiζ , αeiλζ ) is now periodic: ψα(ζ + 2πb) =
ψα(ζ ). Let T be a directed harmonic current. Then T |Pα has the form hα(z, w)[Pα]. Let

Hα(u+ iv) := hα ◦ ψα
(
u+ iv + i

log+ |α|
λ

)
.

This is a positive harmonic function for μ-almost all α ∈ C∗ defined in a neighbourhood of
the upper half-plane H := {(u+ iv) ∈ C | v > 0}. Moreover, it is periodic:Hα(u+ iv) =
Hα(u+ 2πb + iv). Periodic harmonic functions can be characterized by the following
lemma.

LEMMA 4.1. Let F(u, v) be a harmonic function in a neighbourhood of H. If F(u, v) =
F(u+ 2πb, v) for all (u, v) ∈ H, then

F(u, v) =
∑

k∈Z,k �=0

(
ake

kv/b cos
(
ku

b

)
+ bke

kv/b sin
(
ku

b

))
+ a0 + b0v,

for some ak , bk ∈ R. Moreover, if F |H � 0, then a0, b0 � 0.

Proof. By periodicity

F(u, v) =
∞∑
k=1

(
Ak(v) cos

(
ku

b

)
+ Bk(v) sin

(
ku

b

))
+ A0(v),

for some functions Ak(v), Bk(v). They are smooth since F is harmonic. Moreover,

0 = �F(u, v)

=
∞∑
k=1

((
A′′
k(v)−

(
k

b

)2

Ak(v)

)
cos

(
ku

b

)
+

(
B ′′
k (v)−

(
k

b

)2

Bk(v)

)
sin

(
ku

b

))
+ A′′

0(v).

Thus,

A′′
k(v) =

(
k

b

)2

Ak(v), B ′′
k (v) =

(
k

b

)2

Bk(v), A′′
0(v) = 0.

Hence,

Ak(v) = ake
kv/b + a−ke−kv/b, Bk(v) = bke

kv/b − b−ke−kv/b, A0(v) = a0 + b0v,

for some ak , a−k , bk , b−k ∈ R. One obtains the equality.
If F |H � 0, then for any v � 0,∫ 2πb

u=0
F(u, v) du = 2πb(a0 + b0v) � 0.

Thus, a0, b0 � 0.

For α, β ∈ C∗, the two maps ψα and ψβ parametrize the same leaf Lα = Lβ if and
only if β = αe2πi(k/b) for some k ∈ Z, that is α and β differ from multiplying a bth root of
unity. Thus, a transversal can be chosen as the sector S := {α ∈ C∗ | arg(α) ∈ [0, 2π/b)}.
One fixes a normalization by setting Hα(0) = hα ◦ ψα(i(log+ |α|/λ)) = 1.
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The mass of the current T is

‖T ‖D2 =
∫
(z,w)∈D2

T ∧ i∂∂̄(|z|2 + |w|2).

In particular, one calculates the (1, 1)-form i∂∂̄(|z|2 + |w|2) on Lα , where z =
e−v+iu, w = αe−λv+iλu, using

dz = ie−v+iu du− e−v+iu dv, dz̄ = −ie−v−iu du− e−v−iu dv,

dw = iαλe−λv+iλu du− αλe−λv+iλu dv, dw̄ = −iᾱλe−λv−iλu du− ᾱλe−λv−iλu dv,

whence

i∂∂̄(|z|2 + |w|2) = i dz ∧ dz̄+ i dw ∧ dw̄
= 2(e−2v + λ2|α|2e−2λv) du ∧ dv.

Thus,

‖T ‖D2 =
∫
α∈S

hα(z, w)
∫
Pα

i∂∂̄(|z|2 + |w|2) dμ(α)

=
∫
α∈S

∫ 2πb

u=0

∫
v>0

Hα(u+ iv)2(e−2(v+log+ |α|/λ)

+ λ2|α|2e−2λ(v+log+ |α|/λ)) du ∧ dv dμ(α)

=
∫
α∈S,|α|<1

∫ 2πb

u=0

∫
v>0

Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du ∧ dv dμ(α)

+
∫
α∈S,|α|�1

∫ 2πb

u=0

∫
v>0

Hα(u+ iv)2(|α|−2/λe−2v + λ2e−2λv) du ∧ dv dμ(α).

By Lemma 4.1,

Hα(u+ iv) =
∑

k∈Z,k �=0

(
ak(α)e

kv/b cos
(
ku

b

)
+ bk(α)e

kv/b sin
(
ku

b

))
+ a0(α)+ b0(α)v,

(5)

where a0(α), b0(α) are positive for μ-almost all α. Thus,

‖T ‖D2

= 2πb
{ ∫

α∈S,|α|<1

∫
v>0

(a0(α)+ b0(α)v)2(e−2v + λ2|α|2e−2λv) dv dμ(α)

+
∫
α∈S,|α|�1

∫
v>0

(a0(α)+ b0(α)v)2(|α|−2/λe−2v + λ2e−2λv) dv dμ(α)

}

= 2πb
{∫

α∈S,|α|<1
a0(α)(1 + |α|2λ) dμ(α)+

∫
α∈S,|α|�1

a0(α)(|α|−2/λ + λ) dμ(α)

+
∫
α∈S,|α|<1

b0(α)

(
1
2

+ 1
2
|α|2

)
dμ(α)+

∫
α∈S,|α|�1

b0(α)

(
1
2

+ 1
2
|α|−2/λ

)
dμ(α)

}

≈
∫
α∈S

a0(α) dμ(α)+
∫
α∈S

b0(α) dμ(α).
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The Lelong number can now be calculated as follows:

L(T , 0)

= lim
r→0+

1
r2 ‖T ‖rD2

= lim
r→0+

1
r2 2πb

{ ∫
α∈S,|α|<r1−λ

∫
v>− log r

(a0(α)+ b0(α)v)2(e−2v

+ λ2|α|2e−2λv) dv dμ(α)

+
∫
α∈S,r1−λ�|α|<1

∫
v>(log |α|−log r)/λ

(a0(α)+ b0(α)v)2(e−2v

+ λ2|α|2e−2λv) dv dμ(α)

+
∫
α∈S,|α|�1

∫
v>− log r/λ

(a0(α)+ b0(α)v)2(|α|−2/λe−2v + λ2e−2λv) dv dμ(α)

}

= lim
r→0+ 2πb

{ ∫
α∈S,|α|<r1−λ

a0(α)(1 + λ|α|2r2λ−2) dμ(α)

+
∫
α∈S,|α|�r1−λ

a0(α)(|α|−2/λr2/λ−2 + λ) dμ(α)

+
∫
α∈S,|α|<r1−λ

b0(α)

(
1
2

+ 1
2
|α|2r2λ−2 − log r − λ|α|2r2λ−2 log r

)
dμ(α)

+
∫
α∈S,r1−λ�|α|<1

b0(α)

(
1
2

+ 1
2
|α|−2/λr2/λ−2 − log r − |α|−2/λλ−1r2λ−2 log r

+ log |α| + λ−1|α|−2/λ log |α|r2λ−2
)
dμ(α)

+
∫
α∈S,|α|�1

b0(α)

(
1
2

+ 1
2
|α|−2/λr2/λ−2 − log r−λ−1|α|−2/λr2λ−2 log r

)
dμ(α)

}
.

First one analyses the a0(α) part. When |α| < r1−λ,

1 < 1 + λ|α|2r2λ−2 < 1 + λr2−2λr2λ−2 = 1 + λ, (6)

is uniformly bounded with respect to α and r. When |α| � r1−λ

λ < |α|−2/λr2/λ−2 + λ < 1 + λ, (7)

is also uniformly bounded with respect to α and r. Thus,

L(T , 0) ≈
∫
α∈S

a0(α) dμ(α)︸ ︷︷ ︸
linear part

+ lim
r→0+(b0(α)part)︸ ︷︷ ︸

with v part

.

Next one analyses the b0(α) part.

LEMMA 4.2. The Lelong number of T at 0 is finite only if b0(α) = 0 for μ-almost all
α ∈ S.
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Proof. Suppose not, that is,
∫
α∈S b0(α) dμ(α) = B0 > 0. Then

L(T , 0) � lim
r→0+ 2πb

{ ∫
α∈S,|α|<r1−λ

b0(α)(− log r) dμ(α)

+
∫
α∈S,|α|�r1−λ

b0(α)(− log r) dμ(α)
}

= 2πbB0 lim
r→0+(− log r) = +∞,

contradicting the finiteness of the Lelong number stated in Theorem 2.11.

Thus, one may assume b0(α) = 0 for μ-almost all α ∈ S. Then the Lelong number

L(T , 0) ≈
∫
α∈S

a0(α) dμ(α) ≈ ‖T ‖D2

is strictly positive.

5. Positive irrational case λ /∈ Q, λ ∈ (0, 1)
Now {z = 0} and {w = 0} are the only two separatrices in D2. For each fixed α ∈ C∗, the
map ψα(ζ ) = (eiζ , αeiλζ ) is injective since λ /∈ Q.

5.1. Periodic currents, still a Fourier series. Periodic currents behave similarly to
currents in the rational case λ ∈ Q. Suppose Hα is periodic, that is, there is some b ∈
Z�1 such that Hα(u+ iv) = Hα(u+ 2πb + iv) for any u+ iv ∈ H. Periodic harmonic
functions are characterized as in (5) of Lemma 4.1.

According to Lemma 3.3, the mass is

‖T ‖D2 =
∫
α∈C∗

∫
v>0

∫ 2k0π+2π

u=2k0π
Hα(u+ iv)‖ψ ′

α‖2 du ∧ dv dμ(α),

for any k0 ∈ Z, in particular for k0 = 0, 1, . . . , b − 1. Thus, we may calculate

b‖T ‖D2 =
∫
α∈C∗

∫
v>0

∫ 2πb

u=0
Hα(u+ iv)‖ψ ′

α‖2 du ∧ dv dμ(α)

‖T ‖D2 = 1
b

∫
α∈C∗

∫
v>0

∫ 2πb

u=0
Hα(u+ iv)‖ψ ′

α‖2 du ∧ dv dμ(α),

= 1
b

{ ∫
|α|<1

∫
v>0

∫ 2πb

u=0
Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du ∧ dv dμ(α)

+
∫

|α|�1

∫
v>0

∫ 2πb

u=0
Hα(u+ iv)2(|α|−2/λe−2v + λ2e−2λv) du ∧ dv dμ(α)

}
,

= 2πb
b

{ ∫
|α|<1

∫
v>0

(a0(α)+ b0(α)v)2(e−2v + λ2|α|2e−2λv) dv dμ(α)

+
∫

|α|�1

∫
v>0

(a0(α)+ b0(α)v)2(|α|−2/λe−2v + λ2e−2λv) dv dμ(α)

}
,

= 2π
{ ∫

|α|<1
a0(α)(1 + |α|2λ) dμ(α)+

∫
|α|�1

a0(α)(|α|−2/λ + λ) dμ(α)
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+
∫

|α|<1
b0(α)

(
1
2

+ 1
2
|α|2

)
dμ(α)+

∫
|α|�1

b0(α)

(
1
2

+ 1
2
|α|−2/λ

)
dμ(α)

}

≈
∫
α∈C∗

a0(α) dμ(α)+
∫
α∈C∗

b0(α) dμ(α),

which is the same expression as in the case λ ∈ Q>0.
Next, the Lelong number is calculated as

L(T , 0)

= lim
r→0+

1
r2 ‖T ‖rD2

= lim
r→0+

1
r2 2π

{ ∫
|α|<r1−λ

∫
v>− log r

(a0(α)+ b0(α)v)2(e−2v

+ λ2|α|2e−2λv) dv dμ(α)

+
∫
r1−λ�|α|<1

∫
v>(log |α|−log r/λ)

(a0(α)+ b0(α)v)2(e−2v

+ λ2|α|2e−2λv) dv dμ(α)

}

+
∫

|α|�1

∫
v>− log r/λ

(a0(α)+ b0(α)v)2(|α|−2/λe−2v + λ2e−2λv) dv dμ(α)

}

= lim
r→0+ 2π

{ ∫
|α|<r1−λ

a0(α)(1 + λ|α|2r2λ−2) dμ(α)

+
∫

|α|�r1−λ
a0(α)(|α|−2/λr2/λ−2 + λ) dμ(α)

+
∫

|α|<r1−λ
b0(α)

(
1
2

+ 1
2
|α|2r2λ−2 − log r − λ|α|2r2λ−2 log r

)
dμ(α)

+
∫
r1−λ�|α|<1

b0(α)

(
1
2

+ 1
2
|α|−2/λr2/λ−2 − log r − λ−1|α|−2/λr2λ−2 log r

+ log |α| + λ−1|α|−2/λ log |α|r2λ−2
)
dμ(α)

+
∫

|α|�1
b0(α)

(
1
2

+ 1
2
|α|−2/λr2/λ−2 − log r − λ−1|α|−2/λr2λ−2 log r

)
dμ(α)

}
,

exactly the same expression as in the positive rational case with b = 1. Using the same
argument as in Lemma 4.2, one may assume that b0(α) = 0 for μ-almost all α ∈ C∗. One
concludes that

L(T , 0) ≈
∫
α∈C∗

a0(α) dμ(α) ≈ ‖T ‖D2 .

The Lelong number is strictly positive, the same as in the case λ ∈ Q ∪ (0, 1).
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5.2. Non-periodic current. For periodic currents, one takes an average among b expres-
sions (4) in the previous section. For non-periodic currents, there is no canonical way of
normalization. The key technique is to calculate expressions (4) for all k0 ∈ Z.

The Lelong number is expressed as

L(T , 0) = lim
r→0+

1
r2

{ ∫
|α|<r1−λ

∫
v>− log r

∫ 2π

u=0
Hα(u+ iv)‖ψ ′

α‖2du dv dμ(α)

+
∫
r1−λ�|α|<1

∫
v>(log |α|−log r)/λ

∫ 2π

u=0
Hα(u+ iv)‖ψ ′

α‖2du dv dμ(α)

+
∫

|α|�1

∫
v>− log r/λ

∫ 2π

u=0
Hα(u+ iv)‖ψ ′

α‖2du dv dμ(α)

}
Recall the Poisson integral formula after multiplying by a non-zero constant:

Hα(u+ iv) = 1
π

∫
y∈R

Hα(y)
v

v2 + (y − u)2
dy + Cαv.

Using the same argument as in Lemma 4.2, one may assume Cα = 0 for all α ∈ C∗.

LEMMA 5.1. For any v � 1/λ > 1 and for any u ∈ R,

∂/∂v(− 1
2 (v/(v

2 + (u− y)2)e−2v))

v/(v2 + (u− y)2)e−2v ∈
(

1
2

, 2
)

,

∂/∂v(−(1/2λ)(v/(v2 + (u− y)2))e−2λv)

v/(v2 + (u− y)2)e−2λv ∈
(

1
2

, 2
)

.

Proof. This can be calculated directly:

∂

∂v

(
− 1

2
v

v2 + (u− y)2
e−2v

)
=

(
v

v2 + (u− y)2
+

(
− 1

2

)
1

v2 + (u− y)2

+
(

− 1
2

)
v(−2v)

(v2 + (u− y)2)2

)
e−2v

∂/∂v(− 1
2 (v/(v

2 + (u− y)2))e−2v)

v/(v2 + (u− y)2)e−2v = 1 +
(

− 1
2

1
v

)
+ v

v2 + (u− y)2

∈
(

1 − 1
2v

, 1 + 1
v

)
⊆

(
1
2

, 2
)

(v > 1),

∂

∂v

(
− 1

2λ
v

v2 + (u− y)2
e−2λv

)
=

(
v

v2 + (u− y)2
+

(
− 1

2λ

)
1

v2 + (u− y)2

+
(

− 1
2λ

)
v(−2v)

(v2 + (u− y)2)2

)
e−2λv

∂/∂v(−(1/2λ)(v/(v2 + (u− y)2))e−2λv)

v/(v2 + (u− y)2)e−2λv = 1 +
(

− 1
2λ

1
v

)
+ 1
λ

v

v2 + (u− y)2

∈
(

1 − 1
2λv

, 1 + 1
λv

)
⊆

(
1
2

, 2
) (

v � 1
λ

)
.
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FIGURE 14. 1/r2 (The integration on v > − log r) ≈ (The value at v = − log r).

COROLLARY 5.2. For any r such that 0 < r � e−1/λ,

1
r2

∫
v>− log r

Hα(u+ iv)‖ψ ′
α‖2dv ≈ Hα(u+ (− log r)i) (0 < |α| < r1−λ),

1
r2

∫
v>(log |α|−log r)/λ

Hα(u+ iv)‖ψ ′
α‖2dv

≈ Hα

(
u+

(
log |α| − log r

λ

)
i

)
(r1−λ � |α| < 1),

1
r2

∫
v>(log |α|−log r)/λ

Hα(u+ iv)‖ψ ′
α‖2dv ≈ Hα

(
u+

(− log r
λ

)
i

)
(|α| � 1).

Figure 14 explains Corollary 5.2. We remark that Corollary 5.2 is true for r ∈ (0, 1)
after a dilation (z, w) �→ (e1/2λz, e1/2λw).

Proof. The assumption 0 < r � e−1/λ implies − log r � 1/λ. Hence, for v � − log r �
1/λ, Lemma 5.1 holds.

First, when 0 < |α| � r1−λ,∫
v>− log r

Hα(u+ iv)‖ψ ′
α‖2dv

= 1
π

∫
v>− log r

∫
y∈R

Hα(y)
v

v2 + (u− y)2
2(e−2v + λ2|α|2e−2λv) dy dv

≈ 1
π

∫
y∈R

Hα(y)

{ ∫
v>− log r

∂

∂v

(
v

v2 + (u− y)2
(−e−2v − λ|α|2e−2λv)

)
dv

}
dy

= 1
π

∫
y∈R

Hα(y)
− log r

(− log r)2 + (u− y)2
(r2 + λ|α|2r2λ) dy

= Hα(u+ (− log r)i)(r2 + λ|α|2r2λ)

≈ r2Hα(u+ (− log r)i).
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For the same reason, when r1−λ � |α| < 1, which implies (log |α| − log r)/λ �
− log r � 1/λ, ∫

v>(log |α|−log r)/λ
Hα(u+ iv)‖ψ ′

α‖2 dv

≈ Hα

(
u+

(
log |α| − log r

λ

)
i

)
(|α|−2/λr2/λ + λr2)

≈ r2Hα

(
u+

(
log |α| − log r

λ

)
i

)
.

Finally, when |α| � 1 one has − log r/λ � − log r � 1/λ and∫
v>− log r/λ

Hα(u+ iv)‖ψ ′
α‖2dv ≈ Hα

(
u+

(− log r
λ

)
i

)
(|α|−2/λr2/λ + λr2)

≈ r2Hα

(
u+

(− log r
λ

)
i

)
.

Thus,

L(T , 0) ≈ lim
r→0+

{ ∫
|α|<r1−λ

∫ 2π

u=0
Hα(u+ (− log r)i) du dμ(α)

+
∫
r1−λ�|α|<1

∫ 2π

u=0
Hα

(
u+

(
log |α| − log r

λ

)
i

)
du dμ(α)

+
∫

|α|�1

∫ 2π

u=0
Hα

(
u+

(− log r
λ

)
i

)
du dμ(α)

}
,

by inequalities (6) and (7) in the previous subsection. All terms are positive, so the order
of taking the limit and integration can change:

L(T , 0) ≈ lim
v→+∞

∫
α∈C∗

∫ 2π

u=0
Hα(u+ iv) du dμ(α)

= lim
k→+∞

∫
α∈C∗

∫ 2π

u=0

∫
y∈R

Hα(y)
2kπ

(2kπ)2 + (u− y)2
dy du dμ(α).

Fix some k ∈ Z, k � 2. Define intervals IN for all N ∈ Z as follows:

I0 = [−2kπ + 2π , 2kπ),

IN =
{

[2kNπ , 2k(N + 1)π) (N > 0),

[2k(N − 1)π + 2π , 2kNπ + 2π) (N < 0).

Thus, R = ⋃
N∈Z IN is a disjoint union.

LEMMA 5.3. For any u ∈ (0, 2π), one has

2kπ
(2kπ)2 + (u− y)2

� 1
1 + (N + 1)2

1
2kπ

(y ∈ IN).

Proof. Elementary.
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Thus,

L(T , 0) ≈ lim
k→+∞

∑
N∈Z

∫
α∈C∗

∫ 2π

u=0

∫
y∈IN

Hα(y)
2kπ

(2kπ)2 + (u− y)2
dy du dμ(α)

� lim
k→+∞

∑
N∈Z

∫
α∈C∗

∫
y∈IN

∫ 2π

u=0
Hα(y)

1
1 + (N + 1)2

1
2kπ

du dy dμ(α)

= lim
k→+∞

∑
N∈Z

∫
α∈C∗

∫
y∈IN

Hα(y)
1

1 + (N + 1)2
1
k
dy dμ(α).

By Lemma 3.3 and Corollary 5.2 after a dilation,

‖T ‖D2 =
∫
α∈C∗

∫
v>0

∫ 2k0π+2π

u=2k0π
Hα(u+ iv)‖ψ ′

α‖2 du ∧ dv dμ(α) (k0 ∈ Z)

≈
∫
α∈C∗

∫
α∈C∗

∫ 2k0π+2π

y=2k0π
Hα(y) dy dμ(α)

is the integral of y on any interval of length 2π . Since I0 has length (2k − 1)2π and IN
has length 2kπ for N �= 0,∫

α∈C∗

∫
y∈I0

Hα(y) dy dμ(α) ≈ (2k − 1)‖T ‖D2

� k‖T ‖D2 ,∫
α∈C∗

∫
y∈IN

Hα(y) dy dμ(α) ≈ k‖T ‖D2 (N �= 0).

Thus,

L(T , 0) � lim
k→+∞

∑
N∈Z

1
1 + (N + 1)2

‖T ‖D2 ≈ ‖T ‖D2

is non-zero.

6. Periodic currents in the negative case λ < 0
Now we treat the case λ < 0. We assume the currents are periodic. Recall that when λ ∈ Q

all directed currents are periodic. So such currents include all currents for λ ∈ Q<0.
Recall the formulas of the mass and of the Lelong number obtained in §3.3, for each

k0 ∈ Z fixed:

‖T ‖D2 =
∫

0<|α|<1

∫ log |α|/λ

v=0

∫ 2k0π+2π

u=2k0π

Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α),

L(T , 0) = lim
r→0+

1
r2 ‖T ‖rD2

= lim
r→0+

1
r2

∫
0<|α|<r1−λ

∫ (log |α|−log r)/λ

v=− log r

∫ 2k0π+2π

u=2k0π

Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α).
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We now prove Theorem 1.5. Suppose that there exists some b ∈ Z�1 such that Hα(u+
iv) = Hα(u+ 2πb + iv) for all α ∈ D∗ and all (u, v) in a neighbourhood of the strip
{(u+ iv) ∈ C | u ∈ R, v ∈ [0, log |α|/λ]}. One proves the following result.

LEMMA 6.1. Let F(u, v) be a positive harmonic function on a neighbourhood of the
horizontal strip {(u+ iv) ∈ C | u ∈ R, v ∈ [0, C]} for some C > 0. Suppose F(u, v) =
F(u+ 2πb, v) on this strip. Then

F(u, v) =
∑

k∈Z,k �=0

(
ake

kv/b cos
(
ku

b

)
+ bke

kv/b sin
(
ku

b

))
+ a0(1 − C−1v)+ b0v,

for some ak , bk ∈ R with a0 � 0 and b0 � 0.

Proof. The proof is almost the same as that of Lemma 4.1. Using Fourier series and
calculating the Laplacian, one concludes that

F(u, v) =
∑

k∈Z,k �=0

(
ake

kv/b cos
(
ku

b

)
+ bke

kv/b sin
(
ku

b

))
+ p + qv,

for some ak , bk , p, q ∈ R. For any v ∈ [0, C], F(u, v) � 0 implies∫ 2πb

u=0
F(u, v)du = 2πb(p + qv) � 0.

Thus, p � 0 and q � −C−1p. One may write p + qv = p(1 − C−1v)+ (q + C−1p)v

with p =: a0 � 0 and q + C−1p =: b0 � 0.

For periodic currents one may assume

Hα(u+ iv) =
∑

k∈Z,k �=0

(
ak(α)e

kv/b cos
(
ku

b

)
+ bk(α)e

kv/b sin
(
ku

b

))

+ a0(α)

(
1 − λ

log |α|v
)

+ b0(α)v, (8)

for some ak(α), bk(α) ∈ R with a0(α) � 0 and b0(α) � 0. According to Lemma 3.3, for
any k0 ∈ Z, use the Jacobian (3):

‖T ‖D2 =
∫

0<|α|<1

∫ log |α|/λ

v=0

∫ 2k0π+2π

u=2k0π
Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α).

Next, using 0 = ∫ 2πb
0 cos(ku/b)du for k �= 0 and the same for sin(ku/b), let us calculate

the average among k0 = 0, 1, . . . , b − 1 for the mass

‖T ‖D2 = 1
b

∫
0<|α|<1

∫ log |α|/λ

v=0

∫ 2πb

u=0
Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α)

= 2πb
b

∫
0<|α|<1

∫ log |α|/λ

v=0(
a0(α)

(
1 − λ

log |α|v
)

+ b0(α)v

)
2(e−2v + λ2|α|2e−2λv) dv dμ(α),
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and for the Lelong number

L(T , 0)

= lim
r→0+

1
r2 ‖T ‖rD2

= lim
r→0+

1
br2

∫
0<|α|<r1−λ

∫ (log |α|−log r)/λ

v=− log r

∫ 2πb

u=0

Hα(u+ iv)2(e−2v + λ2|α|2e−2λv) du dv dμ(α)

= lim
r→0+

2πb
br2

∫
0<|α|<r1−λ

∫ (log |α|−log r)/λ

v=− log r(
a0(α)

(
1 − λ

log |α|v
)

+ b0(α)v

)
2(e−2v + λ2|α|2e−2λv) dv dμ(α).

We introduce the two functions of r ∈ (0, 1] given by elementary integrals,

Ia(r) := 1
r2

∫ (log |α|−log r)/λ

v=− log r
2
(

1 − λ

log |α|v
)
(e−2v + λ2|α|2e−2λv) dv

= 1 + λ|α|2r2λ−2 + 1
2 log |α| (−2|α|−2/λr2/λ−2 log(r)+ λ|α|−2/λr2/λ−2

+ 2λ2|α|2r2λ−2 log(r)− λ|α|2r2λ−2),

Ib(r) := 1
r2

∫ (log |α|−log r)/λ

v=− log r
2v(e−2v + λ2|α|2e−2λv) dv

= 1
2

(
− |α|−2/λr2/λ−2(λ+ 2 log |α| − 2 log(r))

λ

+ |α|2r2λ−2(1 − 2λ log(r))− 2 log |α|
)

,

to describe the contributions from the a0(α) part and from the b0(α) part. Here we
recall that every positive linear function of v on [0, (log |α|)/λ] is a sum of a0(α)

(1 − λ/(log |α|)v) and b0(α) v with a0(α), b0(α) � 0. The two summands correspond to
the dotted line and the dashed line in Figure 15.

Then we can express

‖T ‖D2 = 2π
∫

0<|α|<1
(a0(α)Ia(1)+ b0(α)Ib(1)) dμ(α),

L(T , 0) = 2π lim
r→0+

∫
0<|α|<r1−λ

(a0(α)Ia(r)+ b0(α)Ib(r)) dμ(α).

Observe that

Ia(1) = 1 + λ|α|2 + λ(|α|−2/λ − |α|2)
2 log |α| ,

Ib(1) = 1
2

(
− |α|−2/λ(λ+ 2 log |α|)

λ
+ |α|2 − 2 log |α|

)
.
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FIGURE 15. A positive function = a dotted one (gives Ia(r)) + a dashed one (Ib(r)).

Fix any α ∈ D∗; by definition r2Ia(r) and r2Ib(r) are increasing for r ∈ (0, 1], since
the interval of integration (− log r , (log |α| − log r)/λ) is expanding and the function
integrated is positive. In particular, for any r ∈ (0, 1],

Ia(r) � r−2Ia(1), Ib(r) � r−2Ib(1).

It is more subtle to talk about monotonicity of Ia(r) and Ib(r). We expect upper bounds
of Ia(r)/Ia(1) and Ib(r)/Ib(1) for r ∈ (0, 1] which are independent of α, that is, depend
only on λ.

LEMMA 6.2. For any r ∈ (0, 1) and any α ∈ C with 0 < |α| < r1−λ < 1, one has

0 < Ia(r) < Ia(1).

Proof. Differentiation gives

d

dr
Ia(r) = |α|−2/λ

λr3 log |α|︸ ︷︷ ︸
>0

(
λ2(|α|2+2/λr2λ − r2/λ)− 2(1 − λ)(λ3|α|2+2/λr2λ + r2/λ) log(r)

− 2(1 − λ)λ2|α|2+2/λr2λ log |α|
)

.

It suffices to show that (d/dr)Ia(r) > 0 when r ∈ (0, 1) and 0 < |α| < r1−λ.
Introduce the new variable t := |α|/r1−λ ∈ (0, 1). In the big parentheses, replace |α|

by tr1−λ and log |α| by log(t)+ (1 − λ) log(r):

d

dr
Ia(r) = |α|−2/λr2/λ

λr3 log |α|︸ ︷︷ ︸
>0

(λ2(t2+2/λ − 1)− 2(1 − λ)(t2+2/λ + 1) log(r)

−2(1 − λ)λ2t2+2/λ log(t)︸ ︷︷ ︸
>0

)

>
|α|−2/λr2/λ

λr3 log |α| (λ
2 (t2+2/λ − 1)︸ ︷︷ ︸

�0

−2(1 − λ)(t2+2/λ + 1) log(r)︸ ︷︷ ︸
>0

) > 0,

since λ ∈ [−1, 0) implies t2+2/λ � 1.
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It is not true that Ib(r) is increasing on (0, 1], but on a smaller half-neighbourhood of 0,
independent of α, it is increasing. This suffices to give an upper bound for Ib(r)/Ib(1).

LEMMA 6.3. For any r ∈ (0, e1/2λ(1−λ)) and any α ∈ C with 0 < |α| < r1−λ < 1, one
has

0 < Ib(r) < Ib(e
1/2λ(1−λ)) � e1/(−λ(1−λ))Ib(1).

Proof. Differentiation gives

d

dr
Ib(r) = |α|−2/λ

λ2r3︸ ︷︷ ︸
>0

(−λ2(|α|2+2/λr2λ − r2/λ)+ 2(1 − λ)(λ3|α|2+2/λr2λ + r2/λ) log(r)

− 2(1 − λ)r2/λ log |α|).

It suffices to show that d/drIb(r) > 0 when 0 < r < e1/2λ(1−λ) and 0 < |α| < r1−λ.
Again, introduce the variable t := |α|/r1−λ ∈ (0, 1) and replace α and log |α| in the

parentheses:

d

dr
Ib(r) = |α|−2/λr2/λ

λ2r3︸ ︷︷ ︸
>0

(−λ2(t2+2/λ − 1)+ 2λ(1 − λ)(λ2t2+2/λ + 1) log(r)

−2(1 − λ) log(t)︸ ︷︷ ︸
>0

)

>
|α|−2/λr2/λ

λ2r3 (−λ2(t2+2/λ − 1)+ 2λ(1 − λ)(λ2t2+2/λ + 1)︸ ︷︷ ︸
<0

log(r)︸ ︷︷ ︸
<1/(2λ(1−λ))<0

)

>
|α|−2/λr2/λ

λ2r3 (−λ2(t2+2/λ − 1)+ λ2t2+2/λ + 1) = |α|−2/λr2/λ

λ2r3 (λ2 + 1) > 0.

End of proof of Theorem 1.5. From the foregoing, the Lelong number is zero:

L(T , 0) = 2π lim
r<e1/2λ(1−λ),r→0+

∫
0<|α|<r1−λ

(a0(α)Ia(r)+ b0(α)Ib(r)) dμ(α)

� 2π lim
r→0+

∫
0<|α|<r1−λ

(a0(α)Ia(1)+ b0(α)e
1/(−2λ(1−λ))Ib(1)) dμ(α)

≈ 2π lim
r→0+

∫
0<|α|<r1−λ

(a0(α)Ia(1)+ b0(α)Ib(1)) dμ(α) = 0,

since ‖T ‖D2 = 2π
∫

0<|α|<1(a0(α)Ia(1)+ b0(α)Ib(1)) dμ(α) is finite.
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