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Abstract
We show that every (n, d, λ)-graph contains a Hamilton cycle for sufficiently large n, assuming that
d ≥ log6 n and λ ≤ cd, where c= 1

70000 . This significantly improves a recent result of Glock, Correia, and
Sudakov, who obtained a similar result for d that grows polynomially with n. The proof is based on a new
result regarding the second largest eigenvalue of the adjacency matrix of a subgraph induced by a random
subset of vertices, combined with a recent result on connecting designated pairs of vertices by vertex-
disjoint paths in (n, d, λ)-graphs. We believe that the former result is of independent interest and will have
further applications.
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1. Introduction
AHamilton cycle in a graph is a cycle that passes through all the vertices of the graph exactly once,
and a graph containing a Hamilton cycle is called Hamiltonian. Even though a Hamilton cycle is
a relatively simple structure, determining whether a certain graph is Hamiltonian was included in
the list of 21 NP-hard problems by Karp [21]. Thus, there is significant interest in deriving condi-
tions that ensure Hamiltonicity in a given graph. For instance, the celebrated Dirac’s theorem [9]
states that every graph on n≥ 3 vertices with a minimum degree of n/2 is Hamiltonian. For more
results on Hamiltonicity, readers can refer to the surveys [12, 27, 28].

Most classical sufficient conditions for a graph to be Hamiltonian are only applicable to
relatively dense graphs, such as those considered in Dirac’s Theorem. Establishing sufficient con-
ditions for Hamiltonicity in sparse graphs is known to be much more challenging. Sparse random
graphs are natural objects to consider as starting points, and they have attracted a lot of attention
in the past few decades. In 1976, Pósa [34] proved that for some large constant C, the bino-
mial random graph model G(n, p) with p≥ C log n/n is typically Hamiltonian. In the following
few years, Korshunov [24] refined Pósa’s result, and in 1983, Bollobás [5], and independently
Komlós and Szemerédi [23] showed a more precise threshold for Hamiltonicity. Their results
demonstrate that if p= ( log n+ log log n+ ω(1))/n, then the probability of the random graph
G(n, p) being Hamiltonian tends to 1 (we say such an event happens with high probability, or whp
for brevity).

Following the fruitful study of random graphs, it is natural to explore families of deterministic
graphs that behave in some ways like random graphs; these are sometimes called pseudorandom
graphs. A natural candidate to begin with is the following: suppose that we sample a random graph
G∼G(n, p), and then allow an adversary to delete a constant fraction of the edges incident to each
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vertex. The resulting subgraph H ⊆G loses all its randomness. Thus, we cannot use, for example,
a multiple exposure trick and concentration inequalities, which were heavily used in the proof of
Hamiltonicity of a typical G∼G(n, p). Under such a model, one of the central problems to con-
sider is quantifying the local resilience of the random graph G with respect to Hamiltonicity. In
[36], Sudakov and Vu initiated the study of local resilience of random graphs, and they showed
that for any ε > 0, if p is somewhat greater than log4 n/n, then G(n, p) typically has the property
that every spanning subgraph with a minimum degree of at least (1+ ε)np/2 contains a Hamilton
cycle. They also conjectured that this remains true as long as p= ( log n+ ω(1))/n, which was
solved by Lee and Sudakov [29]. Later, an even stronger result, the so-called “hitting-time”
statement, was shown by Nenadov, Steger and Trujić [32], and Montgomery [30], independently.

Exploring the properties of pseudorandom graphs, which has attracted many researchers in
the area, is much more challenging than studying random graphs. The first quantitative notion of
pseudorandom graphs was introduced by Thomason [37, 38]. He initiated the study of pseudo-
random graphs by introducing the so-called (p, λ)-jumbled graphs, which satisfy |e(U)− p

(|U|
2
)| ≤

λ|U| for every vertex subset U ⊆V . Since then, there has been a great deal of investigation into
different types and various properties of pseudorandom graphs, for example, [1, 8, 15, 16, 22, 31].
This remains a very active area of research in graph theory.

One special class of pseudorandom graphs which has been studied extensively is the class
of spectral expander graphs, also known as (n, d, λ)-graphs. Given a graph G on vertex set V =
{v1, . . . , vn}, its adjacency matrix A := A(G) is an n× n, 0/1 matrix, defined by Aij = 1 if and
only if vivj ∈ E(G). Let s1(A)≥ s2(A)≥ · · · ≥ sn(A) be the singular values of A (see Definition 3.3).
Observe that for a d-regular graphG, we always have s1(G) := s1(A(G))= d, so the largest singular
value is not a very interesting quantity. We say that G is an (n, d, λ)-graph if it is a d-regular graph
on n vertices with s2(G)≤ λ.

The celebrated Expander Mixing Lemma (see, e.g. Chapter 9 in [3]) provides a powerful for-
mula to estimate the edge distribution of an (n, d, λ)-graph, which suggests that (n, d, λ)-graphs
are indeed special cases of jumbled graphs, and that G has stronger expansion properties for
smaller values of λ. Thus, it is natural to seek for the best possible condition on the spectral gap
(defined as the ratio λ/d) which guarantees certain properties. Examples of such results can be
found e.g. in [2, 4, 17, 33]. For more on (n, d, λ)-graphs and their many applications, we refer
the reader to the surveys of Hoory, Linial and Wigderson [19], Krivelevich and Sudakov [26], the
book of Brouwer and Haemers [6], and the references therein.

Hamiltonicity of (n, d, λ)-graphs was first studied by Krivelevich and Sudakov [25], who proved
a sufficient condition on the spectral gap forcing Hamiltonicity. More precisely, they showed that
for sufficiently large n, any (n, d, λ)-graph with

λ/d ≤ ( log log n)2

1000 log n( log log log n)
has a Hamilton cycle. In the same paper, Krivelevich and Sudakov made the following conjecture.

Conjecture 1.1. There exists an absolute constant c> 0 such that for any sufficiently large integer
n, any (n, d, λ)-graph with λ/d ≤ c contains a Hamilton cycle.

Although there are numerous related results in this direction, there had been no improvement
on the original bound until the recent result given by Glock, Correia, and Sudakov [14]. In their
paper, they improved the above result in two different ways: (i) they demonstrated that the spectral
gap λ/d ≤ c/( log n)1/3 already guarantees Hamiltonicity; (ii) they confirmedConjecture 1.1 in the
case where d ≥ nα for every fixed constant α > 0.

In this paper, we improve the second result in [14].

Theorem 1.2. There exists an absolute constant c> 0 such that for any sufficiently large integer n,
any (n, d, λ)-graph with λ/d ≤ c and d ≥ log6 n contains a Hamilton cycle.
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Our proof works for c= 1
70000 , although we made no attempt to optimize this constant.

It is worth mentioning that Draganić, Montgomery, Correia, Pokrovskiy, and Sudakov inde-
pendently verified Conjecture 1.1 in [10], and in particular, they proved a stronger statement than
our main result. Their approach relies on extensions of the Pósa rotation-extension technique and
sorting networks, and utilizes a result in [20] to obtain a linking structure. In contrast, while our
work utilizes a previous result on closing vertex-disjoint paths into a cycle, it is primarily based
on new machinery introduced in this paper, as summarized in Theorem 6.2. Specifically, we show
that the spectral gap of a random induced subgraph of an (n, d, λ)-graph is typically bounded
above by the spectral gap of the original graph, up to a constant factor.

To achieve this, we utilize results on norms of principal submatrices, such as the Rudelson–
Vershynin Theorem [35] (see Section 6), and demonstrate that, with probability 1− n−�(1), the
spectral gap of the induced subgraph remainsO(λ/d) for a sufficiently large random vertex subset.
We believe that this result will have further applications.

The paper is organized as follows. In Section 2, we provide an outline of the proof. Section 3
contains the proof of the expander mixing lemma for matrices, followed by an analysis of the
special case for almost (n, d, λ)-graphs in Section 4. In Section 5, we introduce the extendability
property and reference a useful result from [20], which ensures that vertex-disjoint paths can be
used to connect designated pairs of vertices in (n, d, λ)-graphs. Our key lemma, which concerns
the second singular value of a random-induced subgraph of an (n, d, λ)-graph, is presented in
Section 6. Finally, in Section 7, we prove our main result, Theorem 1.2, along with a generalized
version, Theorem 7.1, for “almost” (n, d, λ)-graphs. For the reader’s convenience, we also include
some standard tools from linear algebra and several technical proofs in the Appendix.

1.1 Notation
For a graph G= (V , E), let e(G) := |E(G)|. We mostly assume that V = [n] for simplicity. For a
subset A⊆V of size m, we simply call it an m-set, and we denote the family of all m-sets of V
by
(V
m
)
. For two vertex sets A, B⊆V(G), we define EG(A, B) to be the set of all edges xy ∈ E(G)

with x ∈A and y ∈ B, and set eG(A, B) := |EG(A, B)|. For two disjoint subsets X, Y ⊆V , we write
G[X, Y] to denote the induced bipartite subgraph of G with parts X and Y . Moreover, we define
NG(v) to be the neighbourhood of a vertex v, and define NG(A) := ⋃

v∈A NG(v) \A for a subset
A⊆V . We writeNG(A, B)=NG(A)∩ B and for a vertex v, letNG(v, B)=NG(v)∩ B. We also write
degG (v) := |NG(v)| and degG (v, B) := |NG(v, B)|. Finally, let δ(G) be the minimum degree of G
and let �(G) be the maximum degree of G.

The adjacency matrix of G, denoted by A := A(G), is a 0/1, n× n matrix such that Ai,j = 1
if and only if ij ∈ E(G). Moreover, given any subset X ⊆V , its characteristic vector 1X ∈R

n is
defined by

1X(i)=
{
1 if i ∈ X
0 otherwise

.

We will often omit the subscript to ease the notation, unless otherwise stated. Since all of our
calculations are asymptotic, we will often omit floor and ceiling functions whenever they are not
crucial.

2. Proof outline
Our strategy for finding a Hamilton cycle in an (n, d, λ)-graph G consists of two main phases.
First, taking two disjoint vertex subsets X, Y ⊆V(G) of the same size �(n/ log4 n), we find a sub-
graph Sres ⊆Gwith |V(Sres)| = �(n/ log n) coveringX and Y , using a recent result (see Lemma 5.3
later) of Hyde, Morrison, MFC;yesser and Pavez-Signé [20]. This subgraph includes various path
factors for later use, where each path has one endpoint in X and the other in Y . Then, we cover
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V(G) \ (V(Sres) \ (X ∪ Y)) by vertex-disjoint paths, with one endpoint in X and the other in Y .
Now, we are allowed to close the paths into a cycle by using one path factor in the prepared sub-
graph Sres. Since all the vertices are used and passed through exactly once, the cycle is indeed a
Hamilton cycle.

We now explain our method thoroughly. First, we take two random disjoint subsets X, Y ⊆
V(G) of equal size �(n/ log4 n). Using Proposition 5.2, we can deduce that whp, the empty graph
I(X ∪ Y) is “extendable” (see Definition 5.1), which further produces a crucial subgraph Sres ⊆G
on �(n/ log n) vertices such that X ∪ Y ⊆V(Sres) (see Lemma 5.3). The powerful property of Sres
that we will use is the following: for any ordering of the pairs in (X, Y), there exists a path factor
in Sres connecting such pairs. This property will be used to connect the paths with endpoints in X
and Y obtained in the second phase.

Next, since |V(Sres)| = �(n/ log n), we can utilize its randomness in a way so that after remov-
ing it, the graph is still pseudorandom. Thus, by randomly partitioning V(G) \V(Sres) into
|X|-sets, if we can find a perfect matching between each two consecutive parts, we will obtain
the desired vertex-disjoint paths Pi connecting xi ∈ X and yi ∈ Y . Now, using the path factor in
Sres connecting (xi, yi)s, we can concatenate all the paths Pi into a cycle.

It remains to ensure, whp, perfect matchings between two random disjoint subsets in an
expander graph. To prove this, we demonstrate that the bipartite subgraph induced by each two
consecutive parts is a good expander. Equivalently, it suffices to study the spectral properties of
random induced subgraphs of G, and this is the main contribution of this paper. It is crucial to
remark that although there are some previous results on randomly selecting edges, e.g. [7], we
randomly pick vertex subsets instead of picking edges. Using results on norms of principal matri-
ces, e.g. Rudelson-Vershynin theorem in [35], we show that with probability at least 1− n−�(1),
the spectral gap of a random induced subgraph of (n, d, λ)-graph is stillO(λ/d) (see Theorem 6.2).

3. Expander mixing lemma for matrices
One of the most useful tools in spectral graph theory is the expander mixing lemma, which asserts
that an (n, d, λ)-graph is an expander (see, e.g., [19]).

Theorem 3.1 (Expander mixing lemma). Let G= (V , E) be an (n, d, λ)-graph. Then, for any two
subsets S, T ⊆V, we have

∣∣∣∣e(S, T)− d|S||T|
n

∣∣∣∣≤ λ

√
|S|
(
1− |S|

n

)
|T|

(
1− |T|

n

)
.

We will need a more general version of the expander mixing lemma which can be applied to
non-regular graphs, digraphs, and even to generalm× nmatricesA. To state such a general result,
it is convenient to normalize A in the following way:

Definition 3.2 (Normalized matrix). Let A be an m× n matrix. Let L= L(A) be the m×m diag-
onal matrix with Li,i =∑

j Ai,j for all i (that is, the sum of entries in the ith row), and R= R(A)
be the n× n diagonal matrix with Rj,j =∑

i Ai,j (that is, the sum of entries in the jth column). The
normalized matrix of the matrix A is defined as

Ā := L−1/2AR−1/2.

In particular, if A is a symmetric n× n matrix, then the diagonal matrix L(A)= R(A)= :D(A) is
called the degree matrix of A.

Since the notion of eigenvalues is undefined for non-square matrices, it would be convenient
for us to work with singular values which are defined as follows for all matrices.
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Definition 3.3 (Singular values). Let A be a real m× n matrix. The singular values of A are the
nonnegative square roots of the eigenvalues of the symmetric positive semidefinite matrix ATA.We
will always assume that sk(A) is the kth singular value of A in nonincreasing order. In particular,
the singular values and the eigenvalues of a symmetric positive semidefinite matrix A coincide.

We are now ready to state a more general version of the expander mixing lemma.

Theorem 3.4 (Expander mixing lemma for matrices). Let A be an m× n matrix with nonnegative
entries, and let Ā be the normalized matrix of A. Then, for any two subsets S⊆ [m] and T ⊆ [n], we
have

∣∣∣∣A(S, T)− A(S, n)A(m, T)
A(m, n)

∣∣∣∣≤ s2(Ā)

√
A(S, n)

(
1− A(S, n)

A(m, n)

)
A(m, T)

(
1− A(m, T)

A(m, n)

)
,

where we adopt the notation A(S, T) := ∑
i∈S,j∈T Ai,j, and we abbreviate A(S, n) := A(S, [n]),

A(m, T) := A([m], T), and A(m, n) := A([m], [n]).

Observe that Theorem 3.4 trivially implies Theorem 3.1, since the adjacency matrix of a
d-regular graph satisfies

Ā= 1
d
A.

The proof of Theorem 3.4 is almost identical to the standard proof of Theorem 3.1 that can be
found e.g. as Proposition 4.3.2 in [6]. Since we could not find a reference for this specific statement
and its proof, we include the proof of Theorem 3.4 for the convenience of the reader, without
claiming any originality. It is based on the following crucial observation.

Observation 3.5. Let A be an m× n matrix with nonnegative entries. Let a := A(m, n) and let 1n
denote the vector inRn whose all coordinates are equal to 1. Consider the vectors u1 := a−1/2L1/21m
and v1 := a−1/2R1/21n. Then:

1. both u1 and v1 are unit vectors;
2. Āv1 = u1;
3. s1(Ā)= ‖Ā‖ = uT

1 Āv1 = 1.

Proof. The first two parts readily follow from the definitions of a, L, R, and Ā. As for the third
part, the equation s1(Ā)= ‖Ā‖ holds for any matrix. Let us show that ‖Ā‖ ≤ 1. For every ‖x‖2 =
‖y‖2 = 1, we have

0≤
∑

i∈[m],j∈[n]
Ai,j

(
xi√
Li,i

− yj√
Rj,j

)2

= 2− 2
∑

i∈[m],j∈[n]

Ai,jxiyj√
Li,iRj,j

= 2− 2xTĀy.

This implies that xTĀy≤ 1 for all unit vectors x and y, which yields ‖Ā‖ ≤ 1.
Moreover, by definition of Ā, we have uT

1 Āv1 = 1. Therefore, by definition of the operator
norm, it follows that ‖Ā‖ ≥ 1. The observation is proved. �

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4. Let r = rank(Ā), and let 1= s1 ≥ s2 ≥ . . . ≥ sr > 0 be all the positive sin-
gular values of Ā in nonincreasing order. Applying the singular value decomposition theorem
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(Theorem A.3) combined with Observation 3.5, we can find orthonormal bases {u1, . . . , um} of
R
m and {v1, . . . , vn} of Rn with vectors v1 and u1 defined in Observation 3.5, and such that

Ā=
r∑

j=1
sjujvT

j .

In particular, Āvj = sjuj for j= 1, . . . , r and Āvj = 0 for j> r. Now, let S⊆ [m] and T ⊆ [n] be two
arbitrary subsets. Then

A(S, T)= 1T
S A1T = χT

S ĀχT , where χS := L1/21S, χT := R1/21T .
Expanding both vectors as

χS =
m∑
j=1

ajuj, and χT =
n∑
j=1

bjvj,

we obtain

A(S, T)=
r∑

j=1
sjajbj = a1b1 +

r∑
j=2

sjajbj.

Recall from Observation 3.5 that all singular values of Ā are bounded by 1, and r = rank(Ā)≤
min{m, n}. Thus, by Cauchy–Schwarz inequality, we have

|A(S, T)− a1b1| ≤
r∑

j=2
|ajbj| ≤

⎛
⎝ m∑

j=2
a2j

⎞
⎠

1/2 ⎛
⎝ n∑

j=2
b2j

⎞
⎠

1/2

. (1)

Now observe that a1 = 〈χS, u1〉 = a−1/2A(S, n) and b1 = 〈χT , v1〉 = a−1/2A(m, T), so

a1b1 = A(S, n)A(m, T)
a

.

Moreover,
m∑
j=2

a2j = ‖χS‖22 − a21 =A(S, n)− A(S, n)2

a
=A(S, n)

(
1− A(S, n)

a

)
,

and similarly
n∑
j=2

b2j =A(m, T)
(
1− A(m, T)

a

)
.

Substitute the last three identities into (1) to complete the proof. �

4. Almost regular expanders
Our argument relies on some spectral properties of random subgraphs of (n, d, λ)-graphs. Since
random subgraphs are not expected to be exactly regular, we extend the definition of (n, d, λ)-
graphs as follows:

Definition 4.1 (Almost (n, d, λ)-graphs). Let d, λ > 0 and γ ∈ [0, 1). We say that a graph G is an
(n, (1± γ )d, λ)-graph if 1 G is a graph on n vertices whose all degrees are (1± γ )d and the second
singular value of the adjacency matrix A of G satisfies s2(A)≤ λ.

1In this definition and elsewhere in the paper, we write a= b± c as a shorthand for the double-sided inequality b− c≤ a≤
b+ c. We use other similar abbreviations, whose exact meaning should be clear from context.
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Almost (n, d, λ)-graphs behave similar to exact (n, d, λ)-graphs in many ways. If G is an
(exactly) d-regular graph with adjacency matrix A, its normalized adjacency matrix is obviously

Ā= 1
d
A

according to Definition 3.2. If G is an almost d-regular graph, its degree matrix
D= diag(d1, . . . , dn) is close to dI, and we can expect that

Ā=D−1/2AD−1/2 ≈ 1
d
A

in some sense. Below we show that such an approximation indeed holds in the sense of the
closeness of all singular values.

Corollary 4.2 (Singular values of almost regular graphs). Let γ ∈ [0, 1) and d > 0. Let G be a graph
whose all vertices have degrees (1± γ )d. Then the adjacencymatrix A and the normalized adjacency
matrix Ā of the graph G satisfy

sk(A)
(1+ γ )d

≤ sk(Ā)≤ sk(A)
(1− γ )d

for all k ∈ [n].

Proof. Using the chain rule for singular values (Lemma A.5), we obtain

sk(A)= sk
(
D1/2ĀD1/2)≤ ‖D1/2‖2sk(Ā).

Since ‖D1/2‖2 = ‖D‖ =maxi di ≤ (1+ γ )d, the lower bound in Corollary 4.2 follows. The upper
bound can be proved similarly. �

4.1 Expander mixing lemma for almost regular expanders
Let us specialize Theorem 3.4 for almost (n, d, λ)-graphs.

Corollary 4.3 (Expander mixing lemma for almost (n, d, λ)-graphs). Let G be an (n, (1± γ )d, λ)-
graph. Then, for any two subsets S, T ⊆V(G), we have

(1− γ )2d|S||T|
(1+ γ )n

− ε ≤ e(S, T)≤ (1+ γ )2d|S||T|
(1− γ )n

+ ε, (2)

where

ε = 1+ γ

1− γ
· λ√|S||T|.

Proof. Let A and Ā be the adjacency and the normalized adjacency matrices of G, respectively.
Theorem 3.4 yields ∣∣∣∣A(S, T)− A(S, n)A(n, T)

A(n, n)

∣∣∣∣≤ s2(Ā)
√
A(S, n)A(n, T). (3)

By Corollary 4.2 and assumption, we have

s2(Ā)≤ s2(A)
(1− γ )d

≤ λ

(1− γ )d
.

Moreover, since A is an adjacency matrix, we have A(S, T)= e(S, T), A(S, n)=∑
v∈S deg (v)= (1± γ )d|S|, A(n, T)=∑

v∈T deg (v)= (1± γ )d|T|, A(n, n)=∑
v∈V(G) deg (v)=

(1± γ )d|V(G)| = (1± γ )dn. Substitute all this into (3) and use triangle inequality to complete
the proof. �
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Sometimes all we need is at least one edge between disjoint sets of vertices S andT. Corollary 4.3
provides a convenient sufficient condition for this:

Corollary 4.4 (At least one edge). Let G be an (n, (1± γ )d, λ)-graph. Let S, T ⊆V(G) be two
disjoint subsets with

√|S||T| > (1+ γ )2

(1− γ )3
· λn
d
.

Then e(S, T)> 0.

Proof. Under our assumptions, the lower bound in (2) is strictly positive. �
The following statement, which is another simple corollary of the expander mixing lemma,

allows us to translate minimum degree conditions into an expansion property for small sets.

Lemma 4.5. Let γ ∈ [0, 1/20] be a constant, and let λ ≤ d/700. Let G be an (n, (1± γ )d, λ)-graph
which contains subsets S, T ⊂V(G) such that for every v ∈ S, d(v, T)≥ d/6. Then, every subset X ⊂ S
of size |X| ≤ 4λn

d satisfies |N(X, T)| ≥ d
700λ |X|.

Proof. Let D= d
700λ ≥ 1. Suppose that there exists a subset X ⊂ S of size 1≤ |X| ≤ 4λn

d such that
|N(X, T)| <D|X|. Let Y =N(X, T). Corollary 4.3 implies that

d|X|
6

≤ e(X, Y)≤ (1+ γ )2d|X||Y|
(1− γ )n

+ 1+ γ

1− γ
· λ√|X||Y|

≤ 5λD|X| + 2λ
√
D|X|

≤ 7λD|X|
= d|X|

100
,

which is a contradiction. Therefore, every subset X ⊂ S of size |X| ≤ 4λn
d satisfies |N(X, T)| ≥

d
700λ |X|. The proof is completed. �

4.2 Matchings in almost regular expanders
In this section, we use the expander mixing lemma to get some corollaries for matchings in almost
(n, d, λ)-graphs. For our convenience, we define the bipartite spectral expanders as below.

Definition 4.6. We say that a bipartite graph H = (V1 ∪V2, E) is an (n, (1± γ )d, λ)-bipartite
expander if H is an induced bipartite subgraph of an (n, (1± γ )d, λ)-graphGwith V(G)=V1 ∪V2,
and for each i= 1, 2 and every v ∈Vi, the degree of v in H satisfies degH (v)= (1± γ ) d|V3−i|

n .

First, we prove the existence of perfect matchings in a bipartite spectral expander with a
balanced bipartition.

Lemma 4.7. Let γ ∈ [0, 1/6] be a constant, let d > 0 and let λ ≤ d/200. Let G= (V , E) be an
(n, (1± γ )d, λ)-bipartite expander with parts V =V1 ∪V2 such that |V1| = |V2|. Then G contains
a perfect matching.

Proof. It is enough to verify the following condition which is equivalent to Hall’s condition (see
Theorem 3.1.11 in [42]): for all i ∈ [2] and S⊆Vi of size |S| ≤ |Vi|/2, we have |N(S)| ≥ |S|.

Suppose to the contrary that there exists i ∈ [2] and an S⊆Vi, such that the set T := N(S) is
of size less than |S|. Since G is an (n, (1± γ )d, λ)-bipartite expander and since |V1| = |V2| = n/2,
we have that
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e(S, T)≥ (1− γ )d
2

· |S|.
On the other hand, using the assumption that γ ≤ 1/6 and the expander mixing lemma for

almost regular expanders (Corollary 4.3), we obtain that

e(S, T)≤ (1+ γ )2d|S||T|
(1− γ )n

+ 1+ γ

1− γ
· λ√|S||T| ≤ 49d|S|

120
+ 7d|S|

1000
<

(1− γ )d
2

· |S|,
where we also used |T| < |S| ≤ n/4 and λ ≤ d/200.

Combining these two estimates we obtain a contradiction. This completes the proof. �
If finding a perfect matching is not necessary, then following from Corollary 4.4, we can use a

greedy algorithm to find a matching that avoids a not-too-large subset in each part of a bipartite
expander.

Lemma 4.8. Let G be an (n, (1± γ )d, λ)-graph, and let V(G)=V1 ∪V2 be a partition. For each
i= 1, 2, let Si ⊆Vi be a subset of size 0≤ ki ≤ |Vi| − (1+γ )2

(1−γ )3 · λn
d . Then there exists a matching of size

min
{
|V1| − k1 − (1+ γ )2

(1− γ )3
· λn
d
, |V2| − k2 − (1+ γ )2

(1− γ )3
· λn
d

}
in G between V1 \ S1 and V2 \ S2.
Proof. We find the matching between V1 \ S1 and V2 \ S2 greedily. Initially, let M := ∅, and
let U1 := V1 \ S1 and U2 := V2 \ S2. If |U1| ≤ (1+γ )2

(1−γ )3 · λn
d or |U2| ≤ (1+γ )2

(1−γ )3 · λn
d , then we stop.

Otherwise, by Corollary 4.4, there is an edge e ∈ E(G) between U1 and U2. LetM := M ∪ {e}, and
let U1 := U1 \V(e) and U2 := U2 \V(e). Continuing in this fashion, we obtain a matching M of
size min

{
|V1| − k1 − (1+γ )2

(1−γ )3 · λn
d , |V2| − k2 − (1+γ )2

(1−γ )3 · λn
d

}
in G between V1 \ S1 and V2 \ S2. The

proof is completed. �

5. Extendability
In [20], the classical tree embedding technique, introduced by Friedman and Pippenger in [11],
was used as one of the tools to prove a useful result on connecting designated pairs of vertices
in expander graphs. The result shows that given two “nice” disjoint small subsets of an (n, d, λ)-
graph, one can find a small subgraph, disjoint from these subsets, such that for any designated
ordering of vertex pairs from the subsets, there exists a path factor in the subgraph that connects
the pairs.

Definition 5.1. Let D,m ∈Nwith D≥ 3. Let G be a graph and let S⊂G be a subgraph with�(S)≤
D.We say that S is (D,m)-extendable if for all U ⊂V(G) with 1≤ |U| ≤ 2m we have

|(NG(U)∪U) \V(S)| ≥ (D− 1)|U| −
∑

u∈U∩V(S)
(dS(u)− 1).

The following result says that it is enough to control the external neighbourhood of small sets
in order to verify extendability.

Proposition 5.2. [20] Let D,m ∈N with D≥ 3. Let G be a graph and let S⊂G be a subgraph with
�(S)≤D. If for all U ⊂V(G) with 1≤ |U| ≤ 2m we have

|NG(U) \V(S)| ≥D|U|,
then S is (D,m)-extendable in G.
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Before stating the lemma, we introduce some necessary definitions. We denote by I(S) the
edgeless subgraph with vertex set S. A graph G is said to bem-joined if for any disjoint sets A, B⊆
V(G) with |A|, |B| ≥m, there is at least one edge between A and B, i.e., e(A, B)≥ 1.

Now we are ready to state the result from [20].

Lemma 5.3. There is an absolute constant C > 0 with the following property. Let n be a sufficiently
large integer, and let 20C ≤K ≤ n/ log3 n. Let D,m ∈N satisfy m≤ n/100D and D≥ 100. Let G be
an m-joined graph on n vertices which contains disjoint subsets V1,V2 ⊆V(G) with |V1| = |V2| ≤
n/K log3 n, and set � := �C log3 n�. Suppose that I(V1 ∪V2) is (D,m)-extendable in G.

Then, there exists a (D,m)-extendable subgraph Sres ⊆G such that for any bijection φ : V1 →V2,
there exists a P�-factor of Sres where each copy of P� has as its endpoints some v ∈V1 and φ(v) ∈V2.

6. Random subgraphs of almost regular expanders
In this section, we show that a random induced subgraph of an almost (n, d, λ)-graph or a bipartite
spectral expander is typically a spectral expander by itself. This serves as our main tool in the proof
of our main result.

6.1 Chernoff’s bounds
We extensively use the following well-known Chernoff’s bounds for the upper and lower tails
of the hypergeometric distribution throughout the paper. The following lemma was proved by
Hoeffding [18] (also see Section 23.5 in [13]).

Lemma 6.1 (Chernoff’s inequality for hypergeometric distribution). Let X ∼Hypergeometric
(N,K, n) and let E[X]= μ. Then

• P [X < (1− a)μ]< e−a2μ/2 for every a> 0;
• P [X > (1+ a)μ]< e−a2μ/3 for every a ∈ (0, 32 ).

6.2 Random-induced subgraphs
The following theorem is the main result of this section. It asserts that with probability at least
1− n−�(1), random (induced) subgraphs of spectral expanders are also spectral expanders.

Theorem 6.2 (Random subgraphs of spectral expanders). Let γ ∈ (0, 1/200] be a constant. There
exists an absolute constant C such that the following holds for sufficiently large n. Let d, λ > 0, let
σ ∈ [1/n, 1), and let G be an (n, (1± γ )d, λ)-graph. Let X ⊆V(G) with |X| = σn be a subset chosen
uniformly at random, and let H := G[X] be the subgraph of G induced by X. Assume that

σd ≥ Cγ −2 log n and σλ ≥ C
√

σd log n.
Then with probability at least 1− n−1/6, H is a

(
σn, (1± 2γ )σd, 6σλ

)
-graph.

Let us briefly discuss the two conditions in Theorem 6.2. The first condition permits the ran-
dom subgraph to be quite sparse – with degrees on the order of log n – but not sparser than that.
Below this threshold, the degrees of the random subgraph become unstable, and it will no longer
be approximately regular. The second condition is essentially the Alon-Boppana bound, up to a
logarithmic factor, which dictates that the second singular value of an approximately σd-regular
graph must be at least �(

√
σd). In other words, the conditions in Theorem 6.2 are nearly nec-

essary for a subgraph H to be an almost regular expander. Additionally, we did not optimise the
constant factor in s2(H), though we believe it should be 1+ o(1).
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The proof of Theorem 6.2 is based on bounds of the spectral norm of a random submatrix,
which is obtained from a given n× n matrix B by choosing a uniformly random subset of rows
and a uniformly random subset of columns of B.

There are two natural ways to choose a random subset of the set [n]. We can make a random
subset I by selecting every element of [n] independently at random with probability σ ∈ (0, 1). In
this case, we write

I ∼ Subset(n, σ ).

Alternatively, we can choose any m-set J of [n] with the same probability 1/
(n
m
)
. In this case,

we write

J ∼ Subset(n,m).

Note that if m= σn, the models Subset(n, σ ) and Subset(n,m) are closely related but not
identical. It should be clear from the context which one we consider.

For a given subset I ⊂ [n], we denote by PI the orthogonal projection in R
n onto R

I . In other
words, PI is the diagonal matrix with Pii = 1 if i ∈ I and Pii = 0 if i �∈ I.

The main tool of this section is the following bound. It is worth mentioning that several similar
results have been proved before, for example, in [35] and [41].

Theorem 6.3 (Norms of random submatrices). Let B be an n× n matrix. Let I, I′ ∼ Subset(n, σ )
be two independent subsets, where σ ∈ (0, 1). Let p≥ 2 and let q=max{p, 2 log n}. Then

Ep‖PIBPI′‖ ≤ σ‖B‖ + 3√qσ
(
‖B‖1→2 + ‖BT‖1→2

)
+ 8q‖B‖∞.

Here Ep[X]= (E|X|p)1/p is the Lp norm of the random variable X; the norm ‖·‖1→2 denotes the
norm of a matrix as an �1 → �2 linear operator, which equals to the maximum value among the �2
norm of each column; and ‖·‖∞ denotes the maximum absolute entry of a matrix.

We use the following results to derive Theorem 6.3.

Lemma 6.4 (Rudelson-Vershynin [35]). Let A be an m× n matrix with rank r. Let I ∼
Subset(n, σ ), where σ ∈ (0, 1). Let p≥ 2 and let q=max{p, 2 log r}. Then

Ep‖API‖ ≤ √
σ‖A‖ + 3√qEp‖API‖1→2.

Theorem 6.5 (Tropp [41]). Let A be an m× n matrix with rank r. Let I ∼ Subset(n, σ ), where
σ ∈ (0, 1). Let p≥ 2 and let q=max{p, 2 log r}. Then

Ep‖PIA‖1→2 ≤ √
σ‖A‖1→2 + 21.25√qEp‖PIA‖∞

Proof of Theorem 6.3. First, we apply Lemma 6.4 twice (in the same manner as in [41]), where we
first take PIB, PI′ in place of A, PI , and then take BT, PI in place of A, PI . So we obtain

Ep‖PIBPI′‖ ≤ √
σEp‖PIB‖ + 3√qEp‖PIBPI′‖1→2

≤ σ‖B‖ + 3√qσEp‖BTPI‖1→2 + 3√qEp‖PIBPI′‖1→2

≤ σ‖B‖ + 3√qσ‖BT‖1→2 + 3√qEp‖PIB‖1→2,

where the last inequality follows since the 1→ 2 norm of a submatrix is bounded by the 1→ 2
norm of a matrix. We then use Theorem 6.5 to complete the proof:

Ep‖PIB‖1→2 ≤ √
σ‖B‖1→2 + 21.25√qEp‖PIB‖∞

≤ √
σ‖B‖1→2 + 21.25√q‖B‖∞

≤ √
σ‖B‖1→2 + 8√q‖B‖∞/3.

�
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Theorem 6.3 gives a tool when one wishes to study the case of independent random subsets of
row indices and column indices. However, because our goal is to study random subsets of fixed
size of a given set, we cannot apply Theorem 6.3 directly since now the selections of row indices
and column indices are not independent. Instead, we would like to make I = I′ and change the
model of sampling. The following tools make this possible.

Lemma 6.6 (Decoupling [41]). Let B be a diagonal-free symmetric n× n matrix. Let I, I′ ∼
Subset(n, σ ) be two independent subsets, where σ ∈ (0, 1). Then for every p≥ 2, we have

Ep‖PIBPI‖ ≤ 2Ep‖PIBPI′‖.
Lemma 6.7 (Random subset models [40]). Let B be an n× n matrix. Let I ∼ Subset(n, σ ) and J ∼
Subset(n,m) be two independent subsets, where σ ∈ (0, 1) and m= σn≥ 1. Then for every p≥ 2,
we have

Ep‖PJBPJ‖ ≤ 21/pEp‖PIBPI‖.
By combining the two lemmas above and Theorem 6.3, we can obtain a corollary as follows:

Corollary 6.8 (Norms of random submatrices). Let B be a symmetric n× n matrix. Let J ∼
Subset(n,m), where σ ∈ (0, 1) and m= σn≥ 1. Let p≥ 2 and let q=max{p, 2 log n}. Then

Ep‖PJBPJ‖ ≤ 4σ‖B‖ + 24√qσ‖B‖1→2 + 35q‖B‖∞.

Proof. Consider the symmetric, diagonal-free matrix B0 = B−D where D :=
diag(B1,1, . . . , Bn,n). Combining Theorem 6.3 with Lemmas 6.6 and 6.7, we obtain the following:

Ep‖PJB0PJ‖ ≤ 4σ‖B0‖ + 24√qσ‖B0‖1→2 + 32q‖B0‖∞.

Note that ‖B0‖ ≤ ‖B‖ + ‖D‖, ‖B0‖1→2 ≤ ‖B‖1→2, ‖B0‖∞ ≤ ‖B‖∞, and ‖PJBPJ‖ ≤ ‖PJB0PJ‖ +
‖PJDPJ‖ ≤ ‖PJB0PJ‖ + ‖D‖. This implies

Ep‖PJBPJ‖ ≤Ep‖PJB0PJ‖ + ‖D‖ ≤ 4σ (‖B‖ + ‖D‖) + 24√qσ‖B‖1→2 + 32q‖B‖∞ + ‖D‖.
Notice that ‖D‖ =maxi |Bi,i| ≤ ‖B‖∞ to complete the proof. �

We are now ready to prove Theorem 6.2.

Proof of Theorem 6.2. Let C > 0 be a sufficiently large absolute constant. To see that the
random induced subgraph H := G[X] is almost regular whp, we can apply Lemma 6.1 with
n, (1± γ )d, σn, γ /(1+ γ ) in place of N,K, n, a. Since σd ≥ Cγ −2 log n for sufficiently large
absolute constant C > 0, it follows that, with probability at least 1− n−1, all degrees of H are
(1± 2γ )σd. Thus, it remains to bound the second singular value of AH whp, where AH is the
adjacency matrix of H.

It is convenient to first work with normalised matrices. So let us consider the normalised
adjacency matrix

ĀG =D−1/2AGD−1/2, where D= diag(d1, . . . , dn) (4)

is the degree matrix of G. Note that for anym× nmatrix A, we have that s2(A)=minB ‖A− B‖,
where the minimum is over all rank-one m× n matrices B (see Lemma A.4). Thus, by applying
Observation 3.5, we have

s2(ĀG)= ‖B‖, where B= ĀG − 1
a
D1/21n1

T
nD

1/2 and a=
n∑
i=1

di. (5)

Applying Corollary 6.8 for any p≥ 2 and q=max{p, 2 log n}, we obtain
Ep‖PXBPX‖ ≤ 4σ‖B‖ + 24√qσ‖B‖1→2 + 35q‖B‖∞. (6)
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Let us bound each of the three terms on the right hand side.
Bounding ‖B‖. First, by (5), Corollary 4.2 and the assumptions, we have

‖B‖ = s2(ĀG)≤ s2(AG)
(1− γ )d

≤ 1.1λ
d

. (7)

Bounding ‖B‖1→2. Triangle inequality yields

‖B‖1→2 ≤ ‖ĀG‖1→2 + 1
a
‖D1/2‖1n1

T
nD

1/2
1→2. (8)

Let us bound each of the terms appearing on the right-hand side. First,

‖ĀG‖1→2 = ‖D−1/2‖AGD−1/2
1→2 ≤ ‖D−1‖‖AG‖1→2.

We have ‖D−1‖ =maxi (1/di)≤ 1.1/d and ‖AG‖1→2 =maxj
√
dj ≤ 1.1

√
d. Thus,

‖ĀG‖1→2 ≤ 1.3√
d
. (9)

Next,

a=
n∑
i=1

di ≥ (1− γ )dn≥ 0.9dn. (10)

Moreover,
‖D1/2‖1n1

T
nD

1/2
1→2 ≤ ‖D‖ · ‖1n1

T
n‖1→2 ≤ (1+ γ )d · √n≤ 1.1d

√
n. (11)

Putting (9), (10) and (11) into (8), we get

‖B‖1→2 ≤ 1.3√
d

+ 1
0.9dn

· 1.1d√n≤ 2.6√
d
. (12)

Bounding ‖B‖∞. Again, triangle inequality yields

‖B‖∞ ≤ ‖ĀG‖∞ + 1
a
‖D1/2‖1n1

T
nD

1/2
∞. (13)

All entries of ĀG are 1/
√
didj ≤ 1.1/d, and all entries of D1/21n1T

nD1/2 are
√
didj ≤ 1.1d. Also,

recall that a≥ 0.9dn by (10). Thus, plugging them into (13), we obtain

‖B‖∞ ≤ 1.1
d

+ 1
0.9dn

· 1.1d ≤ 2.4
d
. (14)

Putting (7), (12) and (14) into (6), we obtain

Ep‖PXBPX‖ ≤ 4.4σλ

d
+ 63

√
qσ
d

+ 84q
d

.

Multiplying on the left and right by D1/2 inside the norm, we conclude that

Ep‖D1/2‖PXBPXD1/2 ≤ ‖D‖Ep‖PXBPX‖ ≤ 5σλ + 70
√
qσd + 93q= :λ0,

where we used that ‖D‖ =maxi di ≤ 1.1d. Since diagonal matrices commute, we can express the
matrix above as follows:

D1/2PXBPXD1/2 = PXD1/2BD1/2PX = PXAGPX − 1
a
PXD1n1

T
nDPX ,

where in the last step we used (4) and (5). Note that 1
aPXD1n1T

nDPX is a rank one matrix. Thus,
by Lemma A.4, we have s2(PXAGPX)≤ ‖D1/2‖PXBPXD1/2, and thus

Eps2(PXAGPX)≤ λ0.
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Since the adjacency matrix AH of the induced subgraph H is a σn× σn submatrix of the n× n
matrix PXAGPX , by the Interlacing Theorem for singular values (Theorem A.2), it follows that

Eps2(AH)≤ λ0.

Now choose p= 2 log n and thus q= p= 2 log n. Applying Markov’s inequality, we obtain

P [s2(AH)≥ 1.1λ0]= P
[
s2(AH)p ≥ (1.1λ0)p

]≤(Eps2(AH)
1.1λ0

)p

≤ (1.1)−p = (1.1)−2 log n ≤ n−0.19.

In other words, with probability at least 1− n−0.19, we have

s2(AH)< 1.1λ0 ≤ 5.5σλ + 109
√

σd log n+ 205 log n.

To complete the proof, we show that the first term dominates the right-hand side.
Indeed, since the absolute constant C is sufficiently large, the first condition in Theorem 6.2
implies that 205 log n≤√σd log n. Similarly, the second condition in the theorem implies that
110

√
σd log n≤ 0.5σλ. Then it follows that

s2(AH)≤ 5.5σλ + 0.5σλ = 6σλ.

Therefore, with probability at least (1− n−1)(1− n−0.19)≥ 1− n−1/6, H is a(
σn, (1± 2γ )σd, 6σλ

)
-graph, which completes the proof of Theorem 6.2. �

Sometimes we will work on the bipartite subgraphG[X, Y] induced by random disjoint subsets
X, Y ⊆V(G). We also haveG[X, Y] is a bipartite spectral expander whp, which is a direct corollary
of Theorem 6.2.

Corollary 6.9. Let γ ∈ (0, 1/200] be a constant. There exists an absolute constant C such that
the following holds for sufficiently large n. Let d, λ > 0, let σ1, σ2 ∈ [1/n, 1), and let G be an
(n, (1± γ )d, λ)-graph. Let X, Y ⊆V(G) with |X| = σ1n and |Y| = σ2n be two disjoint subsets cho-
sen uniformly at random, and let H := G[X, Y] be the bipartite subgraph of G induced by X and Y.
Let σ := σ1 + σ2. Assume that

σ1d, σ2d ≥ Cγ −2 log n and σλ ≥ C
√

σd log n.

Then with probability at least 1− n−1/7, H is a
(
σn, (1± 2γ )σd, 6σλ

)
-bipartite expander.

Proof. Let C > 0 be a sufficiently large absolute constant. Since σ1n, σ2n≥ Cγ −2 log n, by
Chernoff’s bounds, we have that

P
[∃v ∈V , deg (v, X) �= (1± 2γ ) σ1n

]≤ n−1

and

P
[∃v ∈V , deg (v, Y) �= (1± 2γ ) σ2n

]≤ n−1.

Next, note that X ∪ Y is a random subset of size |X| + |Y| = σ1n+ σ2n= σn. Now, since
σd = σ1d + σ2d ≥ 2Cγ −2 log n and σλ ≥ C

√
σd log n, Theorem 6.2 implies that with probability

at least 1− n−1/6,

G[X ∪ Y] is a
(
σn, (1± 2γ )σd, 6σλ

)
-graph.

Therefore, we have that with probability at least (1− 2n−1)(1− n−1/6)≥ 1− n−1/7,

H := G[X, Y] is a
(
σn, (1± 2γ )σd, 6σλ

)
-bipartite expander,

which completes the proof. �
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7. Proof of Theorem 1.2
In this section, we prove our main result, Theorem 1.2. Since regular spectral expanders can be
viewed as (n, (1± γ )d, λ)-graphs, the following slightly stronger statement will directly imply
Theorem 1.2.

Theorem 7.1. Let γ ∈ (0, 1/400] and let n be a sufficiently large integer. Then, any (n, (1± γ )d, λ)-
graph with λ ≤ d/70000 and d ≥ log6 n contains a Hamilton cycle.

Before proving the theorem, we first state and prove the following simple averaging argument.

Claim 7.2. Let α ∈ [0, 1], let 0<m≤ h≤ n/2 be integers, and let P be any graph property. Let
G= (V , E) be a graph on n vertices. Suppose that there are at least 1− α proportion of pairs of
disjoint m-sets A, B⊆V such that G[A, B] ∈P. Let F⊆ (V

m
)
be the family of m-sets A such that for

at least 1− α1/2 proportion of m-sets B⊆V \A, G[A, B] ∈P. For A ∈F, let FA ⊆ (V\A
m
)
be the

family of m-sets B⊆V \A such that G[A, B] ∈P. Then the following properties hold:

(A1) |F| ≥ (1− α1/2)
(n
m
)
;

(A2) for a uniformly random h-set S⊆V \A, with probability at least 1− α1/4, |FA ∩ ( Sm)| ≥
(1− α1/4)

(h
m
)
;

(A3) for A ∈ (Vm) and S ∈ (Vh) chosen uniformly at random such that A∩ S= ∅, with probability
at least 1− α1/2 − α1/4, for at least 1− α1/4 proportion of m-sets B⊆ S, G[A, B] ∈P. �

Proof. We prove the statements in sequence.
Property (A1). Suppose to the contrary that there are at least α1/2(n

m
)
m-sets A /∈F. By defi-

nition, each such A contributes at least α1/2(n−m
m
)
pairs (A, B) such that G[A, B] /∈P. Therefore,

there are at least α1/2(n
m
) · α1/2(n−m

m
)= α

(n
m
)(n−m

m
)
pairs (A, B) such that G[A, B] /∈P, contradict-

ing the assumption that there are at least 1− α proportion of pairs (A, B) with G[A, B] ∈P. Thus,
|F| ≥ (1− α1/2)

(n
m
)
.

Property (A2). Suppose to the contrary that there are more than α1/4(n−m
h
)
h-sets S⊆V \A,

each containing at least α1/4(h
m
)
m-sets B such that B /∈FA. Since each such subset B is counted at

most
(n−2m
h−m

)
times, there are in total more than

1(n−2m
h−m

) · α1/4
(
n−m
h

)
· α1/4

(
h
m

)
= α1/2

(
n−m
m

)

m-sets B such that B /∈FA. This contradicts the assumption that |FA| ≥ (1− α1/2)
(n−m

m
)
.

Property (A3). By applying (A1), (A2), and the union bound, for disjoint uniformly randomly
chosen A ∈ (Vm) and S ∈ (Vh), with probability at least 1− α1/2 − α1/4, we have that A ∈F and
|FA ∩ ( Sm)| ≥ (1− α1/4)

(h
m
)
. This implies that for at least 1− α1/4 proportion of m-sets B⊆ S,

G[A, B] ∈P.
The proof is completed. �
We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. Assume that γ ≤ 1/400, λ ≤ d/70000, and that G= (V , E) is an (n, (1±
γ )d, λ)-graph with a sufficiently large integer n and d ≥ log6 n. Since an (n, (1± γ )d, λ)-graph is
also an (n, (1± γ )d, λ′)-graph when λ ≤ λ′, we may assume that

√
d log3 n≤ λ ≤ d/70000. Let

k := n/ log4 n. �
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7.1 Partitioning the graph
First, we find a partition of the vertex set of the (n, (1± γ )d, λ)-graphGwith some nice properties.

Claim 7.3. There exists a partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ R1 ∪ R2 with |X1| = |Y1| = k
5 , |X2| =

|Y2| = 4k
5 and |R2| = 4n

5 , such that the following properties hold:

(P1) for every vertex v ∈V , we have:

deg (v, X1), deg (v, Y1)= (1± 2γ )
dk
5n

, deg (v, X2), deg (v, Y2)= (1± 2γ )
4dk
5n

deg (v, R1)= (1± 2γ )
d
5
, and deg (v, R2)= (1± 2γ )

4d
5
;

(P2) letting X := X1 ∪ X2 and Y := Y1 ∪ Y2, the subgraph

G′ := G[X ∪ Y ∪ R1] is an
(
n
5
, (1± 2γ )

d
5
,
6λ
5

)
-graph;

(P3) for at least 1− n−1/7 proportion of disjoint subsets S, T ⊆ R1 ∪ R2 of equal size k,

G[S, T] is a
(
2k, (1± 4γ )

2dk
n

,
18λk
n

)
-bipartite expander;

(P4) for at least 1− n−1/28 proportion of k-sets S⊆ R1 ∪ R2, the bipartite subgraphs

G[X, S] and G[S, Y] are
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-bipartite expanders;

(P5) the bipartite subgraph

G[X, Y] is a
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-bipartite expander.

�
Proof of Claim 7.3. Let V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ R1 ∪ R2 be a uniformly random partition with
|X1| = |Y1| = k

5 , |X2| = |Y2| = 4k
5 and |R2| = 4n

5 .Wewish to prove that each property among (P1)–
(P5) holds whp.

Property (P1). Since for all v ∈V we have E[ deg (v, X1)]= (1± γ ) dk5n = ω( log n), it follows by
Chernoff’s bounds and the union bound that

P

[
∃v ∈V , deg (v, X1) �= (1± 2γ )

dk
5n

]
≤ ne−ω( log n) = o(1).

Similarly, the other degree bounds also hold with probability at least 1− o(1). Therefore,
property (P1) holds with high probability. For the remainder of the proof, we will condition on
property (P1).

Property (P2). Note that X ∪ Y ∪ R1 is a uniformly random subset of size n
5 . Since

d
5 =

ω(γ −2 log n) and λ
5 = ω

(√
d log n

5

)
, by Theorem 6.2, we have that with probability at least

1− n−1/6,

G′ =G[X ∪ Y ∪ R1] is an
(
n
5
, (1± 2γ )

d
5
,
6λ
5

)
-graph.
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Property (P3). First, we prove that G[R1 ∪ R2] is an (n− 2k, (1± 3
2γ )d, λ)-graph. Indeed, by

property (P1), for every vertex v ∈V ,
deg (v, R1 ∪ R2)= deg (v)− deg (v, X1)− deg (v, X2)− deg (v, Y1)− deg (v, Y2)

= (1± γ )d − 2(1± 2γ )
(
dk
5n

+ 4dk
5n

)

=
(
1± 3

2
γ

)
d.

Also, by the Interlacing Theorem for singular values (Theorem A.2), we have that s2(G[R1 ∪
R2])≤ s2(G)≤ λ. Therefore, G[R1 ∪ R2] is an (n− 2k, (1± 3

2γ )d, λ)-graph.
Next, let S, T ⊆ R1 ∪ R2 be two disjoint k-sets chosen uniformly at random. Since (1+

1
2γ )

2dk
n ≥ 2dk

n−2k = ω((2γ )−2 log n) and 3λk
n ≥ 2λk

n−2k = ω

(√
2dk log n
n−2k

)
, Theorem 6.2 implies that

with probability at least 1− n−1/6,

G[S∪ T] is a
(
2k, (1± 4γ )

2dk
n

,
18λk
n

)
-graph.

Also, by Chernoff’s bounds, with probability at least (say) 1− n−1, for every vertex v ∈V ,

deg (v, S), deg (v, T)= (1± 4γ )
dk
n
.

Thus, by the union bound, for at least (1− n−1/6)(1− n−1)≥ 1− n−1/7 proportion of disjoint
subsets S, T ⊆ R1 ∪ R2 of equal size k,

G[S, T] is a
(
2k, (1± 4γ )

2dk
n

,
18λk
n

)
-bipartite expander.

Property (P4). We only prove the property for X, while the analogous statement for Y can be
shown similarly. By applying Corollary 6.9, we can obtain that for at least 1− n−1/7 proportion of
disjoint subsets A, B⊆V of equal size k,

G[A, B] is a
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-bipartite expander.

Note that X is a uniformly random k-set and R1 ∪ R2 ⊆V \ X is a uniformly random (n− 2k)-
set. Thus, by (A3) applied with X, R1 ∪ R2, k, n− 2k, n−1/7 in place of A, S,m, h, α, we have that
with probability at least 1− n−1/14 − n−1/28 ≥ 1− n−1/29, for at least 1− n−1/28 proportion of
k-sets S⊆ R1 ∪ R2,

G[X, S] is a
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-bipartite expander.

Property (P5). Note that X ∪ Y is a uniformly random subset of size 2k. Since 2dk
n =

ω(γ −2 log n) and 2λk
n = ω

(√
2dk log n

n

)
, by Theorem 6.2, we have that with probability at least

1− n−1/6,

G[X ∪ Y] is a
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-graph.

Now by (Q1), the bipartite subgraph

G[X, Y] is a
(
2k, (1± 2γ )

2dk
n

,
12λk
n

)
-bipartite expander.
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All in all, with positive probability all properties (P1)–(P5) hold, which guarantees a partition
V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ R1 ∪ R2 satisfying all desired properties. This completes the proof. �

7.2 Finding Sres and partitioning (R1 ∪ R2) \ V(Sres)
We pick a partition V = X1 ∪ X2 ∪ Y1 ∪ Y2 ∪ R1 ∪ R2 as in Claim 7.3. In order to find the sub-
graph Sres which will be used to close a collection of vertex-disjoint paths into a cycle, we first
verify the assumptions of Lemma 5.3. Recall that G′ =G[X ∪ Y ∪ R1]. Let D := d

700λ ≥ 100, and
letm := (1+2γ )2

(1−2γ )3 · (6λ/5)·(n/5)
d/5 + 1≤ 2λn

d .

Claim 7.4. The following properties hold:

1. G′ is m-joined;
2. I(X ∪ Y) is (D,m)-extendable in G′. �

Proof of Claim 7.4. Recall that by (P2), G′ is an (n5 , (1± 2γ ) d5 ,
6λ
5 )-graph. Corollary 4.4 implies

that G′ is m-joined, so we are left to prove (2). In fact, since I(X ∪ Y) is an empty graph, �(I(X ∪
Y))= 0≤D. Also, recall that by (P1), for every vertex v ∈V , degG (v, R1)≥ (1− 2γ ) d5 ≥ d

6 . Since
G is an (n, (1± γ )d, λ)-graph, by Lemma 4.5, we have that for any subset U ⊆V(G′) of size 1≤
|U| ≤ 2m≤ 4λn

d ,

|NG′(U) \ (X ∪ Y)| ≥ |NG(U)∩ R1| ≥ d
700λ

|U| =D|U|.
Thus, by Proposition 5.2, I(X ∪ Y) is (D,m)-extendable in G′. This completes the proof. �

Now, let C > 0 be the constant in Lemma 5.3, and let � := �C log3 (n5 )�. SinceD≥ 100 andm≤
n/5
100D , by applying Lemma 5.3 on G′ with n

5 ,
log4 n

5 log3 (n/5) , X, Y in place of n,K,V1,V2, we can find a
subgraph Sres ⊆G′ =G[X ∪ Y ∪ R1] with |V(Sres)| = k� satisfying the conclusion of the lemma.

Assuming without loss of generality that |R1 ∪ R2| is divisible by k, we further partition R1 ∪ R2
into k-sets, each of which has a small intersection with Sres, and every pair of such sets induces a
bipartite expander. For convenience, we will let V1 := X and Vt := Y for the remainder of the
proof, where t := n−2k

k .

Claim 7.5. There exists a partition

R1 ∪ R2 =V2 ∪ . . . ∪Vt−1

into k-sets such that the following properties hold:

(Q1) for each 2≤ i≤ t − 1, we have |Vi \V(Sres)| ≥ k− 2Ck
log n ;

(Q2) for each 2≤ i≤ t − 1, |Vi,1| = (1± γ ) k5 and |Vi,2| = (1± γ ) 4k5 , where Vi,1 := Vi ∩ R1 and
Vi,2 := Vi ∩ R2;

(Q3) for each 2≤ i≤ t − 1 and for every vertex v ∈V , we have

deg (v,Vi,1)= (1± 5γ )
dk
5n

and deg (v,Vi,2)= (1± 5γ )
4dk
5n

;

(Q4) for each distinct i, j ∈ [t], the subgraph

G[Vi,Vj] is a
(
2k, (1± 5γ )

2dk
n

,
18λk
n

)
-bipartite expander;
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(Q5) for each distinct i, j ∈ [t], the bipartite subgraph

G[Vi,1,Vj,1] is a
(

|Vi,1| + |Vj,1|, (1± 5γ )
2dk
5n

,
18λk
n

)
-bipartite expander,

where V1,1 := X1 and Vt,1 := Y1. �
Proof of Claim 7.5. Let R1 ∪ R2 =V2 ∪ . . . ∪Vt−1 be a uniformly random partition into k-sets.
We wish to prove that each property among (Q1)–(Q5) holds whp.

Property (Q1). Recall that |Sres| = k� = n
log4 n · C log3 (n5 ). Since for each 2≤ i≤ t − 1, Vi is

a uniformly random k-set, we have that E[|Vi ∩ Sres|]= k
log4 n · C log3 (n5 ). Thus, by Chernoff’s

bounds and the union bound,

P

[
|Vi ∩ Sres| ≥ 2Ck

log n
for some 2≤ i≤ t − 1

]
≤ te−�

(
Ck
log n

)
= o(1).

Therefore, property (Q1) holds with probability 1− o(1).
Property (Q2). Recall that |R1| = n

5 − 2k and |R2| = 4n
5 . Since Vi is chosen as a uniformly ran-

dom k-set, we have E[|Vi,1|]= k
5 − 2k2

n and E[|Vi,2|]= 4k
5 . By applying Chernoff’s bounds and the

union bound, we get

P

[
|Vi,1| �= (1± γ )

k
5
or |Vi,2| �= (1± γ )

4k
5

for some 2≤ i≤ t − 1
]

≤ te−ω( log n) = o(1),

where the last inequality holds since k= ω( log n). Thus, property (Q2) holds with probability
1− o(1). For the remainder of the proof, we will condition on property (Q2).

Property (Q3). Recall from property (P1) that for every vertex v ∈V , we have deg (v, R1)= (1±
2γ ) d5 . Additionally, by (Q2), for each 2≤ i≤ t − 1, Vi,1 is a random subset of size (1± γ ) k5 . Now,
conditioning on |Vi,1| = a= (1± γ ) k5 , deg (v,Vi,1) is a hypergeometric random variable with
expectation (1± 2γ ) dan = (1± 4γ ) dk5n . Thus, fixing v ∈V and 2≤ i≤ t − 1, Chernoff’s bounds
imply that

P

[
deg (v,Vi,1) �= (1± 5γ )

dk
5n

∣∣∣ |Vi,1| = a
]

≤ e−ω( dkn ).

By the law of total probability and the union bound, we obtain that

P

[
∃v ∈V , ∃2≤ i≤ t − 1, deg (v,Vi,1) �= (1± 5γ )

dk
5n

]

≤nt
(1+γ ) k5∑

a=(1−γ ) k5

P

[
deg (v,Vi,1) �= (1± 5γ )

dk
5n

∣∣∣ |Vi,1| = a
]

· P [|Vi,1| = a
]

≤nte−ω( dkn )
(1+γ ) k5∑

a=(1−γ ) k5

P
[|Vi,1| = a

]

≤nte−ω( dkn )

=o(1).

Therefore, with an analogous proof for deg (v,Vi,2), property (Q3) holds with probability
1− o(1).
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Property (Q4). First, recall that by (P5),G[X, Y] is a
(
2k, (1± 2γ ) 2dkn , 12λkn

)
-bipartite expander.

Next, recall that by (P3), for two random disjoint k-sets Vi,Vj ⊆ R1 ∪ R2 chosen uniformly at ran-
dom, with probability at least 1− n−1/7,G[Vi,Vj] is a

(
2k, (1± 4γ ) 2dkn , 18λkn

)
-bipartite expander.

Thus, by the union bound, with probability at least 1− (t−2
2
)
n−1/7, for each pair 2≤ i< j≤ t − 1,

G[Vi,Vj] is a
(
2k, (1± 4γ ) 2dkn , 18λkn

)
-bipartite expander.

Finally, recall that by (P4), for a random k-sets Vi ⊆ R1 ∪ R2 chosen uniformly at random,
with probability at least 1− n−1/28, G[X,Vi] and G[Vi, Y] are

(
2k, (1± 2γ ) 2dkn , 12λkn

)
-bipartite

expanders. Again, by the union bound, with probability at least 1− (t − 2)n−1/28, for each 2≤ i≤
t − 1, G[X,Vi] and G[Vi, Y] are

(
2k, (1± 4γ ) 2dkn , 18λkn

)
-bipartite expanders.

Therefore, in total, (Q4) holds with probability at least

1−
(
t − 2
2

)
n−1/7 − (t − 2)n−1/28 = 1− o(1).

For the remainder of the proof, we will condition on property (Q3) and (Q4).
Property (Q5). Recall that by (P1) and (Q3), we have that for each i ∈ [t] and for every vertex v ∈

V , deg (v,Vi,1)= (1± 5γ ) dk5n . Also, recall that (Q4) implies that s2(G[Vi ∪Vj])≤ 18λk
n . Thus, by

the Interlacing Theorem for singular values (Theorem A.2), s2(G[Vi,1 ∪Vj,1])≤ s2(G[Vi ∪Vj])≤
18λk
n . Therefore,

G[Vi,1,Vj,1] is a
(

|Vi,1| + |Vj,1|, (1± 5γ )
2dk
5n

,
18λk
n

)
-bipartite expander.

All in all, with positive probability all properties (Q1)–(Q5) hold, which guarantees a partition
R1 ∪ R2 =V2 ∪ . . . ∪Vt−1 satisfying all desired properties. This completes the proof. �

7.3 Finding vertex-disjoint paths
We pick a partition R1 ∪ R2 =V2 ∪ . . . ∪Vt−1 as in Claim 7.5, and let Ui := Vi \V(Sres) for
each 2≤ i≤ t − 1. Also, denote U1 := V1 for simplicity in the iterative process defined below. By
reordering if necessary, without loss of generality, we may assume that |U1| ≥ |U2| ≥ . . . ≥ |Ut−1|,
and let n1 ≥ n2 ≥ . . . ≥ nt−1 be the corresponding sizes of the |Ui|s. We wish to find vertex-
disjoint paths covering all the vertices in

⋃t−1
i=1 Ui ∪Vt , where each path has one endpoint in

U1 = X and the other in Vt = Y . Note that if all the nis were the same, then we could simply
find perfect matchings between each pair Ui and Ui+1. Since the nis are not the same, we will first
use Lemma 4.8 to find vertex-disjoint matchings Mis, where Mi is a matching of size ni − ni+1
between Ui and Vt . Then, noticing that the remainder of each two consecutive parts have the
same size, we will apply Lemma 4.7 to find a perfect matching Ni between the remainder of each
two consecutive parts. Now, concatenating all the matchings Mis and Nis will give the desired
vertex-disjoint paths (see Figure. 1 for illustration).

Initially, let V ′
t := Vt . First, we find a matchingM1 of size n1 − n2 between U1 ∩V1,1 and V ′

t ∩
Vt,1. Recall that we have n1 − n2 ≤ 2Ck

log n by (Q1). Also, recall that by (Q5),

G[V1,1,Vt,1] is a
(

|V1,1| + |Vt,1|, (1± 5γ )
2dk
5n

,
18λk
n

)
-bipartite expander.

Thus, by Lemma 4.8, there exists a matchingM1 of size n1 − n2 in G between U1 ∩V1,1 and V ′
t ∩

Vt,1. Let U ′
1 := U1 \V(M1) and V ′

t := V ′
t \V(M1). Now, we have that |U ′

1| = |U2| = n2, which is
necessary to find a perfect matching between U ′

1 and U2. Also, |V ′
t | = n2.
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Figure 1. The figure is an example for connecting the matchings into vertex-disjoint paths when t= 4. The dashed lines
represent matchingsMis, and the straight lines represent matchings Nis.

Next, we find a matching M2 of size n2 − n3 between U2 ∩V2,1 and V ′
t ∩Vt,1. Recall that by

(Q1), we have

|V2,1 \U2| + (n2 − n3)= |Vt,1 \V ′
t | + (n2 − n3)= n1 − n3 ≤ 2Ck

log n
Also, recall that by (Q5),

G[V2,1,Vt,1] is a
(

|V2,1| + |Vt,1|, (1± 5γ )
2dk
5n

,
18λk
n

)
-bipartite expander.

Thus, by Lemma 4.8, there exists a matchingM2 of size n2 − n3 in G between U2 ∩V2,1 and V ′
t ∩

Vt,1. Let U ′
2 := U2 \V(M2) and V ′

t := V ′
t \V(M2). Now, we have that |U ′

2| = |U3| = n3, which
is necessary to find a perfect matching between U ′

2 and U3. Also, |V ′
t | = n3. Continuing in this

fashion, we can and do find vertex-disjoint matchingsMis between Ui and Vt for each i ∈ [t − 2].
And crucially, we have that |U ′

i | = |Ui+1| = ni+1 for each i ∈ [t − 2], and |Ut−1| = |V ′
t | = nt−1. In

the rest of proof, we letU ′
t−1 := Ut−1 andUt := V ′

t for simplicity of the following iterative process.
Now, we find a perfect matching between U ′

i and Ui+1 for each i ∈ [t − 1]. To do so, we first
prove that the induced bipartite subgraph G[U ′

i ,Ui+1] is a bipartite expander. Recall that for each
i ∈ [t − 1],G[Vi,Vi+1] is a

(
2k, (1± 5γ ) 2dkn , 18λkn

)
-bipartite expander by (Q4). So for every vertex

v ∈Vi ∪Vi+1,

deg (v,U ′
i )≤ deg (v,Vi)≤ (1+ 5γ )

dk
n

≤
(
1+ 1

8

)
9dk
10n

,

and

deg (v,Ui+1)≤ deg (v,Vi+1)≤ (1+ 5γ )
dk
n

≤
(
1+ 1

8

)
9dk
10n

.

Also, recall that by (Q3), for every vertex v ∈Vi ∪Vi+1, deg (v,Vi,2), deg (v,Vi+1,2)= (1± 5γ ) 4dk5n .
Since Vi,2 ⊆U ′

i and Vi+1,2 ⊆Ui+1 for each i ∈ [t − 1], this implies that

deg (v,U ′
i )≥ deg (v,Vi,2)≥ (1− 5γ )

4dk
5n

≥
(
1− 1

8

)
9dk
10n

,

and

deg (v,Ui+1)≥ deg (v,Vi+1,2)≥ (1− 5γ )
4dk
5n

≥
(
1− 1

8

)
9dk
10n

,

where we used γ ≤ 1/400 in the last step of both inequalities. Finally, by the Interlacing Theorem
for singular values (Theorem A.2), s2(G[U ′

i ∪Ui+1])≤ s2(G[Vi ∪Vi+1])≤ 18λk
n . Therefore,

G[U ′
i ,Ui+1] is a

(
|U ′

i | + |Ui+1|,
(
1± 1

8

)
9dk
5n

,
18λk
n

)
-bipartite expander.
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Thus, since 18λk
n ≤ 1

200 · 9dk
5n , by Lemma 4.7, there exists a perfect matching Ni in G between

U ′
i and Ui+1. Now, by concatenating all the matchings Mis and Nis together, we obtain vertex-

disjoint paths P1, . . . , Pk covering
⋃t−1

i=1 Ui ∪Vt , where each path has one endpoint in U1 = X
and the other in Vt = Y .

7.4 Closing paths into a cycle
Let ai ∈ X and bi ∈ Y be the endpoints of the path Pi. Now, Lemma 5.3 implies that Sres
has a path-factor Q1, . . . ,Qk such that Qi connects bi and ai+1, where at+1 := a1. Therefore,
P1Q1P2Q2 . . . PkQk is a Hamilton cycle of G. This completes the proof.
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[32] Nenadov, R., Steger, A. and Trujić, M. (2019) Resilience of perfect matchings and Hamiltonicity in random graph

processes. Random Struct. Algor. 54(4) 797–819.
[33] Pavez-Signé, M. (2023) Spanning trees in the square of pseudorandom graphs, arXiv preprint arXiv: 2307.00322.
[34] Pósa, L. (1976) Hamiltonian circuits in random graphs. Discrete Math. 14(4) 359–364.
[35] Rudelson, M. and Vershynin, R. (2007) Sampling from large matrices: an approach through geometric functional

analysis. J. ACM (JACM) 54(4) 21–es.
[36] Sudakov, B. and Vu, V. H. (2008) Local resilience of graphs. Random Struct. Algor. 33(4) 409–433.
[37] Thomason, A. (1987) Pseudo-random graphs, North-Holland Mathematics Studies, Vol. 144, Elsevier, pp. 307–331.
[38] Thomason, A. (1987) Random graphs, strongly regular graphs and Pseudorandom graphs. Surv. Comb.

123(173–195) 1.
[39] Thompson, R. C. (1972) Principal submatrices ix: interlacing inequalities for singular values of submatrices. Linear

Algebra Appl. 5(1) 1–12.
[40] Tropp, J. (2008) The random paving property for uniformly bounded matrices. Stud. Math. 185(1) 67–82.
[41] Tropp, J. A. (2008) Norms of random submatrices and sparse approximation. C R Math. 346(23–24) 1271–1274.
[42] West, D. B. et al. (2001)West, etal, Introduction to graph theory, Vol. 2, Prentice hall Upper Saddle River.

A. Linear algebra background

In this section we collect some standard tools from linear algebra.
The following theorem provides a convenient tool for computing/bounding eigenvalues of a

real symmetric matrix (see for example Theorem 2.4.1 in [6]).

Theorem A.1 (Courant-Fischer Minimax Theorem). Let A be a symmetric n× n matrix with
eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Then,

λk = max
dim (U)=k

min
x∈U\{0}

xTAx
xTx

= min
dim (U)=n−k+1

max
x∈U\{0}

xTAx
xTx

.

Since the notion of eigenvalues is undefined for non-square matrices, it would be convenient
for us to work with singular values which are defined for all matrices (see Definition 3.3). The fol-
lowing theorem proved by Thompson [39] is useful when one wants to obtain non-trivial bounds
on the singular values of submatrices.

Theorem A.2 (Interlacing Theorem for singular values). Let A be an m× n matrix and let

α1 ≥ α2 ≥ . . . ≥ αmin{m,n}
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be its singular values. Let B be any p× q submatrix of A and let

β1 ≥ β2 ≥ . . . ≥ βmin{p,q}
be its singular values. Then

αi ≥ βi, for i= 1, 2, . . . , min{p, q},
βi ≥ αi+(m−p)+(n−q), for i≤min{p+ q−m, p+ q− n}.

One of the most commonly used tools in linear algebra is the singular value decomposition.We
need a slightly stronger version of it, which almost immediately follows from the standard proof:

Theorem A.3 (Singular value decomposition). Let M be an m× n matrix with rank r. Let s1 ≥
s2 ≥ . . . ≥ sr be all the positive singular values of M. Let u1 ∈R

m and v1 ∈R
n be unit vectors such

that Mv1 = s1u1. Then we can find an orthonormal bases {u1, . . . , um} of Rm and {v1, . . . , vn} of
R
n with u1 and v1 as above, and such that

M =
r∑

j=1
sjujvT

j .

In particular, this equality implies that Mvj = sjuj for j= 1, . . . , r and Mvj = 0 for j> r.

We will also make use of the following simple corollary of the above theorem, which proof is
included for completion.

Lemma A.4 (Best low-rank approximation). Let A be an m× n matrix. Then

s2(A)=min
B

‖A− B‖,
where the minimum is over all rank-one m× n matrices B, and ‖·‖ denotes the operator norm.

Moreover, the minimum is attained by B= s1(A)u1vT
1 , where v1 ∈R

n and u1 ∈R
m are any unit

vectors such that Av1 = s1(A)u1.

Proof. Let A be an m× n matrix with rank r. Let s1 ≥ s2 ≥ . . . ≥ sr be all positive singular values
of A, and let v1 ∈R

n and u1 ∈R
m be unit vectors such that Av1 = s1u1. By Theorem A.3, there

exist orthonormal bases {v1, . . . , vn} of Rn and {u1, . . . , um} of Rm, such that

A=
r∑

j=1
sjujvT

j .

First, note that B= s1u1vT
1 is a rank-one matrix that satisfies

‖A− B‖ = ‖
r∑

j=2
sjujvT

j ‖ = s2.

Therefore, to finish the proof, it suffices to show s2 ≤ ‖A− B‖ for every rank-one m× n matrix
B. We can express such a matrix as B= xyT for some nonzero vectors x ∈R

m and y ∈R
n. Next,

we can find a nontrivial linear combination w= av1 + bv2 such that 〈y,w〉 = 0; this implies Bw=
x(yTw)= 0. Without loss of generality, we can scale w so that ‖w‖ = 1, or equivalently, a2 + b2 =
1. Therefore,

‖A− B‖2 ≥ ‖(A− B)w‖22 = ‖Aw‖22 = a2s21 + b2s22 ≥ s22.

This completes the proof. �
Finally, we state the chain rule for singular values, which is used in the proof of Corollary 4.2.
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Lemma A.5 (Chain rule for singular values). Let A, B, C be n× n matrices. Then
sk(ABC)≤ ‖A‖‖B‖sk(C) for all k ∈ [n].

Proof. First assume that C = I. By the Minimax Theorem A.1, we have
sk(AB)= min

dim (U)=n−k+1
max
x∈S(U)

‖Aw‖2,
where S(U) denotes the set of all unit vectors in U. Since ‖Aw‖2 ≤ ‖A‖‖Bx‖2, it follows that
sk(AB)≤ ‖A‖sk(B). This argument also yields sk(BC)≤ sk(B)‖C‖ once we notice that sk(BC)=
sk(CTBT). Combining these two bounds, we complete the proof. �
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