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STATIONARITY IN THE SIMPLEX METHOD
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Abstract

Degeneracies occur with increasing frequency in some large scale linear programming problems, but
with a simple change to the (revised) simplex method, resulting stationarity of the algorithm can be
reduced. The method introduced here may also prevent cycling; neither the lexicographic refinement
of Dantzig, Orden and Wolfe nor the perturbation technique of Charnes may be required to prevent
cycling.

1980 Mathematics subject classification (Amer. Math. Soc): 90 C 05, 90 C 06, 65 K 05.

1. Introduction

Murtagh [6] draws attention to the increasing occurrence of degeneracies in
applications of the simplex method as problems get larger; in particular, massive
degeneracies can appear in LP problems derived in certain integer programming
algorithms (see Tomlin [7]). Charnes [3] developed a perturbation technique to
avoid cycling degeneracy (or 'circling' as described by Dantzig [4]), while Dantzig,
Orden and Wolfe [5] used lexicographic ordering of vectors (as described in
Cameron [2]) to show that cycling could always be avoided theoretically and in
practice (even if degeneracy could not). In this paper we show how cycling can be
avoided more simply as a by-product of avoiding as much degeneracy as possible.

We consider a solvable linear programming problem (LP)

min/(jc) subject to Ax = b and x > 0,
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in standard minimum form as, for example, in Cameron [2]. Here f(x) = cTx, the
cost (column) vector c in U" is known, as are the vector b in U m and the real m
by n matrix A of rank m, where m is less than n. An optimal programme vector
x is sought. The ordering in U" is the usual entrywise partial vector order: x > 0
means Xj is a non-negative number, j = 1 to n. Suppose A is partitioned as
(B\F), where B is an invertible (basis) matrix such that the vector B'lb > 0;
such can be found by solving a first phase auxiliary problem, if necessary. If x
and c are partitioned correspondingly, for example

x =

then xB = B lb - B ^Xp and the basic solution x such that xB = B 1b, xF = 0
is feasible for (LP); geometrically this determines a vertex x of the convex
constraint polyhedron C in U ". The set C is of course the intersection of the m
hyperplanes Aimx = bt, i = 1 to m, and the first orthant x > 0 (by^,* is meant
the /th row of J4; v4,* is a one by n matrix), and the vertex is degenerate if less
than m of its entries are positive numbers.

In the simplex method a test vector t in W is defined by tT = cT
BB'xA — cT,

and if t < 0, then the solution xB = B'lb, xF = 0 is optimal. If this criterion is
not satisfied, then a new basis matrix 5(1) is found by replacing one column of
B, say a &th column A%k of A, by a column of F, say the /th column of v4; this is
done in such a way that ^( l )"1^ > 0, and, for the (possibly) new basic feasible
solution x(l), the objective value is at least as good as for x: f(x(l)) < f(x). The
/th column is selected so that t, is a positive number (and in general additional
criteria such as 'choose the largest tt\ as in Cameron [2] or Murtagh [6], appear
arbitrary or to have justification more pedagogical than mathematical). After the
/th column is chosen, the numbers fi, = (B'1b)i/(B'1A)il are calculated for all
/ = 1 to m, where (B'lA)il> 0, and where Bk is chosen to be least among these.
Pivoting at the (k, /) entry of B'XA, expressed as follows, has the desired effect.

(1) BilY'b = B-lb + Bk{ek - 2TU,,),

(2) f(x(l))=f(x)-Bkth

(3) BilY1 = IT1 + —±—(ek - B-'A^B
BA

Here ek is the canonical unit vector in Um with A:th entry one and with all other
entries zero; BklA is the kth row and 5"l4Hc/ the /th column of B~lA.
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2. Degeneracy

From (2) it is immediate that the objective value is unchanged if and only if
fik = 0. In such a case, (1) gives B(l)'lb = B'lb. Since xk and x, are each zero in
both x and x(l) (although basic and free roles are reversed), and since all other
entries are unchanged, x(l) and x are identical. Conversely, if Bk > 0, then
f(x(l)) < f(x), and the objective value at any later basic feasible solution is less
than f(x), so x never reappears in the simplex algorithm. Although generally
there may be different vertices of the constraint polyhedron with common
objective value (in particular there may be different optimal solutions), all vertices
defined by any one application of the simplex method have different objective
values.

To avoid cycling, rather than use a method such as the lexicographic refinement
one could set out to avoid geometrical stationarity or degeneration, that is, to
move to another vertex. Such a move often exists even in potentially stationary
situations at a degenerate vertex. It is tempting to try this since we thereby avoid
the embarrassment of having to update B~l while standing still. (It is in the spirit
of trying to reduce the objective value as must as possible that choice of largest t,
is often made; from (2) this is clearly irrelevant if fik = 0.) The obvious and
simple way to do so is to identify / such that /, > 0, and furthermore such that
{B'lb)t = 0 only if (B"l4)l7 < 0. For such a choice of /, fik must be positive, so
stationarity is avoided, and not simply the apparently low risk of cycling. If this
method is applied in Beale's example, cycling is avoided (see the following
example (ii)).

If x defined by xB = B'lb, xF = 0, is not an optimal vertex, then there must
exist some basis change to improve f(x). If, whenever t, > 0, there is some k,
1 < k < m, such that (B'lb)k = 0 and (B~1A)kl > 0, then x is an essential
degeneracy, and we have to change the basis without changing x. If this procedure
is repeated and the lexicographic refinement is applied, then clearly at some first
stage x is represented using some basis matrix B(s), say, and there is l(s) such
that tl(s) > 0, and furthermore such that (B(s)-1b)i = 0 only if (5($)-l4)l7(j) < 0;
pivoting then moves x. It would be interesting to find an example of this type
where cycling might occur if the lexicographic device is not used. Hoffman's
example (see the following example (iii)) is not of this type since there x is an
optimal vertex.

There remains the possibility that x is optimal but expressed in such a way that
the test vector has some positive entries. This is the case of an essentially
degenerate optimal solution, and changing the basis (applying the lexicographic
refinement) will alter the test vector until it is non-negative, thereby identifying x
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as optimal. This occurs in the following example (i). Hoffman's example is also of
this type.

3. Example

(i) If many entries in an optimal solution are zero, one might expect some
degeneracy leading up to the discovery of the optimal solution (using the test
vector criterion), as in the following example,

min x3 subject to

Xl T 5 X4 5A5 1,

x — *- x + -x = 2

x3 - fx4 + |JC5 = 0, and x > 0.

In this case, using the natural identity matrix / as basis matrix B and calculating
t, we find that only ts is positive, that ft = ft = 0, and that there is essential
degeneracy at x = (1,2,0,0,0)r in the basic form expressed. Pivoting at the (3,5)
entry leads to

V _L 1 y -L V — 1
A | — 4 A 3 T A 4 — A,

A*2 X3 *T J X 4 = <£,

fx3 - 4X4 +X5 = 0,

and the test vector (0,0,-1,0,0)r < 0, whence the end-criterion of the simplex
method demonstrates the optimal nature of x = (1,2,0,0,0)r.

(ii) In Beale's example (see Beale [1] or Exercise 2.5.9 in Cameron [2]) there are
initially two positive entries in the test vector t, and the choice of the larger entry
tx can lead to cycling. (However, even then, if the lexicographic refinement is
applied, the algorithm progresses to optimal in two algebraic iterations with the
first degenerate, so geometrically such would be a one-step move to the optimal
vertex.) If the smaller positive entry t3 is chosen, there is a uniquely determined
rapid path in two iterations, both algebraic and geometric, to the optimal
solution. The initial tableau from Beale [1] is

1/4
1/2
0

tT 3/4

-60
-90

0
-150

-1/25
-1/50

1*
1/50

9
3
0

-6

1
0
0
0

0
1
0
0

0
0
1
0

0
0
1
0

Using the stationary-avoidance criterion of Section 2, we find a unique pivot
choice at the (3,3) entry, as starred, which moves us immediately to a vertex
giving reduced objective value. One more (uniquely determined) iteration leads to
the optimal solution (satisfying the test vector end-criterion).
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(iii) In Hoffman ' s cycling example (see page 228 of Dantz ig [4]), constructed in
1951, effectively B'lb is 0, and B~XA is a 2 by 10 matr ix. This determines 0 to be
the basic feasible solution. (Another programme component has constant value 1
and plays no part in the simplex algorithm.) From the updating formula (1),
clearly the simplex algorithm can in this case only alter the basis, but no change is
possible in the feasible solution 0. What we have is an essentially degenerate but
obviously optimal solution, and there is no need to use the test vector criterion.
Hoffman showed that with very particular pivot choices cycling could occur in his
example. Does there exist a less trivial example where cycling is possible at an
optimal solution, even with the use of the stationary avoidance criterion?

4. Computational aspects

In the revised simplex method (see Cameron [2] or Murtagh [6]) the vector B lb
and matrix B'1 are updated using, for example, formulas (1) and (3), respectively,
except that to control rounding error reinversion is needed periodically. From B'1

is calculated cBB~l, and from this the new test vector, etc.
In the method proposed here, B'lb is first updated; if all entries are positive,

then the vertex is not degenerate, and so we proceed as usual and move to a new
vertex. However, if B'xb has zero entries, say for i = ix to ir, then, having found
a positive tj, we check {B~lA)tj — B'^A+j for each i = ix to /,. If none of these
entries is positive, then we proceed as usual, using j = I, and move to a new
vertex. If any are positive, then we move to another positive tj and repeat the
process (at most n — (m + 1) entries in t need to be checked, and many of these
are usually negative or zero). If, finally, no suitable column exists, then we accept
the essential degeneracy, and we pivot, using any of the earlier columns (such that
tj > 0), thereby changing the basis but not the vertex.
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