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The structure and dynamics of the laminar
separation bubble

Eltayeb M. Eljack†

Mechanical Engineering Department, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan

(Received 19 February 2024; revised 31 July 2024; accepted 28 August 2024)

A novel selective mode decomposition, proper orthogonal decomposition and dynamic
mode decomposition methods are used to analyse large-eddy simulation data of the flow
field about a NACA0012 airfoil at low Reynolds numbers of 5 × 104 and 9 × 104, and
at near-stall conditions. The objective of the analysis is to investigate the structure of the
laminar separation bubble (LSB) and its associated low-frequency flow oscillation (LFO).
It is shown that the flow field can be decomposed into three dominant flow modes: two
low-frequency modes (LFO-Mode-1 and LFO-Mode-2) that govern an interplay of a triad
of vortices and sustain the LFO phenomenon, and a high-frequency oscillating (HFO)
mode featuring travelling Kelvin–Helmholtz waves along the wake of the airfoil. The
structure and dynamics of the LSB depend on the energy content of these three dominant
flow modes. At angles of attack lower than the stall angle of attack and above the angle of a
full stall, the flow is dominated by the HFO mode. At angles of attack above the stall angle
of attack the LFO-Mode-2 overtakes the HFO mode, triggers instability in the LSB and
initiates the LFO phenomenon. Previous studies peg the structure, stability and bursting
conditions of the separation bubble to local flow parameters. However, the amplitude of
these local flow parameters is dependent on the energy content of the three dominant flow
modes. Thus, the present work proposes a more robust bursting criterion that is based on
global eigenmodes.

Key words: boundary layer separation, transition to turbulence

1. Introduction

Airfoils operating at low Reynolds numbers tend to induce a laminar separation bubble
(LSB) on their suction surface. A laminar boundary layer develops near the airfoil leading
edge, detaches, travels away from the airfoil surface due to the adverse pressure gradient
(APG) and creates a region of a separated flow. The flow then undergoes a transition to
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Figure 1. (a,b) Streamline patterns of the time-averaged flow field plotted around a NACA0012 airfoil at the
stall angle of attack.

turbulence and reattaches to the airfoil surface, and the LSB forms in the separated flow
region as seen in figure 1 (Melvill Jones 1934). The LSB has attracted much attention
because it plays an important part in determining the behaviour of the boundary layer on
the airfoil surface and consequently the stalling characteristics of the airfoil. Furthermore,
the LSB was also observed on circular cylinders at critical Reynolds number and the
interaction of the shock wave and boundary layer on a flat plate at supersonic speeds (Tani
1964).

The averaged shape of the LSB on the x–y plane was first described by Horton (1968).
The flow separates at point S and reattaches at point R, and the length of the LSB
is measured by the distance between these two points along the airfoil chord. Beneath
the LSB lies a small counter-rotating bubble called a secondary bubble. The turbulent
boundary layer downstream of the bubble has more momentum near the surface to resist
the APG and avoid a new separation. The length of the LSB depends on the angle of attack,
the Reynolds number and the type of airfoil section. If the Reynolds number based on the
displacement thickness is greater than 400–500, the bubble is termed short. Whereas, if
the Reynolds number is less than this band of values, the bubble is termed long (Owen &
Klanfer 1953).

Statistics of the flow field and the shape of the LSB in the spanwise direction in
numerical simulation depend on the extent of the computational domain in this direction.
Several numerical studies examined the effect of the spanwise width on the statistics
of the flow field (Mary & Sagaut 2002; Almutairi, Jones & Sandham 2010; Alferez,
Mary & Lamballais 2013; Zhang & Samtaney 2016). Alferez et al. (2013) estimated
the two-point correlation coefficient of the fluctuating streamwise velocity component
along the spanwise direction and observed that the correlation coefficient oscillates
around zero when the separation between the two points is a half-chord. The authors
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Structure and dynamics of the LSB

concluded that their one-chord-width computational domain is sufficient to produce a
flow that is independent of the extent of the flow in this direction. Zhang & Samtaney
(2016) investigated the flow field around a NACA0012 airfoil at Reynolds number
of 5 × 104 using computational domains of spanwise extent of 0.1–0.8 chords. The
different spanwise widths of the computational domain result in close prediction of the
time-averaged aerodynamic quantities, and the instantaneous lift and drag coefficients at
the spanwise width of 0.4 and 0.8 are similar. However, flow separation in the vicinity
of the leading edge is notably three-dimensional for the spanwise width of 0.8, while
remaining two-dimensional in the remaining aspect ratios.

Mccullough & Gault (1951) classified the airfoil stall into three main categories: (1)
leading-edge, (2) thin-airfoil and (3) trailing-edge stall. The leading-edge stall results
from the flow separation near the leading edge without any subsequent reattachment
downstream of the separation. In the thin-airfoil stall, the flow reattaches downstream the
separation, and then the reattachment point moves towards the trailing edge as the angle
of attack increases. The trailing-edge stall initiates at the trailing edge where the flow
separates, and the separation point moves towards the leading edge as the angle of attack
increases. Gaster (1967) who was the first to investigate the stability of the LSB found that
bubble bursting occurs either by a gradual increment in the bubble length or by a suddenly
discontinuous event.

Observations at pre-stall conditions have shown that the LSB is stable, and a short
bubble forms on the suction surface of the airfoil and on a flat plate with an adjustable
pressure distribution. The structure and the length of the LSB are altered by changing
the conditions of the incoming free stream or by smoothly changing the angle of attack
(Gaster 1967; Rist & Maucher 2002; Marxen & Rist 2010; Marxen & Henningson 2011;
Alferez et al. 2013; Yarusevych & Kotsonis 2017; Istvan & Yarusevych 2018). At near-stall
conditions, the LSB becomes unstable and bursts to form a long bubble. Consequently,
the flow field switches between an attached phase and a separated phase, and triggers
a low-frequency flow oscillation (LFO) (Zaman, Bar-Sever & Mangalam 1987; Zaman,
McKinzie & Rumsey 1989; Bragg et al. 1996; Broeren & Bragg 1998, 1999, 2001; Rinoie
& Takemura 2004; Tanaka 2004; Almutairi & Alqadi 2013; Eljack 2017; Elawad & Eljack
2019; Eljack & Soria 2020; Aniffa & Mandal 2023a,b; Dellacasagrande et al. 2023).

Eljack et al. (2021) used the compressible flow datasets generated by Eljack (2017) at
Rec = 5 × 104 and by Elawad & Eljack (2019) at Rec = 9 × 104 to characterize the flow
field around a NACA0012 airfoil, and demarcated the angle of attack range into three
regimes: a pre-stall attached flow, a post-stall intermittently separating flow and a post-stall
fully separated flow. The authors used a conditional time-averaging to describe the flow
field in detail and investigate the effects of the angle of attack on the characteristics of
the flow field. The authors reported that at angles of attack lower than the stall angle of
attack, the LSB remains intact, and the mean flow field is attached. The instantaneous flow
exhibits an LFO due to shear-layer flapping and vortex shedding; however, the amplitude
of oscillations is considerably small compared with the mean flow. Thus, the mean flow
remains attached downstream of the LSB. At angles of attack higher than the stall angle
of attack, a trailing-edge bubble (TEB) forms in the vicinity of the trailing edge on the
suction surface of the airfoil. Thus, the mean flow field contains two bubbles, the LSB and
a TEB, bounded by four half-saddles. The first half-saddle point is the separation point
in the vicinity of the leading edge (S1). The second half-saddle point is the reattachment
point located just downstream the LSB (R1). The third half-saddle is the separation point
near the trailing edge (S2). The fourth half-saddle point is the reattachment point located
at the trailing edge (R2). The first two half-saddle points constitute the LSB, and the latter
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Figure 2. (a,b) Streamline patterns of the time-averaged flow field plotted around a NACA0012 airfoil at the
angle of attack of maximum amplitude of the LFO (SP, saddle point).

two half-saddle points constitute the TEB as seen in figure 2. At relatively high angles
of attack, when the two bubbles start to merge, the two half-saddle points R1 and S2
move away from the wall and form a full-saddle point around mid-chord at the angle
of attack of maximum LFO. The instantaneous shape of the LSB is altered between a
short bubble and a long bubble and sometimes merges with the TEB depending on the
angle of attack. Consequently, the flow field undergoes a transition regime in which the
LFO develops until it reaches a quasi-periodic switching between separated and attached
flow. At angles of attack higher than the angle of attack of maximum LFO, the flow field
and the aerodynamic characteristics are overwhelmed by quasi-periodic and self-sustained
LFO until the airfoil approaches the angle of a full stall, the LSB and the TEB merge to
form an open bubble in the mean sense and the mean flow remains massively separated.
The authors concluded that most of the observations reported in the literature about the
LSB and its associated LFO are neither thresholds nor indicators for the inception of the
instability, but rather are consequences of it.

The dynamics of the flow plays a crucial role in the underlying mechanism behind
the bursting and reformation of the LSB and its associated LFO. The dynamics of any
turbulent or transitional flow is dominated by an organized motion known as coherent
structures. These are recognizable flow structures that survive dissipation by viscosity
for a relatively long time and have a typical lifecycle. The origin of such coherent
structures is an unstable flow mode that feeds on the mean flow. The temporal and
spatial evolution of such organized flow motion is of major importance because the
instantaneous solution of the flow is dependent on it. If the dynamics of the flow is
well understood and described mathematically, researchers will develop better models
that predict the phenomenon, thus reducing the huge cost of modelling the phenomenon
numerically using large-eddy simulation (LES) or experimentally in expensive test rigs.
Furthermore, such coherent motion contains most of the kinetic energy and acts as a
primary mechanism that dissipates energy. If the dynamics is better understood, more
efficient and effective aerodynamic shapes can be engineered. Most importantly, such
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organized flow motion induces oscillations in the aerodynamic forces, vibrations, noise
and drag. Thus, suppressing or energizing such coherent structures greatly improves the
aerodynamic performance of airfoils. Hence, researchers and engineers could develop
smart control means that remove the undesired effects of the phenomenon, utilize
the phenomenon when it presents a control opportunity and improve the aerodynamic
performance of airfoils.

The aforementioned organized motion is embedded into stochastic spatiotemporal data,
and its extraction is not as straightforward as it might seem. The low-order statistics
characterize the flow field in the mean sense. However, valuable information is lost in
the averaging process. For instance, the spatial evolution of coherent structures in the
flow field cannot be captured using the low-order statistical moments. Furthermore, the
dynamics of the flow and the evolution of the various flow modes in time cannot be
described using low-order statistics. High-order statistical methods like proper orthogonal
decomposition (POD) and dynamic mode decomposition (DMD) are used to extract
deterministic organized flow motion from stochastic spatiotemporal data. The power of
the POD method lies in the fact that the decomposition of the flow field in the POD
eigenfunctions converges optimally fast in the energy sense (L2-norm). Whereas, the
power of the DMD method is that it provides growth rates in addition to the shape of
the dynamic modes of the flow at various frequencies.

Most previous works on the structure and dynamics of LSBs induced on flat plates
and airfoils at near-stall conditions were experimental. The measurements were mostly
acquired at a single point or a line, and two-dimensional simultaneous measurements
are rare. Since the POD and the DMD methods are applied primarily to plane data or
three-dimensional data, application of the POD and the DMD methods to investigate the
LSB and its associated LFO phenomenon in the flow field around an airfoil at near-stall
conditions is not so common in the literature. Classic POD, spectral POD, extended
POD and DMD were applied to particle image velocimetry data of LSBs formed over
airfoils, flow over flat plates with adjustable pressure distribution featuring LSBs and over
and behind a two-dimensional forward–backward-facing step. The extracted flow modes
feature vortex shedding, counter-rotating vortices downstream of the bubble and flapping
motion (Lengani et al. 2014; Istvan & Yarusevych 2018; Alessandri et al. 2019; Fang
& Tachie 2019; Verdoya et al. 2021; Toppings & Yarusevych 2022; Weiss et al. 2022;
Dellacasagrande et al. 2023; Aniffa & Mandal 2023b; Braud, Podvin & Deparday 2024).

Recently, Eljack & Soria (2020) utilized a conditional time-averaging, the POD method
and a conditional phase-averaging to reveal the underlying mechanism that generates and
sustains the LFO phenomenon. Those authors analysed LES data at Rec = 5 × 104 and
showed that a triad of three vortices, two co-rotating vortices (TCV) and a secondary
vortex counter-rotating with them, is behind the quasi-periodic self-sustained bursting
and reformation of the LSB and its associated LFO phenomenon. They reported that a
global oscillation in the flow field around the airfoil is observed in all of the investigated
angles of attack, including at an angle of attack of zero. They have shown that the global
oscillation in the flow field is self-sustained due to an interplay of the triad of vortices. The
authors found that when the direction of the oscillating flow is clockwise, in the streamwise
direction on the suction surface of the airfoil, it adds momentum to the boundary layer and
helps it to remain attached against the APG and vice versa. However, the authors did not
discuss the bursting conditions of the LSB in their model. Also, the dynamics of the flow
and how various flow modes interact with each other are lost in the averaging processes.
Furthermore, the short LSB formed over the airfoil at Rec = 5 × 104 spans more than
40 % of the airfoil chord; thus, an investigation at a higher Reynolds number is merited.
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The model based on the existence of a triad of vortices in the region of the LSB presented
by Eljack & Soria (2020) agrees very well with the hypothesis that there are sub-bubbles
within the LSB (Dallmann 1983; Dallmann, Vollmers & Su 1997; Theofilis, Sherwin &
Abdessemed 2004).

Various bursting conditions for the LSB over airfoils at pre-stall and near-stall conditions
and on a flat plate were set by Owen & Klanfer (1953), Gaster (1967) and Diwan, Chetan
& Ramesh (2006). Gaster (1967) found that the structure of the LSB depends on two
parameters. The first parameter is the Reynolds number of the separated boundary layer
and the second parameter is a function of the pressure rise over the region occupied by the
bubble. Then, he determined conditions for the bursting of short bubbles by a unique
relationship between these two parameters. Diwan et al. (2006) hypothesized that the
height of the LSB has effects on the bursting of the LSB. They suggested a bursting
parameter given by the velocity gradient across the bubble and the height of the bubble.
The bursting parameter is plotted versus the Reynolds number based on the height of the
bubble and the velocity at the maximum height of the LSB. The bursting condition is
set such that the bubble is short if the bursting parameter is greater than −28. However,
the bursting criteria of Gaster (1967) and Diwan et al. (2006) use changes in local flow
parameters in the vicinity of the leading edge and across the bubble. Thus, the bursting
criteria are not universal in classifying and distinguishing short bubbles from long bubbles
as pointed out by Diwan et al. (2006) and confirmed by Alferez et al. (2013).

The objective of the present paper is to carry out a detailed dissection of the flow
field and shed some light on the dynamics of the flow about a NACA0012 airfoil at
Rec = 5 × 104 and 9 × 104, and near-stall conditions. The POD and the DMD methods
were applied to datasets sampled on the x–y plane including the velocity components,
the pressure and the aerodynamic coefficients. The datasets span four low-frequency
cycles and were locally time-averaged every 50 time steps and ensemble-averaged in the
spanwise direction on the fly before they were recorded. The conditional time-averaging
introduced by Eljack & Soria (2020) is further developed to implement a selective mode
decomposition (SMD) method to the flow field. The SMD method utilizes time histories
of aerodynamic forces to recover the flow modes that induce oscillations in these forces.
The SMD method recovers flow modes based on time-averaging of the data; therefore, it
estimates the amplitude of each of the flow modes accurately. Whereas, the POD method
recovers flow modes under the condition of optimizing the energy content of each mode;
thus, it overestimates the energy content of some of the flow modes. The amplitudes of the
POD and the SMD coefficients are investigated to examine the effects of the percentage
of energy content of the most dominant eigenmodes on the bursting of the LSB. The
following section introduces the SMD method. The computational set-up and validations
of the results are presented in § 3. Section 4 presents the application of the POD, the DMD
and the SMD methods. The dynamics of the flow and the bursting criterion are discussed
in § 5 and 6, respectively.

2. Selective mode decomposition

Applied research focuses on suppressing or enhancing phenomena like mixing,
aerodynamic forces, skin-friction drag, noise, vibrations, induced acoustic waves and
shockwave instability. The POD method recovers flow modes based on their energy
content. However, the most dominant mode is not necessarily the most important flow
mode that induces the phenomenon of interest. Also, there is reasonable doubt that
the POD modes are mathematical flow structures that satisfy Lumely’s condition and
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objectively recover the most energetic flow modes but do not necessarily physically exist in
the flow. Furthermore, one of the major shortcomings of the POD method is that the POD
eigenfunctions, used as input parameters in flow control, depend on the flow field from
which they were extracted. The dynamics of the flow is naturally integrated on the solid
surface and induces aerodynamic forces. That is, the pressure field makes the flow feel the
wall, and the dynamics of the flow creates fluctuations in the aerodynamic forces. Thus,
the time history of an aerodynamic force can be used to recover the flow mode that induces
fluctuations in it. Directly identifying the flow mode associated with the phenomenon of
interest would provide a direct answer to which flow mode induces the undesired effect;
consequently, it can be directly suppressed by applying suitable control. Furthermore, the
fluctuating aerodynamic forces change automatically when the flow field changes. Thus,
the fluctuating aerodynamic forces can be used as an alternative to POD eigenfunctions
to extract selective flow modes. In the present work, the conditional time-averaging
suggested by Eljack & Soria (2020) was used to recover flow modes corresponding to
each aerodynamic force.

The time history of the lift coefficient (CL(t)) can be used as a reference to conditionally
time-average the flow field (Eljack & Soria 2020; Eljack et al. 2021). The time average
of an instantaneous variable of the flow field like the streamwise velocity component
(u1(x, y, t)) or its discrete form (u1(x, y, n)) can be defined on three different levels: a
mean-lift (CL(t)), a high-lift (ĈL(t)) and a low-lift (~CL(t)) time average. Figure 3 illustrates
the concept of conditional time-averaging that is based on the lift coefficient. The mean-lift
time average of the streamwise velocity (U1(x, y)) is simply the time average of all data
points of the streamwise velocity component. The high-lift average of the streamwise
velocity (Û1(x, y)) is the time average of data points of u1 that correspond to CL(t) > CL .
The low-lift average of the streamwise velocity (|U1(x, y)) is the time average of data points
of u1 that correspond to CL(t) < CL . It is implemented by taking the mean of the lift
coefficient at each angle of attack. At the beginning, Û1(x, y) and |U1(x, y) are initialized
with zeros. If CL(n) > CL , then u1(x, y, n) is added to Û1(x, y) and a counter na is increased
by one. If CL(n) < CL , then u1(x, y, n) is added to |U1(x, y) and a counter nb is increased
by one. The if condition statement is run for all of the snapshots of the data, and the final
matrices Û1(x, y) and |U1(x, y) are divided by the final integers na and nb, respectively.
The conditional time-averaging is synchronized for all flow variables so that at a given
data point (n), all flow variables are allocated to either the high-lift or low-lift regimes.
In this sense, one can define a time-averaged surplus (�U1

+) and deficit (�U1
−) of the

streamwise velocity above and below that of the mean streamwise velocity, respectively.
Here �U1

+ = Û1 − U1 and �U1
− = |U1 − U1:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1(x, y) = 1
M

∑
n∈S

u1(x, y, n),

Û1(x, y) = 1
N

∑
n∈Sa

u1(x, y, n) ⇒ �U1
+
(x, y) = 1

N

∑
n∈Sa

u1(x, y, n) − U1(x, y),

|U1(x, y) = 1
L

∑
n∈Sb

u1(x, y, n) ⇒ �U1
−
(x, y) = 1

L

∑
n∈Sb

u1(x, y, n) − U1(x, y),

(2.1)

where M, N and L are the number of data points of CL , data points of CL

that have values larger than CL and data points of CL that have values less
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than CL , respectively. Also, S = {n|n ∈ N, n = 1, 2, 3, . . . , M}; Sa = {n|n ∈ N, n =
1, 2, 3, . . . , N; CL(n) > CL}; Sb = {n|n ∈ N, n = 1, 2, 3, . . . , L; CL(n) < CL}. The surplus
and deficit of the streamwise velocity are mirror symmetric. Thus, the spatial streamwise
velocity mode that is causing fluctuations in the lift coefficient can be represented by
the average of the surplus and the deficit. That is, U1

+ = 1
2(�U1

+ − �U1
−
). In addition

to the streamwise velocity, this process can be done to the wall-normal velocity and the
pressure. Consequently, the spatial SMD mode that is causing fluctuations in the lift
coefficient Ψ̃ CL

is given by

Ψ̃ CL
=

⎡⎢⎣ U1
+

U2
+

P
+

⎤⎥⎦ . (2.2)

The spatial SMD mode corresponding to the lift coefficient is orthogonal but not
normalized and can be normalized to obtain the orthonormal spatial SMD mode Ψ CL
using the following formula:

Ψ CL
(x, y) = Ψ̃ CL

(x, y)[(
Ψ̃ CL

(x, y)
) (

Ψ̃ CL
(x, y)

)ᵀ]1/2 . (2.3)

The SMD coefficient corresponding to the lift coefficient (aCL
(t)) can be determined using

aCL
(t) =

∫
Domain

D(x, y, t)Ψ CL
(x, y) dx dy, (2.4)

where D(x, y, t) is the spanwise ensemble-averaged fluctuating flow. The fluctuating flow
field corresponding to the lift coefficient (DCL

) can be reconstructed from

DCL
(x, y, t) = aCL

(t)Ψ CL
(x, y). (2.5)

The SMD mode causing the fluctuations in the drag coefficient Ψ̃ CD
can be reconstructed

similarly. However, the fluctuating flow field corresponding to the lift coefficient must first
be subtracted from the fluctuating flow as follows:

Ḋ(x, y, t) = D(x, y, t) − DCL
(x, y, t). (2.6)

The orthonormal spatial SMD mode Ψ CD
, the SMD coefficient aCD

(t) and the fluctuating
flow field DCD

corresponding to the drag coefficient can be extracted from the fluctuating
flow field Ḋ(x, y, t) using (2.2), (2.4) and (2.5). This process can be repeated until all flow
modes featuring instabilities that are fixed in space and grow in time (absolute instabilities)
are recovered. This method cannot be used to recover flow modes that feature convecting
instabilities like the travelling Kelvin–Helmholtz waves along the wake of the airfoil that
represents a high-frequency oscillating (HFO) mode. However, the spectrum of the lift
coefficient or time history of the wall-normal velocity at a probe downstream of the
trailing edge can be used to determine the frequency of the most dominant HFO mode.
Consequently, a phase average of the flow at the selected frequency would recover the
most dominant HFO mode.

The objective of presenting the SMD method in this work is to confirm the
findings of the POD method and identify which flow mode causes fluctuations in the
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Figure 3. The conditional time-averaging process. Time history of the lift coefficient at Rec = 9 × 104 and
angle of attack of 11.0◦. The dashed, solid and dash-dotted horizontal lines show the high-lift, mean-lift and
low-lift time average, respectively.

aerodynamic forces. However, we ended up with a simple and easy-to-implement method
to recover selective flow modes, as will be seen later. Most importantly, the SMD method is
based on time-averaging of the data. The method is not general to all laminar, transitional
and turbulent flows, but it can be implemented for similar flow fields where the effect
of the dynamics of the flow is integrated on a solid surface and induces fluctuations in
aerodynamic forces. Fluctuations in the drag coefficient of the flow field about a cylinder
can be used as a basis function to recover the coherent structures that induce these
fluctuations in the drag coefficient, time history of the side force on a cylinder body at high
angles of attack can be used to recover the flow mode that causes the side force and the
time history of the oscillation of a shockwave interacting with a boundary layer can be used
to reconstruct the flow mode that causes these oscillations in the shockwave. The SMD
method is not computationally demanding especially for three-dimensional configurations,
can be implemented on the fly and the basis functions change automatically with their
associated flow modes. Thus, the basis functions are not affected by applying flow control
or changing the flow artificially.

3. Computational set-up and validations

The LES code utilized in the present simulations is an LES version (Almutairi 2010)
of the direct numerical simulation code written and validated by Jones (2008). The
Navier–Stokes equations were discretized using a fourth-order explicit central difference
scheme for spatial discretization in the interior points. The fourth-order boundary
scheme of Carpenter, Nordström & Gottlieb (1999) was used to treat points near and
at the boundary. To preserve the spatial characteristics, the transformation metrics
tensor ξ̀ ij was evaluated using the same fourth-order scheme. Temporal discretization
was performed using a low-storage fourth-order Runge–Kutta scheme. The solution
stability was improved by implementing an entropy splitting scheme Sandham, Li &
Yee (2002). The entropy splitting constant β was set equal to 2.0 (Jones 2008). The
integral characteristic boundary condition was applied at the free-stream and the far-field
boundaries (Sandhu & Sandham 1994). The zonal characteristic boundary condition
was applied at the downstream exit boundary (Sandberg & Sandham 2006) which is
considered as a non-reflected boundary condition to overcome the circulation effects at
the boundaries. The adiabatic and no-slip conditions were applied on the airfoil surface.
The LSB, its associated LFO and the dynamics of the flow are inherently statistically
two-dimensional. Therefore, a periodic boundary condition was applied in the spanwise
direction for each step of the Runge–Kutta time steps. The internal branch-cut boundary
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Rec Grid y+ �x+ �z+ Nξ Nη Nζ Total points⎧⎨⎩
Grid-1 >1 <50 <50 637 320 86 17 530 240

5 × 104 Grid-2 <1 <15 <15 780 320 101 25 209 600
Grid-3 <1 <10 <10 980 320 151 47 353 600⎧⎨⎩
Grid-1 <1 <20 <20 780 320 125 31 200 000

9 × 104 Grid-2 <1 <15 <15 832 351 167 48 769 344
Grid-3 <1 <10 <15 1192 351 167 69 871 464

Table 1. Computational grid parameters.

was updated at each step of the Runge–Kutta scheme. In terms of the airfoil chord (c),
the dimensions of the computational domain were set as follows: Lξ = 5c in the wake
region (from the airfoil trailing edge to the outflow boundary in the streamwise direction),
Lη = 7.3c in the wall-normal direction (the C-grid radius) and Lζ = 0.5c in the spanwise
direction, where ξ , η and ζ are the curvilinear coordinates. The LSB formation, elongation
and bursting processes should be well resolved; therefore, the grid resolution near the
airfoil surface, especially on the suction side, is critical. Three different C-grids were
constructed for each Reynolds number with various distributions in ξ , η and ζ directions
as shown in table 1. Here �x+, y+ and �z+ are the grid resolutions in the ξ , η and ζ

directions, respectively; and Nξ , Nη and Nζ are the grid points in the ξ , η and ζ directions,
respectively.

Large-eddy simulations were carried out for the flow around a NACA0012 airfoil at
Mach number of 0.4, Reynolds number of 5 × 104 and 9 × 104 and several angles of attack
near stall. Reducing the free-stream Mach number of the numerical simulation to simulate
the flow field at a near-incompressible regime (M∞ < 0.2) would considerably increase
the computational cost. The entire domain was initialized using the free-stream conditions
(ρ∞ = 1, ρ∞U∞ = 1, ρ∞V∞ = 0, ρ∞W∞ = 0 and T∞ = 1). The simulations were
performed with a time step of 10−4 non-dimensional time units. Samples for statistics were
collected once the transition of the simulations had decayed and the flow became stationary
in time after 50 non-dimensional time units. Aerodynamic coefficients were sampled for
each angle of attack at a frequency of 10 000 to generate two-and-a-half million samples
over the time period of 250 non-dimensional time units. The locally time-averaged and
spanwise ensemble-averaged pressure, velocity components and Reynolds stresses were
sampled every 50 time steps on the x–y plane. A dataset of 20 000 x–y planes was recorded
at a frequency of 204 at each angle of attack. A grid sensitivity study was first carried out
at two representative angles of attack and it was concluded that Grid-2 gives the best grid
distributions as seen in figure 4.

Figure 5 shows a comparison of the LES data of the present work with the LES data of
Alferez et al. (2013) and Alferez (2014). The figure displays a comparison of the predicted
variations of the pressure coefficient, the skin-friction coefficient and the mean streamwise
velocity profiles at sixteen xs/c locations starting at a location upstream of the separation
point (S) to a location downstream of the reattachment point (R). As seen in the figure, the
LES data at Rec = 9 × 104, M∞ = 0.4 and stall angle of attack of 10.25◦ compare very
well with the LES data of Alferez (2014) at Rec = 105, M∞ = 0.16 and angle of attack
of 10.55◦ which is slightly lower than the stall angle of attack (10.55◦ � αs � 10.8◦).
The discrepancy between the LES data of the present work and that of Alferez (2014)
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Figure 4. Sensitivity of the (a,c) mean pressure and (b,d) skin-friction coefficients to grid refinement at two
representative angles of attack: 9.25◦ at a Reynolds number of 5 × 104 and 11.0◦ at a Reynolds number of
9 × 104.

is due to the significant difference in the free-stream Mach number and consequently
the effect of compressibility. The effects of compressibility are expressed by the shift
in the magnitude of the pressure and skin-friction coefficients and the profiles of the
streamwise velocity in the separated region of the flow. Recently, Benton & Visbal (2020)
showed that increased compressibility causes an earlier inception of dynamic stall as a
consequence of the bursting of the LSB. Thus, similar effects of compressibility in the case
of static stall affect the transition process of the separated shear layer, the characteristics
of the LSB and the development of the boundary layer. The reader is referred to Eljack
(2017), Elawad & Eljack (2019), Eljack & Soria (2020) and Eljack et al. (2021) for
more details on the mathematical modelling, computational set-up and validation of the
data.

4. Application of the POD, the DMD and the SMD methods

The locally time-averaged and spanwise ensemble-averaged data were utilized to
implement the snapshot POD, the DMD and the SMD methods. The locally time-averaged
and spanwise ensemble-averaged fluctuating streamwise velocity, wall-normal velocity
and pressure were used to estimate the two-point correlation in time using 20 000 data
points that span 100 non-dimensional time units or four low-frequency cycles. The
eigenvalue problem (CΦ = ΛΦ) was solved, and the POD eigenvalues and eigenvectors
were obtained. Here C represents the correlation matrix in time. The locally time-averaged
and spanwise ensemble-averaged data were formulated into a two-dimensional matrix
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Figure 5. Profiles of the (a) mean pressure coefficient (CP ), (b) skin-friction coefficient (Cf ) and (c) mean
streamwise velocity scaled by the local external velocity (U1/Ue) plotted versus the distance from the airfoil
leading edge computed along the curvilinear coordinate on the airfoil suction side (xs/c) with xs/c = 0 at
the stagnation point. Here yn/c is the vertical distance measured from the airfoil surface. The separation (S),
transition (T) and reattachment (R) locations are indicated by the filled black circles (a,b) and the dash-dotted
vertical lines (c).

to implement the DMD method. The rows contain the streamwise velocity component
(u1(x, y, t)), the wall-normal velocity component (u2(x, y, t)), the pressure ( p(x, y, t)),
the lift coefficient (CL(t)) and the drag coefficient (CD(t)). The columns contain
the temporal variation of these variables in time that span 20 000 data points, 100
non-dimensional time units or four low-frequency cycles. The companion matrix (S)
was then formulated, and the eigenvalue problem was solved for the eigenvalues (Γ )
and the eigenvectors (Ω). After that, the growth rates and phase velocities were
calculated, and the dynamic modes were constructed. All the utilized flow variables
have the same eigenvectors (dynamic modes shapes) and eigenvalues (growth rates
and phase velocities). However, the amplitude of each dynamic mode at different
frequencies depends on the flow variable. Thus, even though all the analysed flow
variables share the same eigenvalues and eigenvectors, each flow variable has its respective
spectrum.

The lift coefficient was utilized as a reference to conditionally time-average the
streamwise velocity, wall-normal velocity and pressure to determine the SMD mode
corresponding to the lift coefficient using (2.2), (2.4) and (2.5). The spatial SMD mode
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Structure and dynamics of the LSB

corresponding to the drag coefficient was then calculated as follows:

Ψ̃ CD
=

⎡⎢⎣ U̇1
+

U̇2
+

Ṗ
+

⎤⎥⎦ , (4.1)

where Ḋ was calculated using (2.6). Mode Ψ̃ CD
was normalized using (2.3) to obtain the

orthonormal spatial SMD mode (Ψ CD
), and the SMD coefficient corresponding to the drag

coefficient (aCD
(t)) was then estimated from

aCD
(t) =

∫
Domain

Ḋ(x, y, t)Ψ CD
(x, y) dx dy. (4.2)

The fluctuating flow corresponding to the drag coefficient, DCD
, was reconstructed from

DCD
(x, y, t) = aCD

(t)Ψ CD
(x, y). (4.3)

The fluctuating flow field corresponding to the drag coefficient was then subtracted to
obtain the remaining flow field (D̈(x, y, t)) as follows:

D̈(x, y, t) = D(x, y, t) − DCL
(x, y, t) − DCD

(x, y, t). (4.4)

Once the flow modes that induce oscillations in the lift and the drag are subtracted
from the flow field, the remaining flow consists of high-frequency flow modes with
various frequencies and amplitudes that represent the evolution of the flow field away
from the wall either along the shear layer (Kelvin–Helmholtz instability) or along the
wake of the airfoil (travelling Kelvin–Helmholtz waves). We are not interested in all of
the flow modes; thus, the leading HFO mode can be recovered using its frequency. The
spectrum of the lift coefficient was used to determine the frequency of the most dominant
HFO mode. Consequently, the fluctuating flow field (D̈(x, y, t)) was phase-averaged at
the dominant frequency to recover the leading HFO mode. Previous work on airfoils at
near-stall conditions has shown that the most dominant high-frequency mode oscillates at
a frequency of about 1.0 Hz. Thus, a data record of 100 non-dimensional units would
constitute about 100 cycles of oscillations and ensures the statistical accuracy of the
phase-averaging process. The DMD spectra have shown that the HFO mode is driven by
the wall-normal velocity. Thus, at angles of attack where the lift coefficient spectrum is
not smooth enough to determine the most dominant frequency, the spectrum of the time
history of the wall-normal velocity sampled at a probe located downstream of the airfoil
trailing edge was used to determine the dominant frequency of the HFO mode.

4.1. The POD modes
The POD eigenvalues were utilized to estimate the cumulative energy content using (B7).
Figure 6 shows the cumulative energy plotted versus the number of POD modes used
to estimate it. The range of angles of attack is α = 9.25◦–9.8◦ for Rec = 5 × 104 and
α = 10.25◦–10.8◦ for Rec = 9 × 104 on the top part of the figure, and α = 9.8◦–10.5◦
and α = 10.8◦–11.2◦ on the bottom part of the figure. The angles of attack of 9.8◦ at
Rec = 5 × 104 and 10.8◦ at Rec = 9 × 104 are duplicated in both panels because they are
the angles at which the POD modes have the fastest convergence to the total energy; that
is, the minimum number of POD modes used to attain more than 99 % of the total energy.
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Figure 6. Cumulative energy of the POD modes (κt(m)) estimated by summing the POD eigenvalues over m
POD modes. The arrows indicate the direction in which the angle of attack α increases.

Thus, they are displayed in both panels to compare the convergence of POD modes at
other angles of attack. These are the angles of attack at which the LFO has the maximum
amplitude of oscillations (Eljack et al. 2021). At the stall angle of attack, the cumulative
energy converges slowly towards 1 as the number of POD modes approaches 250, as seen
in the figure. The cumulative energy converges faster as the angle of attack increases. The
fastest cumulative energy convergence was achieved at the angles of attack of maximum
LFO. The convergence process of the POD energy slows down as the angle of attack
increases above the angle of attack of maximum LFO.

4.2. The DMD modes
The DMD spectra were estimated for the lift coefficient, the drag coefficient, the pressure,
the streamwise velocity and the wall-normal velocity. The DMD spectra of all flow
variables were used to identify the most dominant DMD flow modes. There is one
low-frequency peak in the spectrum of each of the analysed flow variables featuring the
low-frequency oscillating mode one (LFO-Mode-1) for all of the investigated angles of
attack. However, the spectrum of the drag coefficient exhibits a low-frequency peak at
a different Strouhal number from that of the LFO-Mode-1. Thus, the DMD flow mode
that dominates the drag spectrum represents a second low-frequency oscillating mode
(LFO-Mode-2). The LFO-Mode-1 and the LFO-Mode-2 exchange the dominance of the
spectra of the lift coefficient, the drag coefficient, the pressure and the streamwise velocity.
There is no significant high-frequency peak in any of the spectra of these variables.
However, there is a pronounced high-frequency peak in the spectrum of the wall-normal
velocity featuring the HFO mode. Hence, the DMD spectra of the lift coefficient, the
drag coefficient and the wall-normal velocity were used to identify the LFO-Mode-1,
the LFO-Mode-2 and the HFO mode, respectively. Once each of the three modes was
identified, its frequency was used to locate its corresponding dynamic mode in the
spectrum of the other flow variables. Thus, the DMD spectra of the flow variables show
three dominant modes. However, each of the three dominant modes is only dominant in
the DMD spectrum of the variable used to identify it.
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Structure and dynamics of the LSB

Figure 7 shows the DMD spectra for the five variables. The left-hand side of the
figure shows the spectra for angles of attack of 9.25◦–10.5◦ at Reynolds number of
5 × 104 and the right-hand side shows the spectra for angles of attack of 10.25◦–11.2◦ at
Reynolds number of 9 × 104. The points in the spectra representing the LFO-Mode-1, the
LFO-Mode-2 and the HFO are indicated by filled black circles, filled red circles and filled
blue circles, respectively. The LFO-Mode-1 and the LFO-Mode-2 dominate the spectra of
the lift coefficient and the drag coefficient, respectively, for all of the investigated angles
of attack and Reynolds numbers of 5 × 104 and 9 × 104. At Reynolds number of 5 × 104,
the LFO-Mode-1 dominates the spectra of the pressure, the streamwise velocity and the
wall-normal velocity at angles of attack higher than the angle of attack of 9.5◦ and lower
than the angle of attack of 10.1◦. It is worth mentioning that the LFO phenomenon initiates
at angles of attack higher than the angle of attack of 9.25◦, becomes fully developed
at the angle of attack of 9.8◦ and loses momentum at angles of attack higher than the
angle of attack of 10.0◦. The LFO-Mode-1 dominates the DMD spectra of the pressure
and streamwise velocity at all of the investigated angles of attack at Reynolds number of
9 × 104.

The spectra of the wall-normal velocity are dominated by one low-frequency mode and
a broad band of high-frequency modes for each of the investigated angles of attack. At
Reynolds number of 5 × 104 and angle of attack of 9.25◦ the spectrum is dominated by
the HFO mode as seen in the left-hand side of the figure. As the angle of attack increases
above 9.25◦, a sudden and drastic change occurs, and the dominant mode shifts to the
LFO-Mode-1 and the LFO-Mode-2. The two low-frequency modes dominate the spectra
of the wall-normal velocity component until the angle of attack is raised above 10.0◦; then,
the HFO mode dominates the spectra again, as seen in the figure. At Reynolds number of
9 × 104, the HFO mode dominates the spectra at angles of attack lower than or equal to
the angle of attack of 10.6◦. Whereas, the LFO-Mode-1 dominates the spectra at angles of
attack higher than or equal to the angle of attack of 10.8◦. It is worth mentioning that the
LFO phenomenon is pronounced in the amplitude of oscillation and uniform in its lifecycle
at angles of attack higher than or equal to α = 10.8◦. In summary, the LFO-Mode-1 and
the LFO-Mode-2 (absolute instability) dominate the spectrum when the LFO phenomenon
exists in the flow, and the HFO mode (convective instability) dominates the spectrum
when the LFO does not exist in the flow. Thus, the LFO phenomenon occurs in the flow
when there is absolute instability. The HFO mode has an insignificant magnitude in the
DMD spectrum of the lift coefficient at all of the investigated angles of attack. This is
indicative that the HFO mode does not contribute directly to the oscillations in the lift
coefficient. It is worth noting that the DMD analysis decomposes the fluctuating flow
into many low-frequency modes as seen in figure 7. Whereas, the POD method recovers
only two low-frequency modes that reconstruct the fluctuating flow favourably as will be
discussed later.

Figure 8 shows plots of the Strouhal number of the most dominant flow modes versus
the angle of attack. The profile of the Strouhal number of the LFO-Mode-1 for the lift
coefficient, the pressure and the streamwise velocity is similar to that obtained using
the fast Fourier transform algorithm by Eljack et al. (2021). The wall-normal velocity
component is dominated by a high-frequency flow mode at angles of attack of α � 9.25◦
and α � 10.1◦, and dominated by a low-frequency mode at angles of attack of 9.4◦ �
α � 10.0◦ for Reynolds number of 5 × 104. At Reynolds number of 9 × 104, the HFO
dominates at angles of attack lower than or equal to 10.6◦. The vertical axis is broken
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Figure 7. DMD spectra of (a) the lift coefficient (CL ), (b) the drag coefficient (CD ), (c) the pressure ( p), (d) the
streamwise velocity (u1) and (e) the wall-normal velocity (u2). The filled black circles denote the LFO-Mode-1,
the filled red circles display the LFO-Mode-2 and the filled blue circles indicate the HFO mode.
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Figure 8. Strouhal number (St) of the most dominant flow modes versus the angle of attack and Reynolds
number for the LFO-Mode-1 (left) and the HFO mode (right).

into two ranges in the plot for the wall-normal velocity component to capture both the
low-frequency and the high-frequency ranges that dominate it.

4.3. The SMD modes
Time history of the lift coefficient (CL(t)) was utilized to obtain the orthonormal spatial
SMD mode (Ψ CL

) using (2.2) and (2.3). The flow field was then projected onto Ψ CL
to

obtain the SMD coefficient corresponding to the lift coefficient (aCL
(t)) using (2.4). After

that, the orthonormal spatial SMD mode (Ψ CD
) and the SMD coefficient corresponding

to the drag coefficient (aCD
(t)) were duly estimated. The fluctuating flow along the

wake of the airfoil mimics the oscillating behaviour of the wall-normal velocity. Thus,
the wall-normal velocity component was probed at four locations downstream of the
airfoil trailing edge, and the most dominant frequency was determined. The value of the
frequency was used to estimate the rate at which the HFO mode repeats periodically;
consequently, phase-averaging of the fluctuating flow at this frequency was performed to
recover the spatial HFO mode. Equation (2.3) was then used to obtain the orthonormal
spatial SMD mode (Ψ v), where the subscript v denotes the wall-normal velocity used
to extract the mode. After that, the fluctuating flow field was projected onto Ψ v to
obtain the SMD coefficient corresponding to the HFO mode (av(t)). The SMD modes
corresponding to the lift and the drag coefficients represent the LFO-Mode-1 and
LFO-Mode-2, respectively. Figure 9 shows that the SMD modes corresponding to the
lift coefficient, the drag coefficient and the wall-normal velocity compare very well with
their corresponding POD modes. The LFO phenomenon is fully developed at an angle
of attack of 9.8◦ and Reynolds number of 5 × 104, and an angle of attack of 10.8◦ and
Reynolds number of 9 × 104. Thus, the LFO repeats periodically with some disturbed
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Figure 9. Comparison of the POD coefficients (blue line) and the SMD coefficients (red line) for (a,b) the
LFO-Mode-1, (c,d) the LFO-Mode-2 and (e, f ) the HFO mode.

cycles. However, at lower angles of attack, the LFO becomes stochastic, and the POD and
SMD coefficients do not compare with each other.

4.4. The spatial LFO-Mode-1
Figure 10 shows the DMD spectrum of the lift coefficient and the DMD spatial mode
corresponding to the LFO-Mode-1. The DMD spectrum shows the growth rates of
the LFO-Mode-1 and the LFO-Mode-2 indicated by the filled black and red circles,
respectively. The growth rates of the LFO-Mode-1 and the LFO-Mode-2 are both positive
at this angle of attack, indicating that the two flow modes are growing. At other angles
of attack, the growth rates of the LFO-Mode-1 and the LFO-Mode-2 have negative or
positive signs, indicating that the LFO-Mode-1 and LFO-Mode-2 are decaying or growing,
respectively. The LFO is quasi-periodic; thus, the growth rates for the leading DMD modes
should be zero. However, the data from which the DMD spectrum was extracted spans four
low-frequency cycles. Should a longer data record be used, a zero growth rate would have
been obtained. The size of the circles denotes the relative amplitude of each dynamic
mode. The relative magnitude of the LFO-Mode-1 and the LFO-Mode-2 is proportional
to the angle of attack and reaches its maximum amplitude at the angle of attack of
maximum LFO. At angle of attack of 9.8◦ at Reynolds number of 5 × 104 and angle
of attack of 11.0◦ at Reynolds number of 9 × 104, the LFO-Mode-1 and LFO-Mode-2
contain more than 50 % of the turbulent kinetic energy and the remaining kinetic energy is
almost equally distributed among higher modes as seen in figure 6. Therefore, only a few
low-frequency modes are shown in figure 10, and the higher modes become insignificant.
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Figure 10. The LFO-Mode-1 for angle of attack of 9.8◦ and Reynolds number of 5 × 104. (a) The DMD
spectrum of the lift coefficient, where ωr is the growth rate and St is the Strouhal number. (b) Streamline
patterns superimposed on colour maps of the spanwise vorticity ωz for the DMD spatial mode.

This is indicative that the LFO process is fully developed at these angles of attack, and the
oscillating flow is more pronounced in magnitude and more coherent in shape. The relative
amplitude of the LFO-Mode-1 and the LFO-Mode-2 becomes inversely proportional to the
angle of attack when the angle increases above the angle of attack of maximum LFO.
The figure shows only the DMD spectrum of the lift coefficient; however, the DMD
spectra of the drag, the pressure, the streamwise velocity and the wall-normal velocity
are similar to that of the lift coefficient. The LFO-Mode-1 features the triad of vortices as
seen in figure 10(b). The triad of vortices is driven by the oscillating streamwise velocity
component across the laminar portion of the separated shear layer. The magnitude of the
oscillating velocity increases as the angle of attack increases (Eljack & Soria 2020).

Figure 11 shows the spatial LFO-Mode-1 constructed using the POD, the DMD
and the SMD methods. The POD spatial mode for the LFO-Mode-1 was constructed
by multiplying its orthonormal spatial POD mode by the average amplitude of its
corresponding coefficient |b(1)(t)|. The POD method recovers the flow modes based on
their energy content. Thus, the spatial LFO-Mode-1 constructed using the POD method is
contaminated by other high-frequency flow modes. Hence, the shape and evolution of the
triad of vortices are obscured by high-frequency flow modes. However, POD captured
the general features of this flow mode. In the DMD method, the LFO-Mode-1 is the
dynamic mode corresponding to the low-frequency peak in the DMD spectrum of the
lift coefficient. Thus, the LFO-Mode-1 represents the instability that features globally
oscillating flow around the airfoil, the oscillating pressure along the airfoil chord and
the process that creates and sustains the triad of vortices. Hence, the triad of vortices
and the general features of this flow mode are accurately captured by the DMD method.
However, the LFO-Mode-1 is presented by several dynamic modes; whereas, it was
objectively recovered by a single POD mode. Equation (2.2) was used to calculate the
pressure, the streamwise velocity and the wall-normal velocity corresponding to the
spatial SMD mode of the LFO-Mode-1 based on the time history of the lift coefficient.
The zoom-in box shows the triad of vortices constructed using the SMD method. The
lift coefficient is dominated by a low frequency corresponding to the LFO-Mode-1.
Consequently, the spatial LFO-Mode-1 constructed using the SMD method is similar
to that constructed using the DMD method and constitutes a coherent triad of vortices.
Furthermore, the SMD method effectively recovered the LFO-Mode-1 in a single flow
mode. Thus, the SMD method combines the strengths of the POD and the DMD methods
by objectively recovering the flow mode and capturing the instability. As seen in the figure,
the LFO-Mode-1 is a global flow mode that drives and sustains the triad of vortices.
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Figure 11. Streamline patterns superimposed on colour maps of the oscillating pressure field for the spatial
LFO-Mode-1 constructed using the POD, the DMD and the SMD methods: (a,c,e) α = 9.8◦ and Rec = 5 ×
104; (b,d, f ) α = 11.0◦ and Rec = 9 × 104.

The spatial LFO-Mode-1 creates an adverse oscillating pressure gradient when the sign
of its amplitude is positive, and a favourable oscillating pressure gradient when the sign of
its amplitude is negative (see figure 9). The LFO-Mode-1 preserves shape over all of the
investigated angles of attack; however, the magnitude of oscillation increases as the angle
of attack increases.

4.5. The spatial LFO-Mode-2
The spatial LFO-Mode-2 constructed using the POD, the DMD and the SMD methods is
shown in figure 12. The POD mode corresponding to the LFO-Mode-2 was constructed
by multiplying its orthonormal spatial POD mode by the average amplitude of its
corresponding POD coefficient |b(2)(t)|. The time history of the drag coefficient was
used to estimate the pressure, streamwise velocity and wall-normal velocity corresponding
to the SMD construction of the LFO-Mode-2. The LFO-Mode-2 originates and evolves
on the suction surface of the airfoil and features the expansion and advection of the
upstream vortex of the TCV (Eljack & Soria 2020). The LFO-Mode-2 constructed using
the POD and the SMD methods are similar in shape and magnitude as seen in the figure.
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Figure 12. Streamline patterns superimposed on colour maps of the oscillating pressure field for the spatial
LFO-Mode-2 constructed using the POD, the DMD and the SMD methods: (a,c,e) α = 9.8◦ and Rec = 5 ×
104; (b,d, f ) α = 11.0◦ and Rec = 9 × 104.

The POD and the SMD analyses extracted only two low-frequency modes. Whereas, the
DMD analysis decomposed the low-frequency oscillating flow into many low-frequency
modes. The low-frequency modes extracted by the POD and the SMD methods are more
coherent and energetic compared with those extracted by the DMD method. Furthermore,
the DMD and the SMD methods accurately captured the instability. Thus, combining the
three methods provided all the information that governs and controls the dynamics of the
flow.

4.6. The spatial HFO mode
Figure 13 shows the spatial HFO mode constructed using the POD, the DMD and the SMD
methods. As seen in the figure, the HFO mode features large oscillations that originate
at the leading edge and advect towards the trailing edge. At the trailing edge, the HFO
mode interacts with the local flow instability, stretched by the strong shear, and energizes
the vortex shedding. The magnitude of the oscillation is proportional to the angle of
attack. It is interesting to note that there is no high-frequency peak in the spectra of the
lift and the drag coefficients. The aerodynamic coefficients are direct consequences of
variations in the flow field adjacent to the airfoil surface. Furthermore, the pressure field
communicates the dynamics of the flow away from the wall to the flow field adjacent to the
wall. However, when low-frequency modes of significant amplitude are present in the flow,
the high-frequency modes do not much affect the flow variables near the wall and will not
be reflected in the aerodynamic forces. Consequently, such an important flow feature will
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Figure 13. Streamline patterns superimposed on colour maps of the oscillating wall-normal velocity field for
the spatial HFO mode constructed using the POD, the DMD and the SMD methods: (a,c,e) α = 9.8◦ and
Rec = 5 × 104; (b,d, f ) α = 11.0◦ and Rec = 9 × 104.

not show up as a peak in the spectra of the aerodynamic coefficients unless enough blocks
of data are used and the spectra are smoothed out.

Figure 7 shows that the spectra of the wall-normal velocity peak significantly at
high frequency. Whereas, the spectra of the streamwise velocity and the pressure show
no significant peak at high frequency. This is indicative that the HFO is primarily
driven by the wall-normal velocity component. However, the streamwise velocity and
the pressure indirectly affect the behaviour of the HFO mode. Furthermore, the spectra
of the wall-normal velocity are interchangeably dominated by the HFO mode and the
two low-frequency modes. Thus, the two low-frequency modes and the HFO mode are
interlinked and play a profound role in the dynamics of the flow. Copious amounts of
research work have concentrated on the characteristics of the HFO mode downstream
of the airfoil trailing edge and the evolution of the Kelvin–Helmholtz instability in the
vicinity of the leading edge (Jones, Sandberg & Sandham 2008, 2010; Almutairi, Eljack &
Alqadi 2017). Most of those studies found that there are many aspects of similarities and
concluded that the HFO mode generates acoustic waves that travel upstream, energizes the
Kelvin–Helmholtz instability in the vicinity of the leading edge and forces early transition.
However, the HFO mode originates in the vicinity of the airfoil leading edge, then travels
downstream towards the airfoil trailing edge and evolves along the wake of the airfoil
as seen in figure 13. Hence the similarity between the characteristics of the HFO mode
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and the evolution of the Kelvin–Helmholtz instability. An experiment in a water-tunnel
or solving the incompressible Navier–Stokes equations numerically would answer the
question of whether or not the acoustic waves generated by the HFO mode affect the
transition process and the LFO phenomenon.

It is worth noting that the HFO flow along the wake of the airfoil is sinusoidal. Thus,
the summation of all Fourier modes would approximate this flow accurately. However,
each one of the Fourier modes does not necessarily exist in the flow. On the contrary,
the POD algorithm looks for the most energetic structures in the flow convected at the
same frequency and collects them in a single flow mode. The POD method continues this
optimization process for all frequencies until there is not much energy left in the remaining
flow. The SMD method selectively phase-averages at the chosen frequency. Consequently,
the SMD method recovers the time-averaged shape of flow structures that physically exist
in the flow field. The flow modes recovered by the POD and the SMD methods converge
towards similar flow modes when the fluctuating flow field is closely approximated by
Fourier modes.

5. The dynamics of the flow

Figures 11–13 show an ‘average’ spatial distribution of the LFO-Mode-1, the LFO-Mode-2
and the HFO mode without any description of the temporal evolution of these modes. In
this section, the temporal evolution of the flow modes is investigated, and the flow field is
reconstructed using the most dominant flow modes to examine the dynamics of the flow.

5.1. Temporal evolution of the flow modes

The POD eigenfunctions (φ(n)) are used to reconstruct the flow modes and as basis
functions for low-dimensional modelling without much attention to their amplitude or how
they evolve in time. In the present study, the POD eigenfunctions were scaled with their
corresponding eigenvalues (λ(n)), and the percentage of the scaled amplitude of each of the
temporal POD modes is estimated at each instant in time using (B9). Figure 14 shows time
histories of the POD eigenfunctions, the percentage of energy content in each POD mode
and the fluctuating lift and the fluctuating drag coefficients at α = 9.8◦ and Rec = 5 × 104,
and angles of attack of 10.8◦ and 11.0◦ at Rec = 9 × 104. The angles of attack of 9.8◦
and 11.0◦ are the angles of attack at which the LFO has the maximum amplitude of
oscillations. The LFO at the angle of attack of 10.8◦ exhibits three uniform cycles followed
by a disturbed cycle, thus representing a special case that is worth presenting. As seen in
the figure, the scaled POD eigenfunctions make more sense since they display the temporal
evolution of the flow modes with their actual amplitude of energy content compared with
other POD modes, and most importantly, they mimic time histories of the fluctuating lift
and the fluctuating drag coefficients. At angles of attack where the flow field exhibits an
LFO, the LFO-Mode-1 peaks at more than 75 %, and the LFO-Mode-2 peaks at more
than 25 %. However, additional data at various Reynolds numbers and angles of attack are
required to verify these thresholds.

The LFO-Mode-1 and the LFO-Mode-2 signals are correlated, and their magnitudes are
interlinked. That is, if the LFO-Mode-1 peaks at a relatively high amplitude, so will the
LFO-Mode-2, and vice versa. When the periodic cycle of the LFO-Mode-1 is disturbed,
so is that of the LFO-Mode-2 as seen in the figure. The two low-frequency modes drive
the dynamics of the LFO and play a contradicting role. That is, the LFO-Mode-1 decays
to a minimum, during which the LFO-Mode-2 grows to a maximum. Thus, when the
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Figure 14. Time histories of (a–c) the POD eigenfunctions (φ(n)(t)), (d–f ) percentage of the energy content
in POD mode n (β(n)(t)) and (g–i) the fluctuating lift and the fluctuating drag coefficients. The black, red and
blue lines indicate the LFO-Mode-1, the LFO-Mode-2 and the HFO mode, respectively. The black and red lines
display the fluctuating lift and the fluctuating drag coefficients, respectively.

LFO-Mode-1 vanishes and the flow reaches a temporary equilibrium, the LFO-Mode-2
amplifies and starts a new disequilibrium. The process continues periodically as discussed
by Eljack & Soria (2020). Therefore, these two low-frequency modes are interlinked and
govern the dynamics of the LFO. The LFO-Mode-1 generates the triad of vortices and
feeds energy into the upstream vortex of the TCV. When the upstream vortex of the
triad of vortices is saturated with energy, it expands, and the LFO-Mode-2 dominates
the flow until the oscillating flow switches its direction, then the LFO-Mode-1 takes over
again. The HFO mode fluctuates more energetically when the flow is separated as seen
in the figure. When the LFO-Mode-2 peaks during an attached flow phase, the upstream
vortex of the TCV expands and separates the flow. Vortex shedding from the separated
flow energizes the shedding along the wake. Consequently, the HFO mode is energized.
That is, the interaction takes place, and the HFO mode becomes more energetic whenever
the LFO-Mode-2 peaks to a maximum value. When the upstream vortex expands and
advects downstream, it gets attracted by the low-pressure region at the trailing edge and
consequently energizes the trailing-edge shedding and the HFO mode as seen in the spatial
HFO mode in figure 13.

The time history of the percentage of the energy content in LFO-Mode-1 is not Gaussian
as seen in figure 14. The signal exhibits sharp peaks at higher amplitudes and troughs
at smaller amplitudes. When the percentage is positive, the oscillating pressure of the
LFO-Mode-1 has a negative value in the vicinity of the LSB and a positive value in
the vicinity of the trailing edge as seen in figure 11. Consequently, an adverse oscillating
pressure works against the LFO-Mode-2 and delays the ejection of the upstream vortex.
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Thus, the percentage of LFO-Mode-1 peaks sharply at higher amplitudes. On the contrary,
the oscillating pressure is favourable when the percentage of the LFO-Mode-1 is negative.
Thus, the oscillating pressure helps the LFO-Mode-2 in ejecting the upstream vortex, and
the LFO-Mode-1 exhibits troughs at smaller amplitudes.

Another interesting observation is the phase shift in the time histories of the
LFO-Mode-1, the LFO-Mode-2, the fluctuating lift and the fluctuating drag. The
LFO-Mode-1 and the fluctuating lift are leading the LFO-Mode-2 and the fluctuating
drag by a phase shift of π/2. The LFO-Mode-1 has a peak when the flow is attached
and a trough when the flow is fully separated. Consequently, the fluctuating lift coefficient
mimics the LFO-Mode-1. The upstream vortex ejects and separates (attaches) the flow
whenever the LFO-Mode-2 has a peak (trough). Consequently, the oscillating pressure on
the suction surface of the airfoil, the pressure difference across the airfoil in the streamwise
direction and the fluctuating drag coefficient oscillate accordingly. Thus, the fluctuating
drag coefficient mimics the LFO-Mode-2. The pressure field makes the flow feel the wall,
and the dynamics of the flow creates oscillations in the aerodynamic forces. However,
there is a time lag between the aerodynamic forces and the POD coefficients. Thus, the
LFO-Mode-1 and the LFO-Mode-2 are systematically leading the fluctuating lift and the
fluctuating drag with a few degrees in phase shift as seen in the figure.

5.2. Reconstruction of the flow field
The orthonormal POD spatial modes and the POD coefficients can be used to reconstruct
the original flow field using any subset of the POD modes. The flow field was reconstructed
and probed at selected locations using the LFO-Mode-1; the LFO-Mode-1 and the
LFO-Mode-2; and the LFO-Mode-1, the LFO-Mode-2 and the HFO mode. A comparison
of the reconstructed signals probed at different locations shows that the streamwise
velocity, the wall-normal velocity and the pressure have interesting behaviour in the
vicinity of the leading edge, mid-chord and downstream of the trailing edge on the suction
surface of the airfoil. Figure 15 shows comparisons of the original LES data and the
reconstructed POD data for the streamwise velocity, the wall-normal velocity and the
pressure at angle of attack of 9.8◦ and Reynolds number of 5 × 104. The leading-edge,
the mid-chord and the trailing-edge probe were chosen to be in a location inside the
upstream vortex of the TCV, at the mid-chord point close to the wall and at about 0.4
chords downstream of the trailing edge, respectively. The grey solid line indicates the
original LES data. The black, red and blue solid lines display the reconstructed data
using the LFO-Mode-1; the LFO-Mode-1 and the LFO-Mode-2; and the LFO-Mode-1, the
LFO-Mode-2 and the HFO mode, respectively. Figures 15(a,d,g), 15(b,e,h) and 15(c, f ,i)
show signals of the flow variables in the vicinity of the airfoil leading edge, mid-chord
and downstream of the trailing edge, respectively. The three most dominant POD modes
(the LFO-Mode-1, the LFO-Mode-2 and the HFO mode) reconstructed the oscillating flow
favourably. However, these three dominant flow modes contain a maximum of 65 % of the
energy of the flow in all of the investigated angles of attack. Thus, at least 35 % of the
energy content is not accounted for by these three dominant modes. It is noted that these
three dominant flow modes represent the periodic motion of the flow ‘total fluctuations’
and not the random motion of the flow ‘turbulent fluctuations’. Thus, the remaining 35 %
of energy content is ‘turbulent fluctuation’; therefore, it is not reflected by these three
modes.

The leading-edge probe shows that the velocity components and the pressure are
reconstructed mostly by the LFO-Mode-1 and the LFO-Mode-2; thus, the HFO mode does
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Figure 15. Time histories of the LES data of (a–c) the streamwise velocity, (d–f ) the wall-normal velocity and
(g–i) the pressure probed at the vicinity of the leading edge, mid-chord and downstream of the trailing edge on
the suction surface of the airfoil compared with their corresponding POD reconstruction of the data at angle of
attack of 9.8◦ and Reynolds number of 5 × 104. Grey solid line, LES data; black solid line, reconstructed data
using the LFO-Mode-1; red solid line, reconstructed data using the LFO-Mode-1 and the LFO-Mode-2; blue
solid line, reconstructed data using the LFO-Mode-1, the LFO-Mode-2 and the HFO mode.

not contribute much to any of the flow variables. This is indicative that the HFO mode
does not directly influence the flow at this location. Furthermore, the original data of the
velocity components are mostly recovered by the LFO-Mode-2. While the LFO-Mode-1
has a small and uniform effect, it is the LFO-Mode-2 that shaped the signal to its original
LES form. This is indicative that the velocity components in this location are mostly
influenced by the expansion and advection of the upstream vortex of the TCV rather
than being influenced by the LFO-Mode-1. The pressure field is mostly recovered by the
LFO-Mode-1 in this location with a small and limited effect of the LFO-Mode-2 and the
HFO mode. The trailing-edge probe shows that the flow variables are overwhelmed by
the HFO mode and its subharmonics. However, the low-frequency pattern exists in all
of the flow variables at this location. Thus, the velocity components are influenced
exclusively by the LFO-Mode-1 and the HFO mode. Whereas, the pressure at this location
is influenced by the LFO-Mode-1 and the HFO mode in addition to a limited effect of the
LFO-Mode-2.

5.3. Spatial evolution of the flow field
Figure 16 shows the reconstructed fluctuating flow using the LFO-Mode-1, the
LFO-Mode-2 and the HFO mode at angle of attack of 10.8◦ and Reynolds number of
9 × 104. The main panel displays streamlines of the fluctuating flow superimposed on
colour maps of the spanwise vorticity, and the top-left inset shows streamline patterns of
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Figure 16. Streamline patterns of the POD reconstruction of the fluctuating flow superimposed on colour maps
of the spanwise vorticity (main panel), streamline patterns of the POD reconstruction of the instantaneous
flow superimposed on the instantaneous streamwise velocity (top-left inset) and plot of time histories
of the fluctuating lift and the drag coefficients (bottom-right inset). (a) Attached phase of the flow.
(b) Separated phase of the flow (multimedia view).

the reconstructed instantaneous flow superimposed on colour maps of the instantaneous
streamwise velocity. Time histories of the lift and drag coefficients are also shown in the
bottom-right inset. The LSB and the triad of vortices are visualized by the streamline
patterns of the instantaneous and fluctuating flow, respectively. The LFO-Mode-1 extracts
energy from the mean flow and stores it in the triad of vortices. When the sign of the
LFO-Mode-1 is positive, the oscillating flow rotates around the airfoil in the clockwise
direction and flows in the streamwise direction on the suction surface of the airfoil.
Consequently, the oscillating flow adds momentum to the boundary layer and helps it
to remain attached against the APG. At a specific energy threshold of the LFO-Mode-2,
the upstream vortex expands and separates the flow. However, the process reverses its
direction as the LFO-Mode-1 switches its sign, and the process continues in a periodic
manner (Eljack & Soria 2020). The HFO mode oscillates at a relatively small amplitude,
but it tends to be more energetic when the LFO-Mode-2 peaks. As discussed before,
the upstream vortex expands and advects downstream whenever the LFO-Mode-2 peaks.
Consequently, the HFO mode fluctuates at a relatively higher amplitude during the
separated phase of the flow field.

The evolution of the flow shows how the triad of vortices switches the direction
of the fluctuating flow and separates/attaches the instantaneous flow field as seen
in supplementary movie 1 available at https://doi.org/10.1017/jfm.2024.855. The
reconstructed oscillating flow using the LFO-Mode-1, the LFO-Mode-2 and the HFO
mode is added to the mean flow to obtain the reconstructed instantaneous flow field. The
flow is attached, and the LFO-Mode-1 is at its maximum amplitude at the flow time of
258.25. The flow is attached, the oscillating flow direction is clockwise and the triad
of vortices is present and in their most coherent state. At the flow time of 258.5, the
upstream vortex of the triad of vortices pops up above the downstream vortex of the triad
of vortices. At the flow time of 259.0, the upstream vortex pops a little more above the
upstream vortex of the TCV. At the flow time of 259.5, the upstream vortex starts to
slide above the downstream vortex of the TCV. The downstream vortex starts to merge
with the upstream vortex and energizes it at the flow time of 260.0. While the downstream
vortex merges with the upstream vortex, the latter continue to expand until the two vortices
form one vortex at the flow time of 260.5. At the flow time of 261.0, the recently formed
vortex expands abruptly. It is interesting to note that the LFO-Mode-2 peaks after this
instant in time, as shown in figure 14 at angle of attack of 10.8◦. After that, the recently
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formed vortex continues to expand and starts to change the direction of the oscillating flow.
The secondary vortex is present and intact during this process. The oscillating flow then
changes its direction of rotation from the clockwise to the counter-clockwise direction.
At the flow time of 264.0, the secondary vortex vanishes, and a new downstream vortex
forms. As the oscillating flow continues to change its direction of rotation, a new upstream
vortex starts to form at the flow time of 266.0. It is interesting to note how the vorticity
changes sign after this instant in time and how it creates the new upstream vortex of the
TCV that is rotating in the counter-clockwise direction. The newly formed upstream vortex
grows in size and strength at flow times of 267.5 and 268.5. The flow is fully separated, and
the LFO-Mode-1 is at its minimum amplitude at the flow time of 269.0. The oscillating
flow direction is counter-clockwise, and the triad of vortices is present and in their most
coherent state. Consequently, the lift coefficient drops to its minimum value as seen in
the figure. Reconstruction of the flow field provided a detailed description of how the
flow separates. When the cycle of the LFO proceeds to a flow time larger than 270.0,
the process reverses its direction, and the fully separated flow starts to attach. Thus, a
similar sequence of events takes place, as shown in supplementary movie 1. The evolution
of the oscillating flow is animated to reveal how the flow separates and attaches. Thus, a
detailed description of the LFO phenomenon is given, and the underlying mechanism is
discussed in detail. It is important to mention that the POD spatial mode corresponding
to LFO-Mode-1 does not exhibit the triad of vortices. However, the reconstruction of the
flow field using the three dominant flow modes clearly shows the evolution and dynamics
of the triad of vortices. None of the POD modes recover the triad of vortices as discussed
in § 4.4, but the summation of two or more of the most dominant POD modes reconstructs
a flow field that exhibits the triad of vortices and their evolution.

Figure 17 shows the reconstructed fluctuating flow using the SMD flow modes
corresponding to the LFO-Mode-1, the LFO-Mode-2 and the HFO mode. The flow is
attached at the starting point in time at t = 206.0 as seen in figure 14. The evolution of the
oscillating flow is visualized in step-by-step snapshots that show how the triad of vortices
separates the flow. When the cycle of the LFO proceeds to flow time >217.5, the process
reverses its direction, and the fully separated instantaneous flow starts to attach as seen in
figure 14. Thus, a similar sequence of events takes place, and the SMD method accurately
reconstructs the flow field using the most dominant flow modes.

5.4. The effect of the spanwise extent on the LSB and the LFO phenomenon
Figure 5 shows that the LES data of the present work compare very well with the LES data
of Alferez et al. (2013) and Alferez (2014) representing the flow field about a NACA0012
airfoil of aspect ratio of one. However, we would like to examine the effect that the
narrow span of 0.5 chords used in the present work can have on the obtained results. For
instance, stall cells would appear at relatively high angles of attack; however, they might
be suppressed by the narrowness of the span, consequently questioning the accuracy of the
data and the generality of the conclusions based on them.

Previous studies on two-dimensional airfoil stalling characteristics have shown a
low-frequency and highly unsteady flow or a steady large-scale three-dimensional
structure. The latter is termed stall cells, and there has been a considerable amount
of research focused on their structure (Winkelman & Barlow 1980; Dallmann 1983;
Winkelman 1990; Yon & Katz 1998; Rodríguez & Theofilis 2010, 2011; He et al. 2017).
Winkelman & Barlow (1980) carried out oil-flow visualizations of the flow field on
the suction surface of stalled wings of a Clark Y airfoil section at chord Reynolds
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Figure 17. (a–r) Streamline patterns superimposed on colour maps of the spanwise vorticity (ωz) for the
SMD reconstruction of the fluctuating flow at α = 9.8◦ and Reynolds number of 5 × 104.
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numbers of 24.5 × 104, 26 × 104 and 38.5 × 104. The ends of the wing are flush with
the tunnel side walls or splitter plates and on plane rectangular wings of infinite aspect
ratio. They observed that mushroom-shaped cells started to form at the onset of stall
on the two-dimensional model. The three-dimensional cells coexisted with trailing-edge
stall cells on the wing’s surface several degrees above the stalling angle of attack. They
tentatively sketched a flow field model showing the general features of a leading-edge
separation bubble and trailing-edge separation. Winkelman (1990) took up the work of
Winkelman & Barlow (1980) and measured the spectra of the velocity in the wake of a
rectangular wing having the same airfoil section. The spectra of the wake measurements
did not show any indications of a dominant low-frequency mode. Yon & Katz (1998)
used fine-thread tuft-flow visualization and high-frequency response pressure transducer
measurements to investigate the unsteady features of the stall cells. They studied the flow
field around a wing of aspect ratio ranging from 2 to 6 with a NACA0015 airfoil section.
They imposed the two-dimensionality using end plates that effectively eliminated the
tip flow. The authors reported the existence of a low-frequency mode in their pressure
spectrum but with a considerably small amplitude of oscillation.

Broeren & Bragg (2001) studied five different airfoil configurations (NACA2414,
NACA64A010, LRN-1007, E374 and Ultra-Sport) by measuring the wake velocity across
the spanwise direction and using mini-tufts for flow visualization. They found that all
the stall types were dependent on the type of airfoil. They concluded that the LFO
phenomenon always occurs in airfoils that exhibit a thin-airfoil stall or a combination
of thin-airfoil and trailing-edge stall. Most importantly, they found that the low-frequency
unsteadiness is essentially two-dimensional. Their conclusions were in good agreement
with that of Zaman et al. (1989), who observed that the LFO takes place with airfoils
exhibiting either trailing-edge- or thin-airfoil-type stalls but does not take place with the
leading-edge-type stall. To this end, it is evident that the LFO phenomenon is inherently
two-dimensional by nature, and neither the imposed periodic boundary condition nor the
spanwise width of the computational domain affects the accuracy of the data and the
conclusions based on them.

To further examine the effect of spanwise width on the shape of the LSB and the LFO
phenomenon, an LES was carried out at an angle of attack of 9.4◦, Reynolds number of
5 × 104 and a spanwise width of two chords. The time history of the lift coefficient at
each location in the spanwise direction CL(x3, t) was used to estimate the time-averaged
surplus of the oscillating flow on the fly to obtain the three-dimensional LFO-Mode-1.
Figure 18 shows the time-averaged shape of the LSB and the triad of vortices. A uniform
seeding of the streamlines was done by drawing a line parallel to the spanwise direction
and specifying a certain number of points along this line. Each of the streamlines that
pass by any of these points is automatically completed and allowed to extend in both
directions; hence, the visualization of the streamlines is user-independent. Despite the
irregularities encountered in the LSB and the triad of vortices, the flow field is essentially
two-dimensional, and stall cells are not present in any form as seen in the figure.

5.5. The effect of compressibility on the LFO phenomenon
Classically, the bursting of the LSB and its associated LFO used to be investigated
in compressible flow settings. Experiments are carried out in wind-tunnels rather than
in water-tunnels and compressible Navier–Stokes equations are solved in numerical
simulations rather than solving the incompressible set of equations. The vast majority
of investigations being compressible is mainly due to the widely accepted hypothesis that
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(b)(a)

Figure 18. Streamline patterns of the mean flow and the SMD mode corresponding to the lift coefficient
plotted around a NACA0012 airfoil of spanwise width of two chords at an angle of attack of 9.4◦ and Reynolds
number of 5 × 104 showing the time-averaged shape of the LSB (a) and the triad of vortices (b).

there is an acoustic wave feedback mechanism involved. It is assumed that the acoustic
waves generated at the trailing edge of the airfoil travel upstream and interact with
some receptivity mechanism in the vicinity of the leading edge (Jones et al. 2008, 2010;
Almutairi et al. 2017; Kurelek, Kotsonis & Yarusevych 2018; Pröbsting & Yarusevych
2021). Such feedback would force the shear layer to undergo early transition and reattach
the flow. The movement of the transition location along the shear layer, causing late
transition/early transition, is synchronized with the flow separation and reattachment,
respectively. Thus, the acoustic wave feedback mechanism generates and sustains the
LFO phenomenon. On the contrary, flow forcing using a selected set of frequencies could
remove the LFO as reported by Zaman et al. (1987) and Eljack, Alqadi & Almutairi (2018).
Such a conflicting role of the acoustic excitation was also noted by Zaman et al. (1989).

Almutairi, Alqadi & Eljack (2015) and Almutairi et al. (2017) applied the DMD method
to the pressure field of the flow field around a NACA0012 airfoil at Rec = 1.3 × 105,
M = 0.4 and angle of attack of 11.5◦. The authors sampled the instantaneous pressure
field on the x–y plane at a non-dimensional frequency of 658, and the data span about one
low-frequency cycle (25 non-dimensional time units). The DMD identified two dominant
flow modes: a low-frequency mode at Strouhal number of 0.008 featuring the bursting
and reformation cycle of the LSB and a high-frequency mode featuring the trailing-edge
shedding frequency. They concluded that the trailing-edge shedding induces acoustic
waves that travel upstream and excite the separated shear layer via some receptivity
mechanism and forces it to undergo early transition and reattach the separated flow. Once
the flow is attached, the strong vortex shedding downstream of the trailing edge dies
down, and the acoustic feedback is cut off; consequently, the flow separates again, and
the separation/reattachment process repeats periodically. However, the authors applied the
DMD method to the pressure field only; therefore, the authors did not show streamlines
corresponding to the low-frequency mode. Consequently, the triad of vortices discovered
and explained by Eljack & Soria (2020) was not presented in their work.

The model of the LFO phenomenon presented by Eljack & Soria (2020) and the
discussion in § 5.3 above show that the circumstances that govern the stability of the LSB
and its associated LFO phenomenon can be met in both compressible and incompressible
flows. Figure 19 shows the variation of the mean velocity above and below that of the
mean flow due to attachment and separation of the flow, respectively. The production of
kinetic energy increases and an early transition occurs when the flow is attached due to the
increase in the velocity gradient across the separated shear layer and vice versa. Thus,
the movement of the transition location is interlinked with the oscillating flow induced
by the LFO-Mode-1 and the LFO-Mode-2. Consequently, the oscillating flow affects
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Figure 19. (a,b) The scaled mean streamwise velocity (U1/U∞) at the location of maximum production of
turbulent kinetic energy along the separated shear layer at the stall angle of attack and the angle of attack of
maximum LFO. Black line, time-averaged flow; red line, time-average attached flow; blue line, time-average
separated flow.

the velocity gradient across the separated shear layer and the development of the
Kelvin–Helmholtz instability. In conclusion, previous work on the LFO suggests that
the acoustic wave feedback mechanism is crucial for the LFO phenomenon. Whereas,
the present work shows that an interplay of three vortices induces the LFO phenomenon
without excluding the acoustic waves scenario.

Rodríguez et al. (2013, 2015) carried out several direct numerical simulations in which
they solved the incompressible Navier–Stokes equations. They investigated the flow field
around a NACA0012 airfoil at Reynolds number of 5 × 104 and angles of attack of
5◦, 8◦, 9.25◦ and 12◦. The authors reported that they started the simulations from an
initially homogeneous flow field that introduced some numerical disturbances. However,
the authors did not clearly state whether or not they captured a global LFO. They have not
shown time histories of the aerodynamic coefficients; thus, the reader cannot determine if
the LFO phenomenon was captured. The only low-frequency flow phenomenon reported
by the authors is the shear-layer flapping on the suction surface of the airfoil at Strouhal
number of 0.021. To the best of the author’s knowledge, these are the only incompressible
studies that investigated the LFO in the flow field around an airfoil at near-stall conditions.
However, further investigations are required before a conclusion on whether or not an
LFO phenomenon can be captured in an incompressible flow. Therefore, experimental
measurements in a water-tunnel or solving the incompressible Navier–Stokes equations
in a direct numerical simulation are merited. In the case of the numerical simulation,
starting the simulation using clean flow might help capture the phenomenon. Whereas,
in the water-tunnel experiment, adjusting the free-stream turbulence to the right level is
crucial for capturing the phenomenon.

6. The bursting criterion of the LSB

Diwan et al. (2006) refined the bursting criterion developed by Gaster (1967) to consider
the effect of the height of the LSB in addition to its length. The bursting parameter is given
by Ph = (h2/ν)(�U/�x), where h is the height of the LSB, ν is the kinematic viscosity,
�U is the velocity difference across the bubble and �x is the length of the LSB. The
Reynolds number based on the height of the bubble is given by Reh = (Uhh/ν), where
Uh is the velocity at the maximum height of the LSB (h). The bubble is termed short if
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Figure 20. The bursting parameter Ph plotted versus the Reynolds number Reh. The arrows indicate the
direction in which the angle of attack, α, increases.

Ph > −28. Figure 20 shows a plot of the bursting parameter Ph versus the Reynolds
number Reh. As seen in the figure, the bursting criterion suggests that the LSBs at
Reynolds number of 5 × 104 and angles of attack lower than the stall angle of attack are
short bubbles. This is in total agreement with the definition of the short bubble and the
above discussion which shows that the LSBs are long bubbles at angles of attack higher
than the stall angle. The bursting parameter Ph is proportional to h2, and the LSBs are
thinner at Reynolds number of 9 × 104 than their Rec = 5 × 104 counterparts. Thus, the
criterion suggests that all the LSBs at Reynolds number of 9 × 104 are short bubbles, as
seen in the figure.

The percentage of the energy content in each POD and SMD mode is shown in figure 21.
The energy percentage for the POD modes is estimated from the ratio of each POD
eigenvalue (λ(n)) to the sum of all POD eigenvalues. Whereas, the energy percentage for
the SMD modes is estimated from the variance of each SMD coefficient divided by the
sum of the energy in all of the flow modes. Classification of the most dominant POD
mode as a low-frequency or high-frequency mode was identified from the corresponding
temporal POD mode. The SMD modes are selectively recovered; thus, the modes are
identified accordingly. The POD mode corresponding to the LFO-Mode-1 dominates the
flow field in all of the investigated angles of attack and at all of the investigated Reynolds
numbers, as seen in the figure. This is because the POD method recovers flow modes
based on their energy content, thus overestimating the amplitude of some flow modes. On
the contrary, the SMD method recovers physical flow modes; therefore, the amplitude of
the SMD mode corresponding to the lift coefficient (LFO-Mode-1) decays gradually as the
angle of attack decreases until it is overtaken by the LFO-Mode-2 and the HFO mode at
angles of attack lower than the stall angle of attack as seen in the figure. Consequently, the
SMD mode corresponding to the HFO mode dominates the flow field at angles of attack
lower than the stall angle, including at zero angle of attack. It is well known that the flow
field around airfoils at zero or relatively small angles of attack is dominated by the HFO
mode along the wake. Thus, the SMD method adjusts the amplitude of the flow modes to
the correct magnitude and overcomes the shortcomings of the POD method.

At angles of attack lower than the stall angle, the LFO-Mode-2 is less energetic than
the HFO mode. Thus, the flow remains attached with occasional separations at small
amplitudes of oscillations, and the LSB remains intact. The flow at these angles of attack
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Figure 21. The percentage of the energy content in POD mode n (κ(n)) and each of the SMD modes at
(a,b) angles of attack of 8.8◦–10.5◦ and Reynolds number of 5 × 104 and (c) angles of attack of 10.0◦–11.2◦ and
Reynolds number of 9 × 104. The black, red and blue bars indicate the energy percentage of the LFO-Mode-1,
the LFO-Mode-2 and the HFO mode, respectively.

oscillates at a low frequency as a consequence of vortex shedding and shear-layer flapping,
but the LFO-Mode-2 is not energetic enough to eject the upstream vortex, separate the flow
and induce instability of the LSB. At angles of attack above the stall angle of attack and
below the angle of a full stall, the LFO-Mode-2 overtakes the HFO mode and becomes
the most dominant flow mode. The LFO-Mode-2 becomes energetic enough to separate
the flow, and the LSB bursts and reforms intermittently. As the angle of attack increases
above the angle of attack of a full stall, the HFO mode overtakes the LFO-Mode-2 again,
an open bubble forms on the suction surface of the airfoil and the LFO-Mode-2 is not
energetic enough to attach the flow. The LFO-Mode-1 represents an absolute instability,
and the HFO features a convective instability. Thus, the instability changes from convective
to absolute when the LFO-Mode-2 overtakes the HFO at the inception of the stall, triggers
the instability of the bubble and initiates the LFO phenomenon. The above discussion
shows that the bursting of the LSB depends on the percentage of energy content in the
LFO-Mode-1, the LFO-Mode-2 and the HFO mode. Whereas, previous studies associate
bursting conditions of the LSB with local flow parameters such as the value of the
Reynolds number of the separated boundary layer and the pressure rise over the region
occupied by the bubble (Owen & Klanfer 1953; Gaster 1967). However, these local flow
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parameters depend on the energy content of the most dominant flow modes. Thus, previous
bursting criteria remain valid, albeit are not universal, as pointed out by Diwan et al. (2006)
and confirmed by Alferez et al. (2013).

7. Conclusion

The objective of the present work was to carry out a detailed flow dissection and shed
some light on the structure and dynamics of the flow around a NACA0012 airfoil at low
Reynolds number and near-stall conditions. Time histories of the fluctuating aerodynamic
forces have been utilized to reconstruct selective flow modes that cause oscillations in these
forces, and a novel SMD method has been developed. Three distinct dominant flow modes
have been identified by the POD, the DMD and the SMD methods: a globally oscillating
flow mode at a low frequency (LFO-Mode-1) featuring an absolute instability that creates
and sustains the triad of vortices; a locally oscillating flow mode on the suction surface
of the airfoil at a low frequency (LFO-Mode-2) presenting the ejection of the upstream
vortex of the TCV; and a locally oscillating flow mode along the wake of the airfoil at a
high frequency (HFO mode) featuring the travelling Kelvin–Helmholtz waves along the
airfoil wake (convective instability). The analysis showed that the dynamics of the LSB is
associated with the percentage of energy content in each of the three dominant flow modes.
At angles of attack below the stall angle of attack, the HFO mode dominates the flow, and
the LSB remains intact. At angles of attack above the stall angle of attack and below the
angle of attack of a full stall, the LFO-Mode-2 becomes more energetic than the HFO
mode. Consequently, the LSB bursts to form a long bubble and triggers low-frequency
oscillations in the flow field.

The underlying mechanism and the bursting criterion presented in the current study
are for flow fields about airfoils at moderate subsonic Mach number (0.4). However,
the change in the Mach number from 0.2 (near incompressible) to 0.4 is not expected
to dramatically change the shape of the identified dominant flow modes, the proposed
underlying mechanism and the suggested bursting criterion. The structure of the LSB
and the dynamics of the flow are statistically two-dimensional. This was confirmed by
analysing a dataset generated in a computational domain of a spanwise width of two
chords. It is evident that neither the imposed periodic boundary condition nor the spanwise
width of the computational domain affects the accuracy of the data and the conclusions
based on them. The amplitudes of flow modes and their energy content depend primarily
on the accuracy of the statistical method used to recover them. The SMD method is based
on time-averaging of the data; thus, it accurately estimates the energy content in each flow
mode within the statistical error.

The dynamics of the flow discussed in the present work shows that the physics of
the LSB formed naturally on the suction surface of an airfoil exhibits some features
that do not evolve and sustain in the LSB induced on a flat plate with an adjustable
pressure distribution (Gaster 1967). Therefore, a comparative study of the dominating
flow modes in the two configurations is merited. Another interesting model that has been
used to tackle this problem is solving linearized Navier–Stokes equations to investigate
instability mechanisms of the flow. However, this study showed that the fluctuating flow
variables are well above 1 % of their corresponding mean values. Therefore, a thorough
study to examine the percentage of the fluctuating flow at the instant of bursting is also
merited. The present investigation opens the door for the optimum design of airfoils,
and has profound implications for the constantly increasing applications that operate at
low-Reynolds-number conditions. Finally, the SMD is a robust method that utilizes the
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time history of an aerodynamic force to selectively recover a flow mode that physically
exists in the flow and causes fluctuations in the aerodynamic force.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2024.855.
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Appendix A. Mathematical modelling

In the present study, the fluid flow is governed by the viscous-compressible Navier–Stokes
equations. The non-dimensional analysis of these equations is achieved using the following
non-dimensional variables:

uj =
u∗

j

u∗
r
, ρ = ρ∗

ρ∗
r
, T = T∗

T∗
r
, xj =

x∗
j

c
, μ = μ∗

μ∗
r
, p = p∗

ρ∗
r u∗2

r
, t = t∗u∗

r

c
,

(A1a–g)
where

uj = [u1, u2, u3]ᵀ and xj = [x, y, z]ᵀ. (A2a,b)

Here, ρ, T and μ are the fluid density, temperature and dynamic viscosity, respectively,
p is the flow pressure, t is time and c represents the airfoil chord length. The subscript r
denotes the reference variables and the asterisk indicates dimensional variables.

The non-dimensional Favre-filtered Navier–Stokes equations in three-dimensional
curvilinear coordinates are given by

∂ρ̄

∂t
+ ∂

∂ξj

[
ξ̀ ij(ρ̄ũj)

]
= 0, (A3)

∂

∂t
(ρ̄ũi) + ∂

∂ξj

[
ξ̀ ij(ρ̄ũiũj + p̄δij − σ ij)

]
= − ∂

∂ξj

[
ξ̀ ijτ ij

]
︸ ︷︷ ︸, (A4)

∂

∂t
(ρ̄Ẽ) + ∂

∂ξj

[
ξ̀ ij((ρ̄Ẽ + p̄)ũj + q̃j − σ ijũi)

]
= 0, (A5)

where ρ̄, ũi, p̄ and Ẽ are the Favre-filtered density, the instantaneous velocity components,
the Favre-filtered pressure and the total energy per unit mass. The transformation metrics
tensor is given by

ξ̀ ij = 1
J

∂ξj

∂xi
, J =

∣∣∣∣∂xi

∂ξj

∣∣∣∣ . (A6a,b)

The stress tensor is given by

σ ij = 2μ̃

Rec
Sij − 2μ̃

3Rec
δijSkk, Sij = 1

2

(
∂ũi

∂ξj

∂ξj

∂xi
+ ∂ũj

∂ξi

∂ξi

∂xj

)
. (A7a,b)
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The heat flux vector is written as

q̃j = μ̃

(γ − 1)RecPrM2∞

∂T̃
∂ξj

∂ξj

∂xi
, (A8)

where γ = 1.4 is the specific heat ratio, Rec = 5 × 104 and 9 × 104 is the chord Reynolds
number, Pr = 0.72 is the Prandtl number and M∞ = 0.4 is the free-stream Mach number.
The ideal gas law and Sutherland’s law are used to estimate the instantaneous temperature
(T̃) and the instantaneous dynamic viscosity (μ̃), respectively, as follows:

μ̃ = T̃3/2 1 + C

T̃ + C
(C = 0.3686), T̃ = γ

2
M∞

p̄
ρ̄

. (A9a–c)

The free-stream pressure ( p∞) estimated using the above relation is equivalent to 4.464.
The Favre-filtered equations consist of the terms from the Navier–Stokes equations

on the left-hand side, in addition to the terms on the right-hand side resulting from the
filtering operation. The under-bracketed term represents the effects of the unresolved
subgrid-scale (SGS) turbulent structures. The SGS stress tensor τ ij represents the effect of
the small-scale turbulent structures and is defined as

τ ij = ρ̄(ũiuj − ũiũj). (A10)

The SGS stress tensor τ ij is modelled by using the eddy viscosity concept under the
assumption of a nearly incompressible flow:

τ ij − 1
3δijτ kk = 2νturb Sij, (A11)

where τ kk refers to the trace of the SGS Reynolds stress tensor and νturb refers to the
turbulent eddy viscosity obtained by the mixed-time-scale (mts) model developed by
Inagaki, Kondoh & Nagano (2005). The model is turned off automatically in the laminar
flow region. Thus, it overcomes the drawbacks of using a wall-damping function. In this
model, the eddy viscosity is calculated by using the following definition:

νturb = Cmtsτsksgs , (A12)

where Cmts refers to the model fixed parameter (in the current study Cmts = 0.03) and τs
refers to the time scale given by

τs
−1 =

(
Δ̄√
ksgs

)−1

+
(

Cτ∣∣S̄∣∣
)−1

, (A13)

where ∣∣S̄∣∣ = √
2SijSij, Δ̄ = (�x�y�z)1/3. (A14a,b)

Here Δ̄ refers to the filter size and Cτ is the time-scale parameter. In the current study
Cτ = 10 (Inagaki et al. 2005). The velocity scale ksgs is defined by

ksgs = (ū − ˆ̄u)2. (A15)

As long as the flow is fully resolved, the above definition gives a zero velocity scale in the
laminar flow region. Consequently, the eddy viscosity (νturb) also approaches zero in this
region.
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Appendix B. The POD method

The POD method was introduced to the fluid dynamics community by Lumley in 1967 to
objectively recover the most energetic structures of a turbulent flow field (Lumley 1967).
There are various ways to implement the POD method. In the classical POD method,
the ensemble-averaged two-point correlation matrix is estimated, and the eigenvalue
problem is then solved for the POD eigenvalues and eigenvectors. The classical method is
computationally demanding when applied to numerical simulation data. Sirovich (1987)
introduced the ‘snapshot’ method to address this problem. The method is closely related
to the space–time symmetry. That is, the two-point correlation in space is equivalent to the
two-point correlation in time. Thus, the two-point correlation matrix is formulated in time
rather than in space, and the eigenvalue problem is formulated by taking the inner product
of the flow variables in time. The reader is referred to Lumley (1967, 1981), Sirovich
(1987) and Holmes, Lumley & Berkooz (1996) for more details on the theory of the POD
method and its various implementations to numerical and experimental data. The snapshot
POD method (Sirovich 1987), used in the present work, is implemented by solving the
eigenvalue problem

CΦ = ΛΦ, (B1)

where C is the correlation matrix, Φ(t) = {φ(1), φ(2), φ(3), . . . , φ(M)} are the temporal
POD eigenfunctions and Λ = {λ(1), λ(2), λ(3), . . . , λ(M)} are the POD eigenvalues. The
spanwise ensemble-averaged fluctuating streamwise velocity, wall-normal velocity and
pressure (D(x, y, t) = [〈ŭ1〉, 〈ŭ2〉, and 〈p̆〉]ᵀ) are used to formulate the correlation matrix
C as follows:

Cij(ti, tj) = 1
M

(D(x, y, ti), D(x, y, tj)), (B2)

where (·, ·) represents the inner product process and M is the number of snapshots. The
eigenvalues and eigenfunctions are used to construct the spatial POD modes, Θ̃(x, y) =
{θ̃ (1), θ̃ (2), θ̃ (3), . . . , θ̃ (M)}, as follows:

θ̃ (n)(x, y) = 1√
λ(n)

M∑
k=1

φ(n)(tk)D(x, y, tk). (B3)

The obtained spatial POD modes (Θ̃(x, y)) are orthogonal but not normalized. The spatial
POD modes are duly normalized to obtain the orthonormal spatial POD modes, Θ =
{θ(1), θ (2), θ (3), . . . , θ (M)}, using the following formula:

θ(n)(x, y) = θ̃ (n)(x, y)[(
θ̃ (n)(x, y)

) (
θ̃ (n)(x, y)

)ᵀ]1/2 . (B4)

The POD coefficients (B(t) = {b(1), b(2), b(3), . . . , b(M)}) are then determined using

b(n)(t) =
∫

Domain
D(x, y, t)θ(n)(x, y) dx dy. (B5)

The fluctuating flow field (total fluctuations) (D(x, y, t)), a subset of it (D́(x, y, t)), or any
POD mode can be reconstructed from

D́(m)(x, y, t) =
m∑

n=1

b(n)(t)θ(n)(x, y). (B6)
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The cumulative kinetic energy of the fluctuating flow field for m POD modes is the sum
over the first m POD modes, and is given by

κt(m) =
m∑

n=1

λ(n). (B7)

The percentage of the kinetic energy fraction of the fluctuating flow in each POD mode is
estimated from

κ(m) = λ(m)∑M
n=1 λ

(n)
. (B8)

The temporal POD eigenfunctions Φ(t) are orthogonal but not normalized; thus, the
evolution of each POD mode in time does not reflect the amplitude at which the flow
mode oscillates in time. However, each of the temporal POD eigenfunctions can be scaled
by its corresponding POD eigenvalue to recover a flow mode that evolves in time with its
actual amplitude (λ(n)φ(n)(t)). Consequently, the percentage of the energy content in POD
mode m compared with other POD modes at any instant in time can be estimated from

β(n)(t) = λ(n)φ(n)(t)∑M
m=1 λ

(m)φ(m)(t)
. (B9)

Appendix C. The DMD method

Since it was introduced in the fluid dynamics community, the DMD method has been used
extensively to analyse transitional and turbulent flows (Schmid & Sesterhenn 2008; Rowley
et al. 2009; Schmid 2010, 2011; Schmid et al. 2011; Jovanovic, Schmid & Nichols 2014;
Tu et al. 2014; Le Clainche & Vega 2017; Schmid 2022). The power of the DMD method
lies in the fact that it provides growth rates, frequencies and their associated dynamic
modes. Such information is hard to recover using any of the other higher statistical methods
including the POD method.

The DMD method does not require any ordering of the data in space or in a form of a
matrix. All that matters is a sequence of snapshots in time V (:, t) regardless of how they
are ordered in space. Following Schmid (2010, 2011) and Schmid et al. (2011), consider a
set of data consisting of M snapshots sampled experimentally or numerically and ordered
in time with a constant time step �t:

V M
1 = {v1, v2, v3, . . . , vM}. (C1)

The snapshots are assumed to be linearly correlated, i.e. vj is linearly correlated with vj+1

or vj+1 = Avj , and this linear mapping can be implemented to the whole dataset V M
1 to

obtain a set of the following form:

V M
1 = {v1, Av1, A2v1, . . . , AM−1v1} or V M

2 = AV M−1
1 . (C2)

For a sufficiently large sequence, one can assume a linear relation between snapshots and
construct the (n)th snapshot by a linear combination of the preceding (n − 1) snapshots,
thus:

V M
2 = AV M−1

1 ≈ V M−1
1 S, (C3)

where V M−1
1 = {v1, v2, v3, . . . , vM-1}, V M

2 = {v2, v3, v4, . . . , vM} and S is a companion
matrix that contains the coefficients of the linear mapping. The problem now becomes
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a least-squares problem to find S that approximate the linear mapping with a minimum
error:

[Q, R] = qr(V M−1
1 ), (C4)

S = R−1QHV M
2 . (C5)

The eigenvalue problem can then be solved to obtain the eigenvalues Γ and the
eigenvectors Ω of the matrix S, i.e.

SΩ = Γ Ω. (C6)

The eigenvalues of S contain the growth rates and phase velocities of the flow modes,
while the eigenvectors represent the shape of the dynamic modes:

ωj = log(Γ jj)

�t
. (C7)

The real parts of ω (ωr) represent the growth rates, while the imaginary parts of ω represent
the corresponding phase velocities. The dynamic modes are then constructed by projecting
the original snapshots onto the eigenvectors as follows:

DM( j) = V M−1
1 (:, :)Ω(:, j), (C8)

where DM( j) represents the jth dynamic mode. The multiplication on the right-hand side
of the equation is matrix multiplication which means that the flow field V M−1

1 is projected
onto the entire length of the jth eigenfunction Ω . However, the eigenfunctions are not
normalized. Consequently, the sum of all of the projected flow modes does not reconstruct
the original flow field as is the case in the POD method.
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