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Distribution of the number of prime factors
with a given multiplicity

Ertan Elma and Greg Martin

Abstract. Given an integer k ≥ 2, let ωk(n) denote the number of primes that divide n with mul-
tiplicity exactly k. We compute the density ek ,m of those integers n for which ωk(n) = m for every
integer m ≥ 0. We also show that the generating function∑∞m=0 ek ,m zm is an entire function that can
be written in the form∏p(1 + (p − 1)(z − 1)/pk+1); from this representation we show how to both
numerically calculate the ek ,m to high precision and provide an asymptotic upper bound for the ek ,m .
We further show how to generalize these results to all additive functions of the form ∑∞j=2 a j ω j(n);
when a j = j − 1 this recovers a classical result of Rényi on the distribution of Ω(n) − ω(n).

1 Introduction

Let ω(n) be the number of distinct prime factors of a positive integer n, and let Ω(n)
be the number of prime factors of n counted with multiplicity. Average behaviours of
such arithmetic functions are understood via their summatory functions. It is known
[7] (see also [8, Theorems 427–430]) that

∑
n⩽x

ω(n) = x log log x + bx + O( x
log x

)

∑
n⩽x

Ω(n) = x log log x + (b +∑
p

1
p(p − 1))x + O( x

log x
);

(1.1)

here the constant b is defined by

b = γ0 +∑
p

∞
∑
j=2

1
jp j(1.2)

where γ0 denotes the Euler–Mascheroni constant. (In this paper, ∑p and ∏p always
denote sums and products running over all prime numbers.) The celebrated Erdős–
Kac theorem tells us that both ω(n) and Ω(n) can be normalized to have Gaussian
limiting distribution functions.

By the asymptotic formulas (1.1), the difference Ω(n) − ω(n) has an average value,
namely the constant

lim
x→∞

1
x ∑

n⩽x
(Ω(n) − ω(n)) = ∑

p

1
p(p − 1) ,
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which provides motivation to study the frequency of each possible value of
Ω(n) − ω(n). For any integer m ⩾ 0, define

Nm(x) = {n ⩽ x∶Ω(n) − ω(n) = m}.

Rényi [10] (see also [9, Section 2.4]) proved that the (natural) densities

dm = lim
x→∞

#Nm(x)
x

= 6
π2 ∑

f ∈F
Ω( f )−ω( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

(1.3)

exist for every m ⩾ 0, where F is the set of powerful numbers (the set of positive
integers all of whose prime factors have multiplicity ⩾ 2). Furthermore, he showed
that these densities have the generating function

∞
∑
m=0

dmzm =∏
p
(1 − 1

p
)(1 + 1

p − z
) (∣z∣ < 2).(1.4)

(Note the special case d0 = ∏p(1 − 1
p )(1 + 1

p ) =
1

ζ(2) =
6

π2 for the density of squarefree
numbers, which can also be confirmed by realizing that the sum in equation (1.3)
contains only the single term f = 1 when m = 0.) In particular, the smaller function
Ω(n) − ω(n) already has a (discrete) limiting distribution function, without needing
normalization in the way that the larger functions ω(n) and Ω(n) individually do.

As a refinement of the function ω(n), Liu and the first author introduced the
functions

ωk(n) = ∑
pk∥n

1

for each integer k ⩾ 1, so that ωk(n) counts the number of prime factors of n with
multiplicity k and thus ω(n) = ∑∞k=1 ωk(n). They showed [2] that

∑
n⩽x

ω1(n) = x log log x + (b −∑
p

1
p2 )x + O( x

log x
)

where b is the constant from equation (1.2), while

∑
n⩽x

ωk(n) = x ∑
p

p − 1
pk+1 + O(x(k+1)/(3k−1) log2 x) (k ⩾ 2).(1.5)

They also showed that the larger function ω1(n) has a Gaussian limiting distribution
function after being normalized in the same way as the classical ω(n) and Ω(n).
However, since equation (1.5) shows that ωk(n)has an average value for each k ⩾ 2, we
might expect these smaller functions to have limiting distributions without needing
to be normalized.

In this paper, we obtain the limiting distribution for the functions ωk(n) for k ⩾ 2,
analogous to the results of Rényi described above. For integers m ⩾ 0, define

Nk ,m(x) = {n ⩽ x∶ωk(n) = m}(1.6)
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to be the set of positive integers n ⩽ x with exactly m prime factors of multiplicity k.
Our main result establishes the existence of the densities

ek ,m = lim
x→∞

#Nk ,m(x)
x

and gives an exact formula for the ek ,m involving an infinite sum.

Theorem 1.1 Uniformly for all integers k ⩾ 2 and m ⩾ 0,

#Nk ,m(x) = ek ,m x + O(x 1/2 log x)
with

ek ,m = 6
π2 ∑

f ∈F
ωk( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

.

Remark 1.2 Note that the ek ,m are all nonnegative, and we can check that they do
sum to 1:

∞
∑
m=0

ek ,m =
∞
∑
m=0

6
π2 ∑

f ∈F
ωk( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

= 6
π2 ∑

f ∈F

1
f ∏p∣ f

(1 + 1
p
)
−1

.

Since the summand is a multiplicative function of f, as is the indicator function of F,
the right-hand side equals its Euler product

6
π2 ∏

p
(1 + 0 + (1 + 1

p
)
−1

( 1
p2 + 1

p3 +⋯)) = 6
π2 ∏

p
(1 − 1

p2 )
−1

= 1.

The same remark applies to the densities in equation (1.10) below.

Moreover, we obtain an identity analogous to equation (1.4) for the generating
function of the densities ek ,m for fixed k ⩾ 2, from which we can derive an upper
bound for the densities ek ,m when k ⩾ 2 is fixed and m →∞.

Theorem 1.3 Let k ⩾ 2 be an integer. For all z ∈ C with ∣z∣ ⩽ 1,
∞
∑
m=0

ek ,mzm =∏
p
(1 + (p − 1)(z − 1)

pk+1 ).(1.7)

Corollary 1.4 For each fixed k ⩾ 2, we have ek ,m ⩽ m−(k−o(1))m as m →∞.

Remark 1.5 The proof of the upper bound in Corollary 1.4 (see Section 3) shows that
for each k ⩾ 2, the bound is attained for infinitely many m; it would be interesting
to try to show that ek ,m = m−(k−o(1))m for all k and m. Moreover, the corollary and
its proof show that both sides of equation (1.7) converge to entire functions, and
thus Theorem 1.3 actually holds for all z ∈ C by uniqueness of analytic continuation.
The same remarks apply to the generating functions in Corollary 1.14 and the upper
bounds in Corollary 1.15 below.
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Table 1: Some values of ek ,m .
m = 0 m = 1 m = 2 m = 3

k = 2 0.748535831 0.226618489 0.023701061 0.001117529
k = 3 0.904708927 0.092831692 0.002440388 0.000018941
k = 4 0.959088654 0.040585047 0.000325821 0.000000477
k = 5 0.981363751 0.018587581 0.000048654 0.000000014

Some numerical values of ek ,m are given in Table 1. The numbers in the first
column corresponding to m = 0 are increasing as k increases, whereas the numbers
in other columns are decreasing. This behaviour stems from the fact that the case
m = 0 indicates the nonexistence of prime factors with multiplicity k, which becomes
more probable as k increases. (Note also that each number in the first column exceeds

6
π2 ≈ 0.608, since every squarefree number n certainly has ωk(n) = 0 for all k ⩾ 2.) On
the other hand, for m ⩾ 1, the criterion ωk(n) = m indicates the existence of prime
factors with multiplicity k, which becomes less probable as k increases. Details of the
calculations of these values are given in Section 4, although we do note here that the
calculations use the generating function in Theorem 1.3 rather than the formula for
ek ,m in Theorem 1.1.

A consequence of Theorem 1.1 and Remark 1.2 is that ωk(n) has a limiting
distribution, which is the same as the distribution of the nonnegative integer-valued
random variable Xk that takes the value m with probability ek ,m . While it is straight-
forward to calculate the expectation and variance of this limiting distribution via the
expressions

lim
x→∞

1
x ∑

n⩽x
ωk(n) and lim

x→∞
1
x ∑

n⩽x
ωk(n)2 − ( lim

x→∞
1
x ∑

n⩽x
ωk(n))

2

,

we can observe that the generating function from Theorem 1.3 provides a quick way
to obtain the answers with no further input from number theory.

Corollary 1.6 The limiting distribution of ωk(n) has expectation ∑
p

p − 1
pk+1 and vari-

ance ∑
p

p − 1
pk+1 (1 − p − 1

pk+1 ).

Remark 1.7 Not surprisingly, these quantities are the expectation and variance of
the sum of infinitely many Bernoulli random variables Bp, indexed by primes p, where
Bp takes the value 1 with probability (p − 1)/pk+1 (the density of those integers exactly
divisible by pk).

These quantities are easy to calculate to reasonably high precision (see Section 4 for
details); we record some numerical values in Table 2. The reader can confirm that the
listed expectations are in good agreement with the quantities 0ek ,0 + 1ek ,1 + 2ek ,2 +
3ek ,3 as calculated from Table 1.
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Table 2: Statistics of the limiting distribution of ωk(n).
expectation of ωk(n) variance of ωk(n)

k = 2 0.277484775 0.254931583
k = 3 0.097769500 0.093205673
k = 4 0.041238122 0.040192048
k = 5 0.018684931 0.018433195

1.1 Generalizations

It turns out that our proof of Theorem 1.1 goes through for a far larger class of additive
functions than just the ωk(n). Given any sequence A = (a1 , a2 , a3 , . . . ) of complex
numbers, define the additive function

ωA(n) =
∞
∑
j=1

a jω j(n),(1.8)

which is of course a finite sum for each integer n.

Remark 1.8 This definition generalizes all the examples we have seen so far:
• if a j = 1 always then ωA(n) = ω(n);
• if a j = j always then ωA(n) = Ω(n);
• if a j = j − 1 always then ωA(n) = Ω(n) − ω(n);
• for a fixed positive integer k, if ak = 1 while a j = 0 for j ≠ k, then ωA(n) = ωk(n).

When a1 ≠ 0, classical techniques show that the large function 1
a1

ωA(n) has the
same Gaussian limiting distribution as ω(n) and Ω(n) when properly normalized
(at least if the a j do not grow too quickly). Therefore we restrict our attention to the
smaller functions ωA(n)where a1 = 0, which we expect to have limiting distributions
without needing normalization.

For m ∈ C, define

NA,m(x) = {n ⩽ x∶ωA(n) = m}.

Our next result, which generalizes both equation (1.3) and Theorem 1.1, establishes
the existence of the densities

eA,m = lim
x→∞

#NA,m(x)
x

(1.9)

and provides an exact formula for them.

Theorem 1.9 Uniformly for all sequences A = (0, a2 , a3 , . . . ) of complex numbers with
a1 = 0 and for all m ∈ C,

#NA,m(x) = eA,m x + O(x 1/2 log x)
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with

eA,m = 6
π2 ∑

f ∈F
ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

.(1.10)

If we now restrict to the case where the a j (and thus all values of ωA(n)) are
nonnegative integers, it once again makes sense to consider generating functions. Our
next result generalizes both equation (1.4) and Theorem 1.3 in light of Remark 1.8.

Theorem 1.10 Let A = (0, a2 , a3 , . . . ) be a sequence of nonnegative integers. For all
z ∈ C with ∣z∣ ⩽ 1,

∞
∑
m=0

eA,mzm =∏
p
(1 − 1

p2 +
∞
∑
j=2

za j( 1
p j −

1
p j+1 )).(1.11)

Remark 1.11 The Erdős–Wintner theorem [3, 4] (see also [11, Chapter III.4]) implies
the existence of a limiting distribution for ωA(n), as well as a formula for its
characteristic function that is related to equation (1.11); indeed that approach works
for any additive function f with f (p) = 0 for all primes p. On the other hand, our
elementary approach shares the advantages of Rényi’s [10] of giving formulas for the
densities eA,m and the means to compute their numerical values and asymptotic size.

Again Theorem 1.10 shows that ωA(n) has a limiting distribution when the a j are
nonnegative integers, and we can therefore generalize Corollary 1.6; we record only
the expectation for simplicity.

Corollary 1.12 Let A = (0, a2 , a3 , . . . ) be a sequence of nonnegative integers. The

limiting distribution of ωA(n) has expectation ∑
p

∞
∑
j=2

a j(
1
p j −

1
p j+1 ).

Remark 1.13 It is certainly possible for this expectation to be infinite, as the example
A = (0, 2, 4, 8, 16, . . . ) shows. In such cases 1

x ∑n⩽x ωA(n) grows too quickly for the
mean value of ωA(n) to exist. Note, however, that Theorems 1.9 and 1.10 hold no
matter how quickly the sequence A might grow.

We examine three specific examples of such sequences for the purposes of illustra-
tion: set S = (0, 1, 1, . . . ) and E = (0, 1, 0, 1, . . . ) and O = (0, 0, 1, 0, 1, 0, 1, . . . ). Then
the corresponding omega functions are

ωS(n) = ∑
j⩾2

ω j(n) and ωE(n) = ∑
j⩾2

j even

ω j(n) and ωO(n) = ∑
j⩾3

j odd

ω j(n)

which count, respectively, the number of primes dividing the powerful part of n (that
is, the number of primes dividing n at least twice), the number of primes dividing n
with even multiplicity, and the number of primes dividing n with odd multiplicity
exceeding 1. For integers m ⩾ 0, let eS ,m and eE ,m and eO ,m be the corresponding
densities defined in equation (1.9). An easy calculation of the right-hand side of
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equation (1.11) in these cases (for which each factor becomes a geometric series) yields
the following generating functions:

Corollary 1.14 For all z ∈ C with ∣z∣ ⩽ 1,
∞
∑
m=0

eS ,mzm =∏
p
(1 + z − 1

p2 )

∞
∑
m=0

eE ,mzm =∏
p
(1 + z − 1

p(p + 1))

∞
∑
m=0

eO ,mzm =∏
p
(1 + z − 1

p2(p + 1)).

Corollary 1.15 We have eS ,m ⩽ m−(2−o(1))m and eE ,m ⩽ m−(2−o(1))m and eO ,m ⩽
m−(3−o(1))m as m →∞.

Remark 1.16 One interesting class of functions for which our methods accomplish
less than desired are functions of the form ωA(n) where A contains integers but
not necessarily only nonnegative integers. For example, if A = (0, 1,−1, 0, 0, . . . )
then ωA(n) = ω2(n) − ω3(n), while if A = (0, 1,−1, 1,−1, . . . ) then ωA(n) = ωE(n) −
ωO(n). The target m = 0 is natural to investigate, as ωA(n) = 0 in these two examples
translates into ω2(n) = ω3(n) and ωE(n) = ωO(n), respectively. While Theorem 1.9
gives a formula for the density of those integers n satisfying each of these equalities,
our numerical techniques in Section 4 (which ultimately rely on being able to find the
values of the derivatives of the appropriate generating function at z = 0) are not able
to approach the question of good numerical approximations to these densities.

In Section 2 we establish Theorems 1.9 and 1.10, the formula and generating
function for eA,m , from which Theorems 1.1 and 1.3 follow as special cases. In Section 3
we deduce Corollaries 1.4 and 1.15 (the decay rates of ek ,m and certain variants) from
Theorem 1.3 and Corollary 1.14. Finally, in Section 4 we describe the computations
leading to the numerical values in Tables 1 and 2, as well as establishing Corollaries 1.6
and 1.12 concerning the expectation and variance of the additive functions under
examination.

2 Exact formula and generating function for the densities

We first prove Theorem 1.9, which will also establish the special case that is Theo-
rem 1.1, by following the exposition of Rényi’s result (1.3) in [9, Section 2.4]. Recall the
notation of equation (1.8), and recall that F denotes the set of powerful numbers.

Lemma 2.1 Uniformly for all sequences A = (a1 , a2 , . . . ) of complex numbers and all
m ∈ C,

∑
f⩽x
f ∈F

ωA( f )=m

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1 ≪ log x .
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Proof By dropping the condition ωA( f ) = m and noting that f ⩽ x implies that all
prime factors of f are at most x, we have by positivity

∑
f⩽x
f ∈F

ωA( f )=m

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1 ⩽ ∑

f⩽x
f ∈F

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1

⩽ ∑
f ∈F

p∣ f 
⇒ p⩽x

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1 .

The right-hand side has an Euler product whose factors involve geometric series with
common ratio p−1/2:

∑
f ∈F

p∣ f 
⇒ p⩽x

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1 = ∏

p⩽x
(1 + (1 − p−1/2)−1

(p2)1/2 + (1 − p−1/2)−1

(p3)1/2 +⋯)

= ∏
p⩽x

(1 + 1
(p1/2 − 1)2 )

= ∏
p⩽x

(1 − 1
p
)
−1

∏
p⩽x

(1 + 2
p(p1/2 − 1));

this establishes the lemma, since the first product is asymptotic to a multiple of
log x as shown by Mertens, while the second is a convergent product of the form
∏p(1 + O(p−3/2)). ∎

Lemma 2.2 Uniformly for all sequences A = (a1 , a2 , . . . ) of complex numbers and all
m ∈ C,

∑
f>x
f ∈F

ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

≪ x−1/2 .

Proof Golomb [6] proved that the number of powerful numbers up to y is asymp-
totic to a constant times y1/2. Thus for each integer r ⩾ 0,

∑
2r x< f⩽2r+1 x

f ∈F
ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

< 1
2r x ∑

2r x< f⩽2r+1 x
f ∈F

1 ≪ 1
2r x

(2r+1x)1/2 ≪ 2−r/2x−1/2 ,

and consequently

∑
f>x
f ∈F

ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

=
∞
∑
r=0

∑
2r x< f⩽2r+1 x

f ∈F
ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

≪
∞
∑
r=0

2−r/2x−1/2 ≪ x−1/2 .

∎
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Proof of Theorem 1.9 Fix a sequence A = (0, a2 , a3 , . . .) of complex numbers and
a target m ∈ C. Every positive integer n can be written uniquely as n = q f where q
is squarefree, f is powerful, and (q, f ) = 1 (indeed, q is the product of the primes
dividing n exactly once). In this notation, the condition ωA(n) = m is equivalent to
ωA( f ) = m (since a1 = 0), and thus

#NA,m(x) = ∑
f⩽x
f ∈F

ωA( f )=m

∑
q⩽x/ f
(q , f )=1

μ2(q).(2.1)

To estimate the inner sum above, we use [9, Lemma 2.17] which says that for any y ⩾ 1
and any positive integer f,

∑
n⩽y
(n , f )=1

μ2(n) = 6
π2 y∏

p∣ f
(1 + 1

p
)
−1

+ O(y1/2 ∏
p∣ f
(1 − p−1/2)−1).

Inserting this asymptotic formula into equation (2.1) yields

#NA,m(x) = 6
π2 x ∑

f⩽x
f ∈F

ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

+ O(x 1/2 ∑
f⩽x
f ∈F

ωA( f )=m

1
f 1/2 ∏

p∣ f
(1 − p−1/2)−1)

= 6
π2 x( ∑

f ∈F
ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

− ∑
f>x
f ∈F

ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

) + O(x 1/2 log x)

= 6
π2 x( ∑

f ∈F
ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

+ O(x−1/2)) + O(x 1/2 log x)

by Lemmas 2.1 and 2.2, which completes the proof of the theorem. ∎

With Theorem 1.9 now established, it is a simple matter to prove Theorem 1.10,
which will also establish the special case that is Theorem 1.3.

Proof of Theorem 1.10 Fix a sequence A = (0, a2 , a3 , . . .) of nonnegative integers.
Note that∑∞m=0 eA,m = 1 (by the argument in Remark 1.2), and therefore∑∞m=0 eA,mzm

converges absolutely for any complex number z with ∣z∣ ⩽ 1. By Theorem 1.9,

∞
∑
m=0

eA,mzm = 6
π2

∞
∑
m=0

zm ∑
f ∈F

ωA( f )=m

1
f ∏p∣ f

(1 + 1
p
)
−1

= 6
π2 ∑

f ∈F

zωA( f )

f ∏
p∣ f
(1 + 1

p
)
−1

.

Since zωA( f )/ f = ∏p j∥ f zωA(p j)/p j = ∏p j∥ f za j/p j , the right-hand side equals its Euler
product
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6
π2 ∑

f ∈F

zωA( f )

f ∏
p∣ f
(1 + 1

p
)
−1

= 6
π2 ∏

p
(1 + (1 + 1

p
)
−1 ∞
∑
j=2

za j

p j )

=∏
p
(1 − 1

p2 )(1 + (1 + 1
p
)
−1 ∞
∑
j=2

za j

p j )

=∏
p
(1 − 1

p2 + (1 − 1
p
)
∞
∑
j=2

za j

p j ),

which is equal to the right-hand side of equation (1.11), thus establishing the
theorem. ∎

3 Decay rates of the densities

In this section, we deduce Corollary 1.4 from Theorem 1.3 and Corollary 1.15 from
Theorem 1.10. The key step is to give a proposition establishing the rate of growth
of infinite products such as those appearing in Theorems 1.3 and 1.10, which we
do after the following simple lemma for the prime-counting function π(y) and its
logarithmically weighted version θ(y).

Lemma 3.1 π(y) log y − θ(y) ∼ y/ log y as y →∞.

Proof By the prime number theorem,

π(y) log y − θ(y) = (li(y) + O(ye−c
√

log y)) log y − (y + O(ye−c
√

log y))

= (( y
log y

+ y
log2 y

+ O( y
log3 y

)) + O( y
log3 y

)) log y − (y + O( y
log2 y

))

= y
log y

+ O( y
log2 y

). ∎

Proposition 3.2 Fix a real number κ > 1, and let R(p) be a positive function defined
on primes p such that R(p) ∼ p−κ as p →∞. Define the function

P(x) =∏p(1 + R(p)x).

Then log P(x) ≍ x 1/κ/ log x as x →∞.

Proof All implicit constants in this proof may depend on R(p) and κ. Choose p0
so that 1

2 p−κ < R(p) < 2p−κ for all p > p0. We write

log P(x) = ∑
p⩽p0

log(1 + R(p)x) + ∑
p0<p⩽x 1/κ

log(1 + R(p)x) + ∑
p>x 1/κ

log(1 + R(p)x)

= O(log x) + ∑
p0<p⩽x 1/κ

log(1 + R(p)x) + ∑
p>x 1/κ

log(1 + R(p)x),(3.1)

since the number of terms in the first sum, and the largest value of R(p) appearing in
that sum, are both bounded in terms of the function R.

https://doi.org/10.4153/S0008439524000584 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439524000584


Distribution of the number of prime factors with a given multiplicity 1117

In the first sum in equation (3.1),
1
2 p−κx < R(p)x < 1 + R(p)x < (x 1/κ/p)κ + 2p−κx = 3p−κx .

Therefore

∑
p0<p⩽x 1/κ

log( 1
2 p−κx) ⩽ ∑

p0<p⩽x 1/κ

log(1 + R(p)x) ⩽ ∑
p0<p⩽x 1/κ

log(3p−κx).

The right-hand inequality is the same as

∑
p0<p⩽x 1/κ

log(1 + R(p)x) ⩽ (log x + log 3)(π(x 1/k) − π(p0)) − κ(θ(x 1/k) − θ(p0))

= κ(π(x 1/κ) log(x 1/κ)− θ(x 1/κ))+π(x 1/κ) log 3+O(log x)

∼ (κ + log 3) x 1/κ

log(x 1/κ) = κ(κ + log 3) x 1/κ

log x

by Lemma 3.1. By the same calculation with log 1
2 in place of log 3,

∑
p0<p⩽x 1/κ

log(1 + R(p)x) ⩾ κ(κ − log 2) x 1/κ

log x

(note that κ − log 2 > 1 − log 2 is bounded away from 0). We conclude that

∑
p0<p⩽x 1/κ

log(1 + R(p)x) ≍ x 1/κ

log x
.(3.2)

In the second sum in equation (3.1),

0 ⩽ log(1 + R(p)x) ⩽ R(p)x < 2p−κx ,

and thus by partial summation,

0 ⩽ ∑
p>x 1/κ

log(1 + R(p)x) ⩽ ∑
p>x 1/κ

2p−κx

= 2x ∫
∞

x 1/κ
t−κ dπ(t)

= 2x(π(t)t−κ∣
∞

x 1/κ

+ ∫
∞

x 1/κ
κt−κ−1π(t) dt).

The boundary term is well defined (since κ > 1) and negative, and thus by the prime
number theorem,

0 ⩽ ∑
p>x 1/κ

log(1 + R(p)x) ≪ x(0 + ∫
∞

x 1/κ
t−κ−1 t

log t
dt)

≪ x
log x ∫

∞

x 1/κ
t−κ dt = x

log x
(x 1/κ)1−κ

κ − 1
≪ x 1/κ

log x
.

The proposition now follows by combining these inequalities with equations (3.1)
and (3.2). ∎
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All that is left is to connect the rates of growth of the generating functions in
Theorems 1.3 and 1.10 to the decay rate of their Maclaurin coefficients. We use the
following classical information about entire functions [1, Definition 2.1.1 and Theorem
2.2.2]:

Definition 3.3 An entire function f (z) is said to be of order ρ if

lim sup
r→∞

log log M f (r)
log r

= ρ

where M f (r) = max∣z∣=r ∣ f (z)∣. It is of finite order if it is of order ρ for some ρ ∈ R.

Lemma 3.4 Let f (z) = ∑∞m=0 bmzm be an entire function. The function f (z) is of
finite order if and only if

μ = lim sup
m→∞
bm≠0

m log m
log(1/∣bm ∣)

is finite, and in this case f (z) is of order μ.

Proof of Corollary 1.4 Set

P(x) =∏
p
(1 + p − 1

pk+1 x) and Q(z) =
∞
∑
m=0

ek ,mzm =∏
p
(1 + p − 1

pk+1 (z − 1)).

When ∣z∣ = r, note that

∣Q(z)∣ ⩽ ∏
p
(1 + p − 1

pk+1 (∣z∣ + 1)) = P(r + 1);

thus by Proposition 3.2 with κ = k and R(p) = (p − 1)/pk+1,

log ∣Q(z)∣ ≪ (r + 1)1/k

log(r + 1) ≪ r1/k

log r
.

On the other hand, when z = r > 3 is real, then

log ∣Q(r)∣ = log P(r − 1) ≫ (r − 1)1/k

log(r − 1) ≫ r1/k

log r

again by Proposition 3.2. Together these last estimates show that log MQ(r) ≍
r1/k/log r, which implies that

lim sup
r→∞

log log MQ(r)
log r

= lim sup
r→∞

log(r1/k) − log log r + O(1)
log r

= 1
k

.

In particular, Q(z) has order 1
k by Definition 3.3; consequently, by Lemma 3.4,

lim sup
m→∞
ek ,m≠0

m log m
log(1/∣ek ,m ∣)

= 1
k

.
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We know that ek ,m > 0 by Theorem 1.1, and so
m log m

log(1/ek ,m)
⩽ 1

k
+ o(1)

with asymptotic equality for infinitely many m; we conclude that

ek ,m ⩽ m−(k−o(1))m

which completes the proof of the corollary. ∎

Proof of Corollary 1.14 The proof is the same as the proof of Corollary 1.4, except
that Q(z) is changed to each of the three products

∞
∑
m=0

eS ,mzm =∏
p
(1 + z − 1

p2 )

∞
∑
m=0

eE ,mzm =∏
p
(1 + z − 1

p(p + 1))

∞
∑
m=0

eO ,mzm =∏
p
(1 + z − 1

p2(p + 1))

in turn, with corresponding modifications to P(x) and R(p); instead of with κ = k,
the appeal to Proposition 3.2 is made with κ = 2 in the first two cases and κ = 3 in the
last case, and the rest of the proof goes through in exactly the same way. ∎

4 Numerical calculations of densities, expectations, and variances

We now describe how we used the generating functions in Theorem 1.3 to facilitate
the calculation of the densities ek ,m in Table 1 to the indicated high level of precision.
Our approach is based on observations of Marcus Lai (private communication).

Proposition 4.1 Let P(z) be any function with Maclaurin series

P(z) =
∞
∑
n=0

C(n)zn ,

so that C(n) = 1
n! P(n)(0) for every n ≥ 0. Define

S(0, z) = log P(z) and S(n, z) = dn

dzn S(0, z)

for all n ≥ 1; and define S(n) = S(n, 0) and S̃(n) = 1
(n−1)! S(n). Then for any n ≥ 1,

P(n)(z) =
n−1
∑
k=0

(n − 1
k

)P(k)(z)S(n − k, z).

In particular, for n ≥ 1,

C(n) = 1
n

n−1
∑
k=0

C(k)S̃(n − k),(4.1)
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so that for example

C(1) = C(0)S̃(1) = P(0)S̃(1),

C(2) = 1
2
(C(0)S̃(2) + C(1)S̃(1)) = P(0)

2
(S̃(1)2 + S̃(2)),

C(3) = 1
3
(C(0)S̃(3) + C(1)S̃(2) + C(2)S̃(1)) = P(0)

6
(S̃(1)3 + 3S̃(1)S̃(2) + 2S̃(3)).

Proof We first verify that

P′(z) = P(z)P′(z)
P(z) = P(z) d

dz
log P(z) = P(z) d

dz
S(0, z) = P(z)S(1, z),

which is the case n = 1 of the first identity. The general case of the first identity now
follows from using the product rule n − 1 times in a row on this initial identity P′(z) =
P(z)S(1, z). The second identity follows by plugging in z = 0 into the first identity and
recalling that C(n) = 1

n! P(n)(0). ∎

We apply this recursive formula (with subscripts inserted throughout the notation
for clarity) with C(m) = ek ,m , so that

Pk(z) =
∞
∑
m=0

ek ,mzm =∏
p
(1 + (p − 1)(z − 1)

pk+1 )(4.2)

by Theorem 1.3. We compute

Sk(0, z) = ∑
p

log(1 + (p − 1)(z − 1)
pk+1 )

Sk(1, z) = d
dz ∑

p
log(1 + (p − 1)(z − 1)

pk+1 ) = ∑
p
(z + pk+1

p − 1
− 1)

−1

(4.3)

Sk(n, z) = dn−1

dzn−1 ∑
p
(z + pk+1

p − 1
− 1)

−1

= ∑
p
(−1)n−1(n − 1)!(z + pk+1

p − 1
− 1)

−n

,

so that

S̃k(n) = (−1)n−1 ∑
p
( pk+1

p − 1
− 1)

−n

.(4.4)

Therefore equation (4.1) becomes

ek ,m = 1
m

m−1
∑
j=0

ek , j S̃k(m − j),

and in particular we have

ek ,0 =∏
p
(1 − p − 1

pk+1 ),

ek ,1 = ek ,0 S̃k(1),
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ek ,2 =
ek ,0

2
(S̃k(1)2 + S̃k(2)),

ek ,3 =
ek ,0

6
(S̃k(1)3 + 3S̃k(1)S̃k2) + 2S̃k(3)).

Remark 4.2 We coded these formulas, and the one in equation (4.4), into SageMath
and calculated approximations to them where we truncated the infinite product and
sums to run over primes p ⩽ 107, resulting in the densities appearing in Table 1 (the
cases k = 2, 3, 4, 5 and m = 0, 1, 2, 3). While we do not include a formal analysis of
the error arising from these truncations, we have listed the densities to nine decimal
places to display our confidence in that level of precision.

Finally, we extract the expectations and variances of various limiting distributions
from their generating functions by relating those quantities to derivatives of their
generating functions.

Proof of Corollary 1.6 Let Xk be the discrete random variable whose distribution
is the same as the limiting distribution of ωk(n); then the generating function of this
distribution is the function Pk(z) in equation (4.2). Proposition 4.1 and equations
(4.2)–(4.3) tell us that

P′k(1) = Pk(1)Sk(1, 1) = 1 ⋅ ∑
p

p − 1
pk+1 = ∑

p

p − 1
pk+1

P′′k (1) = P′k(1)Sk(1, 1) + Pk(1)Sk(2, 1)

= ∑
p

p − 1
pk+1 ⋅ ∑

p

p − 1
pk+1 + 1(−∑

p
( p − 1

pk+1 )
2

) = (∑
p

p − 1
pk+1 )

2

−∑
p
( p − 1

pk+1 )
2

But now by standard results from probability [5, Chapter XI, Theorems 2–3],

E[Xk] = P′k(1) = ∑
p

p − 1
pk+1

σ 2[Xk] = P′′k (1) + P′k(1) − P′k(1)2 = ∑
p

p − 1
pk+1 −∑

p
( p − 1

pk+1 )
2

which is equivalent to the statement of the corollary. ∎

Remark 4.3 As before, we used SageMath to calculate truncations of these infinite
sums, running over primes p ⩽ 107, to generate the approximate expectations and
variances listed in Table 2 for k = 2, 3, 4, 5.

Proof of Corollary 1.12 Let XA be the random variable whose distribution is the
same as the limiting distribution of ωA(n). Using the same approach starting from
the generating function (1.10), we see that
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E[XA] = P′A(1) =
d

dz ∏p
(1 − 1

p2 +
∞

∑
j=2

za j( 1
p j −

1
p j+1 ))∣

z=1

= {∏
p
(1 − 1

p2 +
∞

∑
j=2

za j( 1
p j −

1
p j+1 ))∑

p

d
dz

log(1 − 1
p2 +

∞

∑
j=2

za j( 1
p j −

1
p j+1 ))}∣

z=1

= 1∑
p
(0 +

∞

∑
j=2

a jza j−1( 1
p j −

1
p j+1 ))/(1 − 1

p2 +
∞

∑
j=2

za j( 1
p j −

1
p j+1 ))∣

z=1

= ∑
p

∞

∑
j=2

a j(
1
p j −

1
p j+1 )/1

as claimed. ∎
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