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Abstract

Understanding the complex dynamics of climate patterns under different anthropogenic emissions scenarios is crucial
for predicting future environmental conditions and formulating sustainable policies. Using Dynamic Mode Decom-
position with control (DMDc), we analyze surface air temperature patterns from climate simulations to elucidate the
effects of various climate-forcing agents. This improves upon previous DMD-based methods by including forcing
information as a control variable. Our study identifies both common climate patterns, like the North Atlantic
Oscillation and El Niño Southern Oscillation, and distinct impacts of aerosol and carbon emissions. We show that
these emissions’ effects vary with climate scenarios, particularly under conditions of higher radiative forcing. Our
findings confirm DMDc’s utility in climate analysis, highlighting its role in extracting modes of variability from
surface air temperature while controlling for emissions contributions and exposing trends in these spatial patterns as
forcing scenarios change.

Impact Statement

This paper presents an application of dynamic mode decomposition with control to surface air temperature to
extract modes of variability and compare different emissions scenarios. It highlights the opportunities of control-
basedmodeling to separately inspect the effect of climate dynamics and forcing from emissions on projections of
future climate.

1. Introduction

Modeling and understanding climate modes of variability, like the El Niño-Southern Oscillation (ENSO)
and the North Atlantic Oscillation (NAO), are essential for predicting climate impacts on global
ecosystems and human activities. Modes of variability can be affected by human activity, significantly
influence global weather conditions, and are linked to fundamental physical processes in the atmosphere
and ocean. Thus, they are crucial for devising effective climate mitigation and adaptation strategies. For
example, modes of variability used to understand the interconnectedness of global weather patterns and
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their far-reaching effects are often referred to as teleconnections (Diaz et al., 2001; Tsonis et al., 2008;
Bridgman and Oliver, 2014).

Dimensionality reduction methods are fundamental in extracting modes of variability for analyzing
climate dynamics and teleconnections. Principal Component Analysis (PCA), a.k.a. Empirical Orthog-
onal Functions (EOF), is traditionally used to extract spatiotemporal features (Bauer-Marschallinger et al.,
2013; Volkov, 2014, Forootan et al., 2016). PCA is, however, a linear model, which limits its ability to
capture nonlinear processes. Nonlinear formulations, such as kernel PCA, are better suited for nonlinear
feature extraction (Schölkopf et al., 1998). Many other PCA extensions have been proposed to address
specific climate studies like extended EOF, Multivariate EOF, Principal Oscillation Patterns, and Non-
linear PCA Gehne et al. (2014), Wa et al. (2008), Hannachi et al. (2007), Monahan (2001). Although
PCA/EOF and its variants effectively reduce dimensionality, they fall short of capturing the dynamic
behavior of climate systems (e.g., the oscillation frequency ofmodes of variability) due to their inability to
process temporal information. This limitation spurred the development of methods like Linear Inverse
Modeling (LIM) (Penland and Sardeshmukh, 1995) and Dynamic Mode Decomposition (DMD) (Kutz
et al., 2016), which are designed to identify dynamically significant spatiotemporal patterns. LIM
continues to find applications in climate science (Wills et al., 2020), though it is not the only dynamical
systems-based model used to extract modes of variability in this field. Other methods, such as singular
spectrum analysis, are reviewed by Ghil et al. (2002), with subsequent developments including Average
Predictability Time (DelSole andTippett, 2009a, b) and,more recently, Bayesian Linear DynamicalMode
Decomposition (Gavrilov et al., 2020). In contrast, DMD has primarily been applied in fields like fluid
dynamics, with a few notable exceptions in climate science, such as emulating sea surface temperature
data (Erichson et al., 2019; Navarra et al., 2021), detecting transitions in the North Atlantic Oscillation
(Gottwald and Gugole, 2020), and analyzing large-scale climate datasets (Xiong et al., 2023).

Here we use Dynamic Mode Decomposition with control (DMDc) (Proctor et al., 2016), which
extends DMD/LIM methods and extracts modes of variability driven by a control variable (Figure 1).
Although modes of variability like ENSO indices are usually derived from Sea Surface Temperature
(SST) datasets, SSTs undergo trends under climate forcings, which makes it hard to cleanly identify
changes in such modes on top of the underlying global warming trend. Our approach applies DMDc to
Surface Air Temperature (SAT) data and allows us to separate potential changes in climate modes—such
as the ENSO or the NAO—from simultaneous trends in the mean climate state.

Climate scenario
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Figure 1. The DMDc model for estimating the autoregressive component and emissions contributions to
global Surface Air Temperature (SAT). SATat time t (in years) is x, the last 30 years (t�29, t�28,…, t) of
radiative forcing are in y, and SAT at time tþ1 is x0. We take t¼ 2030 in the figure above. The
autoregressive component contains the scaled modes of A, which are scaled eigenvectors of a low-rank
estimate ofA. The forcing contribution patterns are entries of a low-rank estimate ofB scaled by entries of y.
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We highlight the utility of DMDc on SATs under different future emissions scenarios. Specifically, we
let x denote SAT at time t and x0 be SAT at time tþ1. DMD assumes the model x0 ¼Ax whereas DMDc
includes a linear contribution of the past 30 years of radiative forcing from emissions in the control
variable y. DMDc results in the model

x0 ¼AxþBy: (1)

This novel application discerns distinct climate responses under multiple emissions scenarios. In
particular, DMDc extracts modes of variability that separate into autoregressive modes (eigenvectors of
A) derived from the year-to-year relationship of SAT with itself and “control” contributions associated
with the radiative forcing (using B) induced by emissions over the past 30 years. We find that the
autoregressive modes include warming trend and ENSO modes, which can be attributed to thermo-
dynamically and dynamically forced trends under different forcing scenarios. We discovered that the
emissions contribution from DMDc extracts the variable local impact of radiative forcing for different
emissions agents over time, including warming from carbon-based emissions and some cooling from
aerosols.

2. Data and methods

This section describes the ClimateBench dataset and summarizes how DMDc is used in our experiments.

2.1. Dataset: ClimateBench

We use the local annual SAT variable from the ClimateBench dataset (Watson-Parris et al., 2022) at
approximately 2 degree spatial resolution (96 latitude pixels and 144 longitude pixels), paired with annual
emissions for four of themain anthropogenic forcing agents: carbon dioxide (CO2),methane (CH4), sulfur
dioxide (SO2) and black carbon (BC). The SAT data is derived from the most recent version of the
Norwegian Earth SystemModel (NorESM2) (Seland et al., 2020) while the emission data is sourced from
the Community Emissions Data System (Hoesly et al., 2018).

The data spans the years 1850 to 2050. These years are split into historical simulation from the Coupled
Model Intercomparison Project Phase 6 (CMIP6) (Eyring et al., 2016) and different future simulations
corresponding to emissions scenarios from ScenarioMIP protocol (O’Neill et al., 2016). The historical
data spans the years 1850 to 2014, and the scenario data covers the years 2015 to 2100. We focus on four
possible realistic future trajectories called Shared Socioeconomic Pathways (SSPs) (Riahi et al., 2017).
From highest to lowest forcing, the selected scenarios are SSP585, SSP370, SSP245, and SSP126
(Figure 2).

The following analysis uses the SAT from the historical period along with emissions data for each
scenario. When these analyses are run on the raw emissions data, forcing agents have a minuscule and
inconsistent contribution across emissions scenarios. These contributions do not align with known
interactions between forcing agents and surface air temperature. Therefore, we use the procedure outlined
in (Leach et al., 2021; Bouabid et al., 2024) to compute estimates of the radiative forcing level induced by
each forcing agent from their annual emissions data (Figure 2(b)). Specifically, radiative forcing is
computed using the gas cycle model and forcing model of FaIRv2.0.0 calibrated for NorESM2-LM to
convert (1) emission data into concentration and (2) concentration into levels of effective radiative forcing
(Leach et al., 2021).

2.2. Applying DMDc to ClimateBench

To analyze these data, we use a Python implementation of the DMDc model (Demo et al., 2018; Ichinaga
et al., 2024) and specify the radiative forcing contribution from emissions as a control variable. Mirroring
the notation by Proctor et al. (2016), we assume the linearmodel for local SAT in Eq. (1). In thismodel, x is
the flattened local SAT at year t, y is the estimated radiative forcing for each agent from the last 30 years:
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t, t�1,…, t�29, and x0 is the SAT for the next year, tþ1. Neither the SAT nor the forcing time series are
mean-centered before running our analysis. In the DMDc model, A corresponds to the autoregressive
component and B to the emissions (in this case, radiative forcing) contribution. To simplify the detection
of dynamics within the autoregressive component of the system, we assume A is rank 5. The definitions
and symbols for this applying DMDc to ClimateBench appear in Table 1.

The modes of variability of the autoregressive component, along with their contribution over time,
come from the scaled modes, ξm, and corresponding eigenvalues, λm, of A. The contribution of radiative
forcing can be found using the product of entries of B and y corresponding to different forcing agents and
times. We now present further details on the DMDc algorithm along with extraction of the autoregressive
component and emissions contributions.

(a)

(b)

Figure 2. The ClimateBench dataset and the derived radiative forcing. This dataset contains four
different emissions scenarios: SSP585, SSP370, SSP245, and SSP126 (ordered from highest forcing to
lowest forcing). (a) Spatially averaged yearly global temperature from the ClimateBench dataset.
(b) Radiative forcing derived from the ClimateBench dataset.

Table 1. Definitions of symbols for applying DMDc to SAT and
emissions from the ClimateBench dataset

Symbol Definition

x tð Þ Flattened global temperature at time t
y tð Þ Radiative forcing at time t
N Number of samples
R Number of features
K Number of control features
x1,…,xN Input sample sequence
y1,…,yN Input control sequence
x01,…,x0N Output sample sequence
X ¼ x1,…,xN½ � R ×N input sample matrix
Y ¼ y1,…,yN½ � K ×N input control matrix
X 0 ¼ x01,…,x0N½ � R ×N output sample matrix
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2.2.1. Time delayed dataset structure
We first organize the SAT and emissions data from ClimateBench into variables (Table 1).

Our data consists of a flattened local SAT time series

x 0ð Þ,x 1ð Þ,…,x Tð Þf g⊂ℝR, (2)

where R¼ 96× 144 is the dimensionality of the flattened local mean surface temperature grid and a
radiative forcing time series (estimated from the ClimateBench emission data following the procedure
outlined in (Leach et al., 2021; Bouabid et al., 2024))

y 0ð Þ,y 1ð Þ,…,y Tð Þf g⊂ℝS, (3)

where S¼ 4 for the 4 forcing agents considered (CO2, CH4, SO2, and BC).
Let τ¼ 1 year be the lag in the autoregressive component (see supplementary material for a detailed

explanation), J ¼ 30 years be the delay for the time delay embedding (Takens, 2006) of emissions, and
define N¼ T� J� τþ1. We construct the input and output sample matrices as

X ¼ ½xðJÞxðJþ1Þ…xðT� τÞ�∈RR×N , (4)

X 0 ¼ x Jþ τð Þx Jþ τþ1ð Þ…x Tð Þ½ �∈ℝR×N : (5)

This results in a dataset ofN samples, eachwithR sample features. Further, usingK¼ SJ , we define the
input control signal following

yn ¼

y nð Þ
y n�1ð Þ

⋮
y n� Jþ1ð Þ

26664
37775∈ℝK , (6)

which we concatenate into the control input matrix

Y ¼ yJ…yT�τ½ �∈ℝK ×N : (7)

Thus, we have a dataset of N control inputs, each with K control features.

2.2.2. DMDc procedure
DynamicMode Decomposition with Control (DMDc) (Proctor et al., 2016) assumes the linear state space
model with control

x0n ¼AxnþByn: (8)

In matrix form, this model can be block-factorized following

X 0 ¼AX þBY ¼ AB½ � X

Y

� �
|{z}
Ω

¼ AB½ �Ω: (9)

Using this, DMDc aims to accomplish two tasks.

1. Estimate A and B with least-squares regression using the data X ,X 0,Y .
2. Compute the eigendecomposition of A, which allows the study of the modes of the autoregressive

dynamics.

This is classically achieved using Singular ValueDecomposition (SVD) basedmethods (Tu, 2013), which
compute a reduced-rank approximation of A and B. The procedure we follow is outlined in Algorithm
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1 and outputs eigenvalues along the diagonal of Λ, dynamic modes in the columns of Φ, and a reduced
rank approximation of B in

^

B. DMDc generalizes DMD by including control (App. A for details).

Algorithm 1 SVD-based DMDc procedure (Proctor et al., 2016).

1: procedure DMDc(Ω, M, MΩ)
2: Compute MΩ-truncated SVD Ω ≈

UA

UB

� �
ΣV ∗

3: Compute M-truncated SVDX 0 ≈ bUbΣbV ∗

4: Approximate A as A¼X 0VΣ�1U∗
A

5: Approximate B as B¼X 0VΣ�1U∗
B

6: Compute ~A¼ bU∗
AbU and ~B¼ bU∗

B
7: Compute the eigendecomposition Λ,Wð Þ of ~A
8: Compute the dynamic modes Φ¼X 0VΣ�1U∗

A
bUW

9: Rank-M approximation

^

B¼ bU bU∗�B
10: return ðΛ,Φ,

^

BÞ.
11: end procedure

In experiments, we use a full-rank SVD of Ω, e.g., MΩ ¼ rank Ωð Þ. We compute a reduced-rank
approximation of B by restricting the rank of the SVD of X 0. This chosen rank M will determine the
number of dynamic modes. We choose M¼ 5 as we experimentally observe it captures the dominant
singular values (see supplementary material). Instead of using the least squares approximations (A andB)
to emulate or reconstruct the SATseries, we use the firstM¼ 5 dynamicmodes fromAlgorithm 1 and

^

B to
extract modes of variability.

2.2.3. Autoregressive component
We use DMDc to analyze the dynamics from the matrix A by first computing the eigenvalue decompos-
ition ~AW ¼WΛ. This eigenvalue decomposition gives rise to the eigenvalues, dynamic modes, and
amplitudes (Table 2). The spatial pattern is captured in the dynamicmode, the amplitude captures the fixed
contribution of the dynamic mode, and the eigenvalue summarizes the oscillation and trend over time.

Spatial patterns. The vector of amplitudes, α¼ ½α1⋯αM �T , is defined as the minimizer of the least
squares problemΦα≈ x1. The product of a dynamic mode and its corresponding, fixed amplitude is the
scaled mode (Krake et al., 2021) denoted

ξm ¼ αmφm: (10)

Wevisualize the scaledmodes in our experiments to provide a realistic scaling (e.g., correcting for sign
flips) of the spatial patterns of the dynamic modes (Figures 4, 5, and 6).

Table 2. Decomposition of ~A

Symbol Definition

wm Eigenvectors of ~A (columns of W )
λm Eigenvalues of ~A (diagonal of )
φm Dynamic modes (columns of )
αm Amplitudes (mth row of α)
ξm ¼ αmφm Scaled (dynamic) modes
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Temporal patterns. Inspired by (Krake et al., 2021), we determine the evolution of the scaled modes
over time with the help of the following propositions. See supplementary material for the proofs.

Proposition 1. The dynamic modes, φm, are the eigenvectors of AbU bU∗
with eigenvalues λm.

Proposition 2. λmξm is the evolution of a scaled mode, ξm, over τ time steps in the subspace spanned by
the columns of bU . Specifically,

λmξm ¼AbU bU∗
ξm ∈ℝR: (11)

By linearity, the evolution of two scaled modes over τ time steps is λjξ jþ λkξk: We use this fact to
visualize the evolution of two scaled modes with complex conjugate eigenvalues (Figure 6b).

The trend andoscillation frequency of a scaledmode can be extracted from its associated eigenvalue.When
written in exponential form, themth eigenvalue is λm ¼ rmeiωm . The magnitude rm ¼ ∣λm∣ is the magnitude of
the contribution of the scaledmodeover time.Amagnitude of rm ¼ 1 is stable, rm < 1 is decaying, and rm > 1 is
a diverging contribution. The complex portion eiωm controls the frequency of oscillation

f m ¼ωm

2π
¼�i log

λm
∣λm∣

� �
= 2πð Þ: (12)

We combine the previous two propositions and the definition of the dynamic mode amplitudes. Using
Ξ to represent thematrix whose columns are scaled dynamicmodes (ξm), this results in the approximation
of the autoregressive part as.

Axn ≈ΞΛΞ†xn:

The details of this approximation can be found in the supplementary material.

2.2.4. Emissions contribution
The columns of the matrix

^

B∈RN ×K are fixed spatial patterns of the linear forcing contribution from
emissions (Figure 3). The scale of each of these contributions to SAT is exactly the corresponding
entry in y.

The evolution of the contribution of radiative forcing over times 1,2,…,Nð Þ is ð

^

By1,

^

By2,…,

^

ByNÞ. The
mean of each vector

^

Byn is the spatial mean contribution of emissions to temperature over time (Figure 7
top left).

Time-lagged radiative forcing.We use the time-lagged structure of yn to separate the radiative forcing
signal into years (Eq. (6)). Each entry of y jð Þ∈ℝS (denoted y jð Þs) corresponds to a different forcing agent
(e.g., CO2). In our experiments, we have S¼ 4 forcing agents.

Structure of

^

B. The spatial contribution of radiative forcing over the last J years is determined by
decomposing

^

B using the structure of yn. First,

^

B is decomposed into blocks of size N × S corresponding
to each year in yn

Year 1

CO2 CH4 SO2 BC

Year 2 Year 30

Figure 3. The structure of the forcing contribution matrix B
^

.

Environmental Data Science e16-7

https://doi.org/10.1017/eds.2025.8 Published online by Cambridge University Press

http://doi.org/10.1017/eds.2025.8
http://doi.org/10.1017/eds.2025.8
https://doi.org/10.1017/eds.2025.8


^

B=

^

B
1ð Þ ^

B
2ð Þ
⋯

^

B
Jð Þ" #

: (13)

Then the spatial contribution of the input radiative forcing agent s (e.g., CO2) over 1,2,…,Jð Þ time

steps in the past are grouped into the sth columns of each of

^

B
1ð Þ
,

^

B
2ð Þ
,…,

^

B
Jð Þ !

, and is denoted

^

b
1ð Þ

s ,

^

b
2ð Þ

s ,…,

^

b
Jð Þ

s

 !
. This structure is summarized in Figure 3.

This process unravels thematrixmultiplication into pieces corresponding to time lag and forcing agent as

^

Byn ¼
XJ
j¼1

^

B
ðjÞ
yðjÞ¼

XJ
j¼1

XS
s¼1

^

b
ðjÞ

s yðn� jþ1Þs: (14)

The spatial pattern corresponding to the linear contribution of a forcing agent s at year j before the

predicted year nþ1 is found in the entries of

^

b
ðjÞ

s yðn� jþ1Þs ∈RR. Using this method, we determine
the forcing contribution for each agent as the products between entries of

^

B and yn (Figures 7–9).
See Appendix B for details of the usage.

Limitations. DMDc does not explicitly address the possible correlation between the time series
dimensions and, as a result, can suffer from the same pitfalls as linear regression (e.g., difficulty in
interpreting the coefficients because they may not linearly separate). If we are using a form of
regularization in fitting the A and B matrices, that may help mitigate this effect by ensuring we do
not “mix up” factors as much. We leave this as an interesting avenue for future study. We acknowledge
that this potential for correlation limits the extent to which we state that one particular factor is
responsible for the obtained pattern. For example, a correlation between CO2 and CH4 forcings can
be due to a shared latent variable (human activity) that drives them, and interpreting the coefficients of a
linear model such as DMDc as the causal effect of a forcing (CO2 or CH4) has on the pattern does not
correct for this confounding.

Summary. Our application of DMDc to SAT results in the decomposition of SAT at year nþ1 as

xnþ1 ≈ΞΛΞ†xnþ
XJ
j¼1

XS
s¼1

^

b
ðjÞ

s yðn� jþ1Þs: (15)

In this decomposition, the mth column of Ξ is a scaled mode (ξm) and the mth diagonal entry of Λ is its

associated eigenvalue (λm). The term

^

b
ðjÞ

s yðn� jþ1Þs is the spatial pattern of the forcing contribution of
emissions agent s at j years before year nþ1.

3. Results

For our analysis, we use DMDc on the ClimateBench dataset (Watson-Parris et al., 2022) to detect
modes of variability from local, gridded annual mean SAT at ≈ 2 ° horizontal resolution while
including the forcing information from various emissions modalities (Figure 1 and Section 2). We
compare these representations across four emissions scenarios: the Shared Socio-economic Pathways
(SSPs) 585, 370, 245, and 126. This analysis results in modes of variability from (1) the autoregressive
component: year-to-year autoregression of the SAT time series (from A), and (2) the emissions
contribution: the effect of the last 30 years of radiative forcing from different emissions types on
SAT (from B).
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3.1. Autoregressive component

The scaled modes of the autoregressive component of DMDc detect the year-to-year autoregressive
contribution of SAT. We use scaled modes to remove sign ambiguity for spatial plots (Section 2). This
component contains the effect of the previous year’s temperature on the next year and the forcing
contributions that are not captured by emissions contribution. Scaled modes are fixed spatial patterns
that oscillate over time and are extracted from the data fields using the eigenvectors of a low-rank estimate
of A. The temporal evolution of a scaled mode is determined by its associated eigenvalue (Section 2).

The scaled modes extracted from SAT display a clear warming trend and other common climate
patterns, effectively capturing the year-to-year impact of previous temperatures and external forcings
(Figures 4–6) (Hasselmann, 1976). DMD run on the same data extracts similar spatial patterns, trends, and
oscillations (see comparison to DMD in supplementary material). However, the DMD model does not
incorporate emissions information and thus cannot extract the essential emissions contribution patterns
detected by DMDc.

The global warming trend is captured in two scaled modes related to warming and cooling with
associated eigenvalues. We plot the sum of these two scaled modes in Figure 4. Higher emissions
scenarios have a higher magnitude warming trend. Higher emission scenarios have larger eigenvalues for
the warming mode (0.98 for SSP585 and 0.93 for SSP126), indicating increased stability over time.

Global warming modes reveal spatial patterns such as intensified land warming in the Northern
Hemisphere, especially in Russia (Figure 5), and the North Atlantic Warming Hole (NAWH) (Collins
et al., 2013) (Figure 4). There are various mechanisms under discussion to contribute to the existence of
the NAWH, from a weakened Atlantic Meridional Overturning Circulation (AMOC) to changes in
atmospheric wind patterns (Drijfhout et al., 2012; Bellomo et al., 2021; He et al., 2022) as a combination
of the effects of aerosol and greenhouse gas forcing (Qasmi, 2023). North Atlantic temperature variability
is generally also associated with the North Atlantic Oscillation (NAO) due to two-way interactions
between the atmosphere and ocean (Wang et al., 2004). Since the warming pattern does not oscillate, this
suggests that the NAWH can be interpreted as a thermodynamically forced trend rather than a feature of
long-term internal variability in the NAO. Additionally, all scenarios feature a South Atlantic warming
hole that exhibits no discernible trend with rising emissions.Moreover, all scenarios show amild El Niño-

Figure 4. The global warming trend is associated with the two largest real eigenvalues. The scenarios
ordered from high to low emissions are SSP585 (blue), SSP370 (orange), SSP245 (green), and SSP126
(red). Each spatial pattern is the sum of the two scaled dynamicmodes associated with the two largest real
eigenvalues. The plot on the right is the mean latitudinal temperature profile. The color bars and
latitudinal profiles are in °C.
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like signal. This pattern is often connected to a weakening of the Pacific zonal Walker circulation under
CO2 forcing in climate models, which enforces our discovery that this pattern is weakest in the high
aerosol forcing scenario, SSP370 (Watanabe et al., 2024).

Two other scaled modes are associated with complex eigenvalues indicating oscillation over time
(Figure 6). The tropical Pacific patterns we find in these modes have their peak positive amplitude in the
Central Pacific—somewhat akin to an average Central Pacific El Niño event. While our approach to
characterizing climatemode behavior is different, our pattern resembles those found in the ENSO analysis
in the original NorESM2 model documentation paper by Seland et al., (2020, Figure 23). There, the El
Niño composite signal ofNorESM2 showed a larger amplitude than observed, with a clear peak amplitude
in the Central Pacific (rather than amore elongated East-to-Central Pacific warm anomaly). Therefore, we
call these scaled modes the “ENSOmodes.”These modes oscillate and have a clear pattern that resembles
central Pacific El Niño events for all scenarios except SSP585, which is a LaNiña pattern that evolves into
a central Pacific El Niño event one year into the future using the associated eigenvalues. These ENSO
patterns oscillate at somewhat different frequencies for different scenarios (from 0.15/year for SSP126 to
0.18/year for SSP585). Except for SSP245, the frequency of ENSO increases in higher emissions
scenarios (see Autoregressive component in supplementary material). There is evidence of this pattern
of increased emissions in conjunctionwith increasing ENSOvariability inmany climatemodel ensembles
(Timmermann et al., 1999;Malik et al., 2020). However, these oscillation differences could be estimation
uncertainty given the application of DMDc to single ensemble members.

3.2. Emissions contribution

The emissions contribution contains the linear impact of the past 30 years of radiative forcing from the
four of the main anthropogenic forcing agents: carbon dioxide (CO2), methane (CH4), sulfur dioxide
(SO2) and black carbon (BC) on the current year SAT. Recall that these patterns cannot be detected using

North America

South
America

North Africa

South
Africa

Europe Russia

Oceania

East
Asia

South
Asia

Figure 5. The SAT warming trend by land mass region over the entire scenario. The scenarios ordered
from high to low emissions are SSP585, SSP370, SSP245, and SSP126. Each boxplot summarizes the
distribution of the global warming scaled mode values in each region. The whiskers cover the entire
distribution of the temperature values. We see larger warming relative to the global mean for the higher
forcing scenarios in the Northern Hemisphere, especially Russia.
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methods like DMD because they do not include emissions information. The emissions contribution
includes part of the linear thermodynamic response of SAT to different emissions modalities because, in
DMDc, they linearly shift the next year’s temperature.

The spatial mean of the emissions contribution increases for higher emissions scenarios (Figure 7, top
left). The impact of each of the last 30 years of forcing on a current year increases as we move further into
the past (Figure 7, top right). Carbon radiative forcing dominates the spread of the forcing contribution
(Figure 7, bottom row) and is known to have a delayed effect on temperature (Zickfeld and Herrington,
2015). This explains the increased impact of radiative forcing on SAT as we look further into the past.
Additionally, we compute the grid point standard deviation over all forcing agents from 2051 to 2100.We
see an increase in standard deviation from 0.14 °C in SSP126 to 0.20 °C in SSP585 which indicates an
overall higher variability in forcing impact in higher forcing scenarios.

(a)

(b)

Figure 6.Analysis of ENSOoscillation withDMDc. The scenarios ordered fromhigh to low emissions are
SSP585(blue), SSP370 (orange), SSP245 (green), and SSP126 (red). The plot on the right of each map is
the mean latitudinal temperature profile. The color bars and latitudinal profiles are in °C. (a) ENSO-like
spatial patterns appear in all emissions scenarios, specifically, a central Pacific El Niño event in SSP126,
SSP245, and SSP370, whereas La Niña in SSP585. Each spatial pattern is the sum of the two scaled
dynamic modes associated with complex conjugate eigenvalues. (b) We observe a Niña-to-Niño phase
transition in SSP585 as we evolve the spatial pattern one year into the future using the associated
eigenvalues (Section 2). Therefore, a pattern akin to a central Pacific El Niño event is visible in all
scenarios. (Left) The spatial pattern is the sum of the two scaled dynamic modes associated with complex
conjugate eigenvalues. (Right) The spatial pattern is the sum of the two scaled dynamic modes associated
with complex conjugate eigenvalues, multiplied by their associated eigenvalue.
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Although DMDc properly isolates the effects of radiative forcing from carbon on SAT, it does not fully
capture a mean global cooling from aerosols (see forcing contribution in supplementary material).
However, the forcing contribution does capture cooling from SO2 on northern landmasses with high
human populations under some scenarios (SSP585 in Figure 8). The warming in other scenarios could be
driven by relative change due to decreasing SO2 emissions over time (Figure 2(b) in Section 2 for the
decreasing magnitude of SO2).

North America

South
America

North Africa

South
Africa

Europe Russia

Oceania

East
Asia

South
Asia

Figure 8. The forcing contribution to SAT from SO2 by landmass region looking 30 years backwards from
the year 2101. Each boxplot is the distribution of SATcontribution for the forcing contribution of SO2. The
whiskers cover each point in the data distribution. The scenarios, ordered from high to low emissions, are
SSP585, SSP370 SSP245 and SSP126 Although SSP585 exhibits cooling from SO2, we see warming from
SO2 in other scenarios.

Figure 7. Analysis of emissions contribution with DMDc. The scenarios ordered from high to low
emissions are SSP585, SSP370, SSP245, and SSP126. Units are °C for the vertical axis in all plots. (Top
left) Each annual value represents the spatial mean of the past 30 years of radiative forcing contributions
from emissions to global SAT. (Top right) The spatial mean of the cumulative forcing from years 2051–
2100 as we look further back from the predicted year averaged over across all four scenarios. (Bottom)
The distribution of SATcontribution for each forcing agent for each scenario. The whiskers include each
point in the data distribution.
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The local impacts of the total forcing contribution include increased warming in high latitudes of the
Northern Hemisphere (Figure 9). This polar warming pattern is consistent with Arctic amplification, a
well-documented phenomenon in climate science literature: polar regions warm faster than the rest due
principally to ice-albedo feedback mechanisms (Pithan andMauritsen, 2014; Rantanen et al., 2022). This
pattern is especially expected under the high greenhouse gas emissions (Meehl et al., 2020).

4. Conclusion

We used DMDc to extract modes of variability and emissions contributions under different climate
scenarios. To do this, we leveraged ClimateBench, a novel, rich dataset that provides local, gridded yearly
mean surface air temperatures while including crucial emissions information. Previous methods (e.g.,
LIM/DMD) are limited to only considering an autoregressive model for surface air temperature while
ignoring essential control information like radiative forcing. DMDc addresses this issue by incorporating

(a)

(b)

Figure 9. Visualization of the linear impact of radiative forcing on SAT. The scenarios ordered from high
to low emissions are SSP585 (blue), SSP370 (orange), SSP245 (green), and SSP126 (red). The plot on the
right of eachmap is themean latitudinal temperature profile. The color bars and latitudinal profiles are in
°C. (a) The cumulative effect of the past 30 years of radiative forcing on SAT (averaged over the output
years 2050 to 2100). We see an increased contribution to SAT for higher forcing scenarios and polar
amplification. Due to the DMDc model, this only contains the linear contribution of radiative forcing on
SAT. (b) The changing pattern of the effect of radiative forcing from carbon on SAT for different years
before the predicted year in SSP585 averaged over predicted years 2050 to 2100). We see a higher
contribution from emissions when we look further into the past from the predicted year.
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radiative forcing as a control variable. When applied to surface air temperatures, DMDc determined
distinct (e.g., dynamic versus thermodynamic) climate responses under different emissions scenarios,
producing insights into climate change dynamics.

Spatially explicit patterns and temporally resolved trends of impacts were quantified through running
DMDc on these data. Specifically, we detected a global warming trend and ENSO (an important
modulator of climate extremes) in the autoregressive component and also quantified their increase in
higher emissions scenarios. We uncovered the known North Atlantic warming hole and saw its strength
decrease as we increased the emissions scenario. Unique to DMDc, the forcing component extracted
spatial contributions of four radiative forcing agents: CO2, CH4, SO2, and BC over the last 30 years. As
expected, the forcing contribution is higher in higher emissions scenarios. We also saw warming from
carbon across all scenarios and some landmass cooling from aerosol in specific scenarios. Other, more
nuanced patterns identified byDMDc include changes in emissions contributions as we analyze the effect
of emissions over the past 30 years. Finally, we identified spatial patterns of the forcing contributions,
which included Arctic amplification.

Our future work will include algorithm refinement and application of DMDc to other climatological
variables. For example, our method for determining the emissions contribution from DMDc does not
account for potential partial correlations between variables. Exploration of non-linear forcing contribu-
tion and other DMD variants (e.g., adding constraints) may address partial correlations, increase forcing
contribution to SAT (Deng et al., 2020), improve extraction of the aerosol-based cooling signal, and result
in more temporally stable (e.g., non-decaying) autoregressive modes. Finally, further analysis of the
control signal with larger datasets could lead to a novel detection attribution strategy. Overall, our study
demonstrates the opportunities of DMDc for climate science, paving the way for more novel, data-driven
analysis of climate data.

Supplementary material. The supplementary material for this article can be found at http://doi.org/10.1017/eds.2025.8.
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A. From DMD/LIM to DMDc
In DMD (Tu, 2013) (a.k.a. LIM (Penland and Sardeshmukh, 1995)), the model is dx=dt¼Cxþ εwhere ε is noise.Without the noise
term and a time lag τ¼ 1, this translates to

xðtþ1Þ¼AxðtÞ¼ expðCÞxðtÞ: (A.1)

Generally, LIMs use this model where the features of x tð Þ are the principal components of the data rather than the raw data. LIMs
are used as naive estimators of the forced response from climate variables via the “least dampedmode” ofA (Solomon andNewman,
2012). This corresponds to the mode of A associated with the largest, entirely real eigenvalue. If the forced response is in the least
damped mode, the internal variability is thus contained in the other modes of A.

We will now re-capitulate (projected) DMD (Tu, 2013). Define the snapshot matrices as before, and take the rank M SVD:

X ≈UΣV ∗. DMD assumes that the data satisfyU∗xnþ1 ¼ ~AU∗xn where ~A¼U∗~A¼U∗X 0VΣ�1 with eigenvectors ~AW ¼WΛ.We
use the (projected) dynamic modes, Φ¼UW . Define the amplitudes as the least squares approximation Φα≈ x1 and the scaled
modes as ξm ¼φmαm. Aswith DMDc, the scaledmodesmake up the autoregressive contribution.Multiplication of a scaledmode by
its associated eigenvalue, λm evolves the scaled mode one-time step into the future. The DMDc model generalizes LIM/DMD by
including a linear control term instead of noise. The DMDcmodel with a time lag of τ¼ 1 is bU∗

xnþ1 ¼ ~AbU∗
xnþ ~Byn. A summary of

these differences is in Table A1.
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B. Emissions contribution
In the upper left panel of Figure 7, we plot themean entry of

^

Byn. LetN be the set of all n corresponding to years 2051 to 2100. In the
upper right panel, we plot the spatial mean entry of X

n∈N

^

b
ðjÞ

s yðn� jþ1Þs (B.1)

for j¼ 1,2,…,30 years in the past and emissions agent s. In the bottom panel, we visualize the distribution of the entries of

^

b
ðjÞ

s yðn� jþ1Þs over j¼ 1,2,…,30 years in the past and a fixed emissions agent s. In Figure 8, we plot the distribution of the entries

of

^

b
ðjÞ

s yðn� jþ1Þs for s corresponding to SO2 and certain landmass regions. In Figure 9(a) we plotX30
j¼1

1
50

X
n∈N

^

b
ðjÞ

s yðn� jþ1Þs: (B.2)

In Figure 9(b) we plot

1
50

X
n∈N

^

b
ðjÞ

s yðn� jþ1Þs (B.3)

for j¼ 1 and j¼ 30.
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Table A1. The spatial and temporal patterns from DMD and DMDc for climate analysis. Both methods
have spatial and temporal patterns for the autoregressive component (scaled modes of A). DMDc adds
spatial and temporal patterns for the emissions contribution by analyzing the matrix

^

B≈B (Figure 3)
using the time-lagged radiative forcing stored in y

Model forx tþ1ð Þ Parameters Spatial patterns Temporal patterns

DMD Ax tð Þ A ξm λ
DMDc Ax tð ÞþBy tð Þ A &B

ξm &

^

b
ðjÞ

s yðjÞs
λm & y 1ð Þ,…,y Jð Þ
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