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Abstract

Variable sharing is a fundamental property in the static analysis of logic programs, since it
is instrumental for ensuring correctness and increasing precision while inferring many useful
program properties. Such properties include modes, determinacy, non-failure, cost, etc. This
has motivated significant work on developing abstract domains to improve the precision and
performance of sharing analyses. Much of this work has centered around the family of set-
sharing domains, because of the high precision they offer. However, this comes at a price: their
scalability to a wide set of realistic programs remains challenging and this hinders their wider
adoption. In this work, rather than defining new sharing abstract domains, we focus instead
on developing techniques which can be incorporated in the analyzers to address aspects that
are known to affect the efficiency of these domains, such as the number of variables, without
affecting precision. These techniques are inspired in others used in the context of compiler
optimizations, such as expression reassociation and variable trimming. We present several such
techniques and provide an extensive experimental evaluation of over 1100 program modules
taken from both production code and classical benchmarks. This includes the Spectector cache
analyzer, the s(CASP) system, the libraries of the Ciao system, the LPdoc documenter, the PLAI
analyzer itself, etc. The experimental results are quite encouraging: we have obtained significant
speedups, and, more importantly, the number of modules that require a timeout was cut in half.
As a result, many more programs can be analyzed precisely in reasonable times.
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1 Introduction

Abstract Interpretation (Cousot and Cousot 1977) allows constructing sound program

analysis tools that can extract properties of a program by safely approximating its seman-

tics. Abstract interpretation-based analysis was proved practical and effective in the

context of (Constraint) Logic Programming ((C)LP) (Garćıa de la Banda et al . 1996;

Warren et al . 1988; Muthukumar and Hermenegildo 1990; Van Roy and Despain 1990; Le

Charlier and Van Hentenryck 1994; Kelly et al . 1998; Warren et al . 1988), which was also

one of its very first application areas (Giacobazzi and Ranzato 2022), and the techniques

developed for CLP have also proved useful in the analysis and verification of other pro-

gramming languages by using semantic translation into Constraint Horn Clauses (CHCs)

(Henriksen and Gallagher 2006; De Angelis et al . 2021; Méndez-Lojo et al . 2007a). In

the context of static analysis of (C)LP programs, variable sharing soon emerged as a fun-

damental property, which has led to very active and continuous development of variable

sharing analysis domains. Sharing proved immediately necessary for ensuring correct-

ness and precision while inferring most other useful program properties such as modes,

determinacy, non-failure, and cost, among others. In fact, some early LP analyses were

actually incorrect because variable sharing was not taken into account. Sharing analyses

have also proven fundamental in the optimization of unification (Søndergaard 1986) and

in automatic (and-)parallelization (Cabeza and Hermenegildo 1994; Hermenegildo and

Rossi 1995; Pontelli et al . 1997; Bueno et al . 1999; Garćıa de la Banda et al . 2000).

for example in parallelization it is crucial to precisely detect whether two variables are

independent (i.e., they do not share), a variable is ground, etc. Sharing has also been

used as the basis for more complex analyses for related properties such as linearity, paths,

or freeness (Muthukumar and Hermenegildo 1991; Bruynooghe and Codish 1993; King

and Soper 1994; Amato and Scozzari 2014; Amato et al . 2022). Furthermore, beyond

(C)LP, sharing analysis is directly related to aliasing and points-to analyses in impera-

tive programming, widely used in the context of languages with pointers and dynamic

memory (Landi and Ryder 1992; Steensgaard 1996; Aiken et al . 2003; Bravenboer and

Smaragdakis 2009; Navas et al . 2009; Rountev et al. 2001; Whaley and Lam 2002),

sometimes applying directly domains stemming from (C)LP (Zanardini 2018; Méndez-

Lojo and Hermenegildo 2008). In fact, (C)LP sharing analyses constituted some of the

very first abstract interpretation-based pointer aliasing analyses for any programming

language.

In this paper we concentrate on a popular abstract domain for variable sharing analysis:

set-sharing analysis (Jacobs and Langen 1989; Muthukumar and Hermenegildo 1989).

This domain captures which sets of program variables share run-time variables, encoding

this information in sharing sets . For example, assume X, Y , and Z are the syntactic

program variables that we need to track, and consider the substitution (run-time store)

{X/f(M,K, a), Y/g(b,M), Z/g(a, b)}. This substitution is abstracted to the sharing set

{{X}, {X, Y }}, where {X, Y } represents that there is (or, more precisely, may be) one

or more variables shared in the terms to which X and Y are bound, and {X} represents

that there is one or more variables that appear only in X. Additionally, Z not appearing

in any set means that it contains no variables, that is Z is bound to a ground term.

Set-sharing encodes not only variable independence, that is the fact that substitutions
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that affect a given variable will not affect another one, but also groundness, grounding

dependencies (e.g., the fact that if Y becomes ground then X becomes ground, but

not the other way around), independence relationships, etc. This representation richness

does come, however, at a price: the scalability of set-sharing domains to a wide set

of realistic programs is challenging, since the number of sharing sets carried by the

abstraction can be exponential in the number of variables of the clause being analyzed.

This has prompted much work in improvements and alternative representations of set-

sharing abstractions, with the objective of improving performance while maintaining

precision as much as possible. In contrast, in this work, rather than defining new sharing

abstract domains or modifying existing ones, we concentrate on developing techniques

that can be incorporated in the analysis framework to address the root causes of the

performance issues faced by the set-sharing domains, such as the number of variables,

without affecting precision. We draw inspiration from techniques used in the context of

compiler optimizations, which significantly reduce the number of variables presented in

the abstractions.

The rest of the paper is structured as follows: First, Section 2 provides the necessary

background, covering set-sharing abstract domains and top-down analysis. Section 3

presents our approach, offering first a program transformation that can provide an opti-

mal solution; and second, an alternative solution based on variable trimming that can

be applied during analysis without modifying the program. Section 4 reports our exper-

imental evaluation and finally, Section 5 summarizes our conclusions and discusses some

lines of future work.

2 Notation and preliminaries

We represent variables by uppercase letters (e.g.,: X, Y , Z, etc.) and atoms by low-

ercase letters (e.g.,: a, b, c, etc.). P(S) denotes the powerset of set S and P0(S) the

proper powerset of set S, that is P0(S) =P(S)\{∅}. Given a term T, vars(T) denotes

the set of its variables. A Constraint Logic Program (CLP) is a set of clauses of the form

H :-A1, . . . , An where A1, . . . , An are literals that form the body and H is a positive

literal said to be the head of the clause. A substitution is a set θ= {V1/t1, . . . , Vn/tn}
with Vi distinct variables and ti terms. We say that ti is the value of Vi in θ. The set

{V1, . . . , Vn} is the domain of θ (dom(θ)).

The main idea behind Abstract Interpretation (Cousot and Cousot 1977) is to interpret

the program over a special, abstract domain whose elements are finite representations

of possibly infinite sets of actual substitutions in the concrete domain. We denote the

concrete domain as Dγ , the abstract domain as Dα, and the functions that relate sets of

concrete substitutions with abstract substitutions as the abstraction function α :Dγ →
Dα and the concretization function γ :Dα →Dγ . The concrete domain is typically a

complete lattice with the set inclusion order which induces an ordering relation in the

abstract domain represented by �. Under this relation the abstract domain is usually a

complete lattice and (Dγ , α, Dα, γ) is a Galois insertion/connection (Cousot and Cousot

1977). Several frameworks for abstract interpretation exist; this work focuses on top-down

frameworks , discussed in Section 2.
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Set-Sharing Analyses. As mentioned in the introduction, in static analysis of logic pro-

grams, tracking of variables shared among terms is essential. A set of program variables

V1, . . . , Vm share if, in some execution of the program, they may respectively be bound

to terms T1, . . . , Tm such that vars(T1)∩ . . .∩ vars(Tm) �= ∅. One of the most accurate

abstract domains defined for tracking sharing information is set-sharing (Jacobs and

Langen 1989; Muthukumar and Hermenegildo 1989). This domain captures whether at

run-time there are variables sharing, condensing this information in a concise set represen-

tation. As an example, consider program variables X, Y, Z, W, T, and assume they are bound

at run-time as follows: θ= {X/f(M,a), Y=g(b,M,c), Z/[1,M,3], W/g(b), T/h(K,m)}.
This substitution (run-time state) is represented in the set-sharing domain by the sharing

abstraction {{X,Y,Z}, {T}}. The first element, {X,Y,Z}, represents the fact that there is

(at least one) variable (i.e., M) that appears in all of X, Y, Z, but not in T or W; and the

second element, {T}, represents that there is (at least one) variable that appears in T

(i.e., K) but not in any of the others. We say that X, Y and Z “share,” and that T does not

“share” with X, Y, or Z. The fact that W does not appear in any set means it contains no

variables and thus, it is ground. This representation also captures that there are no other

variables in X, Y, or Z in addition to the one(s) they share, which has important impli-

cations with respect to grounding: after a program statement that grounds one of them

(e.g., Z=[1,2,3]), we know both X and Y will also be grounded. However, grounding T

does not ground any of X, Y, or Z. Other abstract domains have also been studied, notably

the pair-sharing , which keeps track of pairs of variables that share. for example for the

example above, its pair-sharing abstraction is: {(X, Y), (Y, Z), (X, Z)}. The intricacies of

the relation and tradeoffs between set-sharing and pair-sharing are beyond the scope of

this paper; the reader is referred to, for example, Bagnara et al . (1997) and Bueno and

Garćıa de la Banda (2004) for further discussion of this topic. However, our subject of

study in this work is set-sharing analyses.

The set-sharing domain has attracted a lot of attention in the literature and has been

enhanced in different ways and extended with other kinds of information such as freeness

or linearity (Muthukumar and Hermenegildo 1991; Bruynooghe et al . 1994; Filé 1994;

King and Soper 1994; Codish et al . 1996; Fecht 1996; Zaffanella et al . 1999; Hill et al .

2004; Navas et al . 2006; Trias et al . 2008; Amato and Scozzari 2009; Amato et al . 2022).

However, the set representation, which allows the sharing domain to offer high preci-

sion, is also one of the reasons why this family of domains presents scalability challenges.

A set-sharing abstraction is presented as a set of sets, each of them capturing a possible

sharing that occurs at runtime. In cases where there is not much (or any) sharing infor-

mation at runtime, more (or all the) sharing sets are possible. Given a set of variables

appearing in a program being analyzed (V ), the size of a set-sharing abstraction has an

upper bound given by the abstraction which captures all the possible non-empty sharing

sets (P0(V )). Thus, the size of an abstraction is, in the worst case, exponential in terms

of the number of variables that appear in the program. To overcome these problems,

various representations have been proposed, such as collapsing subsets of the abstraction

into “cliques” (sets of variables that represent the proper powerset of those variables).

These representations allow for a reduction in the size of the sharing abstraction and

can improve performance, even more so when equipped with widenings (albeit then at

the cost of losing precision) (Zaffanella et al . 1999; Navas et al . 2006). For example,
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the set-sharing abstraction {{X}, {X,Y}, {Y}, {Z}} can be represented using cliques as the

tuple ({{X,Y}}, {{Z}}) where the clique {X,Y} represents P0({X,Y}).
The PLAI Top-Down Analyzer. Top-down analyses are a family of static analyses

that build an analysis graph starting from a series of program entry points. This approach

was first used in analyzers such as MA3 and Ms (Warren et al . 1988), and matured in the

PLAI analyzer (Muthukumar and Hermenegildo 1990, 1992) using an optimized fixpoint

algorithm now also referred to as the top-down algorithm or solver . This algorithm was

later applied to the analysis of CLP/CHCs (Garćıa de la Banda et al . 1996) and imper-

ative programs (Henriksen and Gallagher 2006; De Angelis et al . 2021; Méndez-Lojo

et al . b), and used in analyzers such as GAIA (Le Charlier and Van Hentenryck 1994),

the CLP(R) analyzer (Kelly et al . 1998), or Goblint (Seidl and Vogler 2021; Tilscher

et al . 2023).

The graph constructed by the PLAI algorithm during analysis is a finite, abstract

object whose concretization approximates the (possibly infinite) set of (possibly infinite)

maximal AND-trees of the concrete semantics. This approach separates the abstraction of

the structure of the concrete trees (the paths through the program) from the abstraction

of the substitutions at the nodes in those concrete trees (the program states in those

paths). The first abstraction, Tα, is typically built-in, as an abstract domain of analysis

graphs . The framework is parametric on a second abstract domain, Dα, whose elements

appear as labels in the nodes of the analysis graph. A more detailed recent discussion can

be found in De Angelis et al . (2021). Assume we are analyzing a literal Goal in the body

of some clause in the program, and that Head :- Body is a clause in a predicate whose head

unifies with Goal. Assume also that the substitution affecting Goal at the time of this

call is approximated by the abstract substitution Call such that vars(Goal)⊆dom(Call)
and vars(Call)∩ (vars(Head)∪ vars(Body)) = ∅. The success (exit state) of Goal after

having executed the above clause is represented by the abstract substitution Success

given by:

Success= extend(Call, Goal, Prime)

Prime= exitToPrime(project(vars(Head), Exit), Head, Goal)

Exit= entryToExit(Entry, Head, Body)

Entry= augment(vars(Body)\vars(Head), callToEntry(Proj, Goal, Head))
Proj= project(vars(Goal), Call)

As an example, let Goal = p(A,f(B),E), Call = {{A}, {B,C}, {A,C,D}} (notice that

E is ground, since it does not appear in any sharing set) and Head :- Body be the

clause p(f(X),f(Y),Z) :- [X|T1]=[Z,Y|T2], whose Head unifies with Goal. The success

abstraction is computed as follows:

(i) First, the abstraction Call is projected onto the variables in Goal by means of the

project function, obtaining Proj = {{A}, {B}}.
(ii) Then, callToEntry(Proj, Goal, Head) yields an abstract substitution that rep-

resents the unification p(A,f(B),E)=p(f(X),f(Y),Z) (i.e., Goal=Head) in the

context represented by Proj. In our example, such abstraction is {{X}, {Y}}, where
Z is becomes ground because it is unified with E, which is ground.
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Algorithm 1 A schematic description of entryToExit

1: function entryToExit(Entry, Head, Body)
2: Exit← Entry

3: for Literal∈ Body do
4: if recursive-call(Literal, Head) then
5: Exit← compute-fixpoint(Exit, Literal)
6: else if predicate-in-scope(Literal) then
7: Exit← analyze-pred(Exit, Literal)
8: else
9: Proj← project(vars(Literal), Exit)
10: MaybeAbs← abstractLiteral(Literal, Proj)
11: if MaybeAbs= fail then
12: Absexit← topmost(vars(Literal), Proj)
13: else
14: Absexit← MaybeAbs

15: Exit← extend(Exit, Absexit)
16: return Exit

(iii) Now, the domain of such abstraction is extended with the variables in Body that

do not appear in Head (i.e., T1 and T2), and the abstraction is updated accordingly

by including safely approximated information. This is done by operation augment,

which returns the Entry abstraction {{X}, {Y}, {T1}, {T2}}.
(iv) Then, Body is traversed so that each of its literals are (recursively) analyzed

by procedure entryToExit, described in Algorithm 1. In our example, entry-

ToExit(Entry, Head, Body) proceeds as follows:

(a) First, the Exit abstraction is initialized with the current Entry abstraction

(Line 2), and the first literal of the body is selected (Line 3), which in this case

corresponds to the only literal in the body: [X|T1]=[Z,Y|T2].
(b) The PLAI framework proceeds differently depending on the kind of literal

being analyzed (see Lines 4–15). Since the literal [X|T1]=[Z,Y|T2] is neither a

recursive call nor a call to a predicate in the analysis scope, the steps in Lines

9–15 are performed as explained below.

(c) First, the abstraction is projected onto the variables in the literal, return-

ing {{X}, {Y}, {T1}, {T2}}) and the operation abstractLiteral is invoked,

which captures the abstract behavior of the literal. In our example, it per-

forms the abstract unification [X|T1]=[Z,Y|T2]. Since Z is ground, and the

unification induces X=Z, the groundness information is propagated to X. Such

unification also induces T1=[Y|T2], which results in the creation of new shar-

ing sets accordingly. The Absexit abstraction obtained after these operations is

{{Y, T1}, {Y, T1, T2}, {Y, T2}}.
(d) Finally, such abstraction is used to update the previous exit abstraction by the

extend operation (Line 15), yielding Exit={{Y, T1}, {Y, T1, T2}, {Y, T2}}.
(v) After the execution of entryToExit, the obtained Exit abstraction is pro-

jected over vars(Head) and represented in the context of the variables of Call.
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This is done by operation exitToPrime(project(vars(Head), Exit), Head, Goal),

which captures the effects of the unification Head=Goal. In our example, it yields

Prime={{B}}, since the groundness information has been propagated from X to A.

(vi) The analysis concludes with the extend(Call, Prime) operation, which updates the

initial Call abstraction with the new inferred information in the Prime abstrac-

tion, obtaining the success abstraction: Success= {{B,C}}, where the sharing-set

{A,C,D} has been deleted because A is ground, and such information is propagated

to D.

As some final remarks, if no predicate head can be unified with the goal under

analysis, a bottom abstraction (⊥) is returned (representing that the exit state is

unreachable). If several clauses are available, all of them are analyzed, and a col-

lection of prime abstractions Prime1, . . . , Primem is obtained, one abstraction per

clause, where m is the number of clauses. Then, the success abstraction is computed

as Success=extend(Call,computeLub(Prime1, . . . , Primem)), where computeLub yields

the least upper bound of the collection of abstractions (other operators, including

disjunction and widenings, are possible).

In the entryToExit loop (Lines 3–5), when the current literal under analysis corre-

sponds to a recursive call (Lines 4–5), the analyzer computes a fixpoint for the associated

call pattern. Such call pattern is determined by the current literal Goal and the abstrac-

tion Call representing the environment under which Goal is executed (this may require

the use of a widening operation to ensure termination). A detailed discussion on the

different fixpoint computation methods is outside the scope of this work and we believe

that it is not necessary for understanding our approach and contribution. The reader is

referred to, for example Muthukumar and Hermenegildo (1990, 1992) for more details.

In the case that the current literal is not recursive but corresponds to a call to a

predicate within the analysis scope, the associated call pattern is analyzed (Lines 6–7)

following steps (i) to (vi) illustrated above using our example, with the clauses that unify

with the literal.

Finally, if the literal to be analyzed does not correspond to any of the two cases

discussed above and the analysis domain does not know how to abstract it either

(Lines 9–11), the invocation to the abstractLiteral operation returns a fail atom.

The analyzer then computes the top-most information for vars(Literal) by calling

the top-most function (Line 12). Then, the original Call abstraction is extended with

such top-most information. In our example, if the abstract domain did not implement

how to abstract the unification [X|T1]=[Z,Y|T2], the top-most abstraction would be

P0({X,T1,T2,Y,Z}). Notice that this can be quite common when, for example, the

analyzer has to process a call to a predicate which is imported from a library whose

source code is not available, is not in the analysis scope, etc. In this case, the top-most

abstraction has to be assumed to ensure correctness.

3 Environment reassociation and abstract environment trimming

Given a clause H :-B1, . . . , Bn, its environment is the set of all the variables appearing in

theclause, defined as vars(H)∪⋃n
i=1 vars(Bi). As mentioned in Section 2, a set-sharing

abstraction at any analysis point contains, at most, 2V − 1 sharing sets, where V is the
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(a)

(b)

Fig 1. qplan/3 predicate and its environment trimming-based transformation.

size of the environment. Intuitively, a clause should be faster to analyze if it has fewer

variables. Since it is not possible to artificially reduce the number of variables present

in a clause, we propose two techniques: rearranging the literals of the body into new

predicates, and modifying the domain of the abstraction without altering the clause

being analyzed.

3.1 Environment reassociation

Expression reassociation (Briggs and Cooper 1994), also known as reordering or restruc-

turing, is a technique that involves changing the grouping of terms in an expression

without altering its overall value. It is used for optimization purposes, such as improving

performance, reducing floating-point errors, eliminating redundancies, etc.

Given a clause H :-B1, . . . , Bn, a partition is a collection P1, . . . , Ps such that each Pj

is a subsequence of consecutive literals, Pj =Bi, Bi+1, . . . , Bk with 1≤ i < k≤ n, such

that given Pj ,Pj+1 with j ∈ {1, s− 1}: a) if the first element of Pj+1 is Bk, then the last

element of Pj is Bk−1, b) B1 ∈ P1 and c) Bn ∈ Ps.

Folding each of the literals encapsulated by each Pi generates new auxiliary predicates

whose environments are smaller (or equal) than the environment of the original predicate.

This procedure can be repeated recursively over the auxiliary predicates obtaining a new

collection of predicates with reduced environments. Finally, our focus is to find an optimal

partition. An optimal partition is a (possibly recursive) partition where the number of

variables in the environments of each of the auxiliary predicates generated is minimal.

Consider the clause of predicate qplan/3 shown in Figure 1a (the meaning of the

comments will be explained later). We refer to body literals by Li, where i is a position

in the body of the clause. For example, L4=mark(P0,L,0,V1).
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Algorithm 2 Functions to detect live and dead variables.

1: function live-vars(LiveVars, B)
2: LitVars← vars(B)
3: return {X ∈ LitVars s.t. X /∈ LiveVars}
4: function dead-vars(LiveVars, HVars, {Bi, . . . , Bn})
5: FutVars←⋃n

j=1 vars(Bj)

6: return {X ∈ LiveVars s.t. X /∈ FutVars∧X /∈ HVars}

The collections P1=L1, . . . , L3, P2=L4, . . . , L6, and P3=L7, . . . , L9 define a par-

tition of the predicate qplan. This partition, when folded, generates three aux-

iliary predicates: aux1(P0,X0,Vg,N) :- L1, . . . , L3, aux2(P0,Vg,P2) :- L4, . . . , L6, and

aux3(N,X0,P2,X,P) :- L7, . . . , L9, with environments containing 5, 6, and 6 variables

respectively. Finally, Figure 1b presents a transformation of qplan obtained by recur-

sively reassociating the predicate. Each auxiliary clause is annotated with the worst

case size for any set-sharing abstraction traversing it. While in the original program the

maximum size is 212-1, it is reduced to 26-1 in the transformed program.

3.2 Abstract environment trimming

The technique of environment reassociation described before, allows obtaining, given

a clause, a collection of clauses where the number of variables appearing in each one is

reduced with respect to the original one. However, applying transformations over the pro-

gram under analysis may not always be desirable. In this section we provide an alternative

approach, where the domain of abstractions is dynamically modified as the analysis of a

clause processes each body literal. Although the resulting abstraction domains might not

be optimal, this technique avoids the transformations, since such dynamic domain modifi-

cations are performed as part of the abstract operations. Given a clause Head :- B1, . . . , Bn
a variable X is a live variable while analyzing Bi (that we refer to as the analysis point

Bi) if X∈ vars(Head) or there exists j, k 1≤ j ≤ i≤ k≤ n such that X belongs to both

vars(Bj) and vars(Bk). Conversely, a variable X is a dead variable at analysis point Bi if

it does not appear in the body after such point, that is X �∈⋃n
j=i vars(Bj). Our definition

of liveness is similar to imperative programming, with the difference that variables are

not reassigned and that variables become live on the first appearance, since logic vari-

ables do not need to be declared in the body of a clause (Aho et al . 2006, pp. 608–610).

Figure 1a shows, at each program point, which body variable lives or dies. In that sense

it is reminiscent of the concept of environment trimming used in the Warren Abstract

Machine (Warren 1987; Ait-Kaci 1991), but more general, since variables also come in

instead of only out, and the objective is of course different: optimizing abstract operations

versus saving stack space.

Algorithm 2 presents the operations LIV E − V ARS and DEAD− V ARS to obtain

the variables becoming alive and the ones which are dead at a given analysis point.

LIV E − V ARS receives the set of current live variables (LiveVars), and the literal

that is going to be analyzed (B), and returns the set of new live variables at that analysis
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Algorithm 3 Version of entryToExit dynamically modifying the abstraction domain.

1: function entryToExit(Entry, Head, {B1, . . . , Bm})
2: HVars← vars(Head) � Obtain the Head Variables
3: LiveVars← HVars � Initialize the Live Variables
4: Exit← Entry

5: for i∈ {1, . . . , m} do
6: NLiveVars← live-vars(dom(Entry), Bi) � Get the New Live Vars.
7: LiveVars← LiveVars∪ NLiveVars � Update the Live Variables
8: Entryaug← augment(NLiveVars, Entry) � Augment the Abstraction
9: if recursive-call(Literal, Head) then
10: Exit← compute-fixpoint(Exit, Bi)
11: else if predicate-in-scope(Literal) then
12: Exit← analyze-pred(Exit, Bi)
13: else
14: Proj← project(vars(Bi), Exit)
15: MaybeAbs← abstractLiteral(Bi, Proj)
16: if MaybeAbs �= fail then
17: Absexit← topmost(vars(Bi), Proj)
18: else
19: Absexit← MaybeAbs

20: Exit← extend(Exit, Absexit)
21: DeadVars← dead-vars(LiveVars, HVars, {Bj}mj=i+1) � Get Dead Vars.
22: LiveVars← LiveVars\DeadVars � Update Live Variables
23: Exit← project(LiveVars, Exit) � Restrict to the Live Variables
24: return Exit

point, that is the variables that appear in the literal but were not in LiveVars. The other

operation, DEAD− V ARS, takes as input the set of current live variables (LiveVars),

the variables of the head (HVars), and the set of literals that have not been analyzed yet

({Bi, . . . , Bn}), and produces as output a set containing the variables of LiveVars that do

not appear in any of the literals nor belong to the clause head. More efficient procedures to

determine the liveness of variables are possible. However, we checked experimentally that

they do not offer substantial improvements, and thus we decided to keep these simpler

definitions. With these auxiliary operations, the analyzer can determine, at each analysis

point, whether a variable is live or dead. With this information, it is possible to restrict

the domain of the abstractions to the set of live variables. To do so, the computation of

the Success abstraction is modified slightly:

Success= extend(Call, Goal, Prime)

Prime= exitToPrime(project(vars(Head), Exit), Head, Goal)

Exit= entryToExit(Entry, Head, Body)

Entry= callToEntry(Proj, Goal, Head)

Proj= project(vars(Goal), Call).

In this case, the Entry abstraction is obtained by directly computing callToEntry,

instead of by augmenting the result of the callToEntry invocation, as was done in

the schema presented in Section 2. Thus, in this approach, the domain of the Entry
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abstraction is exactly the set of head variables (which are the only variables alive at that

analysis point). Finally, the function entryToExit presented in Algorithm 1 is modified

so that it keeps the abstraction defined only over the live variables. Such a modified

version is described by Algorithm 3. There, a set containing the live variables is carried

around while analyzing a clause body ({B1, . . . , Bm}). Such set is initialized with the

variables of the clause head (Line 3), and updated by adding new variables to it as they

become alive (Lines 6-7) and by removing the dead variables (Lines 21-22). Accordingly,

the abstraction is augmented with the new live variables (Line 8) and reduced when some

of them die (Line 23).

4 Experimental evaluation

We have conducted an extensive experimental study to assess the benefits of the tech-

niques proposed, to which we will refer to here as reassociation and trimming for short.

In particular, we measured, for a variety of programs, the effects of applying both tech-

niques to a number of abstract domains that use set sharing: the classical set-sharing

domain, share (Muthukumar and Hermenegildo 1989), the combination of sharing and

freeness, shfr (Muthukumar and Hermenegildo 1991), and the combination of sharing

and freeness including cliques, shfr-clique (Navas et al . 2006); the latter is the most

efficient of the three, while share and shfr are, in general, more precise but slower. All

experiments were performed on Debian/GNU Linux 12 (bookworm) 64bit (amd64) with

128GB RAM, and 800GB of disk space. We focus on analysis times since precision is

unchanged.

We start by showing in Table 1 the detailed results for one of our benchmarks, the

LPdoc documenter (Hermenegildo 2000; Hermenegildo and Morales 2011), which is a

relatively large, real-world application, and whose results are typical. The LPdoc source

code is composed of 26 modules that exhibit different challenges: for some of them anal-

ysis terminates in times that range from a few milliseconds to several minutes, while

others cannot be analyzed, either because of a timeout, set for these experiments at 5

min per module, or by running out of memory. In either of these cases we will say that

the analysis fails. For each abstract domain, Column TC shows the total time that the

classical domain requires to analyze the modules, columns TR and TT show the total

analysis times when applying reassociation and trimming respectively to the correspond-

ing classical domain, and columns ρR and ρT present the relative speedup computed

as TC/TT and TC/TR. Total analysis times are the addition of the times for the

loading of the module, the pre-processing (including the transformation required by the

reassociation method), and the actual analysis time. Some statistics are included at the

bottom of the table: the total number of modules (Mods) and the number of modules

for which the different analyses fail, for the classical approach (FC), when applying reas-

sociation (FR), and when applying trimming (FT). Finally, μT and μR show the mean

of the speedups obtained. We can see that applying reassociation and trimming allows

analyzing a significant number of modules that could not be analyzed with the classical

techniques. In particular, when applied to the shfr-clique domain they achieve a full

analysis of the LPdoc source code. The mean speedups show that trimming outperforms
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Table 1. Analysis times and statistics for the source code of LPdoc. Times are in mS

share shfr shfr-clique

module TC TR ρR TT ρT TC TR ρR TT ρT TC TR ρR TT ρT

html 23,485 1377 17.04 2646 8.87 20,858 1373 15.19 2516 8.29 1522 1293 1.18 1532 0.99
html˙assets 6.20 8.20 0.76 6.75 0.92 7.25 6.46 1.12 7.79 0.93 13.70 12.42 1.10 14.25 0.96
aux 4.12 4.60 0.90 4.09 1.01 4.51 5.17 0.87 4.58 0.98 5.57 6.75 0.83 5.82 0.96
man timeout 32,944 - 64,490 - timeout 29,235 - 60,521 - 23.74 27.23 0.87 23.32 1.02
doctree 10617 7095 1.50 5807 1.83 6426 5443 1.18 1898 3.39 4485 555.77 8.07 568.98 7.88
docmod 0.82 0.76 1.07 0.85 0.97 0.75 0.88 0.85 0.77 0.97 0.75 0.97 0.87 0.70 1.08
images 132,364 134,906 0.98 134.10 987.03 136,011 130,448 1.04 123.82 1098 16.95 14.83 1.14 52.66 0.32
messages 3.75 3.58 1.05 4.29 0.87 4.22 4.39 0.96 4.32 0.98 6.08 5.47 1.06 5.96 1.02
structure 15.59 12.63 1.23 11.54 1.35 17.77 14.07 1.26 13.27 1.34 21.44 16.34 1.31 18.24 1.18
lpdoc˙sing. 342.13 17.53 19.51 12.58 27.19 331.32 19.85 16.96 14.21 23.31 533.04 29.56 18.03 22.26 23.94
docmaker 40.49 34.69 1.17 33.97 1.19 41.71 46.96 0.89 33.44 1.25 60.92 76.91 0.79 69.32 0.88
bibrefs 119,737 64,348 1.86 91,029 1.32 74,779 12,024 6.22 40,949 1.83 1560 590.09 2.64 780.31 2.00
html˙templ. 124.43 34.46 3.61 26.27 4.74 121.22 25.99 4.66 22.03 5.50 41.23 42.65 0.97 46.61 0.88
lpdoc˙help 3.01 3.56 0.85 2.73 1.10 3.84 4.22 0.91 3.01 1.28 5.34 5.82 0.92 4.43 1.21
texinfo timeout timeout - timeout - timeout timeout - timeout - timeout 171.50 - 1440 -
comments 35.68 38.58 0.93 22.50 1.59 25.90 24.91 1.04 23.46 1.10 44.29 49.59 0.89 36.56 1.21
errors 0.79 0.95 0.83 0.74 1.07 0.97 0.76 1.29 0.76 1.29 0.00 1.06 0.09 1.14 0.09
parse 55,513 54,284 1.02 18,022 3.08 49,511 49,577 1.00 15,353 3.22 2381 2404 0.99 2492 0.96
autodoc timeout timeout - timeout - timeout timeout - timeout - timeout 6242 - 6864 -
index 1856 395.24 4.70 685.04 2.71 1298 344.32 3.77 562.93 2.31 93.31 66.97 1.39 95.55 0.98
filesystem 80.38 41.11 1.96 53.51 1.50 80.32 51.71 1.55 51.93 1.55 59.12 65.75 0.90 63.98 0.92
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Table 1. Continued

share shfr shfr-clique

module TC TR ρR TT ρT TC TR ρR TT ρT TC TR ρR TT ρT

doccfg 3.06 3.53 0.87 2.18 1.40 4.03 3.75 1.08 2.49 1.62 3.03 3.54 0.85 0.44 6.82
refsdb timeout 1507 - 2991 - 97,871 1093 89.54 572.88 170.84 26,853 1433 18.73 393.76 68.20
lookup 11.68 12.04 0.97 6.98 1.67 14.44 12.54 1.15 4.01 3.60 25.30 18.14 1.39 13.09 1.93
version 0.28 0.23 1.23 0.30 0.92 0.32 0.30 1.05 0.31 1.04 0.28 0.32 0.88 0.30 0.93
settings 15.36 17.97 0.85 17.19 0.89 19.17 22.26 0.86 20.03 0.96 37.77 42.99 0.88 41.01 0.92
nil 2.11 2.60 0.81 2.27 0.93 3.52 2.26 1.56 2.43 1.45 1.56 1.63 0.96 1.69 0.92
state 38,271 4745 8.06 4782 8.00 38,006 4647 8.25 4733 8.03 1177 1103 1.07 1103 1.07

share shfr shfr-clique

Mods 27 27 27
FC 4 5 2
FR 2 2 0
FT 2 2 0
μR 3.07 8.13 2.64
μT 44.26 53.82 4.97
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reassociation in this application. This is due to the significant improvements that trim-

ming brings to the modules images and refsdb. Specifically, in the case of images, the

trimming approach significantly reduces analysis times for the share and shfr domains,

resulting in speedups comparable to those achieved by shfr-clique. However, trimming

introduces a slow-down when applied to the shfr-clique domain. Conversely, reasso-

ciation does not provide any significant changes. In the texinfo module, reassociation

performs 10 times faster than trimming, while in the remaining modules, both methods

behave similarly. Our hypothesis is that the overhead introduced by the transformation

is what causes reassociation to slightly under-perform in some cases.

The proposed methods were also evaluated across a set of classic benchmarks (see

Table C.1 in the appendices). The benchmarks include a variety of examples, ranging

from simple predicates that feature only direct recursions, such as qsort and append,

to more complex cases with mutual recursions and elaborate aliasing. Some benchmarks

are extracted from real-world programs. For example, aikal is part of an analyzer for the

AKL language, while read and rdtok are Prolog parsers. Additionally, parts of actual

programs are also included, such as ann (the &-Prolog parallelizer), qplan (the core of

the Chat-80 application), and witt (a conceptual clustering application). As expected,

in these comparatively less challenging programs the advantages obtained are smaller,

but they are still significant. For instance, using trimming and reassociation bring mean

relative speedups of 1.1 and 1.06 respectively for the share domain; 0.95 and 1.5 for

shfr; and 2.2 and 1.97 for shfr-clique.

Most of these modules already required small analysis times (less than 0.1 s, which

may indicate they offer fewer opportunities for optimization). The improvements are

most significant for qplan, which had the largest analysis times to begin with: 5.7 s

(share), 1 s (shfr), and 5 s (shfr-clique). In this case, trimming and reassociation

bring analysis times of 1.1 and 0.5 s, respectively, with share; and 0.3 and 0.2 s with

shfr. Moreover, with shfr-clique both techniques bring the time down to 0.1 s (50×
speedup, the largest one). The full experimental results can be found in Appendix C.1.

Given the positive results, in a second phase of our experimentation we decided to

greatly expand the code base used to measure the impact of applying abstract environ-

ment trimming, in order to explore whether the improvements obtained for the classic

benchmarks and the LPdoc application would translate much more widely. All in all we

have analyzed around 1200 program modules. These include, in addition to the previ-

ously mentioned LPdoc documenter (28 modules) and classic benchmarks (26 modules):

all the libraries distributed with the Ciao system (Hermenegildo et al . 2012) (comprising

more than 1000 modules), CiaoPP’s program analyzer (Hermenegildo et al . 2003) PLAI

(56 modules), s(CASP) (Arias et al . 2018), a top-down interpreter for ASP programs

with constraints (44 modules), and Spectector (Guarnieri et al . 2020), a tool for auto-

matically detecting leaks caused by speculatively executed instructions in x64 assembly

programs (15 modules). The ≈1000 library modules in the standard Ciao distribution

come from many sources including libraries ported from SICStus (Carlsson and Mildner

2012); libraries common with Yap (Santos Costa et al . 2012), XSB (Swift and Warren

2012), SWI (Wielemaker et al . 2012), etc., including those from the Prolog Commons

project (https://prolog-commons.org/); the classic libraries from O’Keefe and those for

Constraint Logic Programming over Rationals and Reals (Holzbaur 1995); libraries for
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Fig 2. Cactus plot aggregating all the benchmarks (1185 modules). Times are in mS.

implementing language extensions such as functional syntax or the Ciao assertion lan-

guage; etc., developed by around 100 different programmers. We argue that this selection

of benchmarks constitutes a good representation of real-life code written in Prolog. The

detailed results of these experiments can be found in Appendix C, while here we present

them in a more manageable aggregated form.

We first present in Figure 2 a cactus plot of the results. Cactus plots display, on the

X-axis, the number of benchmarks that can be analyzed, that is those for which the

analysis does not time out or run out of memory, and, on the Y -axis, the accumulated

analysis time. The plots for each abstract domain and analysis technique are generated
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by taking all the analysis times, sorting them in increasing order , and then plotting them

following the formula (i, ti) where ti is the accumulated time in the i-th position. This

way, the analysis time of the benchmark corresponding to the i+ 1-th position is ti+1 − ti.

Darker colors represent abstract domains with trimming, while lighter colors represent

domains with classic analyses. Empty circles correspond to the classic set-sharing domain,

crosses to shfr, and stars to shfr-clique. The module compilation times are given

for comparison, represented by gray triangles –resulting in the gray vertical line. The

plot has been zoomed in to exclude points with X-values (numbers of benchmarks) less

than 800, as the most interesting information is in the more challenging benchmarks

beyond, that require the highest analysis times. Also, plots corresponding to modules

for which the analysis fails are excluded. This figure allows us to observe that when

the domains are used with abstract trimming, they perform better than their classical

counterparts. Specifically, share and shfr reduce the number of modules they are unable

to analyze from 134 and 130 to 81 and 74, respectively, corresponding to a 39.55% and

43.07% improvement. For shfr-clique applying abstract environment trimming results

in failure to analyze only 21 modules versus the 47 that the classical approach failed to

analyze, while reducing the accumulated time by 8.36 min. This translates to a reduction

in timeouts by 55.32% while reducing the accumulated time by 34.3%. We have also

obtained mean speedups of 5.82, 5.91, and 22.08 when analyzing with share, shfr and

shfr-clique respectively. Moreover, the number of modules that can be analyzed in a

time lower than the compilation time also increases.

The cactus plot shows how the analysis results accumulate. In order to show how these

results relate individually, Figure 3 presents a scatter plot displaying the time required

to analyze each module. Given a point (x, y), the value in x corresponds to the time

required by the classical analysis to analyze a given module, while y corresponds to the

time required to analyze that same module using abstract trimming. Modules that are

not analyzed with the classic approach or with both are not displayed. If the points

are close to the orange line, it means that the times are very similar; if they are above

the line, it means that abstract trimming introduces an overhead; if they are below,

abstract trimming speeds up the analysis. To complement this information, Figure 4

presents a scatter plot displaying a comparison between the time required to analyze

each module with the classical analysis (X-axis) and the speedup obtained by applying

the abstract trimming technique (Y -axis). The speedup values range from very close

to zero to significantly larger numbers (see the 0.09 and the 1098 speedup obtained by

abstract trimming when analyzing the “errors” module with sharefree-clique and the

“images” module with shfr, as shown in Table 1). To better represent these values, we

have applied a base 10 logarithm to the resulting speedups. Thus, values between 0 and 1

become negative (with larger absolute values the closer they are to 0), while values greater

than 1 are scaled in the positive plane. The most significant performance improvements

are observed in the right-most side of the figures, corresponding to the modules where

the classical approach takes more time. Conversely, in cases where the classical approach

is very fast (left-most part of the figures), the technique of abstract trimming does not

yield many speedups but introduces some overheads, which are however small. Another

observation is that in most benchmarks, the analysis times are quite low, but of course

our target has been the rest that present significant challenges.
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Fig 3. Scatter plot comparing absolute analysis times (in mS).

Fig 4. Scatter plot showing classic analysis time (in mS) vs. speedup obtained (logscaled
base 10).

To concentrate on this set we have collected the speedup results considering only

the benchmarks taking more than 0.1, 0.5, and 1 s when analyzed with share (which

represents the slower domain). These results are presented in Table 2. For example, the
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Table 2. Complete statistics

share shfr shfr-clique

Modules 1186 1186 1186
FC 134 130 47
FT 81 74 21
μT 5.82 5.91 22.08
μT>1s (70-74-160) 62.13 57.64 146.15
μT>0.5s (93-97-180) 47.86 45.05 130.66
μT>0.1s (143-147-230) 32.11 30.60 102.65
μT<0.1s (909-913-999) 1.68 2.10 24.12

row starting with “μT>1s (70-74-160)” shows the mean speedup for the benchmarks

successfully analyzed such that the time required to analyze them with share is greater

than 1 s or share times out. The results show that in the case of share, 70 of these more

challenging modules are successfully analyzed with both trimming and reassociation (note

that both approaches need to succeed in order to compute the means), 74 in the case of

shfr, and 160 in the case of shfr-clique. Similar very positive results are obtained for

the other cases.

5 Conclusions

We have proposed a number of techniques for addressing the scalability problems inher-

ent to set-sharing analyses. We have focused on the root of the problem: the potentially

exponential dependency of the size of the abstractions on the number of variables. We

have cast this problem as an instance of expression reassociation and provided an optimal

solution using program transformations. Additionally, we have proposed a practical solu-

tion that can be integrated into top-down analyzers, based on the liveness of variables

in the body of the clause being analyzed. We have conducted an extensive experimental

evaluation of over 1100 program modules taken from both production code and classical

benchmarks. We have obtained significant speedups, and, more importantly, the number

of modules that require a timeout was cut in half. As a result, many more programs can be

analyzed precisely in reasonable times. We believe that the results obtained suggest that

the proposed local technique improves significantly the scalability of set-sharing analyses,

and can thus enhance the practicality of top-down set-sharing analysis for production

code. As a possible avenue for future work, note that the definition of live variables used

in this work is local to each clause of the predicate being analyzed. Future lines of work

could explore a more global notion that also considers the calls to predicates within the

clause under analysis. This will presumably incur additional cost but could also possibly

allow further reduction in the size of the domains of the sharing abstractions.
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