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Existence of stationary vortex sheets for the
2D incompressible Euler equation
Daomin Cao, Guolin Qin , and Changjun Zou
Abstract. We construct a new type of planar Euler flows with localized vorticity. Let κi /= 0,
i = 1, . . . , m, be m arbitrarily fixed constants. For any given nondegenerate critical point x0 =
(x0,1 , . . . , x0,m) of the Kirchhoff–Routh function defined on Ωm corresponding to (κ1 , . . . ,κm), we
construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude
and concentrate on curves perturbed from small circles centered near x0, i , i = 1, . . . , m. The proof
is accomplished via the implicit function theorem with suitable choice of function spaces.

1 Introduction

Let Ω ⊂ R
2 be a bounded or unbounded domain. We consider the stationary Euler

equation
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u ⋅ ∇u = −∇P, in Ω,
∇ ⋅ u = 0, in Ω,
u ⋅ ν = 0, on ∂Ω,

(1.1)

where u = (u1 , u2) is the velocity field, P is the scalar pressure, and ν is the outward
unit normal of ∂Ω.

In a planar flow, the vorticity is defined as the third component of the curl of the
velocity field (u1 , u2 , 0), namely, ω = ∂1u2 − ∂2u1. Taking the curl of the first equation
in (1.1), we find that ω satisfies the following vorticity equation:

u ⋅ ∇ω = 0 in Ω.(1.2)

The velocity is recovered by the Biot–Savart law

u = ∇⊥(−Δ)−1ω,

where (x1 , x2)⊥ = (x2 ,−x1) and the operator (−Δ)−1 is given by

(−Δ)−1ω(x) = ∫
Ω

G(x − y)ω(y)d y.
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Here, G(x , y) is the Green function of −Δ in Ω with zero Dirichlet data. So G(x , y)
takes the form G(x , y) = 1

2π ln 1
∣x−y∣ − H(x , y) with H(x , y) the harmonic part of

G(x , y). We denote ψ = (−Δ)−1ω to be the stream function, then the velocity field
can be derived by u = ∇⊥ψ.

In the last century, the two-dimensional Euler equation has been intensively
studied, and the global well-posedness of the vorticity equation with initial data
in L1 ∩ L∞ was proved by Yudovich in the classical paper [45]. However, many
physical phenomena possess strong and irregular fluctuations, such as fluids with
small viscosity, where flows tend to separate from rigid walls and sharp corners [5,
37]. To model this phenomenon mathematically, the most natural way is to think of
a solution to the Euler equation, in which the velocity changes sign discontinuously
across a stream line. This discontinuity induces vorticity concentrated on a curve,
which is only a measure rather than a bounded function.

A velocity discontinuity in an inviscid 2D flow is called a vortex sheet, whose
vorticity concentrates as a measure along a curve. Suppose that ω is a weak solution to
the Euler equation concentrated on a finite number of closed curves Γi parameterized
by z i(θ). Namely, for any test function ϕ ∈ C∞c (Ω), ω is a measure such that

∫
Ω

ϕ(x)dω(x) = ∑
i
∫ γ i(α)ϕ(z i(α))∣z′i(α)∣dα,

where γ i(α) is the vorticity strength at z i(α). Then, the equation of the sheet can be
derived by the Birkhoff–Rott operator in a domain [6, 23, 34, 37, 41]

BR(z, γ)(x) ∶= 1
2π

P.V .∫
(x − z(α))⊥
∣x − z(α)∣2 γ(α)∣z′(α)∣dα + ∫ ∇⊥H(x , z(α))γ(α)∣z′(α)∣dα,

(1.3)

where P.V . stands for Cauchy principal value of an integral. Equation (1.3) yields the
motion of the sheet

u(z i(θ)) = −BR(z i(θ))(1.4)

with BR(z i(θ)) ∶= −∑ j BR(z j , γ j)(z i(θ)).
Significant efforts have been made in mathematical study of the theory of vortex

sheet. In the elegant paper [20], Delort proved global existence of weak solutions with
an initial L2

loc velocity and a positive measure vorticity. Later, the proof was simplified
by Majda [36]. Duchon and Robert [21] established global existence for a class of initial
data concentrated closed to a line. Existence in different setting of vortex sheet with a
distinguished sign was also obtained in [22, 42]. For vorticity without a definite sign,
only partial results on the existence are known under some additional assumptions
[35, 43, 44]. Note that uniqueness for such solutions still remains open.

On the other hand, blow up may occur in the motion of vortex sheet. Indeed,
singular formulation was conjectured by Birkhoff [6], and by Birkhoff and Fisher [7].
In [39], Moore showed the possibility that the curvature blows up in finite time even
though the initial data are analytic. Moore’s result was also supported by numerical
study [30]. Ill-posedness for vortex sheet problem in the space Hs with s > 3

2 was
obtained by Caflisch and Orellana [9]. These results demonstrate that the study of
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vortex sheet is extremely delicate, and hence exact solutions, in particular relative
equilibria, are of great importance since their structures persist for long time.

Nevertheless, very few relative equilibria are known. For the vortex sheets in R
2,

except for circles and lines, the only nontrivial examples include: uniformly rotating
segment [4], in which the vorticity is supported on a segment of length 2a with density

γ(x) = Ωr
√

a2 − x2 , for x ∈ [−a, a]
and angular velocity Ωr . A generalization of the rotating segment is the Protas–Sakajo
class [40], which is made out of segments rotating about a common center of rotation
with endpoints at the vertices of a regular polygon. Recently, a new class of vortex sheet
was obtained in [24] via degenerate bifurcation from rotating circles. Note that the
existence of nontrivial steady vortex sheet in R

2 is not apparent in view of the rigidity
results obtained in [23], where the authors showed for uniformly rotating vortex sheets
with angular velocity Ωr ≤ 0 and strength γ > 0, only trivial solutions exist.

In a domain Ω ⊊ R
2, as far as we know, there seems no nontrivial stationary vortex

sheet is known so far. The purpose of the present paper is to construct a family of
stationary vortex sheets for a domain (bounded or not), whenever the Kirchhoff–
Routh function possesses nondegenerate critical points.

For any given integer m > 0, and m real numbers κ1 ,κ2 , . . . ,κm , define the
Kirchhoff–Routh function on Ωm = {x = (x1 , x2 , . . . , xm) ∣ x i ∈ Ω, for i = 1, . . . , m}
as follows:

Wm(x1 , x2 , . . . , xm) = −
m
∑
i≠ j

κiκ jG(x i , x j) +
m
∑
i=1

κ2
i H(x i , x i).(1.5)

It is known that the location of m-point vortices with strength κi (i = 1, . . . , m) in
Ω must be a critical point of Wm (see, e.g., [31, 32]). Results on the existence and
nondegeneracy of critical points for Wm can be found in [2, 3]. In [25], it was proved
that if Ω is convex, then there is no critical point of Wm in Ωm with m ≥ 2 and κi > 0
for all i = 1, . . . , m. Let us point out that although the nondegeneracy of critical points
for the Kirchhoff–Routh functions in a general domain is not an easy issue, it is true for
most of the domains, as proved in [1, 38]. On the other hand, in [8], it was shown that
in a convex domain, W1 has a unique critical point, which is also nondegenerate. In a
recent paper [12], the first author, Yan, and Yu obtained some existence and results on
the nondegeneracy of critical points of the Kirchhoff–Routh function for unbounded
domains.

Giving a nondegenerate critical point x0 = (x0,1 , . . . , x0,m) ∈ Ωm of Wm , for ε
small, we will construct a branch of vortex sheets concentrated on a finite number
of closed curves Γi . Moreover, each Γi is the perturbation of a small circle with
radius ε centered at some point xε ,τ , i ∈ Ω close to x0, i , and the vorticity ω∣Γi

satisfies

∫
2π

0 γ i(α)∣z′i(α)∣dα ≈ κi . This result shows the rich diversity of stationary vortex sheet
solutions despite that the well-posedness is not fully understood.

Our main theorem is as follows.

Theorem 1.1 Let Ω ⊂ R
2 be a domain (may be unbounded), and let κi /= 0 (i =

1, . . . , m) be m given numbers. Suppose that x0 = (x0,1 , . . . , x0,m) ∈ Ωm with x0, i /= x0, j ,
for i /= j, is an isolated critical point of Wm defined by (1.5) satisfying the nondegeneracy
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condition: deg (∇Wm , x0) /= 0. Then, there are ε0 > 0 and τ0 > 0, such that for all
0 < ε < ε0 and −τ0 < τ < τ0, there exists a stationary vortex sheet ωε ,τ possessing the
following properties:

(i) ωε ,τ =
m
∑
i=1

γ i δΓi concentrates on a finite number of closed curves Γi with strength γ i .

Moreover, it holds that γ i = κi+O(ε)
2πε and each Γi is a perturbation of a small circle

with radius ε and centered at some point xε ,τ , i ∈ Ω satisfying ∣xε ,τ , i − x0, i ∣ = O(ε).
(ii) As ε → 0+, one has in the sense of measure

ωε ,τ →
m
∑
i=1

κi δ(x − x0, i) weakly,

where δ(x − x0, i) is the Dirac delta function concentrated at the point x0, i .
(iii) For any i = 1, . . . , m, the interior of Γi is convex.

Remark 1.2 Our result does not rely on the sign of κi , which is essential in the global
existence of the initial problem as mentioned above. As we shall see in Section 5, the
parameter τ stands for the projection on the kernel of the linearized operator, and
it slightly affects the shape of Γi . More precisely, Γi in Theorem 1.1 takes the form
Γi = {xε ,τ , i + ε(1 + ε( fε ,τ , i(θ) + τ f0, i(θ)))(cos θ , sin θ) ∣ θ ∈ [0, 2π)} for some fε ,τ , i
depending on ε and τ and some fixed f0, i in the kernel.

Remark 1.3 For simplicity, all the scales of Γi (i = 1, . . . , m) are chosen to be of
the same order. However, this is not necessary, and one may construct vortex sheet
concentrated on Γi with the scale of ε i (i = 1, . . . , m) different from each other.

Remark 1.4 Fixing τ ∈ (−τ0 , τ0) in Theorem 1.1, say τ = 0, we obtain a family of
solutions with vortex sheet ωε parameterized only by ε, which is of special interest
since it is closely related to the classical problem: regularization of point vortices
for the Euler equation. This means justifying the weak formulation for point vortex
solutions of the incompressible Euler equations by approximating these solutions with
more regular solutions. In fact, the vortex sheets obtained in Theorem 1.1 belong to
the space H−1(Ω), whereas the point vortices solution belongs to H−1−σ(Ω) for any
σ > 0, which is more singular than a vortex sheet. Thus, our result can be regarded as a
desingularization of point vortices by vortex sheet in some way. For more literature on
the desingularization problem, we refer to [10, 11, 17, 28, 33] and the references therein.

Next, we shall sketch the basic ideas used to prove the main result. Thanks to
Lemma 2.1 in [23], we are able to formulate the conditions that the Birkhoff–Rott
integral (1.3) satisfies for a stationary vortex sheet into a system of 2m coupled
integrodifferential equations Fi ,1(ε, x, f , g) = 0 and Fi ,2(ε, x, f , g) = 0, i = 1, . . . , m.
We expect that the case (ε, x, f , g) = (0, x0 , 0, 0) corresponds to the point vortices
and hence (0, x0 , 0, 0) is a solution to Fi ,1 = 0 and Fi ,2 = 0 provided that x0 is a
critical point of Wm . Therefore, the first step is to extend Fi ,1 and Fi ,2 such that
ε ≤ 0 is allowed. Then, one can verify that Fi ,1(0, x0 , 0, 0) = Fi ,2(0, x0 , 0, 0) = 0 does
hold when x0 is a critical point of Wm , and hence we obtain a trivial solution.
To apply the implicit function theorem at the solution (0, x0 , 0, 0), the Gateaux
derivative of F ∶= (F1,1 ,F1,2 , . . . ,Fm ,1 ,Fm ,2) should be an isomorphism, which
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unfortunately fails. Detailed calculations show that DF has a 2m-dimensional ker-
nel ∏m

i=1{(a cos(θ) + b sin(θ),κi(a cos(θ) + b sin(θ))) ∣ (a, b) ∈ R2}. Hence, we
have to consider the equations in quotient spaces and impose the conditions
−κi ∫ Fi ,1 sin(θ)dθ = ∫ Fi ,2 cos(θ)dθ and κi ∫ Fi ,1 cos(θ)dθ = ∫ Fi ,2 sin(θ)dθ for
all i = 1, . . . , m. Although these conditions seem to be complicated, we successfully
convert them into a concise equation ∇Wm(x) = O(ε), which is solvable near x0
due to the nondegeneracy of ∇Wm at x0. Finally, we can apply the implicit function
theorem to obtain the existence. The convexity of the interior of Γi follows from cal-
culating the curvature directly. We point out that our procedure of proving Theorem
1.1 borrows the idea of Lyapunov–Schmidt reduction and local bifurcation theory.

The ideas and methods introduced in the present paper may be widely applied
to a variety of situations and other models. For example, one may consider an ideal
fluid with an irrotational background flow u0 = ∇⊥ψ0, where ψ0 is a given harmonic
function. In this case, the Kirchhoff–Routh function is given by (see [12])

Wm ,ψ0(x1 , x2 , . . . , xm) = −
m
∑
i≠ j

κiκ jG(x i , x j) +
m
∑
i=1

κ2
i H(x i , x i) + 2

m
∑
i=1

κiψ0(x i).

Although Wm ,ψ0 is slightly different from Wm given by (1.5), we believe that our
method can be modified to construct vortex sheets near critical points ofWm ,ψ0 in this
situation. In addition, for domains with some symmetry properties, such as the unit
disk or the half-space, one may modify our method by considering in function spaces
with certain symmetries to construct solutions with vortex sheets near degenerate
critical points of the Kirchhoff–Routh function.

We would like to make a brief remark on the approach of constructing vortex
patches via the contour dynamics equation, which shares a similar spirit as the
construction of vortex sheet we consider in the present paper. Many celebrated
contributions have been made with the contour dynamics equation method in recent
years (see, e.g., [13–16, 18, 19, 26–29] and the references therein). However, since a
vortex patch is actually a bounded function, the contour dynamics equation is more
regular than the equations of a vortex sheet. Hence, more effort is needed in the process
of our proof.

This paper is organized as follows. In Section 2, we derive the equations that the
Birkhoff–Rott integral satisfies for a stationary vortex sheet and define the function
spaces which will be used later. In Section 3, we extend the functionals and show their
C1 regularity. Section 4 is devoted to study the linearization operators, where we prove
that the derivative is an isomorphism in quotient spaces. In Section 5, we choose x
properly such that the range of our functional belongs to the quotient spaces and apply
the implicit function theorem to prove Theorem 1.1.

2 Formulation and functional setting

Since ω is a stationary sheet, using Lemma 2.1 in [23], we derive the following
equations that the BR equation (1.4) and γ i satisfy.

BR(z i(θ)) ⋅ n(z i(θ)) = 0,(2.1)
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where n(z i(θ)) is the unit normal vector of Γi at z i(θ), and

BR(z i(θ)) ⋅ s(z i(θ)) γ i(θ)
∣z′i(θ)∣ = C ,(2.2)

where s(z i(θ)) is the unit tangential vector. Note that (2.2) can be rewritten as

(I − P0) [BR(z i(θ)) ⋅ s(z i(θ)) γ i(θ)
∣z′i(θ)∣] = 0,(2.3)

where P0 is the projection to the mean value defined by P0 f ∶= 1
2π ∫

2π
0 f (θ)dθ.

Since x0 ∈ Ωm , we can take r0 > 0 sufficiently small such that Br0(x0, i) ⊂ Ω for all
i = 1, . . . , m, where Br0(x0, i) is the ball with radius r0 and centered at x0, i . We aim
to construct vortex sheets localized near x0. Thus, for ε > 0 small, we assume that
z i (i = 1, . . . , m) are of the following form:

z i(θ) = x i + εR i(θ)(cos θ , sin θ)

with R i(θ) = 1 + ε f i(θ), and x i ∈ Br0(x0, i) to be chosen later. We also assume

γ i(α) = κi + εg i(α)
2π∣z′i(α)∣ .

We end this section by introducing some notations and definitions that will be used
in this paper and reformulating equations (2.1) and (2.3). Denote the mean value of
integral of g on the unit circle by

−∫ g(τ)dτ ∶= 1
2π ∫

2π

0
g(τ)dτ

and set

A(θ , α) ∶= 4 sin2 ( θ − α
2
) , Ai j = ∣xi − x j ∣2 ,

B( f , θ , α) ∶= 4( f (θ) + f (α)) sin2 ( θ − α
2
) + ε(( f (θ) − f (α))2 + 4 f (θ) f (α) sin2 ( θ − α

2
)) ,

B i j(θ , α) = 2(xi − x j) ⋅ ((cos θ , sin θ) − (cos α, sin α)) + 2ε(xi − x j) ⋅ ( f i(θ)(cos θ , sin θ)

− f j(θ)(cos α, sin α)) + ε((1 + ε f i(θ))(cos θ , sin θ) − (1 + ε f j(α))(cos α, sin α))2 .

For k ≥ 3, we will also frequently use the function spaces given in the following, whose
norms are naturally defined as norms of product spaces.

Xk =
⎧⎪⎪⎨⎪⎪⎩

g ∈ Hk ∣ g(θ) =
∞
∑
j=1

a j cos( jθ) + b j sin( jθ)
⎫⎪⎪⎬⎪⎪⎭

,

Xk
i ∶=

⎧⎪⎪⎨⎪⎪⎩
( f1 , f2) ∈ Xk+1 × Xk ∣

⎧⎪⎪⎨⎪⎪⎩

−κi−∫ f1(θ) cos(θ)dθ = −∫ f2(θ) cos(θ)dθ ,
−κi−∫ f1(θ) sin(θ)dθ = −∫ f2(θ) sin(θ)dθ

⎫⎪⎪⎬⎪⎪⎭
,
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Y k
i ∶=

⎧⎪⎪⎨⎪⎪⎩
( f1 , f2) ∈ Xk × Xk ∣

⎧⎪⎪⎨⎪⎪⎩

−κi−∫ f1(θ) sin(θ)dθ = −∫ f2(θ) cos(θ)dθ ,
κi−∫ f1(θ) cos(θ)dθ = −∫ f2(θ) sin(θ)dθ

⎫⎪⎪⎬⎪⎪⎭
,

Xk ∶= {( f , g) ∣ ( f i , g i) ∈ Xk
i , i = 1, . . . , m},

Yk ∶= {( f , g) ∣ ( f i , g i) ∈ Y k
i , i = 1, . . . , m}.

For given f = ( f1 , . . . , fm) and g = (g1 , . . . , gm), denote g̃ i ,ε(t) = κi + εg i(t).
Then, we can reduce equations (2.1) and (2.3) to

(2.4)
0 = Fi ,1(ε , x, f , g)

∶= 1
ε

P .V .−∫
R i(α) sin(θ − α)

A(θ , α) + εB( f i , θ , α)
g̃ i ,ε(α)dα + 1

R i(θ)
P .V .−∫

f ′i (θ)R i(α)(1 − cos(θ − α))
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)dα

+ 1
R i(θ)

P .V .−∫
ε f ′i (θ)( f i(θ) − f i(α))
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)dα

+∑
j/=i

1
R i(θ)

−∫
(x i − x j) ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ))

A i j + εB i j(θ , α)
g̃ j,ε(α)dα

+∑
j/=i

1
R i(θ)

−∫
ε2 f ′i (θ)R i(θ) − ε2 f ′i (θ)R j(α) cos(θ − α) + εR i(θ)R j(α) sin(θ − α)

A i j + εB i j(θ , α)
g̃ i ,ε(α)dα

−
m
∑
j=1

2π
R i(θ)

−∫ ∇H(z i(θ), z j(α)) ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)) g̃ i ,ε(α)dα

=∶ Fi ,11 +Fi ,12 +Fi ,13 +Fi ,14 +Fi ,15 +Fi ,16 ,

and

0 = Fi ,2 ∶= (I − P0)F̃i ,2 ,(2.5)

where F̃i ,2 is given by

(2.6)

F̃i ,2(ε , x, f , g) ∶= g̃ i ,ε(θ)
ε(R i(θ)2 + (R′i(θ))2)

P .V .−∫
ε f ′i (θ)R i(α) sin(θ − α)
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)dα

+ g̃ i ,ε(θ)
ε(R i(θ)2 + (R′i(θ))2)

P .V .−∫
R i(θ)R i(α)(cos(θ − α) − 1)

A(θ , α) + εB( f i , θ , α)
g̃ i ,ε(α)dα

+ g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

R i(θ)( f i(α) − f i(θ))
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)dα

+∑
j/=i

g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 −∫

(x i − x j)⊥ ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ))
A i j + εB i j(θ , α)

g̃ j,ε(α)dα

+∑
j/=i

g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 −∫

−εR2
i (θ) + ε2 f ′i (θ)R j(α) sin(θ − α) + εR i(θ)R j(α) cos(θ − α)

A i j + εB i j(θ , α)
g̃ j,ε(α)dα
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−
m

∑
j=1

2π g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 −∫ ∇⊥H(z i(θ), z j(α)) ⋅ [R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)]

× g̃ i ,ε(α)dα =∶ Fi ,21 +Fi ,22 +Fi ,23 +Fi ,24 +Fi ,25 +Fi ,26 .

3 Extension and regularity of functionals

To apply the implicit function theorem at ε = 0, we need to extend the functions Fi ,1
and Fi ,2 defined in Section 2 to ε ≤ 0 and check the C1 regularity.

Let us first show the continuity of these functionals. Letting V be the unit ball
centered at origin in (Xk+1 × Xk)m and Br0(x0) be the ball centered at x0 in Ωm with
radius r0, we have the following proposition.

Proposition 3.1 The functionals Fi ,1 and Fi ,2 can be extended from (−ε0 , ε0) ×
Br0(x0) × V to Xk × Xk as continuous functionals.

Proof Throughout the proof, we will frequently use the following Taylor’s
formula:

1
(A+ B)λ = 1

Aλ − λ∫
1

0

B
(A+ tB)1+λ dt.(3.1)

Let us consider Fi ,1 first. We need to prove that ∂ lFi ,1 ∈ L2 for l = 0, 1, . . . , k. For the
first term

Fi ,11 ∶=
1
ε

P.V .−∫
(1 + ε f i(α)) sin(θ − α)
A(θ , α) + εB( f i , θ , α) (κi + εg i(α))dα,

since R i(x) = 1 + ε f i(x), the possible singularity caused by ε = 0 may occur only
when we take zeroth-order derivative of Fi ,11. Thus, we first show that Fi ,11 ∈ L2. We
decompose the kernel into two parts

1
A(θ , α) + εB( f i , θ , α) = 1

4 sin2 ( θ−α
2 )

⋅ 1
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2) +KR ,

(3.2)

where KR ∶= 1
A(θ ,α)+εB( f i ,θ ,α) −

1
4 sin2( θ−α

2 )
⋅ 1

1+2ε f i(θ)+ε2( f i(θ)2+ f ′i (θ)2) is more regular
than 1

4 sin2( θ−α
2 )

. Indeed, by using (3.1), we calculate

sin (θ − α)KR

= sin (θ − α)
A(θ , α) + εB( f i , θ , α) − sin (θ − α)

4 sin2 ( θ−α
2 )

⋅ 1
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)

= sin (θ − α)
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)
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×
(1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2))4 sin2 ( θ−α

2 ) − A(θ , α) − εB( f i , θ , α)
4 sin2 ( θ−α

2 ) (A(θ , α) + εB( f i , θ , α))

= ε sin (θ − α)
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)

×
f i(θ) − f i(α) + ε f i(θ)( f i(θ) − f i(α)) + ε 4 f ′i (θ)

2 sin2( θ−α
2 )−( f i(θ)− f i(α))2

4 sin2( θ−α
2 )

A(θ , α) + εB( f i , θ , α)

= ε
⎛
⎝
( f i(θ) − f i(α)) sin (θ − α)

4 sin2 ( θ−α
2 )

+ O(ε)
⎞
⎠

,

where the constant in O(ε) depends on ∥ f ∥W2,∞ ≤ C∥ f ∥H3 . This implies

∣ sin (θ − α)KR ∣ ≤ Cε.

Then, it is easy to see that
1
ε
−∫ KR sin(θ − α)(1 + ε f i(α))(κi + εg i(α))dα

= −∫
(1 + ε f i(α))(κi + εg i(α))( f i(θ) − f i(α)) sin (θ − α)

4 sin2 ( θ−α
2 )

+ O(ε)

= −∫
κi( f i(θ) − f i(α)) sin (θ − α)

4 sin2 ( θ−α
2 )

+ εR111

= P.V .−∫
−κi f i(α) sin (θ − α)

4 sin2 ( θ−α
2 )

+ εR111 ,

where R111 is regular and bounded. Hence, to prove Fi ,11 ∈ L2, we only need to
estimate the rest term 1

1+2ε f i(θ)+ε2( f i(θ)2+ f ′i (θ)2)
1
ε P.V .−∫ sin(θ−α)

4 sin2( θ−α
2 )

(1 + ε f i(α))(κi +
εg i(α))dα. By the odd symmetry and (3.1), we have

1
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)

1
ε

P.V .−∫
sin(θ − α)

4 sin2 ( θ−α
2 )
(1 + ε f i(α))(κi + εg i(α))dα

= 1
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)

P.V .−∫
sin(θ − α)

4 sin2 ( θ−α
2 )
(κi f i(α) + g i(α) + ε f i(α)g i(α))dα

= P.V .−∫
(κi f i(α) + g i(α)) sin(θ − α)

4 sin2 ( θ−α
2 )

dα + εR112 .

Using the expansion f i(α) = f i(θ) + O(∣ sin ( θ−α
2 ) ∣) and g i(α) = g i(θ) +

O(∣ sin ( θ−α
2 ) ∣), then we find

P.V .−∫
(κi f i(α) + g i(α)) sin(θ − α)

4 sin2 ( θ−α
2 )

dα = −∫
sin(θ − α)

4 sin2 ( θ−α
2 )

O(∣ sin( θ − α
2
))dα = O(1),
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where we have used the fact ∣ sin(θ−α)
4 sin2( θ−α

2 )
O(sin ( θ−α

2 ))∣ ≤ C. Therefore, it holds that

P.V .−∫ (κi f i(α)+g i(α)) sin(θ−α)
4 sin2( θ−α

2 )
dα belongs to L∞ and hence belongs to L2. Moreover,

R112 is regular and bounded. We conclude that Fi ,11 ∈ L∞. Furthermore, it holds

(3.3)

Fi ,11 =
1

1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)
1
ε

P.V .−∫
sin(θ − α)

4 sin2 ( θ−α
2 )
(1 + ε f i(α))(κi + εg i(α))dα

+ 1
ε
−∫ KR sin(θ − α)(1 + ε f i(α))(κi + εg i(α))dα

= P.V .−∫
g i(α)) sin(θ − α)

4 sin2 ( θ−α
2 )

dα + εR11 ,

where R11 = R111 +R112 is regular and bounded.
Next, we prove that ∂kFi ,11 ∈ L2. To simplify notation, we rewrite Fi ,11 as follows

by changing the variable α to θ − α:

Fi ,11 ∶=
1
ε

P.V .−∫
(1 + ε f i(θ − α)) sin(α)

A(θ , θ − α) + εB( f i , θ , θ − α)(κi + εg i(θ − α))dα.

Taking kth derivatives of Fi ,11, we see that the most singular term is

P.V .−∫
∂k fi(θ − α) sin(α)

A(θ , θ − α) + εB( fi , θ , θ − α)
(κi + εgi(θ − α))dα

+ P.V .−∫
(1 + ε fi(θ − α)) sin(α)

A(θ , θ − α) + εB( fi , θ , θ − α)
∂k gi(θ − α)dα

− P.V .−∫
(1 + ε fi(θ − α))(κi + εgi(θ − α)) sin(α)
(A(θ , θ − α) + εB( fi , θ , θ − α))2 [4(∂k fi(θ) + ∂k fi(θ − α)) sin2 ( θ − α

2
)

+2ε( fi(θ) − fi(θ − α))(∂k fi(θ) − ∂k fi(θ − α))

+4ε(∂k fi(θ) fi(θ − α) + fi(θ)∂k fi(θ − α)) sin2 ( θ − α
2
)] dα

=∶ I1 + I2 + I3 .

We first deal with I1. By the splitting of the kernel (3.2), we derive

I1 = P.V .−∫
∂k f i(θ − α) sin(α)

A(θ , θ − α) + εB( f i , θ , θ − α)(κi + εg i(θ − α))dα

= P.V .−∫
∂k f i(α) sin(θ − α)

A(θ , α) + εB( f i , θ , α)(κi + εg i(α))dα
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= 1
1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2)P.V .−∫

∂k f i(α)(κi + εg i(α)) sin(θ − α)
4 sin2 ( θ−α

2 )

+ P.V .−∫ KR sin(θ − α)∂k f i(α)(κi + εg i(α))dα.

Noting that ∣KR sin(θ − α)∣ ≤ Cε, we have

∥P.V .−∫ KR sin(θ − α)∂k f i(α)(κi + εg i(α))dα∥L2 ≤ C∣∣ f i ∣∣Hk(1 + ∥g∥L2)

is bounded. Since P.V .−∫ ∂k f i(α)(κi+εg i(α)) sin(θ−α)
4 sin2( θ−α

2 )
is the Hilbert transformation of the

function ∂k f i(α)(κi + εg i(α)), we have


P.V .−∫
∂k f i(α)(κi + εg i(α)) sin(θ − α)

4 sin2 ( θ−α
2 )

L2

≤ ∥∂k f i(α)(κi + εg i(α))∥L2 ≤ C∣∣ f ∣∣Hk (1 + ∣∣g∣∣L2).

Similarly, one can check that ∣∣I2∣∣L2 ≤ C(1 + ∣∣ f ∣∣L2)∣∣g∣∣Hk .
To estimate I3, we split the kernel as follows:

4 sin2 ( α
2 )

(A(θ , θ − α) + εB( f i , θ , θ − α))2 =
1

4 sin2 ( α
2 )
⋅ 1
(1 + 2ε f i(θ) + ε2( f i(θ)2 + f ′i (θ)2))2 + K̃R ,

where K̃R satisfies ∣K̃R sin α∣ ≤ C. Since convolution with the kernel sin α
4 sin2( α

2 )
defines

the Hilbert transformation, we find that

P.V .−∫
(1 + ε f i(θ − α))(κi + εg i(θ − α)) sin(α)

(A(θ , θ − α) + εB( f i , θ , θ − α))2

sin2 (θ − α
2

)((∂k f i(θ) + ∂k f i(θ − α))(∂k f i(θ) f i(θ − α) + f i(θ)∂k f i(θ − α))) dα

belongs to L2 due to the L2 boundedness of Hilbert transformation and the regularity
of K̃R . For the remaining term in I3

2εP.V .−∫
(1 + ε fi(θ − α))(κi + εgi(θ − α)) sin(α)
(A(θ , θ − α) + εB( fi , θ , θ − α))2 ( fi(θ) − fi(θ − α))(∂k fi(θ) − ∂k fi(θ − α))dα,

we decompose the kernel
(1 + ε f i(θ − α))(κi + εg i(θ − α)) sin(α)
(A(θ , θ − α) + εB( f i , θ , θ − α))2 ( f i(θ) − f i(θ − α)) =

(1 + ε f i(θ))(κi + εg i(θ)) f ′i (θ)
4 sin2 ( α

2 )
+ K̄R ,

where K̄R satisfies ∣K̄R sin α∣ ≤ C. Then, we deduce

P.V .−∫
(1 + ε f i(θ − α))(κi + εg i(θ − α)) sin(α)
(A(θ , θ − α) + εB( f i , θ , θ − α))2 ( f i(θ) − f i(θ − α))(∂k f i(θ) − ∂k f i(θ − α))dα

= (1 + ε f i(θ))(κi + εg i(θ)) f ′(θ)P.V .−∫
∂k f i(θ) − ∂k f i(θ − α)

4 sin2 ( α
2 )

dα

+ P.V .−∫ K̄R(∂k f i(θ) − ∂k f i(θ − α))dα

= (1 + ε fi(θ))(κi + εg i(θ)) f ′i (θ) ((−Δ) 1
2 (∂k f i)) (θ) + P.V .−∫ K̄R(∂k f i(θ) − ∂k f i(θ − α))dα.
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By Fourier transformation and the Hardy inequality, we obtain

∣∣(−Δ) 1
2 (∂k f i)∣∣L2 ≤ ∣∣∇∂k f i ∣∣L2 ≤ ∣∣ f i ∣∣Hk+1

and

∥−∫ K̄R(∂k f i(θ) − ∂k f i(θ − α))dα∥
L2

≤ ∥∇∂k f i ∣∣L2 ≤ ∣∣ f i ∣∣Hk+1 .

Consequently, we have ∂kFi ,11 ∈ L2 and hence Fi ,11 ∈ Hk .
Now, we turn to the second term

Fi ,12 ∶= 1
1 + ε f i(θ)P.V .−∫

f ′i (θ)(1 + ε f i(α))(1 − cos(θ − α))
A(θ , α) + εB( f i , θ , α) (κi + εg i(α))dα.

Since ∣1 − cos(θ − α)∣ = sin2 ( θ−α
2 ), the kernel of this term is actually regular and

bounded. Therefore, it is easy to see that Fi ,12 ∈ Hk . Moreover, by (3.1), we find

Fi ,12 = 1
1 + ε f i(θ)P.V .−∫

f ′i (θ)(1 + ε f i(α))(1 − cos(θ − α))
A(θ , α) + εB( f i , θ , α) (κi + εg i(α))dα

= P.V .−∫
κi f ′i (θ)(1 − cos(θ − α))

A(θ , α) dα + εR12

= κi

2
f ′i (θ) + εR12 ,(3.4)

where R12 is smooth and we have used the identity 1 − cos(θ − α) = 2 sin2 ( θ−α
2 ) =

A(θ ,α)
2 .
For Fi ,13, taking kth derivatives of Fi ,13, we see that the most singular terms are

ε∂k+1 f i(θ)
1+ε f i(θ) P.V .−∫ f i(θ)− f i(α)

A(θ ,α)+εB( f i ,θ ,α)(κi + εg i(α))dα

+ ε f ′i (θ)
1+ε f i(θ)P.V .−∫ ∂k f i(θ)−∂k f i(θ−α)

A(θ ,θ−α)+εB( f i ,θ ,θ−α)(κi + εg i(θ − α))dα

+ ε2 f ′i (θ)
1+ε f i(θ)P.V .−∫ ( f i(θ)− f i(θ−α))∂k g i(θ−α)

A(θ ,θ−α)+εB( f i ,θ ,θ−α) dα

− ε f ′i (θ)
1+ε f i(θ)P.V .−∫ ( f i(θ)− f i(θ−α))(κi+εg i(θ−α))

(A(θ ,θ−α)+εB( f i ,θ ,θ−α))2 [4(∂k f i(θ) + ∂k f i(θ − α)) sin2 ( θ−α
2 )

+2ε( f i(θ) − f i(θ − α))(∂k f i(θ) − ∂k f i(θ − α))

+4ε(∂k f i(θ) f i(θ − α) + f i(θ)∂k f i(θ − α)) sin2 ( θ−α
2 )] dα

=∶ J1 + J2 + J3 + J4 .

Since P.V .−∫ f i(θ)− f i(α)
A(θ ,α)+εB( f i ,θ ,α)(κi + εg i(α))dα ∈ L2, by Taylor’s expansion of f i(α) at

α = θ, we know that the first term J1 is bounded in L2. To deal with J2, we split the
kernel

κi + εg i(θ − α)
A(θ , θ − α) + εB( f i , θ , θ − α) = κi + εg i(θ)

4 sin2 ( α
2 )

+ K̂R ,
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where ∣K̂R sin α
2 ∣ ≤ C. Therefore, we conclude

ε f ′i (θ)
1 + ε f i(θ)P.V .−∫

∂k f i(θ) − ∂k f i(θ − α)
A(θ , θ − α) + εB( f i , θ , θ − α)(κi + εg i(θ − α))dα

= ε f ′i (θ)(κi + εg i(θ))
1 + ε f i(θ) P.V .−∫

∂k f i(θ) − ∂k f i(θ − α)
4 sin2 ( α

2 )
dα

+ ε f ′i (θ)
1 + ε f i(θ)P.V .−∫ K̂R(∂k f i(θ) − ∂k f i(θ − α))dα

= ε f ′i (θ)(κi + εg i(θ))
1 + ε f i(θ) (−Δ) 1

2 (∂k f i)(θ)

+ ε f ′i (θ)
1 + ε f (θ)P.V .−∫ K̂R(∂k f i(θ) − ∂k f i(θ − α))dα.

By Fourier transformation and Hardy inequality, we obtain

∣∣(−Δ) 1
2 (∂k f i)∣∣L2 ≤ ∣∣∇∂k f i ∣∣L2 ≤ ∣∣ f i ∣∣Hk+1

and

∥−∫ K̂R(∂k f i(θ) − ∂k f i(θ − α))dα∥
L2

≤ ∥∇∂k f i ∣∣L2 ≤ ∣∣ f i ∣∣Hk+1 .

We can show that the remaining terms J3 and J4 are bounded in L2 similarly. Moreover,
it can be seen that

Fi ,13 = 1
1 + ε f i(θ)P.V .−∫

ε f ′i (θ)( f i(θ) − f i(α))
A(θ , α) + εB( f i , θ , α) (κi + εg i(α))dα = εR13 ,

(3.5)

where R13 is regular.
Since H(x , y) is smooth in Ω, the terms Fi ,14, Fi ,15, and Fi ,16 are apparently

smooth and belong to Hk . Furthermore, we have

Fi ,14 + Fi ,15 + Fi ,16

= ∑ j/=i −∫
κ j(x i−x j)⋅(− sin θ ,cos θ)

∣x i ,ε−x j,ε ∣2 dα −∑m
j=1 2π−∫ κ j∇H(x i , x j) ⋅ (− sin θ , cos θ)dα + εR14

= ∑ j/=i 2π−∫ κ j∇G(x i , x j) ⋅ (− sin θ , cos θ)dα

−2π−∫ κi∇H(x i , x i) ⋅ (− sin θ , cos θ)dα + εR14 ,

(3.6)

where R14 is bounded and smooth.
By (3.3)–(3.6), we conclude

Fi ,1(ε, x, f , g) = P.V .−∫ sin(θ−α)g i(α)
4 sin2( θ−α

2 )
dα + κi

2 f ′i (θ) +∑ j/=i 2πκ j∇G(x i , x j) ⋅ (− sin θ , cos θ)

−2πκi∇H(x i , x i) ⋅ (− sin θ , cos θ) + εR1 ,

(3.7)
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where R1 ∶= R11 +R12 +R13 +R14 is regular. Hence, we can define

Fi ,1(0, x, f , g) ∶= P.V .−∫ sin(θ−α)g i(α)
4 sin2( θ−α

2 )
dα + κi

2 f ′i (θ) +∑ j/=i 2πκ j∇G(x i , x j) ⋅ (− sin θ , cos θ)

−2πκi∇H(x i , x i) ⋅ (− sin θ , cos θ).

(3.8)

Next, we prove the continuity of Fi ,1. By (3.7) and the definition of Fi ,1(0, x, f , g),
one can easily check that Fi ,1 is continuous with respect to ε at ε = 0. Thus, we only
need to prove that Fi ,1 is continuous with respect to ε for ε /= 0. However, it is easy to
see that the continuity of Fi ,1 with respect to ε is a consequence of its continuity with
respect to f and g when ε /= 0, on which we will focus below.

We only prove the continuity of Fi ,11 with respect to f i and g i , and the continuity
of other terms in Fi ,1 can be proved by a similar or even easier way. We will use
the following notations: for a general function h, we denote Δh = h(θ) − h(α), h =
h(θ), h̃ = h(α), and

D(h) = ε2(Δh)2 + 4(1 + εh)(1 + εh̃) sin2 (θ − α
2

) .

To show the continuity of Fi ,11 with respect to f i , let ( f1 , g), ( f2 , g) ∈ Xk
i . Then, we

can calculate the difference

Fi ,11(ε, f2 , g) − Fi ,11(ε, f1 , g) = P.V .−∫ ( f2(α)− f1(α)) sin(θ−α)
D( f2) (κ + εg(α))dα

+ 1
ε P.V .−∫ (1 + ε f1(α))(κ + εg(α)) sin(θ − α) ( 1

D( f2) −
1

D( f1)) dα =∶ K1 + K2 .

For the first term K1, since 1
D( f2) has the same singularity as 1

sin2( θ−α
2 )

, it is easy to prove
∥K1∥Hk ≤ C∥ f1 − f2∥Hk+1 by the technique we have used before. For the second term
K2, since

1
D( f2)

− 1
D( f1)

=
ε2((Δ f1)2 − (Δ f2)2) + 4ε(( f1 − f2)(1 + ε f̃2) + ( f̃1 − f̃2)(1 + ε f1)) sin2( x−y

2 )
D( f1)D( f2)

= ε
ε(Δ f1 + Δ f2)(Δ f1 − Δ f2) + 4(( f1 − f2)(1 + ε f̃2) + ( f̃1 − f̃2)(1 + ε f1)) sin2( x−y

2 )
D( f1)D( f2)

,

it holds that the singularity of 1
D( f2) −

1
D( f1) is also of the order O ( 1

4 sin2( θ−α
2 )

), the
same as the kernel inFi ,11 itself. Therefore, using argument similar to the above, we can
prove that ∥K2∥Hk ≤ C∥ f2 − f1∥Hk+1 , which shows the continuity of Fi ,11 with respect
to f i . Notice that Fi ,11 is linear with respect to g i . Then, the continuity of Fi ,11 with
respect to g can be obtained by argument similar to the proof of boundedness of Fi ,11
in Hk .

We have shown that the conclusion of Proposition 3.1 holds true for Fi ,1. The fact
that Fi ,2 is well defined and continuous can be verified in a similar way. Attention
should be paid to the fact that the projection operator I − P0 eliminates all constant
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terms in F̃i ,2, which also removes singularity in Fi ,2. By (3.1), we obtain

F̃i ,2(ε, xε , f , g) = κ2
i f i(θ) − κ2

i P.V .−∫ f i(θ)− f i(α)
4 sin2( θ−α

2 )
dα − κi

g i(θ)
2

−∑ j/=i 2πκiκ j∇⊥G(x i , x j) ⋅ (− sin θ , cos θ)
+2πκ2

i ∇⊥H(x i , x i) ⋅ (− sin θ , cos θ) + εR2 ,

(3.9)

where R2 is smooth. Thus, we define

F̃i ,2(0, x, f , g)(θ) = κ2
i f i(θ) − κ2

i P.V .−∫ f i(θ)− f i(α)
4 sin2( θ−α

2 )
dα − κi

g i(θ)
2

−∑ j/=i 2πκiκ j∇⊥G(x i , x j) ⋅ (− sin θ , cos θ)
+2πκ2

i ∇⊥H(x i , x i) ⋅ (− sin θ , cos θ).

(3.10)

∎

Our next proposition concerns the C1 regularity.

Proposition 3.2 The Gateaux derivatives ∂( f ,g)Fi ,1 and ∂( f ,g)Fi ,2 exist and are
continuous.

Proof We first prove that the derivative of Fi ,11 with respect to f i exists and is as
follows:

∂ f iFi ,11h = Fh, ∀ h ∈ Xk+1 ,(3.11)

where Fh is given by

(3.12)

Fh ∶= P.V .−∫
h(α) sin(θ − α)

A(θ , α) + εB( f i , θ , α)(κi + εg i(α))dα

− P.V .−∫
(1 + ε f i(α))(κi + εg i(α)) sin(θ − α)

(A(θ , α) + εB( f i , θ , α))2 [4(h(θ) + h(α)) sin2 ( θ − α
2
)

+2ε( f i(θ) − f i(α))(h(θ) − h(α)) + 4ε (h(θ) f i(α) + h(α) f i(θ)) sin2 ( θ − α
2
)] dα.

To prove (3.11), one needs to verify

lim
t→0

∥Fi ,11(ε, f i + th, g i) − Fi ,11(ε, f i , g i)
t

− Fh∥
Hk

= 0.(3.13)

Using the notations given in the proof of Proposition 3.1, we deduce
Fi ,11(ε, f i + th, g i) − Fi ,11(ε, f i , g i)

t
− Fh

= 1
tε
−∫ (1 + ε f i(α))(κi + εg i(α)) sin(θ − α)

×
⎛
⎝

1
D( f i + th) −

1
D( f i)

+ t
2ε2Δ f i Δh + 4ε((1 + ε f̃ i)h + (1 + ε f i(α))h̃) sin2( x−y

2 )
D( f i)2

⎞
⎠

+ −∫ h(α)(κi + εg i(α)) sin(θ − α)( 1
D( f i + th) −

1
D( f i)

) d y

=∶ F1 + F2 .
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By the mean value theorem, we find

1
D( f i + th) − 1

D( f i)
= O

⎛
⎝

tε
4 sin2 ( x−y

2 )
⎞
⎠

,

1
D( f i + th) − 1

D( f i)
+ t

2ε2Δ f i Δh + 4(εR̃h + εh̃R) sin2( x−y
2 )

D( f i)2 = O
⎛
⎝

t2ε2

4 sin2 ( x−y
2 )

⎞
⎠

,

which means that the kernels in F1 and F2 are of the same order as the kernel in Fi ,11.
Therefore, by argument similar to Proposition 3.1, we have

∥F1∥Hk + ∥F2∥Hk ≤ Ct∥h∥Xk+1 .

Letting t → 0, we obtain (3.13) and hence obtain the existence of Gateaux derivative
of Fi ,11. To prove the continuity of ∂ f iFi ,11(ε, f i , g i)h, one just needs to verify by
definition. Since there is no other new idea than the proof of continuity for Fi ,11, we
omit it therefore. The existence and continuity of Gateaux derivatives of other terms
in Fi ,1 and Fi ,2 can be obtained via similar argument, which we leave out here. Noting
that Fi ,1 is linearly dependent on g and Fi ,2 is quadratically dependent on g, it is much
easier to compute their Gateaux derivatives with respect to g, so we leave them to our
reader. For readers’ convenience, we also write down the derivatives of Fi ,1 and Fi ,2
in the following form directly without proof here.

Recall the definitions g̃ i ,ε(t) = κi + εg i(t), R i(t) = 1 + ε f i(t). For any h1 ∈ Xk+1

and h2 ∈ Xk , we have

∂ f i Fi ,1(ε, x, f , g)h1 = P.V .−∫ h1(α) sin(θ−α)
A(θ ,α)+εB( fi ,θ ,α) g̃i ,ε(α)dα

−P.V .−∫ Ri(α) sin(θ−α)
(A(θ ,α)+εB( fi ,θ ,α))2 g̃i ,ε(α) [4(h1(θ) + h1(α)) sin2 ( θ−α

2 )

+2ε( fi(θ) − fi(α))(h1(θ) − h1(α)) + 4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ−α
2 )] dα

− εh1(θ)
Ri(θ)2 P.V .−∫

f ′i (θ)Ri(α)(1−cos(θ−α))
A(θ ,α)+εB( fi ,θ ,α) g̃i ,ε(α)dα

+ 1
Ri(θ)P.V .−∫

(h′1(θ)Ri(α)+ε f ′i (θ)h1(α))(1−cos(θ−α))
A(θ ,α)+εB( fi ,θ ,α) g̃i ,ε(α)dα

− 1
Ri(θ)P.V .−∫

f ′i (θ)Ri(α) g̃ i ,ε(α)(1−cos(θ−α))
(A(θ ,α)+εB( fi ,θ ,α))2 [4(h1(θ) + h1(α)) sin2 ( θ−α

2 )

+2ε( fi(θ) − fi(α))(h1(θ) − h1(α)) + 4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ−α
2 )] dα

− εh1(θ)
Ri(θ)2 P.V .−∫

ε f ′i (θ)( f i(θ)− f i(α))
A(θ ,α)+εB( fi ,θ ,α) g̃i ,ε(α)dα

+ 1
Ri(θ)P.V .−∫

ε(h′1(θ)( f i(θ)− f i(α))+ f ′i (θ)(h1(θ)−h1(α)))
A(θ ,α)+εB( fi ,θ ,α) g̃i ,ε(α)dα

− 1
Ri(θ)P.V .−∫

ε f ′i (θ)( f i(θ)− f i(α)) g̃ i ,ε(α)
(A(θ ,α)+εB( fi ,θ ,α))2 [4(h1(θ) + h1(α)) sin2 ( θ−α

2 )

+2ε( fi(θ) − fi(α))(h1(θ) − h1(α)) + 4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ−α
2 )] dα

+O(ε),

(3.14)

∂ f jFi ,1(ε, x, f , g)h1 = O(ε),(3.15)
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(3.16)

∂g iFi ,1(ε, x, f , g)h2 = P.V .−∫ R i(α) sin(θ−α)
A(θ ,α)+εB( f i ,θ ,α) h2(α)dα

+ ε
R i(θ)P.V .−∫

f ′i (θ)R i(α)(1−cos(θ−α))
A(θ ,α)+εB( f i ,θ ,α) h2(α)dα + ε

R i(θ)P.V .−∫
ε f ′i (θ)( f i(θ)− f i(α))
A(θ ,α)+εB( f i ,θ ,α) h2(α)dα

− 2πε
R i(θ) −∫ ∇H(z i(θ), z i(α)) ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ))h2(α)dα,

(3.17)
∂g jFi ,1(ε, x, f , g)h2

= ε
R i(θ)

−∫
(x i − x j) ⋅ [R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)]

A i j + εB i j(θ , α) h2(α)dα

+ ε
R i(θ)

−∫
ε2 f ′i (θ)R i(θ) − ε2 f ′i (θ)R j(α) cos(θ − α) + εR i(θ)R j(α) sin(θ − α)

A i j + εB i j(θ , α) h2(α)dα

− 2πε
R i(θ)

−∫ ∇H(z i(θ), z j(α)) ⋅ [R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)]h2(α)dα

= O(ε),

(3.18)
∂ f i F̃i ,2(ε, x, f , g)h1

= −
2g̃i ,ε(θ)(R i(θ)h1(θ) + ε f ′i (θ)h′1(θ))

(R i(θ)2 + (R′i(θ))2)2 P.V .−∫
ε f ′i (θ)R i(α) sin(θ − α)
A(θ , α) + εB( fi , θ , α)

g̃i ,ε(α)dα

+ g̃i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P.V .−∫

(h′1(θ)R i(α) + ε f ′i (θ)h1(α)) sin(θ − α)
A(θ , α) + εB( fi , θ , α)

g̃i ,ε(α)dα

− g̃i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P.V .−∫

f ′i (θ)R i(α)g̃i ,ε(α) sin(θ − α)
(A(θ , α) + εB( fi , θ , α))2 [4(h1(θ) + h1(α)) sin2 ( θ − α

2
)

+2ε( fi(θ) − fi(α))(h1(θ) − h1(α)) + 4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ − α
2
)] dα

−
2g̃i ,ε(θ)(R i(θ)h1(θ) + ε f ′i (θ)h′1(θ))

(R i(θ)2 + (R′i(θ))2)2 P.V .−∫
R i(θ)R i(α)(cos(θ − α) − 1)

A(θ , α) + εB( fi , θ , α)
g̃i ,ε(α)dα

+ g̃i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P.V .−∫

(h1(θ)R i(α) + R i(θ)h1(α))(cos(θ − α) − 1)
A(θ , α) + εB( fi , θ , α)

g̃i ,ε(α)dα

− g̃i ,ε(θ)
ε(R i(θ)2 + (R′i(θ))2)

P.V .−∫
R i(θ)R i(α)g̃i ,ε(α)(cos(θ − α) − 1)

(A(θ , α) + εB( fi , θ , α))2

× [4(h1(θ) + h1(α)) sin2 ( θ − α
2
) + 2ε( fi(θ) − fi(α))(h1(θ) − h1(α))

+4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ − α
2
)] dα
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−
2g̃i ,ε(θ)(R i(θ)h1(θ) + ε f ′i (θ)h′1(θ))

(R i(θ)2 + (R′i(θ))2)2 P.V .−∫
R i(θ)( fi(α) − fi(θ))
A(θ , α) + εB( fi , θ , α)

g̃i ,ε(α)dα

+ g̃i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P.V .−∫

εh1(θ)( fi(α) − fi(θ)) + R i(θ)(h1(α) − h1(θ))
A(θ , α) + εB( fi , θ , α)

g̃i ,ε(α)dα

− g̃i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P.V .−∫

R i(θ)( fi(α) − fi(θ))g̃i ,ε(α)
(A(θ , α) + εB( fi , θ , α))2 [4(h1(θ) + h1(α)) sin2 ( θ − α

2
)

+2ε( fi(θ) − fi(α))(h1(θ) − h1(α)) + 4ε (h1(θ) fi(α) + h1(α) fi(θ)) sin2 ( θ − α
2
)] dα

+ O(ε),

∂ f jFi ,2(ε, x, f , g)h1 = O(ε),(3.19)

(3.20)

∂gi F̃i ,2(ε , x, f , g)h2

= h2(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

ε f ′i (θ)R i(α) sin(θ − α)
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)d α

+ g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

ε f ′i (θ)R i(α) sin(θ − α)
A(θ , α) + εB( f i , θ , α)

h2(α)d α

+ h2(θ)
R(θ)2 + (R′(θ))2 P .V .−∫

R i(θ)R i(α)(cos(θ − α) − 1)
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)d α

+ g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

R i(θ)R i(α)(cos(θ − α) − 1)
A(θ , α) + εB( f i , θ , α)

h2(α)d α

+ εh2(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

R i(θ)( f i(α) − f i(θ))
A(θ , α) + εB( f i , θ , α)

g̃ i ,ε(α)d α

+ ε g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 P .V .−∫

R i(θ)( f i(α) − f i(θ))
A(θ , α) + εB( f i , θ , α)

h2(α)d α

+∑
j/=i

εh2(θ)
R i(θ)2 + (R′i(θ))2 −∫

(x i ,ε − x j,ε)⊥ ⋅ [R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)]
A i j + εB i j(θ , α)

g̃ j,ε(α)d α

+∑
j/=i

εh2(θ)
R i(θ)2 + (R′i(θ))2 −∫

−εR2
i (θ) + ε2 f ′i (θ)R j(α) sin(θ − α) + εR i(θ)R j(α) cos(θ − α)

A i j + εB i j(θ , α)
g̃ j,ε(α)d α

−
m

∑
j=1

2πεh2(θ)
R i(θ)2 + (R′i(θ))2 −∫ ∇⊥H(z i(θ), z j(α)) ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ))

× g̃ j,ε(α)d α

− 2πε g̃ i ,ε(θ)
R i(θ)2 + (R′i(θ))2 −∫ ∇⊥H(z i(θ), z i(α)) ⋅ (R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ))h2(α)d α ,
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and

(3.21)

∂g j F̃i ,2(ε, x, f , g)h2

= ε g̃ i ,ε(θ)
R i(θ)2+(R′i(θ))2 {−∫

(x i−x j)⊥⋅[R i(θ)(− sin θ ,cos θ)+ε f ′i (θ)(cos θ ,sin θ)]
A i j+εB i j(θ ,α) h2(α)dα

+−∫
−εR2

i (θ)+ε2 f ′i (θ)R j(α) sin(θ−α)+εR i(θ)R j(α) cos(θ−α)
A i j+εB i j(θ ,α) h2(α)dα

−2π−∫ ∇⊥H(z i(θ), z j(α)) ⋅ [R i(θ)(− sin θ , cos θ) + ε f ′i (θ)(cos θ , sin θ)]h2(α)dα}

= O(ε). ∎

4 Linearization and isomorphism

In this section, we study the linearization of the functionals defined in Section 2.
Denote F i ∶= (Fi ,1 ,Fi ,2) and F ∶= (F1 , . . . ,Fm).

By (3.8) and (3.10), one can check that (0, x, 0, 0) is a solution to F = 0 if and only
if x is a critical point of Wm . Now, we take x0 to be a critical point of Wm , and hence
(0, x0 , 0, 0) is a solution to F = 0. We study the linearization of F at (0, x0 , 0, 0).

According to (3.14)–(3.21) at the end of the proof of Proposition 3.2, when ε = 0
and f , g ≡ 0, for all i = 1, . . . , m, the Gateaux derivatives are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f iFi ,1(0, x, 0, 0) f = κi
2 f ′(θ),

∂ f jFi ,1(0, x, 0, 0) f = 0, j /= i ,

∂g iFi ,1(0, x, 0, 0)g = −∫ g(α) sin(θ−α)
4 sin2( θ−α

2 )
dα,

∂g jFi ,1(0, x, 0, 0)g = 0, j /= i ,

∂ f iFi ,2(0, x, 0, 0) f = κ2
i f (θ) − κ2

i −∫
f (θ)− f (α)
4 sin2( θ−α

2 )
dα,

∂ f jFi ,2(0, x, 0, 0) f = 0, j /= i ,

∂g iFi ,2(0, x, 0, 0)g = −κi
2 g(θ),

∂g jFi ,2(0, x, 0, 0)g = 0 j /= i .

(4.1)

Taking (h1 , h2) ∈ Xk+1 × Xk , where

h1(θ) =
∞
∑
j=1

(a j cos( jθ) + b j sin( jθ)) and h2(θ) =
∞
∑
j=1

(c j cos( jθ) + d j sin( jθ)),

(4.2)

we will prove that the linearization ofF i at (0, x0 , 0, 0) has the following Fourier series
form:

D( f i ,g i)F i(0, x0 , 0, 0)(h1 , h2) ∶=
⎛
⎝

∂ f iFi ,1(0, x0 , 0, 0)h1 + ∂g iFi ,1(0, x0 , 0, 0)h2

∂ f iFi ,2(0, x0 , 0, 0)h1 + ∂g iFi ,2(0, x0 , 0, 0)h2

⎞
⎠
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=
∞
∑
j=1

⎛
⎝

â j sin( jθ) + b̂ j cos( jθ)

ĉ j cos( jθ) + d̂ j sin( jθ)
⎞
⎠

,(4.3)

where

⎛
⎝

â j

ĉ j

⎞
⎠
= M j

⎛
⎝

a j

c j

⎞
⎠

and
⎛
⎝

b̂ j

d̂ j

⎞
⎠
= N j

⎛
⎝

b j

d j

⎞
⎠

with M j and N j two 2 × 2 matrices given in Lemma 4.2.
To compute M j and N j , we need the following identities.

Lemma 4.1 For all j ≥ 1 and j ∈ N∗, there hold

−∫
cos( jα) sin(θ − α)

4 sin2 ( θ−α
2 )

dα = 1
2

sin( jθ),(4.4)

−∫
sin( jα) sin(θ − α)

4 sin2 ( θ−α
2 )

dα = − 1
2

cos( jθ),(4.5)

−∫
cos( jθ) − cos( jα)

4 sin2 ( θ−α
2 )

dα = j
2

cos( jθ),(4.6)

−∫
sin( jθ) − sin( jα)

4 sin2 ( θ−α
2 )

dα = j
2

sin( jθ).(4.7)

Proof Identities (4.4) and (4.6) were proved in Lemma A.8 [24]. Indeed, (4.4) can
be deduced from the identity

−∫
cos( jα) sin(θ − α)

4 sin2 ( θ−α
2 )

dα = 1
2
−∫ cos( jα) cot(θ − α

2
) dα = 1

2
H(cos( jθ))(θ),

where H(⋅) is the Hilbert transform on torus and hence H(cos( jθ)) = sin( jθ).
Identity (4.6) can be obtained by computing the fractional Laplacians

−∫
cos( jθ) − cos( jα)

4 sin2 ( θ−α
2 )

dα = 1
2
(−Δ) 1

2 cos( jθ) = j
2

cos( jθ).

Finally, we point out that the identities (4.5) and (4.7) can be derived by calculating
derivatives of (4.4) and (4.6), respectively. ∎

Now, we can prove (4.3) and find the explicit formula for M j and N j .

Lemma 4.2 The derivative of F i at (0, x0 , 0, 0) is given by (4.3) with

M j =
⎛
⎜
⎝

−κi j
2

1
2

(2− j)κ2
i

2 −κi
2

⎞
⎟
⎠

, N j =
⎛
⎜
⎝

κi j
2 − 1

2

(2− j)κ2
i

2 −κi
2

⎞
⎟
⎠

,(4.8)

for any j ≥ 1.
Moreover, D( f i ,g i)F i(0, x0 , 0, 0) is an isomorphism from Xk

i to Y k
i and

D( f ,g)F(0, x0 , 0, 0) is an isomorphism from Xk to Yk .
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Proof Using (4.1), (4.2), and Lemma 4.1, we obtain by direct calculations

∂ f iFi ,1(0, x0 , 0, 0)h1 =
∞
∑
j=1

(−κi j
2

a j sin( jθ) + κi j
2

b j cos( jθ)) ,

∂g iFi ,1(0, x0 , 0, 0)h2 = 1
2

∞
∑
j=1

(c j sin( jθ) − d j cos( jθ)),

∂ f iFi ,2(0, x0 , 0, 0)h1

= κ2
i ∑∞j=1(a j cos( jθ) + b j sin( jθ)) − κ2

i ∑∞j=1 (
j
2 a j cos( jθ) + j

2 b j sin( jθ))

= ∑∞j=1 (
κ2

i (2− j)
2 a j cos( jθ) + κ2

i (2− j)
2 b j sin( jθ)) ,

and

∂g iFi ,2(0, x0 , 0, 0)h2 = −κi

2

∞
∑
j=1

(c j cos( jθ) + d j sin( jθ)).

Then, one can easily check that the derivative of F i at (0, x, 0, 0) is given by (4.3) with

M j =
⎛
⎜
⎝

−κi j
2

1
2

(2− j)κ2
i

2 −κi
2

⎞
⎟
⎠

, N j =
⎛
⎜
⎝

κi j
2 − 1

2

(2− j)κ2
i

2 −κi
2

⎞
⎟
⎠

.

Now we are going to prove that D( f i ,g i)F i(0, x0 , 0, 0) is an isomorphism from Xk
i

to Y k
i . Recall the definition of Xk

i and Y k
i given at the end of Section 2. From the

above calculations, one has M1 = (−κi/2 1/2
κ2

i /2 −κi/2) and N1 = (κi/2 −1/2
κ2

i /2 −κi/2), then

it is obvious that D( f i ,g i)F i(0, x0 , 0, 0) maps Xk
i to Y k

i . Hence, only the invertibility
needs to be considered.

For j ≥ 2, det(M j) = −det(N j) = κ2
i ( j−1)

2 > 0 which implies that M j and N j are
invertible, and their inverse are given by

M−1
j =

⎛
⎜
⎝

−1
κi( j−1)

−1
κ2

i ( j−1)
j−2
j−1

− j
κi( j−1)

⎞
⎟
⎠

, ∀ j ≥ 2,(4.9)

and

N−1
j =

⎛
⎜
⎝

1
κi( j−1)

−1
κ2

i ( j−1)
2− j
j−1

− j
κi( j−1)

⎞
⎟
⎠

, ∀ j ≥ 2.(4.10)

Thus, for any (u, v) ∈ Y k
i with

u =
∞
∑
j=1

p j sin( jθ) + q j cos( jθ) and

v = −κi p1 cos(θ) + κi q1 sin(θ) +
∞
∑
j=2

r j cos( jθ) + s j sin( jθ),
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we can write D( f i ,g i)F i(0, x0 , 0, 0)−1(u, v) as

D( f i ,g i)F i(0, x0 , 0, 0)−1(u, v)

=
⎛
⎝
− p1

κi
cos(θ) + q1

κi
sin(θ)

p1 cos(θ) − q1 sin(θ)
⎞
⎠
+
∞
∑
j=2

M−1
j
⎛
⎝

p j

r j

⎞
⎠

cos( jθ) + N−1
j
⎛
⎝

q j

s j

⎞
⎠

sin( jθ).

Denote

⎛
⎝

p̃ j

r̃ j

⎞
⎠
= M−1

j
⎛
⎝

p j

r j

⎞
⎠

,
⎛
⎝

q̃ j

s̃ j

⎞
⎠
= N−1

j
⎛
⎝

q j

s j

⎞
⎠

, ∀ j ≥ 2.

From (4.9) and (4.10), we have the asymptotic behavior: p̃ j = O( j−1(∣p j ∣ + ∣r j ∣)), r̃ j =
O(∣p j ∣ + ∣r j ∣), q̃ j = O( j−1(∣q j ∣ + ∣s j ∣)) and s̃ j = O(∣q j ∣ + ∣s j ∣) as j → +∞, which implies
that D( f i ,g i)F i(0, x, 0, 0)−1(u, v) does belong to Xk

i .
Noticing that by (4.1), we have ∂ f jFi ,1(0, x0 , 0, 0)h1, ∂g jFi ,1(0, x0 , 0, 0)h2,

∂ f jFi ,2(0, x0 , 0, 0)h1, and ∂g jFi ,2(0, x0 , 0, 0)h2 = 0, j /= i. Therefore, we find

D( f ,g)F(0, x0 , 0, 0) = diag (D( f1 ,g1)F1(0, x0 , 0, 0), . . . , D( fm ,gm)Fm(0, x0 , 0, 0)) ,

and hence D( f ,g)F(0, x0 , 0, 0) is an isomorphism from Xk to Yk .
The proof of is thus completed. ∎

5 Existence of vortex sheets

In this section, inspired by the classical Crandall–Rabinowitz theorem on bifurcation
theory, we use the implicit function theorem to obtain a branch of solutions for
arbitrarily fixed small ε.

From the previous sections, we know that (0, x0 , 0, 0) is a solution to F = 0 if and
only if x0 is a critical point of Wm . Moreover, D( f ,g)F(0, x0 , 0, 0) is an isomorphism
from Xk to Yk . It can be seen from Lemma 4.2 that the kernel of D( f ,g)F(0, x0 , 0, 0)
in (Xk+1 × Xk)m is

m
∏
i=1

{(a cos(θ) + b sin(θ),κi(a cos(θ) + b sin(θ))) ∣ (a, b) ∈ R2}.

We take arbitrary nontrivial ( f 0 , g0) ∈ Xk
0 and define the following new functional:

F(ε, τ, x, f , g) ∶= F(ε, x, f + τ f 0 , g + τg0).(5.1)

To apply the implicit function theorem, we need to make sure thatFmaps a suitable
subset of Xk into Yk . This aim will be achieved by choosing x properly. Indeed, letting
V1 ∶= {( f , g) ∈ Xk ∣ ∑m

j=1(∣∣ f i ∣∣Hk+1 + ∣∣g i ∣∣Hk) < 1} ⊂ Xk be the unit ball, we have the
following key proposition.

Proposition 5.1 The condition that F maps (−ε0 , ε0) × (−τ1 , τ1) × Br0(x0) × V1 into
Yk is equivalent to a system of 2m equations of the form

∇Wm(x) = Oτ1(ε),(5.2)
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where τ1 is any fixed small positive number and Oτ1(ε) means a vector that is of the
order ε up to a constant depending on τ1.

Proof For arbitrary i = 1, . . . , m, we take ( f , g) ∈ V1 with

f i(θ) =
∞
∑
j=1

(a j cos( jθ) + b j sin( jθ)),

g i(θ) = −κi a1 cos(θ) − κi b1 sin(θ) +
∞
∑
j=2

(c j cos( jθ) + d j sin( jθ)).

By the definition of Yk , in order to make F(ε, τ, x, f , g) = F(ε, x, f + τ f 0 , g + τg0) ∈
Yk , we need to ensure that the following equations hold true:

(5.3)

− κi−∫ Fi ,1(ε, x, f + τ f 0 , g + τg0) sin(θ)dθ = −∫ Fi ,2(ε, x, f + τ f 0 , g + τg0) cos(θ)dθ ,

κi−∫ Fi ,1(ε, x, f + τ f 0 , g + τg0) cos(θ)dθ = −∫ Fi ,2(ε, x, f + τ f 0 , g + τg0) sin(θ)dθ ,

where i = 1, . . . , m. By (3.7), (3.9), and calculations in Lemmas 4.1 and 4.2, we obtain

−∫ Fi ,1(ε, x, f + τ f 0 , g + τg0) sin(θ)dθ = −κi a1 −∑ j/=i 2πκ j∂x i ,1 G(x i , x j)
+2πκi ∂x i ,1 H(x i , x i) + ε−∫ R1 sin(θ)dθ ,

(5.4)

−∫ Fi ,1(ε, x, f + τ f 0 , g + τg0) cos(θ)dθ = κi b1 +∑ j/=i 2πκ j∂x i ,2 G(x i , x j)
−2πκi ∂x i ,2 H(x i , x i) + ε−∫ R1 cos(θ)dθ ,

(5.5)

−∫ Fi ,2(ε, x, f + τ f 0 , g + τg0) sin(θ)dθ = κ2
i b1 −∑ j/=i 2πκiκ j∂x i ,2 G(x i , x j)

+2πκ2
i ∂x i ,2 H(x i , x i) + ε−∫ R2 sin(θ)dθ ,

(5.6)

and

−∫ Fi ,2(ε, x, f + τ f 0 , g + τg0) cos(θ)dθ = κ2
i a1 −∑ j/=i 2πκiκ j∂x i ,1 G(x i , x j)

+2πκ2
i ∂x i ,1 H(x i , x i) + ε−∫ R2 cos(θ)dθ .

(5.7)

Then, by the above equations (5.4)–(5.7), we conclude that (5.3) is equivalent to the
following equations:

∑
j/=i

κiκ j∂x i ,1 G(x i , x j) − κ2
i ∂x i ,1 H(x i , x i) =

ε
4π

(−∫ R2 cos(θ)dθ + κi−∫ R1 sin(θ)dθ)
(5.8)
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and

∑
j/=i

κiκ j∂x i ,2 G(x i , x j) − κ2
i ∂x i ,2 H(x i , x i)=

ε
4π

(−∫ R2 sin(θ)dθ − κi−∫ R1 cos(θ)dθ).

(5.9)

Since (5.8) and (5.9) hold for all i = 1, . . . , m, we arrive at (5.2) and complete the
proof of Proposition 5.1. ∎

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Since we have the nondegeneracy condition deg (∇Wm , x0) /=
0, equation (5.2) is solvable near x0 whenever ε is small. We solve (5.2) and write the
solution xε ,τ in the form xε ,τ = x0 + εR̄x(ε, τ, f , g). Then, we know that R̄x defined
on (−ε0 , ε0) × (−τ1 , τ1) × V1 is at least of C1 due to the regularity of F.

Now, set

F
∗(ε, τ, f , g) ∶= F(ε, τ, x0 + εR̄x(ε, τ, f , g), f , g).

Then, we conclude from Proposition 5.1 that F
∗

maps (−ε0 , ε0) × (−τ1 , τ1) × V1 into
Yk . Moreover, F

∗
is C1 continuous with respect to f and g. Next, we need to verify

that D( f ,g)F
∗(0, 0, 0, 0) is an isomorphism from Xk to Yk . In fact, by the chain rule,

we get

D( f ,g)F
∗ = D( f ,g)F + DxF ⋅ D( f ,g) (x0 + εR̄x(ε, τ, f , g)) ,

which implies

D( f ,g)F
∗(0, 0, 0, 0) = D( f ,g)F(0, x0 , 0, 0).

Therefore, D( f ,g)F
∗(0, 0, 0, 0) is an isomorphism from Xk to Yk by Lemma 4.2.

Now, applying implicit function theorem to F
∗

at the point (0, 0, 0, 0), we obtain
that there exist ε0 > 0 and 0 < τ0 ≤ τ1 such that the solutions set

{(ε, τ, f , g) ∈ (−ε0 , ε0) × (−τ0 , τ0) × V1 ∶ F∗(ε, τ, f , g) = 0}

is not empty and can be parameterized by a two-dimensional surface (ε, τ) ∈
(−ε0 , ε0) × (−τ0 , τ0) → (ε, , τ, f ε ,τ , g ε ,τ). So we obtain a family of nontrivial vortex
sheet solutions and finish the proof of (i) in Theorem 1.1.

Since (ii) of Theorem 1.1 is obvious, to end our proof, we only need to show the
convexity of the interior of Γi for i = 1, . . . , m. This can be done by computing the
sign of the curvature. Recall that z i(θ) = xε ,τ , i + εR i(θ)(cos θ , sin θ) with R i(θ) =
1 + ε( fε ,τ , i(θ) + τ f0, i). Given θ ∈ [0, 2π), the signed curvature of Γi at z i(θ) is

εκ(θ) = R i(θ)2 + 2R′i(θ)2 − R i(θ)R′′i (θ)
(R i(θ)2 + R′i(θ)2)

3
2

= 1 + O(ε)
1 + O(ε) > 0,

for ε and τ small, which implies the convexity and thus completes the proof of
Theorem 1.1. ∎
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We point out that for fixed ε, if τ1 /= τ2 with 0 < τ1 , τ2 < τ0, then obviously one has
ωε ,τ1 /≡ ωε ,τ2 . Thus, we have obtained a large family of stationary solutions with vortex
sheet for every ε > 0 small.

Acknowledgment The authors are grateful to the anonymous referees for their
careful reading the paper and valuable comments that help a lot to improve the
presentation of the present paper.
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