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We propose an efficient method to reconstruct the turbulent flow field in a neutrally
stratified atmospheric boundary layer using large-eddy simulation (LES) and a series
of lidar measurements. The reconstruction is formulated as a strong four-dimensional
variational data assimilation problem, which involves optimizing two competing terms that
contribute in the objective functional. The first term is a likelihood term, while the second
contains the initial background distribution of turbulent velocity fluctuations and works
as a regularization term. However, computing and storing the full background covariance
tensor in turbulent flows is time consuming and resource intensive. In the current work,
we investigate the possibility of replacing the complex background tensor by simple
analytical approximations based on spectral tensors such as the Hunt–Graham–Wilson
(HGW) model (Boundary-Layer Meteorol., vol. 85, 1997, pp. 35–52) or the Mann model
(J. Fluid Mech., vol. 273, 1994, pp. 141–168). Afterwards, the problem is solved using
a quasi-Newton algorithm and preconditioned to enhance the convergence rate. We test
the method using virtual lidar measurements collected on a fine reference LES. Results
show a super-linear convergence rate of the optimization algorithm to a local minimum
and very good agreement between virtual lidar measurements and reconstruction in the
scanning region. Furthermore, we demonstrate that incorporating the Saffman energy
spectrum (E(k) ∼ k2 where E is the energy spectrum and k is the magnitude of the
wavenumber vector) at low wavenumbers into the Mann spectral tensor yields a longer
streamwise correlation length, resulting in reduced reconstruction error when compared
with the Batchelor spectrum (E(k) ∼ k4). Finally, we observe that using the HGW model
or Mann model with a Saffman spectrum yields similar results.
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1. Introduction

Knowledge of the turbulent wind field in the atmospheric boundary layer (ABL) has
great value in many fields, including wind energy (Iungo, Wu & Porté-Agel 2013),
weather forecasting (Sun, Flicker & Lilly 1991), pollution dispersion (Nguyen & Soulhac
2021) and wind loading of structures (Guo et al. 2022), among others. Over the past
decade, pulsed light detection and ranging (lidar) has demonstrated the ability to provide
instantaneous measurements of the turbulent wind field over a large area that can extend
to several kilometres (Peña et al. 2013). Despite this significant advance in measurement
techniques, the full three-dimensional reconstruction of the turbulent flow in the ABL
remains underdetermined, meaning that the degrees of freedom fixed by the measurements
are much lower than the total degrees of freedom in a chosen domain. One simple yet
crude approach to reconstructing the velocity field from raw measurements is to apply
the static flow assumption, which involves disregarding the temporal evolution of the flow
among other spatial assumptions (e.g. the dimensions of the velocity vector). Therefore,
the sparse measurements are patched together in space and interpolated in order to provide
a smooth (time-averaged) field (Aitken et al. 2014). Alternatively, the sparse measurements
in space and time can be combined with the knowledge of the evolution model (i.e.
the Navier–Stokes equations) to reconstruct the three-dimensional turbulent flow field.
This process is referred to as state estimation or data assimilation (Le Dimet, Navon &
Ştefănescu 2017).

Many data assimilation methods are based on Bayes’ theorem, whereby the posterior
probability density function of the state is estimated by updating the background
distribution with fresh observations. The four-dimensional variational data assimilation
(4D-Var) approach is a maximum a posteriori (MAP) version of the Bayesian framework
which has been widely used in the literature for weather forecasting (Bannister 2017;
Gustafsson et al. 2018). The weak formulation of the methodology involves solving an
optimization problem that minimizes three quantities: the mismatch between real and
synthetic measurements, the deviation from the background distribution, and the model
error. However, this formulation requires knowledge of the full spatio-temporal correlation
function of the model error, which is very high-dimensional and tedious to identify
(Lorenc 1986). Moreover, it requires optimizing over the space–time direction, which
results in a huge size for the control vector. Alternatively, a strong formulation of the
problem is usually considered, in which a deterministic model along the time direction is
used. As a result, the spatial background distribution is required only at the beginning of
the assimilation window. Nevertheless, numerical computation of the latter correlation in
the context of turbulent flow in the ABL remains prohibitively expensive.

Reconstructing the ABL flow by combining large-eddy simulations (LES) with 4D-Var
and lidar measurements was first explored by Lin, Chai & Sun (2001). In this work,
turbulent flow structures were retrieved in a convective boundary layer. This study was
followed by a series of papers in which the same methodology was used to reconstruct the
ABL flow based on a measurement campaign using two lidars (Chai & Lin 2003; Chai, Lin
& Newsom 2004; Newsom & Banta 2004; Newsom et al. 2005; Xia et al. 2008). However,
in these studies, the spatial correlation was ignored, and the problem was regularized
by a Laplacian-based norm. Moreover, the continuity equation was not strictly imposed
and was replaced by a penalization term in the cost function. In a more recent work by
Bauweraerts & Meyers (2020), LES-based reconstruction of turbulent flow in a neutrally
stable ABL was investigated using a more formal 4D-Var approach. To this end, a database
of the spatial correlation tensor was constructed offline based on ensemble averaging over
long prior LES. Afterwards, a strongly constrained 4D-Var problem was formulated in a
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Karhunen–Loève (KL) basis, which is a divergence-free basis by construction, leading to a
better conditioned problem. However, numerical computation of the two-point covariance
tensor requires a huge amount of resources, computation time and disk storage, which
leads to an impractical assimilation algorithm. Moreover, the covariance database is case
specific, meaning that it must be recomputed for every possible atmospheric condition.

Over the past few decades, several attempts to model the full two-point second-order
statistics of turbulence in a boundary layer were made. Hunt & Graham (1978) studied the
statistics of turbulent structures in the free-stream flow near a moving flat surface. Later on,
Wilson (1997) exploited these ideas to derive a simple isotropic analytical approximation
(referred to as the Hunt–Graham–Wilson or HGW model) for the two-point correlation
tensor in the atmospheric convective boundary layer (CBL). In another approach, Mann
(1994) developed a three-dimensional spectral model for a homogeneous and neutrally
stable ABL turbulence. Currently, the Mann model is widely employed for synthetic
turbulence generation (Mann 1998) as well as for assessing structural loading on wind
turbines (Sabale & Gopal 2019; Chen et al. 2022).

In the current work, our focus is on testing the feasibility of substituting the numerical
database of the initial two-point background correlation tensor in the 4D-Var problem
of Bauweraerts & Meyers (2020) with simple analytical approximations such as the HGW
and Mann models. To this end, we study the convergence and accuracy of the reconstructed
field. Furthermore, we also investigate the effect of increasing the assimilation time
on the accuracy of the retrieved solution. The assimilation problem is formulated in a
solenoidal basis to enforce continuity and preconditioned to enhance the convergence
rate. The main focus of our work is on reconstructing the turbulence fluctuation field.
Therefore, it is assumed that the mean vertical profile as well as the friction velocity u∗
and surface roughness are known from the reference simulation. In a practical setting, these
parameterizations may need to be estimated as well, e.g. using a hierarchical Bayesian
method. However, this is beyond the scope of the current work.

The paper is structured as follows. In § 2, the variational data assimilation problem is
derived. The analytical models of the two-point correlation tensor are introduced in § 3.
Section 4 discusses the optimization methodology used in the current study. In § 5, the
set-up of the case study is introduced; results are discussed in § 6. Finally, conclusions and
suggestions for future research are presented in § 7.

2. Variational data assimilation

2.1. State space model
In this section, the 4D-Var problem in the context of turbulent flow reconstruction is
formulated. The problem aims to reconstruct the turbulent flow state using a time series of
lidar measurements and an LES model. As shown by Stuart (2010), the continuous 4D-Var
problem needs to be formally derived in a functional space, requiring us to deal with
probability measures with infinite dimensions. In order to avoid this complexity, Lorenc
(1986) suggested to represent the model in a finite discrete basis before deriving the 4D-Var
problem. For instance, Bauweraerts & Meyers (2020) formulated their 4D-Var problem
in a truncated KL basis, which led to a mathematically simpler problem formulation.
In the current study, we exploit the spatial discretization of the governing equation (see
Appendix A) to derive the strong 4D-Var problem directly in a discrete basis. This is
further elaborated below.

Consider a velocity vector U0 = [U1
0, U2

0, U3
0]T ∈ R

N defined at time t = 0 on a domain
of size L1 × L2 × H, with N1 × N2 × N3 uniformly distributed grid points. Our current
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discretization uses a staggered grid for the vertical velocity component (see Appendix A
for details), so that N = N1N2(3N3 − 1). Given the initial condition U0, the LES model
can be used to progress the solution in time. We write in short

U(t) = Mt(U0), (2.1)

where Mt is the solution operator representing the time integration of the LES model
described in Appendix A and U(t) is the (modelled) state at time t. Furthermore, the
initial condition U0 needs to be solenoidal. This leads to a constraint in the 4D-Var
problem, i.e. the discretized divergence of the initial velocity U0 must be zero (see
Appendix C). To avoid a constrained optimization problem, we simply eliminate the
continuity constraint. To this end, we construct a projection and reconstruction operator
such that Θ0 = P(U0) ∈ R

M with M = N1N2(2N3 − 1), U0 = R(Θ0) with Θ0 =
P(R(Θ0)) and div(R(Θ0)) = 0. More details are provided in Appendix C.

2.2. Methodology
In this section, the strong 4D-Var problem is introduced. Consider a series of Ns +
1 observations Y � [y0, . . . , yNs

] sampled every Ts, with yk ∈ R
Nm a vector of Nm

measurements at time tk, where tk = t0 + kTs. The latter vector can be modelled as

yk = hk(Mk(U0) + εk) + vk, (2.2)

where h is the observation function introduced in § 5 for the lidar measurements and v
and ε are the measurement and model errors, respectively. Using the strong assumption
that hk(Mk(U0) + εk) = hk(Mk(U0)) + hk(εk), which is valid for linear observation
functions, and assuming that ξ k = hk(εk) + vk is independent and normally distributed
with variance γ 2I , we can express Bayes’ rule as p(Θ0 | Y ) ∼ p(Y | Θ0)p(Θ0), with

p(Y | Θ0) ∝
Ns∏

k=1

exp(−‖yk − hk(Mk(R(Θ0)))‖2/2γ 2) (2.3)

and p(Θ0) ∝ exp(−ΘT
0 B−1Θ0/2) with B = PRPT , where R is the two-point correlation

tensor defined in § 3. In order to obtain the best estimate of the state Θ0, the MAP estimate
arg maxΘ0 p(Y | Θ0)p(Θ0) is often used. This can be obtained by taking the logarithm as
− log[p(Θ0 | Y )], leading to the following unconstrained optimization problem over the
initial state Θ0:

minimise
Θ0

J (Θ0) = 1
2
ΘT

0 B−1Θ0︸ ︷︷ ︸
JB

+ 1
2γ 2

Ns∑
n=1

‖yn − hn(Mt(R(Θ0))‖2

︸ ︷︷ ︸
JL

. (2.4)

In the current study, our focus is on the initial background tensor B and the
regularization term JB. The latter term plays a crucial role in ensuring a well-posed
assimilation problem and promoting fast convergence. Furthermore, it holds particular
significance in regularizing the solution in areas where no measurements are available.
At one extreme, the most straightforward approach for the covariance tensor is to use the
identity matrix, R = I (or B = PPT ), which is equivalent to the standard ridge regression.
However, this approach leads to slow convergence and relatively high reconstruction
errors, as will be further discussed. At the other extreme, an ideal approach would
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involve numerically constructing the true background tensor, which was demonstrated by
Bauweraerts & Meyers (2020) to be prohibitively expensive.

In an attempt to achieve a trade-off between accuracy and simplicity, we study the
feasibility of replacing the true background tensor with simple yet realistic analytical
approximations. To this end, we use two different models for the two-point covariance
tensor R, which are discussed in detail in the following section.

3. Two-point correlation tensor

3.1. Overview
For a given mean velocity field ū(x), the fluctuations u′(x) = u(x) − ū(x) can be defined.
The two-point velocity-correlation tensor is defined as

Rij(x, x̆) = 〈u′
i(x)u′

j(x̆)〉, (3.1)

where 〈·〉 indicates ensemble averaging. For homogeneous turbulence, the correlation
tensor depends only on the separation r = (x̆1 − x1, x̆2 − x2, x̆3 − x3) between the
two points. Hence, the isotropic–homogeneous spectral density tensor Φ̂ iso(k), with
wavenumber vector k = (k1, k2, k3), can be obtained by applying the Fourier transform

Φ̂ iso(k) = 1
8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Rij(r) exp(−i(k1r1 + k2r2 + k3r3)) dr1 dr2 dr3. (3.2)

For incompressible flows, the latter tensor can be expressed in terms of the energy
spectrum E(k) (Pope 2000) as

Φ̂ iso
ij (k) = E(k)

4πk4 (δijk2 − kikj), (3.3)

with k = (k2
1 + k2

2 + k2
3)

1/2. An expression for the energy spectrum E(k) can be
analytically derived (e.g. Pope 2000) based on the asymptotic behaviour of the turbulent
energy for large and small scales. In this paper, we investigate two variants of the
energy spectrum E(k) based on the asymptotic behaviour as k → 0. The spectrum can
be expressed as

E(k) = aσ 2
iso�

(k�)p

(1 + (k�)2)5/6+p/2 , (3.4)

where � is a length scale and σ 2
iso is the isotropic variance. The power p determines

the slope of E(k) as k → 0. When p = 4, the energy spectrum exhibits a behaviour of
E(k) ∼ k4 for large scales, commonly known as Batchelor turbulence (Davidson 2010).
Conversely, p = 2 leads to a behaviour of E(k) ∼ k2, which is also known as Saffman
turbulence (Saffman 1967; Pope 2000). The scaling factor a is chosen such that the
integration of E(k) over all wavenumbers yields the total turbulent energy Etot for both
Batchelor and Saffman cases. This results in values of 1.45 and 1.1886 for the Batchelor
and Saffman cases, respectively.

Although assuming homogeneous isotropic turbulence leads to great mathematical
simplifications, wall-bounded flows in reality are known to behave otherwise.
Nevertheless, in a neutral pressure-driven ABL over smooth terrain, turbulence is close
to homogeneous in the horizontal plane (Holmes, Lumley & Berkooz 1996), and therefore
homogeneity may be assumed in the x1 and x2 directions but not in the x3 direction.
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Consequently, the two-point correlation functions become dependent on the absolute
vertical location of each point rather than the distance between them, and the Fourier
transform over the vertical distance in (3.2) may not be applied. Instead, the two-point
correlations are expressed in terms of the vertically inhomogeneous spectral tensor R̂,
which can be constructed from the function

R̂ij(k1, k2; x3, x̆3) = 1
4π2

∫ ∞

−∞

∫ ∞

−∞
Rij(r1, r2; x3, x̆3) exp(−i(k1r1 + k2r2)) dr1 dr2.

(3.5)

Owing to our pseudo-spectral numerical discretization (see Appendix A), we focus on
obtaining the correlation function directly as R̂ij(k1, k2; x3, x̆3) instead of Rij(x, x̆) in the
remainder of this section.

3.2. The HGW model
Hunt & Graham (1978) studied the effect of introducing a moving rigid surface suddenly
at time t = 0 on the isotropic homogeneous tensor Φ iso(k). To model the blockage by the
wall, the velocity field u(x, t) was written as a sum of the homogeneous flow field uH(x, t)
from the homogeneous tensor and a blockage field uB(x, t) obeying uH

3 (x1, x2, 0, t) +
uB

3 (x1, x2, 0, t) = 0. When the shear-free case is considered (i.e. zero mean shear), uB is
simply an irrotational velocity field that does not affect the initial vorticity field (Lee &
Hunt 1989). For further details, we refer the reader to the original paper. Wilson (1997)
used these ideas to derive an analytical model for the vertically inhomogeneous spectral
tensor R̂(k1, k2; x3, x̆3) in the atmospheric CBL. The model was named the HGW model
and is given as

R̂HGW
ij (k1, k2; x3, x̆3) = R̂iso

ij (k1, k2; x̆3 − x3)

+ e−κ x̆3mj(k1, k2)R̂iso∗
3i (k1, k2; x3)

+ e−κx3m∗
i (k1, k2)R̂iso

3j (k1, k2; x̆3)

+ e−κ(x3+x̆3)m∗
i (k1, k2)mj(k1, k2)R̂iso

33 (k1, k2; 0), (3.6)

where κ = (k2
1 + k2

2)
1/2 and (m1, m2, m3) = (ik1/κ, ik2/κ, −1), with R̂iso

ij (k1, k2, r)
obtained by computing the inverse Fourier transform (IFT) of the three-dimensional
spectral tensor Φ̂ iso

ij (k) in the direction of k3, which can be analytically computed for
Batchelor turbulence (Wilson 1997) (see Appendix D for more details). Although the
model in (3.6) accounts for the vertical inhomogeneity, it does not capture the anisotropic
behaviour imposed by the mean flow. The implications of this are further discussed in § 6.

3.3. The Mann model
Many turbulent tensor models in the literature are inherently isotropic. However,
anisotropy effects are often included by introducing stretching factors in different
directions, leading to many extra coefficients to be tuned (in addition to the isotropic tensor
parameters) (Kristensen et al. 1989). Alternatively, Mann (1994) introduced a turbulence
model based on rapid distortion theory, which accounts for anisotropic effects via a
single additional parameter Γ . In this model, the spectral tensor is assumed to be initially
isotropic at time t = 0, as given in (3.3). Afterwards, the isotropic tensor is distorted by
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a constant shear profile for a certain period of time that is equal to the eddy lifetime. The
resulting model is summarized as

Φ̂Mann
11 (k) = E(k0)(k2

0 − k2
1 − 2k1k30ζ1 + (k2

1 + k2
2)ζ

2
1 )/(4πk4

0), (3.7a)

Φ̂Mann
22 (k) = E(k0)(k2

0 − k2
2 − 2k2k30ζ2 + (k2

1 + k2
2)ζ

2
2 )/(4πk4

0), (3.7b)

Φ̂Mann
33 (k) = E(k0)(k2

1 + k2
2)/(4πk4), (3.7c)

Φ̂Mann
12 (k) = E(k0)(−k1k2 − k1k30ζ2 − k2k30ζ1 + (k2

1 + k2
2)ζ1ζ2)/(4πk4

0), (3.7d)

Φ̂Mann
13 (k) = E(k0)(−k1k30 + (k2

1 + k2
2)ζ1)/(4πk2

0k2), (3.7e)

Φ̂Mann
23 (k) = E(k0)(−k2k30 + (k2

1 + k2
2)ζ2)/(4πk2

0k2), (3.7f )

where k0 is the magnitude of the initial wavenumber vector k0 = (k1, k2, k30) with
k30 = k3 + βk1, and where β is the non-dimensional eddy lifetime. Mann proposed an
eddy lifetime model that has the correct asymptotic behaviour when compared with
observations in wall-bounded flows. The non-dimensional eddy lifetime β was expressed
in terms of the hypergeometric function 2F1. However, Wilson (1998) reformulated this
expression in terms of the incomplete beta function B:

β =
√

3Γ

k�

[
B1/(1+k2�2)

(
1
3
,

5
2

)]−1/2

, (3.8)

which is much easier to compute using available numerical libraries.
The quantities ζ1 and ζ2 are given as

ζ1 = C1 − k2

k1
C2, ζ2 = k2

k1
C1 + C2, (3.9a,b)

with

C1 = βk2
1(k

2
0 − 2k2

30 + βk1k30)

k2(k2
1 + k2

2)
(3.10)

and

C2 = k2k2
0

(k2
1 + k2

2)
3/2

arctan

[
βk1(k2

1 + k2
2)

1/2

k2
0 − βk30k1

]
. (3.11)

Unlike the HGW model, the Mann model is anisotropic, but it remains homogeneous in
all directions. To account for the vertical inhomogeneity introduced by the wall, Mann
(1994) proposed a modification to his original model based on a similar approach to
that described in § 3.2. However, because of the non-zero mean shear in the model, the
same procedure as in § 3.2 leads to a highly complex mathematical model that requires
numerical integrations over the k3 direction, with a computational cost of O(N3

3) per
horizontal wavenumber pair (k1, k2). This would be a bottleneck in our assimilation
algorithm. To avoid this complexity, we directly obtain R̂Mann

ij (k1, k2, r3) by applying the
inverse fast Fourier transform to the model in (3.7). In contrast to the analytical IFT
conducted over an infinite domain in the HGW model, the numerical IFT here yields
a periodic correlation function in the vertical direction. This periodicity needs to be
eliminated to avoid any unwanted effects on the assimilation results. To achieve this, the
IFT is applied on an extended domain in the vertical direction, which is at least twice as
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large as the reconstruction domain height. The additional part is then discarded. A similar
approach was adopted in Mann (1998) in the context of synthetic turbulence generation in
a finite domain. While it is acknowledged that employing the homogeneous version of the
Mann model, as opposed to the vertically inhomogeneous variant, may yield less precise
results in close proximity to the wall, it should be noted that this discrepancy diminishes as
one moves away from the wall. In this case, the two versions of the model are anticipated
to exhibit similar behaviour, as indicated by Mann (1994).

Before utilizing the Mann model in our assimilation algorithm, one remaining issue
needs to be addressed. Specifically, the model in (3.7) is undefined when k1 = 0 due to the
singularity of ζ1 and ζ2 in (3.9a,b). To avoid this issue, the limit values limk1→0 ζ1 = −β

and limk1→0 ζ2 = 0 are used (Gilling 2009).

4. Optimization methodology

To solve the unconstrained optimization problem (2.4), the limited-memory Broyden–
Fletcher–Goldfarb–Shanno algorithm with bound constraints (L-BFGS-B) implemented
by Byrd et al. (1995) is used to determine the search direction dk. Since the L-BFGS-B is
a quasi-Newton algorithm, the Hessian matrix is approximated based on a set of correction
pairs of the differences between previous gradients and search directions. In the current
study, five correction pairs are used. Once a search direction is approximated, a step size
αk is selected according to the Moré–Thuente line search algorithm (Moré & Thuente
1994). The typical values of the constants c1 = 10−4 and c2 = 0.9 were used for the Wolfe
conditions (Nocedal & Wright 2006). Since the gradient of the cost function ∂J /∂Θ̂0 is
a key ingredient of the quasi-Newton algorithms, it is crucial to have an efficient algorithm
to compute it. In this study the continuous adjoint method is used (see Appendix B).
After deriving the continuous adjoint equation, it is discretized and solved similarly to
the forward model. Afterwards, the gradient is obtained as

∂J

∂Θ̂0
= B̂

−1
Θ̂0 − R̂∗Ẑ0, (4.1)

where Ẑ0 corresponds to the discretized adjoint velocity at the beginning of the
assimilation window and R̂∗ is the Hermitian transpose of R̂.

In the remainder of this section, we propose a technique to enhance the convergence
rate of the optimization algorithm described above. Consider the problem in (2.4);
the Hessian matrix can be represented as a sum of the Hessians of both terms, H =
(B̂

−1 + Ĉ
−1

)−1, where Ĉ
−1

is the unknown Hessian matrix of the likelihood term, which
contains implicitly second derivatives of the state equations, and is prohibitively expensive
to explicitly formulate. During the optimization procedure, the L-BFGS-B attempts to
estimate H using subsequent gradient information. The new iteration Θ̂0k+1 can then be
written as

Θ̂0k+1 = Θ̂0k + αkdk,

= Θ̂0k + αkH̃k(∂J /∂Θ̂0)k, (4.2)

where k is the iteration index and H̃ ≈ (B̂
−1 + Ĉ

−1
)−1 is the L-BFGS-B estimate of the

Hessian. Since B̂ is known from § 3, it can be used to precondition the problem such that
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Figure 1. Schematic of the reference (a) and reconstruction (b) domains with the lidar mount (purple) and
the scanning region (inside dashed lines). The figure is reprinted from Bauweraerts & Meyers (2020).

the L-BFGS-B does not need to predict its complex structure. To this end, we write

Θ̂0k+1 = Θ̂0k + αkH̃′
kB̂(∂J /∂Θ̂0)

′
k, (4.3)

where (∂J /∂Θ̂0)
′
k = B̂k(∂J /∂Θ̂0)k is the preconditioned gradient. Using the latter

gradient rather than the original one in the L-BFGS-B leads to the estimation of H̃′ ≈
(B̂

−1 + Ĉ
−1

)−1B̂
−1 = (I + B̂Ĉ−1)−1, which has potentially a much simpler structure

and leads in our test cases to much faster convergence.

5. Case set-up

5.1. Set-up of lidar and virtual measurements

In this study, the measurement series Y � [y0, . . . , yNs
] is obtained virtually on a fine

reference simulation (see § 5.2) using the implementation of Bauweraerts & Meyers (2020)
for the Lockheed Martin WindTracer lidar (Krishnamurthy et al. 2013). A full description
of the implementation and set-up can be found in the original papers. However, for the
sake of completeness, a brief overview is provided in this section.

In the current work, we collect our measurements in plan-position-indicator (PPI)
scanning mode with a zero elevation angle and constant azimuthal sweeping covering
the horizontal sector shown in figure 1. The measurements are collected for a period
of Tm = 0.1H/u∗ from a single lidar mounted at xm = [0, 0, 0.1H], with a range gate
of 
r = 105 m and total number of gates of Nr = 100. Therefore, at each sampling
time tn = t0 + nTs, with Ts = 5 × 10−4H/u∗ = 1 s, a vector of wind-speed readings
yn = [yn,1, . . . , yn,Nr ] is measured using yn,i = hn,i(u(x, t)) and stored at equally spaced
locations along the lidar beam. The observation function hn,i is given as (Bauweraerts &
Meyers 2020)

hn,i(u(x, t)) � 1
Ts

∫ tn

tn−1

∫
Ω

u(x, t) · el(t)G (Q(t) (x − xi(t))) dx dt, (5.1)

where G is the lidar filter kernel, el is the lidar beam direction, Q is a rotation matrix
from the reference to the lidar coordinate system and xi is the measurement location
given as xi(t) = xm + (r0 + 
r(i − 1))el(t), with the lidar range gate 
r = 105 m and
i = 1, . . . , Nr. The lidar beam moves in a horizontal sweeping pattern with a constant
azimuthal angular velocity of |∂φ/∂t| = 2
φ/Tm = 0.00371 rad s−1, where 
φ is the
azimuthal range covered by the lidar. Figure 1 summarizes this picture.
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i 1 2 3
σ 2

ii /u2∗ 4.77 2.68 1.46

Table 1. Values of velocity variances as given in Kaimal et al. (1972).

5.2. Set-up of reference simulation
In the current study, we assume a pressure-driven boundary layer with a height of H =
1 km, a friction velocity of u∗ = 0.5 m s−1 and a roughness length of z0 = 0.1 m. After
a spin-up period of 50H/u∗ on a reference domain 30H × 5.4H × H with a fine grid of
size 2000 × 360 × 200, a series of virtual measurements are collected in the PPI scanning
mode over a period of Tm = 200 s and also 400 s. After obtaining the measurement series
Y , the reconstruction problem can be started. The reconstruction is done on a shorter
domain with a coarser mesh than the reference simulation. In this study, the reconstruction
domain has dimensions of 18H × 5.4H × H with a grid size of 360 × 108 × 60 (see
figure 1). Before solving the optimization problem (2.4), the background correlation tensor
R̂ is constructed from the analytical models in § 3 on the reconstruction grid and stored
to be used as a prior for the MAP problem in (2.4). Computing and storing the analytical
tensor takes only a few seconds using the same computational nodes allocated for the
optimization problem (see § 5.4). Therefore, they are usually deleted after solving the
optimization problem and recomputed again when needed.

5.3. Set-up of correlation tensor

5.3.1. The HGW model
As discussed above, the HGW correlation tensor in (3.6) is a function of the length scale
� and the isotropic variance σ 2

iso. Meteorological data from the ABL (Kaimal et al. 1972)
show that the variances of the different velocity components σ 2

u , σ 2
v and σ 2

w in the surface
layer (i.e. x3 ≤ 0.1H) are not equal to each other (see table 1). However, because of the
isotropic assumption in the HGW model, the model cannot pick up a preferred direction,
meaning that only a single choice of the variance can be imposed. In this study, we choose
the isotropic variance to be equal to the streamwise variance of Kaimal et al. (1972),
leading to σ 2

iso = 4.77u2∗. On the other hand, the length scale � is chosen to match the
inertial subrange asymptote (Peltier et al. 1996), which leads to the following expression
(Wilson 1997):

� = 0.8743
σ 3

iso
ε

, (5.2)

where ε is the turbulent kinetic energy dissipation rate. Using the similarity theory in the
surface layer of a neutrally stable ABL, the dissipation rate can be approximated as (Stull
1988)

ε = 1.24
u3∗
κ̄z

, (5.3)

where κ̄ = 0.41 and z is the vertical distance, which is chosen to be equal to the lidar
height z = 0.1H. The resulting values of the parameters are summarized in table 3. It is
worth mentioning that we noticed that the reconstruction results are not very sensitive to
small changes in the model parameters.
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i 1 2 3
σ 2

ii /u2∗ 4.75 1.95 1.15

Table 2. Values of velocity variances as calculated from the reference LES at x3 = 0.1H.

Model � σ 2
iso Γ

HGW (Batchelor) 0.301H 4.77u2∗ —
Mann (Batchelor) 0.045H 1.37u2∗ 4.2
Mann (Saffman) 0.046H 1.36u2∗ 3.0

Table 3. Parameters of the spectral tensors in § 3.

0 1 2 3 4

Γ

1

2

3

4

5

σ
2
/
σ

2 is
o

Batchelor

Saffman

Figure 2. The normalized velocity variance of the Mann model as Γ changes using Batchelor and Saffman
energy spectra. The blue colour represents σ 2

u /σ 2
iso, while the red and green represent σ 2

v /σ 2
iso and σ 2

w/σ 2
iso,

respectively. The vertical dotted lines correspond to the selected Γ values following the procedure in § 5.3.2
for both Batchelor and Saffman cases.

As briefly mentioned in § 3, the analytical IFT for the spectral tensor Φ iso(k) used in the
HGW model is only available for the Batchelor turbulence case (see Appendix D), which
is the main advantage of this model. Therefore, we limit our analysis for the HGW to the
Batchelor case.

5.3.2. The Mann model
In addition to the two parameters discussed above (σiso, �), the Mann model has an
additional parameter Γ which reflects the amount of distortion applied to the initial
isotropic tensor. If Γ = 0, no shear is imposed and the isotropic tensor in (3.3) is retrieved.
As Γ is increased, σ 2

u and σ 2
v increase while σ 2

w and σuw decrease. This behaviour is
illustrated in figure 4 of Mann (1994). To choose the model parameters, Mann used
a least-squares fitting algorithm to match the one-dimensional spectra produced by the
model to the ones obtained experimentally. Here, we use a simpler procedure, similar to
the one reported by Wilson (1998), that is also more in line with the typical data that would
be available from atmospheric measurements. Firstly, using figure 2, Γ is chosen to satisfy
the ratio σ 2

u /σ 2
w obtained from the reference LES at x3 = 0.1H (see table 2). Afterwards,

Γ and σ 2
u /u2∗ are used to obtain σ 2

iso from figure 2. Finally, the length scale � is obtained
similarly to the previous section. Table 3 summarizes the parameters obtained following
this procedure for both Batchelor and Saffman energy spectra.
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(b) (c)

Figure 3. Cross-section of the two-point correlation C11(x, x̆) with reference point x = [0, 0, H/4] at x3 =
H/4 (b), x2 = 0 (a) and x1 = 0 (c). The contour lines are drawn for C11 = [−0.1, −0.05, 0.05, 0.1, 0.3]: solid
black, C > 0; dashed red, C < 0. The figure is reprinted from Bauweraerts & Meyers (2020).

As will be described in § 5.4, the absolute value of σ 2
iso in table 3 becomes somehow

redundant in our 4D-Var problem due to the Pareto front technique used to fix γ 2.
Nonetheless, we opted to propose a way to fix it as part of the parameter selection process
in the current section.

5.3.3. Two-point correlation tensor
In this section, we compute the diagonal component of the normalized two-point
correlation function in the streamwise direction, given as C11(x, x̆) = R11(x, x̆)/σ 2

u (x, x̆),
for both the Mann and the HGW models presented in § 3, and compare them with those
obtained by Bauweraerts & Meyers (2020) in figure 3.

Figures 4 and 6 present C11 for the HGW and Mann models, respectively, for a reference
point located at x = [0, 0, H/4], which is a bit higher than the lidar height in § 5.1.
However, we opted to show the correlation function at this height to facilitate comparisons
with figure 3. Moreover, the difference between the two heights is negligible (not shown).
The figures provide a visual comparison of the correlation functions between the two
models. For the HGW model with Batchelor spectrum (figure 4), the correlation consists
of three small positive central lobes with a spanwise width close to what is observed in
Bauweraerts & Meyers (2020). However, the HGW model underpredicts the correlation
length by an order of magnitude when compared with the value of 10H reported by Fang
& Porté-Agel (2015) around the reference point.

On the other hand, the Mann model in figures 5 and 6 exhibits a more complex
correlation function. In the horizontal plane, the function displays three closed lobes
elongated in the x1 direction, with a size significantly larger than in the HGW case.
However, it can be clearly seen that utilizing the Saffman spectrum (figure 6) leads to the
longest correlations among the proposed models. In the spanwise direction, the correlation
function decreases until it reaches a saturation point at a small negative value. In contrast,
Bauweraerts & Meyers (2020) observed long alternating positive and negative lobes
extending throughout the entire domain in the streamwise direction, with a correlation
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Figure 4. Cross-section of the HGW two-point correlation C11(x, x̆) with reference point x = [0, 0, H/4] at
x3 = H/4 (b), x2 = 0 (a) and x1 = 0 (c).
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Figure 5. Cross-section of the Mann (with Batchelor spectrum) two-point correlation C11(x, x̆) with
reference point x = [0, 0, H/4] at x3 = H/4 (b), x2 = 0 (a) and x1 = 0 (c).

width much less than the one observed here. These long lobes were attributed to the
large-scale coherent structures in a neutral ABL as observed in Alcayaga et al. (2020).

In the x2–x3 direction, we also observe central positive lobes. In the x1–x3 plane, the
Mann model produces positive lobes that are inclined in the direction of the mean flow
with an inclination angle of around 19◦, which is slightly higher than what is observed in
other studies (Marusic & Heuer 2007; Sillero, Jiménez & Moser 2014), where a value of
around 10◦ was reported. We observed that the inclination is very sensitive to the choice of
Γ . However, in the current work, we prioritize a practicable way of selecting parameters,
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Figure 6. Cross-section of the Mann (with Saffman spectrum) two-point correlation C11(x, x̆) with reference
point x = [0, 0, H/4] at x3 = H/4 (b), x2 = 0 (a) and x1 = 0 (c).

as outlined in § 5.3.2, rather than further fitting on the inclination angle, which is not
directly identifiable as an input to the prior in our 4D-Var formulation.

5.4. Set-up of the assimilation problem
After determining the correlation tensor in the previous section, one remaining component
to be chosen before solving the optimization problem (2.4) is the variance γ 2. Looking at
the optimization problem, the objective function can be rewritten in a more explicit way
as J (Θ0) = ΘT

0 B′−1
Θ0/2σ 2

iso + ∑Ns
n=1 ‖yn − hn(Mt(R(Θ0))‖2/2γ 2, where B′ is the

normalized correlation tensor. As can be noticed, the relative weight of each term with
respect to the other is determined by the ratio γ 2/σ 2

iso, instead of the individual values
of γ 2 and σ 2

iso. However, since σ 2
iso was already fixed in § 5.3 as part of the parameter

selection procedure, γ 2 now serves as the only weighting parameter between the two
terms in the cost function, and the absolute value of σ 2

iso becomes somehow redundant.
For a fixed σ 2

iso, as γ 2 is increased, less trust is given to the likelihood term, leading to a
smoother solution. Decreasing γ 2 gives more significance to the likelihood term, and the
obtained solution becomes more irregular. In order to choose a suitable value for γ 2, a
trade-off between solution complexity and smoothness needs to be achieved. Similarly to
Bauweraerts & Meyers (2020), this is done through Pareto front analysis, which requires
solving the optimization problem multiple times per model for different values of γ 2.
Figure 7 shows that γ 2 = 10−3 achieves a good trade-off for both models, so it will be
used in the rest of this study. According to our experience, the reconstruction accuracy
appears to be much more sensitive to big changes in γ 2 than the convergence behaviour.

After choosing γ 2, the optimization problem (2.4) is solved for an optimization time
horizon equivalent to the lidar scanning period Tm, with an initial condition Θ̂0 = 0. The
spatial mean flow profile of the initial field as well as the surface roughness and u∗ are
assumed to be known from the reference simulation. Starting from the initial condition,
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Figure 7. Pareto front for the optimization problem (2.4) using the HGW (a) and Mann regularization with
Batchelor spectrum (b). The figure is obtained by solving the optimization problem many times using different
values of γ 2. The points are labelled with the corresponding γ 2 value.
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Figure 8. Cost function convergence (100 iterations) using the HGW (a) and Mann regularization with
Batchelor spectrum (b).

the optimization algorithm converges to a local minimum where ∇J = 0. In this study,
the optimization algorithms stop upon achieving a relative value of the gradient norm
‖∇J ‖/‖∇J0‖ = 6 × 10−3, where ∇J0 is the initial gradient obtained using an initial
guess for the initial condition Θ̂0 = 0. Figures 8 and 9 show the convergence history
of the HGW and Mann models with the Batchelor spectrum. Each iteration corresponds
to an L-BFGS-B iteration, which involves a forward and adjoint simulation as well as
a line search procedure (if the initial step αk does not satisfy the Wolfe conditions).
However, we only needed to perform the additional line search procedure a few times,
so the total number of iterations mainly represents the number of forward simulations (or
half of the forward and adjoint simulations). Figure 9 shows that we achieve a super-linear
convergence rate when either of the analytical models is used.

As a point of comparison, we also investigated ridge regression. We found that it leads
to slow convergence (a slope of −1.1), and only provides reasonable results inside the
scanning area, as further discussed in Appendix E. We will use results from the ridge
regression as a further point of comparison in the reconstruction error analysis discussed
in § 6.2.
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Figure 9. Convergence of the relative gradient using the HGW regularization (blue) and Mann regularization
with Batchelor spectrum (orange).

The optimization in this study was performed on the wICE supercomputer of the
Flemish supercomputer centre using four computational nodes, each of which has two
Intel Xeon Platinum 8360Y 2.4 GHz CPUs with 256 GB RAM. The total wall time
of one assimilation problem with Tm = 0.1H/u∗ (provided 100 iterations) is around
8 hours. It must be highlighted that this cost includes the preprocessing cost (involving the
computation of the background tensor), which is negligible in our assimilation algorithm
compared with the previous study of Bauweraerts & Meyers (2020).

6. Results

In this section, the reconstructed turbulent velocity field is visualized, and the results
are compared with the reference field from which the virtual lidar measurements were
collected.

6.1. Single assimilation window
We first discuss the results of a single assimilation window with an assimilation horizon
of Tm = 0.1H/u∗ using the analytical models described in § 3. Figure 10 presents a
comparison between the reconstructed velocity fluctuations and the reference values
obtained using two different models: the HGW model with a Batchelor spectrum and
the Mann model with a Saffman spectrum. Similar plots were also generated for the Mann
model with a Batchelor spectrum, but those are not shown here as they are not significantly
different from the Saffman case. The results are shown at the beginning (t = ti) and the end
(t = tf ) of the assimilation window for vertical and horizontal cross-sections at x2 = 0 and
x1 = 0.1H, respectively. Inside the scanning area, both models show good reconstruction
accuracy in figure 10(g–l). Additionally, some fluctuations were also captured in small
regions upstream and downstream of the scanning area due to the horizontal transport
by the mean flow (Bauweraerts & Meyers 2020). Away from the scanning region, the
likelihood term in the optimization problem (2.4) vanishes due to the absence of any
measurements, and the only remaining contribution in the MAP problem is due to the
initial background distribution provided by the analytical models.

For the vertical section in figure 10(a–f ), the lidar measurements are available only at a
height of x3 = 0.1H. The mean velocity in the vertical direction is zero, so that no mean
advection in that direction occurs. Therefore, the small structures are reconstructed only in
small local regions around the lidar beam. However, due to the decaying correlations in the
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Figure 10. The streamwise velocity fluctuation component at the x2 = 0 (a–f ) and x3 = 0.1H (g–l) planes. The
right column is the reference velocity and the left two columns are the reconstructed velocities using the HGW
model and the Mann model (with Saffman spectrum), respectively. Panels (a–c) and (g–i) show the velocity at
t = 0, while (d–f ) and (j–l) show the velocity at t = 0.1H/u∗. The dashed lines represent the boundaries of the
scanning area, and the solid line represents the lidar beam.

vertical direction provided by the analytical models, large structures are reconstructed up
to a height of approximately x3 = 0.7H. These observations agree with the results obtained
in figures 4–6. Owing to the isotropic assumption in the HGW model, no inclination in the
reconstructed fluctuations in the vertical direction is observed, whereas in the Mann model
the inclination in the direction of the mean flow can be clearly seen.

To more closely examine the accuracy of the velocity reconstruction in the scanning
area, we compare the reference and reconstructed streamwise velocity components for
different sections at the middle of the assimilation window (t = 0.05H/u∗) in figure 11.
At the lidar height (x3 = 0.1H), both models exhibit very good agreement between the
reference and reconstructed velocity components. However, as the height increases, the
reconstruction accuracy gradually decreases, as expected from the earlier discussion. On
the other hand, the reconstruction closer to the wall is accurate only for the large and not
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Figure 11. Comparison between the reconstructed velocity using the HGW model (green), the reconstructed
velocity using the Mann model with Saffman spectrum (orange) and the reference velocity (blue) for the
streamwise component at different lines in the vertical direction. The measurements are taken at t = 0.05H/u∗.

the small scales, which is expected from figures 4–6. This observation is seen to be true
for both models, as seen in figure 11.

6.2. Error statistics
In this section, the statistics of the error in the reconstructed streamwise velocity
component are studied. To this end, we define two metrics based on the instantaneous
reconstruction error for the streamwise velocity component ε(x, t) = I f

c (u1(x, t)) −
u1,ref (x, t), where u1 is the reconstructed velocity, u1,ref is the reference velocity and I f

c
represents interpolation from the coarse reconstruction to the fine reference grid.

In order to facilitate a direct comparison with the results of the reconstruction method
based on proper orthogonal decomposition (POD) presented in Bauweraerts & Meyers
(2020), we define, in a first step, the spatially averaged error 〈(ε(x, t))2〉Γ , where Γ

is the horizontal area swept by the lidar beam after truncating one convective distance
U∞T to avoid boundary effects. In figure 12, we present a comparison of the normalized
spatially averaged errors of the HGW, Mann (Saffman) and simple ridge regression models
and the POD-based reconstruction errors reported in Bauweraerts & Meyers (2020).
The horizontal dashed line represents the reconstruction using the mean flow only, with
(given the normalization by 〈u′2

1,ref 〉Γ ) a corresponding value of 1. Examining figure 12(a)
reveals that the ridge regression regularization results in an acceptable accuracy only
within the scanning region, corroborating the findings detailed in Appendix E. In contrast,
using either the HGW or Mann regularization yields a reconstruction accuracy closer
to that achieved by the considerably more resource-intensive POD-based approach. In
figure 12(b), errors are depicted over time at the lidar height x3 = 0.1H. Notably, both
the HGW and the Mann models show highly satisfactory reconstruction accuracy, closely
rivalling that of the POD approach. The ridge regression reconstruction exhibits larger
errors at the start of the assimilation window that decrease gradually with time. In
alignment with observations from Bauweraerts & Meyers (2020), optimal reconstruction
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Figure 12. The normalized spatially averaged error inside the scanning area for the ridge, HGW and Mann
(Saffman) models and the POD-based regularization in Bauweraerts & Meyers (2020). Panel (a) shows the
errors at t = 0.05u∗/H, while (b) shows the results at x3 = 0.1H. The horizontal dashed line represents
estimation with the mean flow, which leads to an expected error of 〈ε2〉Γ = 〈u′2

1,ref 〉Γ .

results are consistently achieved at the midpoint of the assimilation window for all models
considered. Further insights into this phenomenon will be explored in § 6.3.

We now further focus on a detailed error comparison by introducing a second metric,
namely the mean-squared error (MSE) of the reconstructed velocity, which can be defined
as

MSE(x) = 〈〈ε2(x, t)〉T〉e, (6.1)

where 〈·〉e and 〈·〉T denote the ensemble average and time average, respectively.
Furthermore, the error metric is normalized using the background variance 〈〈u′2

1,ref 〉T〉e

similar to the above. The normalized mean-squared error (NMSE) can then be defined
as NMSE(x) = MSE(x)/〈〈u′2

1,ref 〉T〉e. Figure 13 shows sections of the NMSE for the
reconstructed streamwise velocity component considering 10 different assimilation
windows (with a time horizon of T = 200 s) to compute the ensemble average for each
model in § 3, while the time average is performed over each assimilation window. The
NMSE is computed based on three different models: the HGW model (figure 13a,d), the
Mann model with Batchelor spectrum (figure 13b,e) and the Mann model with Saffman
spectrum (figure 13c,f ). Within the scanning region in the horizontal plane, all models
exhibit a high level of accuracy in reconstructing the flow. However, outside the scanning
area, the accuracy drops significantly for the Mann model with Batchelor spectrum in
the streamwise direction compared with the other two models. Nevertheless, using the
Saffman instead of the Batchelor spectrum reduces these errors, as seen in the figure. This
can be attributed to the fact that the Saffman spectrum leads to longer positive correlations
in the longitudinal direction compared with the Batchelor spectrum, as discussed in
§ 5.3.3. We further looked at energy spectra over the domain width and over the different
reconstruction windows (not shown here), observing that, indeed, the Saffman case has
much more energy in the large scales. In the regions further away from the measurement
area, the NMSE is close to 1, which indicates that the model is not able to predict any
turbulent features, which is a logical result of the lack of measurements in this region.

In the vertical direction, figure 13(a–c) demonstrates a marginal improvement in the
reconstruction accuracy close to the lidar height for the Mann model using either of the
energy spectra compared with the HGW case, but these differences may fall within the
averaging accuracy.
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Figure 13. The NMSE of the reconstructed streamwise velocity component at x3 = 0.1H using the HGW
regularization (a,d), the Mann regularization with Batchelor spectrum (b,e) and the Mann regularization with
Saffman spectrum (c,f ).

It is important to note that obtaining a high reconstruction accuracy far away from the
scanning region is not the primary goal of the data assimilation problem. In fact, this
region is usually filtered out in practice to end up with only the region of interest (i.e.
the scanning area, possibly slightly extended to incorporate effects of advection in the
reconstruction). While the correlation function plays a major role (filling the gaps) inside
the region of interest by correlating the scalar speed measurements to their surroundings,
the absence of such a correlation function leads to an undetermined system, even inside the
measurement area. Moreover, the accuracy outside can be also enhanced by considering a
more realistic mean flow, as will be discussed in § 7.

6.3. Effect of the time horizon (HGW model)
In this section, we investigate the influence of the time horizon on the accuracy of
reconstruction. We replicate the analysis presented in § 6.1 for two distinct windows
characterized by different assimilation horizons Tp using the HGW model. The first
window spans a time interval of 200 s, commencing at ti = tf − 200 s. Meanwhile, the
second window covers a wider period of 400 s, initiating at ti = tf − 400 s. Here, tf
represents a specific time instant. Increasing the time horizon further leads to divergence
of the adjoint solution due to the chaotic nature of turbulence. Therefore, we limit our
analysis to these two windows. Figure 14(f –h) show three snapshots of the reference field
at t = tf − 400 s, t = tf − 200 s and t = tf , respectively. The reconstructed field for the
short and long assimilation windows is shown in figure 14(a,b) and 14(c–e), respectively.
Moreover, the instantaneous reconstruction error is shown in figure 14(i–k) and 14(l,m) for
the long and short assimilation windows, respectively.

At t = tf − 200 s, it can be clearly seen that the reconstruction accuracy is significantly
increased when the time instant is located at the middle of the assimilation window, as seen
in figure 14(j), compared with the initial instant for the short window in figure 14(l). On the
other hand, the accuracy at the final instant t = tf for both windows in figure 14(k,m) are
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seen to be nearly the same as each other, and lower when compared with the reconstruction
of the long window at t = tf − 200 s.

7. Conclusion and future perspectives

In this paper, we reconstructed the turbulent flow field in a neutrally stratified ABL using
a strong 4D-Var assimilation approach combined with an LES model. Whilst this problem
was tackled before by Bauweraerts & Meyers (2020), the focus in the current study was
on providing a more practical, fast and cost-effective assimilation algorithm. To this end,
we formulated our problem in a solenoidal space to enforce the continuity equation and
regularized it using two fast analytical approximations for the background covariance
tensor. The problem was then preconditioned using the analytical tensor to increase the
convergence rate, which resulted in a super-linear convergence to a local minimum.

The error study revealed that regularizing the MAP problem with either the HGW
or the Mann model (with Saffman spectrum) yields favourable reconstruction accuracy.
However, it is worth noting that the HGW model has limitations in capturing the shear
profile, leading to errors in the vertical direction close to the lidar plane when compared
with the Mann model. This limitation may become particularly significant in scenarios
where there is strong shear present, but in the current work the difference between the
HGW and Mann (with Saffman) models was rather small. Furthermore, for the Mann
model, the error study revealed the sensitivity of the reconstruction accuracy to the length
of the correlation function in the streamwise direction. The Saffman energy spectrum,
characterized by a slower decay as k → 0, allows for the representation of longer structures
when employed in the Mann model. In contrast, the Batchelor case exhibits a faster decay.
The ability to represent longer structures with the Saffman spectrum can be advantageous
in capturing larger-scale features in the flow.

In the current work, we also studied the effect of increasing the assimilation time horizon
on the reconstruction accuracy. The study showed that in a strong 4D-Var method, the best
reconstruction accuracy is obtained at the middle of the assimilation window rather than
the terminal time, which can be attributed to the fact that the error history of the MAP
estimate is not included in the case of the strong 4D-Var. Formulating a weak 4D-Var such
that the maximum accuracy is obtained at the final time can be of particular significance,
especially in applications such as optimal control.

In this study, we limited our analysis to the neutrally stratified ABL. Extending the
analysis to other stability conditions should be possible. For instance, the modified Mann
model in Chougule et al. (2018) can be used to regularize the temperature fluctuations
alongside the velocity fluctuations in a stable ABL. Furthermore, it is possible to relax
the assumption of a known mean flow by estimating both the initial mean profile and
the fluctuation field. However, this estimation process requires obtaining the statistical
properties of the mean flow, including its direction and magnitude, in addition to the
turbulent part. One approach to achieve this is by, for example, using a hierarchical
Bayesian analysis, in which the mean flow is first included (e.g. using weather models)
and the turbulent field is then included at a lower level.

The focus of the current study was on assessing the possibility of directly applying the
HGW and Mann models within a reconstruction algorithm. However, further development
of an analytical model that is able to more precisely represent the significant structural
characteristics such as the meandering behaviour can be valuable (Hutchins & Marusic
2007).

Finally, extending the time horizon in this analysis revealed promising results that can
be further explored by further increasing the time horizon. While this is not possible using

981 A28-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.92


The LES-based reconstruction of turbulence

the current single shooting approach due to the chaotic divergence of the LES model, novel
techniques such as multiple shooting can be used for this purpose.
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Appendix A. State space model

A.1. Governing equations
The neutrally stratified ABL flow considered in this manuscript is modelled through the
incompressible Navier–Stokes equations and solved using a standard LES strategy. This
model was described in detail in many previous articles (e.g. Munters, Meneveau &
Meyers 2016; Bauweraerts & Meyers 2020). Nevertheless, it will be briefly discussed here
for completeness. The filtered incompressible Navier–Stokes momentum and continuity
equations are given as

∂ũ
∂t

+ (ũ · ∇)ũ = − 1
ρ

∇( p∞ + p̃) − ∇ · τsgs,

∇ · ũ = 0,

⎫⎬⎭ (A1)

where ũ is the filtered velocity at the grid scale, ∇p∞ is the mean pressure gradient
given as ∇p∞ = [−u2∗H−1, 0, 0] and p̃ is the filtered pressure fluctuation. The standard
constant-coefficient Smagorinsky model (Smagorinsky 1963) is used to model the
deviatoric part of the subgrid-scale stress tensor with Cs = 0.14, combined with wall
damping (Mason & Thomson 1992) to avoid excessive dissipation of kinetic energy with
n = 1. The trace of the stress tensor τsgs is absorbed into the filtered pressure p̃ as a
common practice in incompressible LES.

In this paper, all simulations are done on a computational domain that has periodic
boundary conditions in the horizontal plane. Therefore, the domain length is made
sufficiently large to prevent any boundary effects on the solution in the domain of
interest. In the vertical direction, an impermeable wall stress boundary condition is used
following Bou-Zeid, Meneveau & Parlange (2005). At the top boundary, the vertical
motion is blocked by an impermeable slip boundary condition. The governing equations
are discretized using the Fourier pseudospectral method described in § A.2 and solved
using our in-house LES code SP-Wind (Meyers & Sagaut 2007; Munters et al. 2016).

A.2. Discretization
Using the horizontal homogeneity assumption and the truncated discrete Fourier analysis,
the components of the discrete velocity vector U defined in § 2 can be expressed as

U j
mn =

pmax=(N1/2−1)∑
pmin=−N1/2

qmax=(N2/2−1)∑
qmin=−N2/2

Û
j
pq exp

(
i2π

(
pn
N1

+ qm
N2

))
, (A2)
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where U j
mn has a length of N3 when j = 1, 2 and N3 − 1 when j = 3. Here, m and

n are indices corresponding to horizontal spatial locations such that x1 = mL1/N1 and
x2 = nL2/N2. Further, Û

j
pq is the complex-valued Fourier coefficient of the Fourier mode

with streamwise wavenumber k1 = 2πp/L1 and spanwise wavenumber k2 = 2πq/L2.
Rewriting the latter equation in matrix form for the three velocity components, including
all grid points in the vertical direction, gives⎡⎣U1

mn(t)
U2

mn(t)
U3

mn(t)

⎤⎦ =
⎡⎣W1 0 0

0 W2 0
0 0 W3

⎤⎦
⎡⎢⎣Û1(t)

Û2(t)

Û3(t)

⎤⎥⎦ ,

Umn(t) = WÛ(t),

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (A3)

where Û j = [Û j
pminqmin, . . . , Û j

pmaxqmax]T and W j is a block matrix of inverse discrete
Fourier transform sub-matrices in the horizontal plane and has a size of N1N2N3 ×
N1N2N3 when j = 1, 2 and N1N2(N3 − 1) × N1N2(N3 − 1) when j = 3. The second line
of (A3) is a compact representation of the discretization.

Appendix B. Adjoint model

As already mentioned in § 4, the gradient in the current study is obtained using the
continuous adjoint method derived in Goit & Meyers (2015) and Bauweraerts & Meyers
(2020). The resulting adjoint equation can be written as

−∂ζ

∂t
= ũ · ∇ζ + ζ · ∇ũ + ∇ · τ ∗

SGS + 1
ρ

∇π +
Nr∑

i=1

f i,

∇ · ζ = 0,

⎫⎪⎪⎬⎪⎪⎭ (B1)

with

f i = 1
γ 2Ts

Ns∑
n=1

(yn,i − hn,i)G(Q(t)(x − xi(t)))el(t)H
(

Ts

2
− |t − tn−1/2|

)
, (B2)

where ζ and π are the adjoint velocity and pressure, respectively. Further, τ∗
SGS is the

adjoint subgrid-scale model. The adjoint equation is discretized and solved backward in
time similarly to the forward model, starting from the terminal condition ζ (x, tf ) = 0.
The adjoint solution at the beginning of the assimilation window ζ (x, 0) is then used to
compute the gradient using (4.1).

Appendix C. Projection and reconstruction operations

In this section, the projection and reconstruction operators in § 2 are derived in the Fourier
space. Assuming incompressibility, the continuity equation in the horizontal wavenumber
space can be written as

0 = ik1Û
1
pq + ik2Û

2
pq + DzÛ

3
pq, (C1)

981 A28-24

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

92
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.92


The LES-based reconstruction of turbulence

where Dz is a discretization matrix in the vertical direction of size N3 × (N3 − 1).
Similarly, the vertical component of the vorticity is given as

Ω̂3
pq = −ik2Û

1
pq + ik1Û

2
pq. (C2)

Writing (C2) for all wavenumbers (except the DC mode, i.e. (k1, k2) = (0, 0)) in matrix
form, we get [

0 0 I
B C 0

] ⎡⎣Û1

Û2

Û3

⎤⎦ =
[

Û3

Ω̂3

]
,

P̂Û = Θ̂,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ , (C3)

with

Ω̂3 =
[
Ω̂3

pminqmin
, . . . , Ω̂3

pmaxqmax

]T ∀ ( p, q) /=(0, 0), (C4)

where P̂ is a linear projection operator and

B =

⎡⎢⎣−ik2,minIN3×N3
. . . 0N3×N3

...
. . .

...

0N3×N3
. . . −ik2,maxIN3×N3

⎤⎥⎦ , C =

⎡⎢⎣ik1,minIN3×N3
. . . 0N3×N3

...
. . .

...

0N3×N3
. . . ik1,maxIN3×N3

⎤⎥⎦ .

(C5a,b)

To retrieve the velocity field, the continuity equation (C1) is added to the system (C3)
and then the system is inverted to obtain the inverse transformation (for (k1, k2) /= (0, 0))

Û = R̂Θ̂, (C6)

with R̂ the reconstruction operator

R̂ = 1
κ2

i

⎡⎣ E B
F C

κ2
i I 0

⎤⎦ , (C7)

where κi = (k2
1,i + k2

2,i)
1/2 and

E =

⎡⎢⎣−ik1,minDz . . . 0N3×N3−1
...

. . .
...

0N3×N3−1 . . . −ik1,maxDz

⎤⎥⎦ , F =

⎡⎢⎣−ik2,minDz . . . 0N3×N3−1
...

. . .
...

0N3×N3−1 . . . −ik2,maxDz

⎤⎥⎦ .

(C8a,b)

Using the transformation variable Θ̂ instead of the velocity Û in the MAP problem
allows us to eliminate the divergence-free constraint from the optimization problem, since
the reconstructed velocity using (C6) is solenoidal by definition. Since the projection and
reconstruction operators are not defined for the DC mode (which corresponds to the spatial
mean in physical space), this mode is given explicitly in the optimization algorithm.
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Figure 15. Pareto front (a) and the convergence of the relative gradient using the simple ridge
regularization (b).

Appendix D. Analytical IFT of the homogeneous tensor

In this section, the analytical IFT of the tensor Φ̂ iso
ij (k) in (3.3) is calculated for the

Batchelor turbulence case in the direction of k3. These calculations are available in the
original paper of Wilson (1997) and are repeated here only for completeness. The relevant
parts of the spectrum are

R̂iso
11 (k1, k2; r3) = σ 2

iso�
2ζ ν+1

h

π2νΓ (ν)(1 + κ2�2)ν+1

×
[(

ν + 3
2

)
Kν+1(ζh) − ζh(1 + k2

1�
2)

2(1 + κ2�2)
Kν+2(ζh)

]
,

R̂iso
33 (k1, k2; r3) = σ 2

isoκ
2�4ζ ν+2

h

π2ν+1Γ (ν)(1 + κ2�2)ν+2 Kν+2(ζh),

R̂iso
12 (k1, k2; r3) = − σ 2

isok1k2�
4ζ ν+2

h

π2ν+1Γ (ν)(1 + κ2�2)ν+2 Kν+2(ζh),

R̂iso
13 (k1, k2; r3) = − iσ 2

isok1�
3ζ ν+2

h

π2ν+1Γ (ν)(1 + κ2�2)ν+3/2 Kν+1(ζh),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D1)

where ν = 1/3, ζh = (r3/�)
√

1 + κ2�2 and Kν is the modified Bessel function of the
second kind of order ν.

Appendix E. Ridge regression results

In this section, we study the reconstruction result, in analogy to § 6, for the ridge regression
case (i.e. when B = PPT in (2.4), leading to R = I). Similar to the other models
considered in this paper (see figure 7 and § 5.4), we use the Pareto front technique to fix
the parameter γ 2, which results in a value of γ 2 = 1 as shown in figure 15(a). Afterwards,
the optimization problem is solved to reconstruct the turbulent flow field with an identical
set-up to that presented in § 6. Figure 15(b) shows the convergence of the optimization
algorithm, which is slower than the convergence observed for the other models in this
paper (i.e. slope −1.1 versus −1.4).
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Figure 16. The streamwise velocity fluctuation component at the x2 = 0 (a,b) and x3 = 0.1H (c,d) planes. The
right column is the reference velocity and the left column is the reconstructed velocity using the simple ridge
regression. The results are shown at t = 0.05u∗/H.

Examining the reconstructed field in figure 16 at t = 0.05u∗/H reveals that the
direct application of the simple ridge regression in this example leads to acceptable
reconstruction results only at the measurement locations. However, as soon as we move
outside the scanning region (beyond the convection effects), the reconstruction is solely
done using the mean flow (cf. figure 12). This can be particularly seen, for example, in the
vertical direction.

Finally, we note that ridge regression may be alternatively formulated by directly
using B = I . We have also investigated this approach. However, we saw that it leads to
consistently worse results compared with R = I (not further shown here).
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