
Econometric Theory, 0, 2024, 1–36.
doi:10.1017/S0266466624000215

INFERENCE IN MILDLY EXPLOSIVE
AUTOREGRESSIONS UNDER

UNCONDITIONAL
HETEROSKEDASTICITY

XUEWEN YU

Fudan University

MOHITOSH KEJRIWAL

Purdue University

Mildly explosive autoregressions have been extensively employed in recent theoreti-
cal and applied econometric work to model the phenomenon of asset market bubbles.
An important issue in this context concerns the construction of confidence intervals
for the autoregressive parameter that represents the degree of explosiveness. Existing
studies rely on intervals that are justified only under conditional homoskedastic-
ity/heteroskedasticity. This paper studies the problem of constructing asymptotically
valid confidence intervals in a mildly explosive autoregression where the innovations
are allowed to be unconditionally heteroskedastic. The assumed variance process
is general and can accommodate both deterministic and stochastic volatility spec-
ifications commonly adopted in the literature. Within this framework, we show
that the standard heteroskedasticity- and autocorrelation-consistent estimate of the
long-run variance converges in distribution to a nonstandard random variable that
depends on nuisance parameters. Notwithstanding this result, the corresponding
t-statistic is shown to still possess a standard normal limit distribution. To improve
the quality of inference in small samples, we propose a dependent wild bootstrap-
t procedure and establish its asymptotic validity under relatively weak conditions.
Monte Carlo simulations demonstrate that our recommended approach performs
favorably in finite samples relative to existing methods across a wide range of
volatility specifications. Applications to international stock price indices and U.S.
house prices illustrate the relevance of the advocated method in practice.
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1. INTRODUCTION

Over the past decade, the mildly explosive autoregressive (MEA) framework
has emerged as a popular econometric device for modeling the phenomenon of
asset market bubbles. The framework has been extensively utilized to develop a
multitude of procedures for detecting and dating the origination and termination
of bubbles as well as constructing asymptotically valid confidence intervals for
the size of the bubble. These methods equip policymakers with a powerful set
of econometric tools that can be employed to mitigate the potentially adverse
consequences of a bubble and thereby maintain economic and financial stability.
The techniques have been successfully applied to a variety of asset prices including
stock prices, house prices, cryptocurrencies, and commodity prices. For detailed
reviews of this literature, see, inter alia, Phillips and Shi (2020) and Skrobotov
(2023).

Introduced by Phillips and Magdalinos (2005, 2007a), the MEA framework
posits that the autoregressive parameter which represents the degree of explo-
siveness (i.e., the size of the bubble) evolves as a function of the sample size
(T) according to ρT = 1 + c/kT, c > 0, kT → ∞, kT/T → 0, as T → ∞. The
motivation for adopting this specification emanated from the fact that modeling
the parameter as fixed and independent of the sample size (i.e., ρT = ρ > 1)
precludes the application of an invariance principle so that the limit distribution
of its least squares estimate depends on the underlying error distribution that is
typically unknown in practice (Anderson, 1959). Wang and Yu (2015) show that
in the fixed parameter autoregression of order one with an intercept, the standard
t-statistic on the autoregressive coefficient has a nonstandard limit distribution that
depends on the initial value of the stochastic process as well as the true values of the
model parameters. On the other hand, modeling the autoregressive coefficient as
local-to-unity (ρT = 1+ c/T) facilitates the application of functional central limit
theory and leads to a limit distribution that is not reliant on the error distribution but
depends on the local-to-unity parameter c which cannot be consistently estimated
(Phillips, 1987). Phillips and Magdalinos (2007a) show that the MEA framework
permits the application of an invariance principle that induces a Cauchy limit
distribution for the least squares estimate without assuming Gaussian errors.

While the Cauchy limit was initially derived assuming independently and
identically distributed (i.i.d.) innovations, subsequent work has demonstrated the
same limit distribution continues to hold under weak or strong dependence in
the errors (Magdalinos, 2012), anti-persistent errors (Lui, Xiao, and Yu, 2021),
and conditional heteroskedasticity (Arvanitis and Magdalinos, 2018). Fei (2018)
and Liu and Peng (2019) show that the inclusion of a fixed nonzero drift in
the first-order MEA model with i.i.d. errors leads to a standard normal limit
distribution for the t-statistic. Assuming weakly dependent and conditionally
homoskedastic innovations, Guo, Sun, and Wang (2019) show that the t-statistic
based on a heteroskedasticity- and autocorrelation-robust estimate of the standard
error follows a Student’s t distribution in large samples. They further establish the
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invariance of the limit distribution to a possible drift in the process, regardless
of whether the drift dominates the explosive stochastic component. Chan, Li,
and Peng (2012) develop an empirical likelihood-based confidence interval in
the first-order autoregressive model with i.i.d. errors that is asymptotically valid
for stationary, unit-root, near-integrated, and fixed parameter explosive processes,
thereby providing a unified approach to inference.

While the aforementioned inference methods are justified under conditional
heteroskedasticity, they rule out the presence of unconditional heteroskedasticity.
A plethora of empirical studies, however, document that several macroeconomic
and financial time series exhibit time-varying unconditional volatility profiles.
For example, Sensier and van Dijk (2004) find that approximately 80% of 214
macroeconomic time series over the period of 1959 to 1999 were subject to a break
in unconditional volatility with the break date estimated at 1984 and associated
with a reduction in volatility for a large number of series (the so-called “Great
Moderation”). Harvey et al. (2016) reject the null hypothesis of stationary volatility
in the prices of two types of crude oil, three precious metals (gold, silver, and
platinum), and two non-ferrous metals (aluminum and copper) using a battery
of four tests developed in Cavaliere and Taylor (2007b). Based on the rejection
patterns of the tests, they conclude that a single discrete break volatility model
or a trending volatility model might be appropriate for these series. Using the
same set of tests, Astill et al. (2018) also find statistically significant evidence
against stationary volatility for three out of five major stock price indices: the FTSE
All Share index (UK), the Nasdaq Composite index (USA), and the Nikkei 225
index (Japan). Kurozumi, Skrobotov, and Tsarev (2023) use estimated variance
profiles to document the presence of time-varying volatility in the 12 largest
cryptocurrencies by capitalization.

Motivated by these considerations, this paper studies the problem of construct-
ing asymptotically valid confidence intervals in a mildly explosive autoregres-
sion with weakly dependent innovations that are allowed to be unconditionally
heteroskedastic. Our framework adopts a general specification for the volatility
process that can accommodate both deterministic and stochastic volatility (SV)
specifications commonly employed in the literature (see Section 2). Within this
framework, we show that the standard heteroskedasticity- and autocorrelation-
consistent (HAC) estimate of the long-run variance converges in distribution to a
nonstandard random variable that depends on nuisance parameters. Notwithstand-
ing this result, the corresponding t-statistic is shown to still possess a standard
normal limit distribution. To improve the quality of inference in small samples, we
propose a dependent wild bootstrap-t procedure that can simultaneously account
for time-varying unconditional volatility and weak dependence in the errors. The
large sample validity of the proposed approach is established under relatively weak
conditions. The theoretical analysis does, however, rule out the possibility that the
sign of the current shock affects future volatility, commonly referred to as leverage.
This is due to the fact that conditional on the data, the bootstrap innovations are
independent over time. Monte Carlo simulations demonstrate that our proposed
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approach performs favorably in finite samples relative to existing methods across
a wide range of volatility specifications. In particular, the dependent wild bootstrap
confidence interval is shown to be adept at maintaining coverage close to the
nominal confidence level while controlling average length both for data generating
processes (DGPs) with and without leverage effects. The relevance of the proposed
method in practice is illustrated in two empirical applications concerning interna-
tional stock price indices and U.S. house prices, respectively.

The bootstrap approach has been employed in prior work concerning infer-
ence in fixed parameter explosive autoregressive processes. Basawa et al. (1989)
establish the asymptotic validity of the standard i.i.d. bootstrap in the first-
order autoregressive process with i.i.d. errors. More recently, Cavaliere, Nielsen,
and Rahbek (2020) develop bootstrap-based inference procedures in noncausal
autoregressions with heavy-tailed innovations. They show that the asymptotic
distribution of the least squares estimate in this framework is non-pivotal in that
it depends on the tail behavior of the innovations. To address this issue, three
alternative choices for the bootstrap are considered, namely, the wild bootstrap,
the permutation bootstrap, and a permutation wild bootstrap. Sufficient conditions
for the validity of each of these choices in large samples are provided. In contrast,
the goal of the present paper is to study the properties of asymptotic and wild
bootstrap procedures for conducting inference within the MEA framework with
weakly dependent errors and time-varying volatility.

Our paper is also closely related to a strand of the literature that studies stable
and unit-root autoregressions under unconditional heteroskedasticity. Working
in a stable autoregressive framework with deterministic volatility, Phillips and
Xu (2006) develop inference procedures based on a nonparametric kernel-based
estimate of the variance function, while Xu and Phillips (2008) employ the
estimated variance function to propose adaptive least squares estimation of the
autoregressive coefficients and demonstrate via simulations the efficiency gains
achievable over ordinary least squares estimation. Gonçalves and Kilian (2004)
propose a wild bootstrap approach to inference in stable autoregressions under
conditional heteroskedasticity of unknown form, while Xu (2008) extends their
work by showing that the wild bootstrap remains valid under time-varying uncon-
ditional volatility. Xu (2008) also studies the effects of allowing for deterministic
and SV on the consistency, rate of convergence, and limit distributions of the least
squares estimates. The non-robustness of standard unit-root tests to unconditional
heteroskedasticity was demonstrated, inter alia, by Cavaliere (2005) and Cavaliere
and Taylor (2007a), who show that the limit distributions of these tests are non-
pivotal and depend on the time-varying variance profile. Cavaliere and Taylor
(2007a) and Beare (2018) propose unit-root tests that employ a nonparametric
estimate of the variance profile where the former uses critical values simulated
from the limit distribution while the latter is based on standard null asymptotic
critical values. Cavaliere and Taylor (2008, 2009) develop wild bootstrap tests of
the unit-root hypothesis and establish their asymptotic validity, while Boswijk and
Zu (2018) propose adaptive wild bootstrap unit-root tests based on nonparametric
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volatility estimation and show that they achieve the same asymptotic power
envelope as in the known volatility case. Harvey et al. (2016) show that the
recursive right-tailed unit-root tests proposed by Phillips, Wu, and Yu (2011)
for detecting explosive behavior are not robust to nonstationary volatility and
present a wild bootstrap approach to inference that is effective at controlling size
while retaining power against locally explosive (as opposed to mildly explosive)
alternatives. It is useful to note that the use of the bootstrap in this strand of the
literature is primarily motivated by the non-pivotal nature of the limit distributions
of standard test statistics that depend on the unknown volatility process. In contrast,
the dependent wild bootstrap adopted in the current paper is motivated by its
ability to provide a more reliable approximation to the finite-sample distribution of
the standard HAC-based t-statistic than that afforded by its standard normal limit
distribution.

In a recent contribution, Phillips (2023) develops a unified approach to esti-
mation and inference in nonstationary time series with autoregressive roots near
unity. His approach allows both local and mild departures from unity and entails
consistent estimation of a localizing rate parameter that characterizes such depar-
tures. Confidence intervals for the rate parameter facilitate classification of the
process as local-to-unity, mildly integrated, or mildly explosive. This approach can
be viewed as complementary to the approach that constructs confidence intervals
for the autoregressive parameter conditional on pretest evidence against a unit root
(e.g., Phillips et al., 2011, 2015). The analysis in Phillips (2023), while allowing
for weak dependence in the errors, rules out unconditional heteroskedasticity
in the errors, which is the primary focus of our paper. Extending the approach
in Phillips (2023) to allow for heteroskedasticity in the noise component is
an interesting avenue for future research but outside the scope of the present
paper.

The rest of the paper is organized as follows. Section 2 lays out the mod-
eling framework and associated assumptions. Section 3 discusses methods for
constructing asymptotic confidence intervals for the autoregressive parameter.
Section 4 proposes a dependent wild bootstrap-t procedure for inference and
develops its large sample properties. Section 5 presents a set of Monte Carlo
experiments comparing the finite-sample adequacy of the different methods in
terms of coverage and expected length for a variety of volatility specifications.
Section 6 details an empirical application to illustrate the practical relevance of
the proposed approach. Section 7 concludes. The Supplementary Material includes
four appendixes: Appendix A contains a set of technical lemmas required for the
proofs of the main results, Appendix B contains the proofs of the main results
in Sections 3 and 4, Appendix C contains additional Monte Carlo results, and
Appendix D contains an additional empirical application to U.S. house prices.

As a matter of notation,
p→ denotes convergence in probability,

w→ denotes weak
convergence, and

w→p denotes weak convergence in probability under the bootstrap
measure.
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2. THE MODEL AND ASSUMPTIONS

Consider a scalar random variable yt generated by the following mildly autoregres-
sive process with possibly nonzero drift:

yt = μT +ρTyt−1 +ut, t = 1,...,T, (1)

ρT = 1+ c

kT
, c > 0, (2)

ut = C(L)et =
∞∑

j=0

cjet−j, et = σtεt. (3)

The DGP in (1)–(3) allows for weakly dependent errors modeled via the polyno-
mial C(.) and for conditional as well as unconditional heteroskedasticity modeled
through the volatility function σt. A special case of this DGP with σt = σ ∀ t was
considered by Phillips and Magdalinos (2007b) and Guo et al. (2019). Specifically,
our analysis is based on the following assumptions:

Assumption 1. (a) kT = Tα, 0 < α < 1; (b) μT
√

kT → ν ∈ [0,∞] as T → ∞.

Assumption 2. (a) The lag polynomial satisfies C(z) �= 0 for all |z| ≤ 1, C(1) ∈
(0,∞), and

∑∞
j=0 j|cj| < ∞; (b) εt ∼ iid(0,1) with E(ε

4+κ1
t ) ≤ K1 < ∞ for some

κ1 > 0; (c) for some strictly positive deterministic sequence {aT}, {σt} satisfies
a−1

kT
σ
kT r�

w→ g(r), r ∈ [0,+∞),
∫ 1

0 g(r)2dr > 0 a.s.,
∫ ∞

0 g(r)2dr < ∞ a.s., g(1) > 0

a.s., and suptE(a−1
kT

σt)
4+κ2 ≤ K2 < ∞ for some κ2 > 0; (d) σt is independent of εs

for any t and s; (e) the initial value y0 is independent of {ut}T
t=1 and a−1

kT
y0 = o(k1/2

T ).

Assumption 3. The sequence {aT} satisfies aT ∝ Tγ , where γ is a constant with
γ ∈ [0,∞).

Assumption 1(a) characterizes the mildly explosive framework developed by
Phillips and Magdalinos (2007a, 2007b) whereby the explosive root approaches
unity at a sufficiently slow rate relative to the sample size.1 Assumption 1(b)
specifies the drift component μT following Guo et al. (2019) and allows the drift
to be small (ν ∈ [0,∞)) or large (v = ∞). Given that the magnitude of the drift is
typically unknown in practice, potential model misspecification can be avoided by
including a constant in the estimated regression.

Assumption 2(a) imposes conditions on the lag polynomial that ensures that the
errors ut are weakly dependent and admits a Beveridge–Nelson decomposition
(see Phillips and Solo, 1992). Assumption 2(b) specifies the innovations εt to
be i.i.d. with bounded fourth moments. While we adopt the i.i.d. assumption
to simplify the theoretical analysis, we expect that the results in the paper will
continue to hold under the weaker condition that {εt,Ft} is a martingale difference

1While the formulation in Phillips and Magdalinos (2007a) only requires kT → ∞, kT/T → 0, Assumption 1(a)
has been adopted in several studies (see, e.g., Phillips and Magdalinos, 2007b; Magdalinos, 2012; Arvanitis and
Magdalinos, 2018).
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sequence with respect to Ft = σ -field{εs,s ≤ t}, satisfying (i) E(ε2
t ) = 1 for all

t, (ii) T−1 ∑T
t=1 ε2

t
p→ 1, and (iii) suptE(ε

4+κ1
t ) ≤ K1 < ∞ for some κ1 > 0.

Assumption 2(c) states that the appropriately scaled volatility process weakly
converges to a function g(.) that satisfies three conditions: (i) a lower bound
condition (

∫ 1
0 g(r)2dr > 0 a.s.), (ii) square integrability (

∫ ∞
0 g(r)2dr < ∞ a.s.),

and (iii) a positivity condition at one (g(1) > 0 a.s.). Condition (i) facilitates
the application of a central limit theorem to the partial sums of the errors {ut},
conditional on {σt} (see Theorem 2(d) below). Conditions (ii) and (iii) ensure
the non-degeneracy of the random variables appearing in the limit distribution
of the autoregressive parameter estimate (see Section 3.2). Conditions (i) and (ii)
were also imposed by Cavaliere and Taylor (2009) in their analysis of unit-root
tests under heteroskedasticity (see their Assumption 2). Assumption 2(c) allows
for a wide class of volatility processes including a variety of deterministic and
nondeterministic specifications for {σt} commonly employed in the literature.
In the deterministic case, the assumption allows single and multiple volatility
shifts, linearly and polynomially trending volatility (with an appropriate choice
of aT ), and smooth transition breaks. In the nondeterministic case, the class
of volatility processes allowed includes nonstationary autoregressive SV models
(Hansen, 1995), SV models with jumps (Georgiev, 2008), nonstationary nonlinear
heteroskedastic models with stochastically trending volatility, and near-integrated
GARCH models (see Cavaliere and Taylor, 2009, for a detailed discussion of
the class of volatility processes permissible under this assumption). Assumption
2(d) precludes the possibility that the sign of the current shock affects future
volatilities, often referred to as leverage. This assumption is needed to ensure
the asymptotic validity of the proposed dependent wild bootstrap approach since
the wild bootstrap innovations cannot replicate any leverage effects that may be
present in the original data. Nevertheless, we examine the sensitivity of the various
methods to the failure of this assumption via simulations in Section 5. Assumption
2(e) guarantees the invariance of the limit theory to the initial condition. Defining
Gt−1 = σ -field{σs+1,εs,s ≤ t−1}, we have σ 2

t = Var(yt|Gt−1), i.e., the conditional
variance of the time series yt is represented by the process σ 2

t .
The specification for aT adopted in Assumption 3 nests all of the volatility

models in the examples considered by Cavaliere and Taylor (2009). Specifically,
when γ = 0 and aT = 1, it incorporates the models in their Examples 1–4, and
when γ > 0, it incorporates the models in their Examples 5 and 6. Without loss of
generality, we henceforth directly set aT = Tγ instead of aT = ψTγ , ψ > 0, since
ψ is not identified but could be absorbed into the unknown volatility function g(·).
As will be seen in the subsequent analysis, aT will have a nonnegligible effect
on the asymptotic theory, a feature also observed by Xu (2008) in the context of
stationary autoregressive models with nonstationary volatility.

Remark 1. While the errors {ut} are weakly dependent (or short memory) in our
framework, our assumptions allow {σt} to be a stationary long memory process.
To see this, note that regardless of whether {σt} is short memory or stationary
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long memory, the independence of {σt} and {εt} (Assumption 2(d)) ensures that
{et} is serially uncorrelated, i.e., Cov(et,es) �= 0 for all t �= s. Consequently, as
long as the process {a−1

kT
σt} has uniformly bounded second moments (as ensured

by Assumption 2(c)), the memory structure of {ut} is entirely determined by the
conditions imposed on the lag polynomial C(.) in Assumption 2(a).

Remark 2. Assumption 3 allows aT to diverge with T when γ > 0. This
possibility opens up an interesting connection between the properties of the process
{ut} in our framework and those of a stationary long memory process (i.e., ut ∼ I(d)

such that 
dut ∼ I(0), with 0 < d < 0.5). Specifically, in our framework, the partial
sums satisfy

∑[Tr]
t=1 ut = Op(Tγ+1/2), whereas if ut ∼ I(d),

∑[Tr]
t=1 ut = Op(Td+1/2)

(see, e.g., Davidson and De Jong, 2000). Thus, if d = γ, the two processes possess
the same signal strength. The difference arises in their limit distributions: in our
framework (see Theorem 2 below), [vuT ]−1/2a−1

T T−1/2 ∑[Tr]
t=1 ut

w→ B(r), where
vuT = Var(a−1

T T−1/2 ∑[Tr]
t=1 ut) and B(.) denotes a standard Brownian motion on

[0,1]; if ut ∼ I(d),[vuT ]−1/2a−1
T T−1/2 ∑[Tr]

t=1 ut
w→ Bd(r), where Bd(.) denotes a

fractional Brownian motion on [0,1]. A potentially interesting extension of our
framework would be to explicitly allow for long memory in {ut} via appropriate
conditions on C(.) as in Magdalinos (2012). The exploration of this extension is
left for future research. We thank an anonymous referee for his/her suggestion to
include this discussion.

3. ASYMPTOTIC CONFIDENCE INTERVALS

The objective of the paper is to analyze the properties of alternative methods for
constructing confidence intervals for the autoregressive parameter ρT in (1) in
the potential presence of unconditional heteroskedasticity of the form specified in
Assumption 2. This section first discusses existing methods based on an asymptotic
approximation to the sampling distribution of the least squares estimate of ρT or
the corresponding t-statistic under the assumption that the innovations are uncon-
ditionally homoskedastic, i.e., E(e2

t ) = σ 2 for all t. Subsequently, we consider
the standard t-statistic based on the usual heteroskedasticity- and autocorrelation-
consistent (HAC) estimate of the long-run variance of ut (e.g., Andrews, 1991).
We show that despite the nonstandard nature of the limit distribution of the HAC
estimate, the t-statistic is still asymptotically standard normal. In what follows, we
denote zt = (1,yt−1)

′ and ι2 = (0,1)′.

3.1. Existing Inference Methods

Phillips and Magdalinos (2007a) considered a version of (1)–(3)with no drift under
the assumption that the errors ut are i.i.d. and square-integrable. They establish that
the following limit theory holds as T → ∞:

kTρT
T

2c
(ρ̃T −ρT)

w→ C and
ρT

T

ρ2
T −1

(ρ̃T −ρT)
w→ C, (4)
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where ρ̃T = (
∑T

t=1 y2
t−1)

−1(
∑T

t=1 yt−1yt) denotes the least squares estimate and
C denotes a standard Cauchy random variable. It follows that a 100(1 − δ)%
confidence interval for ρT can be constructed as(

ρ̃T ± ρ̃2
T −1

ρ̃T
T

Cδ

)
, (5)

where Cδ is the two-tailed δ percentile critical value of the standard Cauchy
distribution. For instance, a 95% confidence interval will use the critical value
C0.05 = 12.7 compared to the corresponding Gaussian critical value of 1.96. We
will refer to (5) as the PM interval.

Phillips and Magdalinos (2007b) showed that (4) remains valid even when
the errors ut are weakly dependent and satisfy Assumption 1(a) while imposing
conditional homoskedasticity by assuming et ∼ iid(0,σ 2). Magdalinos (2012)
extended the validity of (4) to include error processes that can be strongly
dependent (i.e., exhibiting long memory), thereby demonstrating the robustness
of the interval (5) to a general dependence structure in the innovation sequence.
More recently, Arvanitis and Magdalinos (2018) established that the Cauchy limit
theory is also invariant to a wide class of stationary conditionally heteroskedastic
error processes with weak or strong dependence.2

Based on the limit result (4) Guo et al. (2019) show that under the assumption
that the errors ut are i.i.d., the OLS t -statistic that does not correct for heteroskedas-
ticity or autocorrelation has a standard normal limiting distribution. In the no drift
case (μT = 0), this t-statistic is given by

tPM = ρ̃T −ρT√
s̃2

T

(∑T
t=1 y2

t−1

)−1

w→ N(0,1),

where s̃2
T = (T −1)−1 ∑T

t=1(yt − ρ̃Tyt−1)
2. When the estimated regression includes

a constant, Guo et al. (2019) establish, under Assumptions 1 and 2(e), that

tMED = ρ̂T −ρT√
ŝ2

T ι′2
(∑T

t=1 ztz′
t

)−1
ι2

w→ N(0,1),

where (μ̂T,ρ̂T)′ =
(∑T

t=1 ztz′
t

)−1 ∑T
t=1 ztyt, and ŝ2

T = (T − 2)−1 ∑T
t=1(yt − μ̂T −

ρ̂Tyt−1)
2.

In the case of weakly dependent errors ut given by (3) where et ∼ iid(0,σ 2)

with finite fourth moments and C(.) satisfies Assumption 2(a), Guo et al. (2019)
develop an inference procedure based on an orthonormal series long-run variance

2Lee (2018) considers a framework in which ut is assumed to be strong mixing with exponentially decaying
coefficients and finite fourth moments. In contrast, Arvanitis and Magdalinos (2018) does not require strong mixing
and instead relies on an L1-mixingale condition on et which does not place restrictions on the moments of ut higher
than order 2.

https://doi.org/10.1017/S0266466624000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000215


10 XUEWEN YU AND MOHITOSH KEJRIWAL

estimator that accounts for the dependence structure. Specifically, they propose the
t -statistic

t̃MED = ρ̂T −ρT√
λ̂2

Kι′2
(∑T

t=1 ztz′
t

)−1
ι2

, (6)

where λ̂2
K is the estimate of the long-run variance of ut constructed from the

estimated residuals ût = yt − μ̂T − ρ̂Tyt−1 as

λ̂2
K = 1

K

K∑
j=1

[
1√
T

T∑
t=1

φj

( t

T

)
ût

]2

. (7)

In (7), K is an even constant and φj(x) = √
2sin(2π jx) and φ2j−1(x) =√

2cos(2π jx) are the Fourier basis functions. Guo et al. (2019) show that under
the fixed-K asymptotics where T → ∞ for a given K, t̃MED

w→ tK, where tK is
the Student’s t distribution with K degrees of freedom.3 The choice of K is data-
dependent and based on the asymptotic mean squared error criterion implemented
using the AR(1) plug-in procedure. This value of K is then rounded to the closest
even number between 4 and T (see Phillips, 2005).

All of the aforementioned confidence intervals are predicated upon the assump-
tion of unconditionally homoskedastic innovations. In Section 5, we will examine
their finite-sample performance for DGPs that fail this assumption via simulations.
These simulation results would allow us to assess the degree to which these
methods are sensitive to the underlying homoskedasticity assumption.

3.2. HAC-Based Inference

We now consider an asymptotic approach to inference that, in contrast to the
extant methods described in Section 3.1, remains valid even in the presence of
unconditional heteroskedasticity of the form allowable under Assumption 2. Our
approach is simply based on the standard t-statistic that employs an HAC estimate
of the standard errors to account for heteroskedasticity and autocorrelation (e.g.,
Newey and West, 1987; Andrews, 1991). In order to define this statistic, we
introduce the following notation. Let ȳ = T−1 ∑T

t=1 yt, ȳ−1 = T−1 ∑T−1
t=0 yt, ū =

T−1 ∑T
t=1 ut, ẏt−1 = yt−1 − ȳ−1, u̇t = ut − ū, for t = 1, . . . ,T , and

�̂ =
T−1∑

j=−(T−1)

w(j/bT)�̂(j), �̂(j) = T−1
T−|j|∑
t=1

ẏt−1ûtẏt−1+|j|ût+|j|, (8)

with ût the residuals defined as in (7), w(·) is a kernel function, and bT is
the bandwidth. The conditions on w(·) and bT will be specified later. Then,

3Under joint asymptotics where K → ∞ as T → ∞ with K/T → 0, t̃MED
w→ N(0,1).
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letting QT = T−1 ∑T
t=1 ẏ2

t−1, and �̂ = T−1Q−2
T �̂, the HAC-based t-statistic can be

expressed as

thac := ρ̂T −ρT

�̂
1
2

. (9)

We will now establish that under Assumptions 1 and 2 accompanied by suitable
conditions on w(·) and bT , the statistic thac has a standard normal limit distribution.
To this end, we first decompose yt in (1) into two parts, i.e., yt = dt + μT(ρ t

T −
1)kT/c, where dt follows

dt = ρTdt−1 +ut, d0 = y0. (10)

Now dt is a mildly explosive process without drift, while μT(ρ t
T −1)kT/c is a deter-

ministic nonlinear trend component when μT �= 0. The following result derives the
limits of two random quantities which will be useful in the subsequent analysis,
where MN(0,Vx) and MN(0,Vy) denote mixed Gaussian random variables with
mixing variates Vx and Vy, respectively.

Theorem 1. Denote XT := a−1
T k−1/2

T

∑T
t=1 ρ

−(T−t)−1
T ut and YT := a−1

kT
k−1/2

T

∑T
t=1

ρ−t
T ut. Under Assumptions 1 and 2, [XT,YT ]

w→ [X,Y], where X and Y are inde-
pendent random variables such that X ∼ MN(0,Vx), Y ∼ MN(0,Vy) with Vx =
C(1)2g(1)2

2c , Vy = C(1)2
∫ ∞

0 e−2crg(r)2dr.

Remark 3. In the conditionally homoskedastic case where g(r) = σ,∀r ∈ [0, +
∞), Theorem 1 degenerates to the results in Phillips and Magdalinos (2007a), as

Vx = Vy = C(1)2σ 2

2c .

Next, we obtain the limit distribution of the least squares estimate ρ̂T of ρT in
(1). Note that

ρ̂T −ρT =
∑T

t=1(yt−1 − ȳ−1)ut∑T
t=1(yt−1 − ȳ−1)2

=
∑T

t=1 yt−1ut −T−1 ∑T
t=1 yt−1

∑T
t=1 ut∑T

t=1 y2
t−1 −T−1(

∑T
t=1 yt−1)2

. (11)

The following theorem presents the limits of the sample statistics appearing in
(11).

Theorem 2. Under Assumptions 1–3, defining 1/∞ = 0, we have the following
joint convergence results:

(a) (a2
kT

μ2
Tk3

Tρ2T
T )−1

T∑
t=1

y2
t−1

w→
{

Y2

2cν2 ,
1
2c (

Y
ν

+ 1
c ),

γ > 0,
γ = 0,

(b) (akT μTk2
TρT

T )−1
T∑

t=1

yt−1
w→

{
Y
cν ,

1
c (

Y
ν

+ 1
c ),

γ > 0,
γ = 0,

(12)
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(c) (akT aTμTk3/2
T ρT

T )−1
T∑

t=1

yt−1ut
w→

{
XY
ν

,

X( Y
ν

+ 1
c ),

γ > 0,
γ = 0,

(d) a−1
T T−1/2

T∑
t=1

ut
w→ U ∼ MN(0,σ 2

u ), σ 2
u = C(1)2

∫ 1

0
g(r)2dr,

U is independent of X and Y.

Now, using the results of Theorem 2, it follows that

(akT aTμT k3/2
T ρT

T )−1

(
T∑

t=1

yt−1ut −T−1
T∑

t=1

yt−1

T∑
t=1

ut

)

= (akT aTμT k3/2
T ρT

T )−1
T∑

t=1

yt−1ut −T−1/2k1/2
T (akT μT k2

TρT
T )−1

T∑
t=1

yt−1 ×a−1
T T−1/2

T∑
t=1

ut

= (akT aTμT k3/2
T ρT

T )−1
T∑

t=1

yt−1ut −Op(T
−1/2k1/2

T )
w→ X

[
Y

ν
+ 1

c
1(γ = 0)

]
, (13)

(a2
kT

μ2
Tk3

Tρ2T
T )−1

(
T∑

t=1

y2
t−1 −T−1(

T∑
t=1

yt−1)
2

)

= (a2
kT

μ2
Tk3

Tρ2T
T )−1

T∑
t=1

y2
t−1 −T−1kT [(akT μTk2

TρT
T )−1

T∑
t=1

yt−1]2

= (a2
kT

μ2
Tk3

Tρ2T
T )−1

T∑
t=1

y2
t−1 −Op(T

−1kT)
w→ 1

2c

[
Y

ν
+ 1

c
1(γ = 0)

]2

. (14)

We thus have the asymptotic distribution of ρ̂T as stated in the following corollary.

Corollary 1. Under Assumptions 1–3,

a−1
T akT μTk3/2

T ρT
T (ρ̂T −ρT)

w→ 2cX
Y
ν

+ 1
c 1(γ = 0)

. (15)

Remark 4. In the special case ν = ∞, the limit distribution in (15) reduces
to 2c2X, which implies ρ̂T is asymptotically mixed normal. A similar result
assuming σt = σ in (3) was obtained in Guo et al. (2019) where X reduces to an
N(0,C(1)2σ 2/2c) random variable. In the more general case where the volatility
structure follows Assumption 2, the mixing variate Vx takes a more complex form
that depends on the unknown function g(·).

In order to obtain the limit distribution of μ̂T , we make the following additional
assumption that restricts the rate at which volatility grows with the sample size.
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Assumption 3′. γ < 1/2.

The upper bound on the rate of growth of aT specified in Assumption 3′

ensures the consistency of the intercept estimate μ̂T . Interestingly, this upper bound
condition coincides with that in Xu (2008) to ensure the consistency of the intercept
estimate in the stationary autoregressive framework. To obtain the distribution of
μ̂T , observe that

a−1
T T1/2(μ̂T −μT ) = a−1

T T1/2

(
T−1

T∑
t=1

ut −T−1
T∑

t=1

yt−1(ρ̂T −ρT )

)

= a−1
T T−1/2

T∑
t=1

ut −T−1/2k1/2
T × (akT μT k2

TρT
T )−1

T∑
t=1

yt−1 ×a−1
T akT μT k3/2

T ρT
T (ρ̂T −ρT )

= a−1
T T−1/2

T∑
t=1

ut −Op(T
−1/2k1/2

T )
w→ U. (16)

We can thus state the following corollary.

Corollary 2. Under Assumptions 1, 3, and 3′,

a−1
T T1/2(μ̂T −μT)

w→ U. (17)

We now establish a result that applies when ν = 0, i.e., the no drift case.

Theorem 3. Under Assumptions 1–3, with ν = 0, we have the following joint
convergence results:

(a) (a2
kT

k2
Tρ2T

T )−1
T∑

t=1

y2
t−1

w→ 1

2c
Y2;

(b) (akT k3/2
T ρT

T )−1
T∑

t=1

yt−1
w→ 1

c
Y; (18)

(c) (akT aTkTρT
T )−1

T∑
t=1

yt−1ut
w→ XY;

(d) a−1
T T−1/2

T∑
t=1

ut
w→ U ∼ MN(0,σ 2

u ), σ 2
u = C(1)2

∫ 1

0
g(r)2dr,

U is independent of X and Y .

The following corollary states the limit distribution of the OLS estimator when
ν = 0.
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Corollary 3. Under Assumptions 1–3, with ν = 0, we have

a−1
T akT kTρT

T (ρ̂T −ρT)
w→ 2cX

Y
.

Remark 5. In the stationary autoregressive framework analyzed by Xu (2008),
the limit distribution of the autoregressive estimates does not depend on the
volatility scale aT, while the limit distribution of the estimate of the deterministic
component depends on aT . In the present context, the limit distribution of both
ρ̂T and μ̂T depend on the volatility scale. Moreover, when the deterministic
component is large enough, the limit distribution of ρ̂T depends on the magnitude
of the deterministic component as well (Corollary 1).

Remark 6. The limit distribution of ρ̂T under either ν > 0 or ν = 0 does not
require Assumption 3′, i.e., the rate of growth of volatility need not be restricted
to be slower than O(T1/2). Intuitively, the signal from the explosive component is
strong enough that the consistency and limit distribution of ρ̂T remain unaltered
by the growth rate of volatility in the noise component.

Remark 7. The limit distribution of ρ̂T is non-pivotal regardless of the magni-
tude of the drift as it depends on the unknown volatility process g(·). In particular,
the standard inferential result (4) based on the Cauchy distribution as derived in
Phillips and Magdalinos (2007a, 2007b) is no longer valid in the current context
and thus the PM interval (5) does not have asymptotically correct coverage.
The finite-sample implications of this result are investigated via simulations in
Section 5.

The final step in establishing the limit distribution of the t-statistic (9) entails
obtaining the limit of the HAC estimator �̂ defined in (8). We make the following
assumption that governs the behavior of the weight function w(·) and the band-
width bT .

Assumption 4. (i) The function w(·) is a continuous and even function with
|w(·)| ≤ 1, w(0) = 1 and

∫ ∞
-∞ w2(x) < ∞. (ii) The bandwidth satisfies b−1

T +
k−1/2

T bT → 0 as T → ∞.

The following lemma states a key result instrumental in deriving the asymptotic
distribution of the long-run variance estimator �̂.

Lemma 1. Define �T(j) = a−2
T k−1

T

T−|j|∑
t=1

ρ
−2(T−t)+|j|−2
T utut+|j|. Under Assumptions

1–3′, as T → ∞, the following result holds:
T−1∑

j=−(T−1)

w(j/bT)�T(j)
w→ Vx .

We can then state the following result regarding the limit behavior of �̂.
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Theorem 4. Under Assumptions 1–3′, as T → ∞,

T(akT aTμTk3/2
T ρT

T )−2�̂
w→ Vx

[
Y

ν
+ 1

c
1(γ = 0)

]2

. (19)

Remark 8. The limit of �̂ is nonstandard and depends on nuisance parameters.
In particular, the limit involves the volatility function g(·), the localizing parameter
c, and the drift magnitude ν.

Remark 9. The condition bT/k1/2
T → 0 is stronger than the condition bT/T1/2 →

0 typically adopted to establish the consistency of the long-run variance estimator
in the standard stationary framework (e.g., Jansson, 2002). This condition in
turn restricts the allowable set of mildly explosive neighborhoods if a data-
dependent rule is used to select the bandwidth as in Andrews (1991). For instance,
Andrews (1991) shows that using the Quadratic Spectral kernel yields an estimated
bandwidth of order Op(T1/5) which, by Assumption 3′, rules out neighborhoods in
which kT = O(T2/5). However, as noted by an anonymous referee, it is plausible
that this condition is not necessary—intuitively, when kT = O(1), the signal of
yt becomes stronger relative to kT = O(Tα) so that Theorem 4 can be expected
to hold even though the condition bT/k1/2

T → 0 is obviously not satisfied. While
relaxing this condition can potentially be pursued by invoking uniformity results
as in Andrews, Cheng, and Guggenberger (2020), we believe a separate, detailed
treatment of this issue is required and thus leave it as a possible avenue for future
research.

Remark 10. The analysis in Phillips (2023) can be used to provide guidance on
the range of permissible bandwidths in practice. Allowing for weakly dependent
errors, Phillips (2023) develops a consistent estimator α̂T of α in the MEA frame-
work with kT = Tα (see his Theorem 3.1). The bandwidth condition bT/k1/2

T → 0
can then be ensured by requiring that bT = hTϕ with ϕ chosen such that ϕ < α̂T/2.
Since Tϕ−α/2 → 0 if and only if Tϕ−α̂T /2 → 0, this provides an upper bound on
the permissible bandwidth rate. While the framework adopted by Phillips (2023)
assumes a homoskedastic error structure, we conjecture that his consistency result
for α̂T will continue to hold in the heteroskedastic framework considered in our
article. We are grateful to an anonymous referee for his/her suggestion to include
this discussion.

Using the preceding results, it is straightforward to show that

(a−1
T akT μT k3/2

T ρT
T )2�̂ = T−1(a−1

T akT μT k3/2
T ρT

T )2Q−2
T �̂

=
[
T(a2

kT
μ2

T k3
Tρ2T

T )−1QT

]−2 [
T(akT aTμT k3/2

T ρT
T )−2�̂

]
w→

(
1

2c

[
Y

ν
+ 1

c
1(γ = 0)

]2
)−2 (

Vx

[
Y

ν
+ 1

c
1(γ = 0)

]2
)

= 4c2Vx[
Y
ν + 1

c 1(γ = 0)
]2

. (20)
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Combining the limit (20) with the limit distribution of ρ̂T in (15) we finally have

thac = ρ̂T −ρT

�̂
1
2

= (a−1
T akT μTk3/2

T ρT
T )(ρ̂T −ρT)[

(a−1
T akT μTk3/2

T ρT
T )2�̂

] 1
2

w→ 2cX/( Y
ν

+ 1
c 1(γ = 0))[

4c2Vx/(
Y
ν

+ 1
c 1(γ = 0))2

] 1
2

= X

Vx
∼ N(0,1). (21)

The standard normal limit of thac is formalized in the following theorem.

Theorem 5. Under Assumptions 1–3′, as T → ∞, we have thac
w→ N(0,1).

Remark 11. A pivotal limit of thac is attained since the limit of the standard
error estimate, though nuisance parameter-dependent, is proportional to the same
random variable that appears in the limit distribution of the least squares estimate
ρ̂T . The cancelation of the non-pivotal terms in the numerator and denominator of
the t-statistic effectuates a pivotal limiting distribution.

Remark 12. We only require Assumption 3 instead of Assumption 3′ to derive
the limit of thac and thus conduct inference on ρT . For inference on the intercept,
however, Assumption 3′ would be needed as in Xu (2008).

4. DEPENDENT WILD BOOTSTRAP

The previous section established the large sample validity of the HAC-based
t-statistic in the potential presence of nonstationary volatility as well as weak
dependence in the noise component within the MEA framework. In small samples,
however, the performance of HAC-based asymptotic confidence intervals may be
less than satisfactory as illustrated via Monte Carlo simulations in Section 5. In
response to this possibility, we propose an alternative, bootstrap-based approxi-
mation to the finite-sample distribution of the t-statistic that can improve upon
the asymptotic approximation provided by the standard normal distribution. In
particular, as the ensuing Monte Carlo comparison demonstrates, the bootstrap-
based interval is shown to achieve improved coverage while controlling average
length, relative to existing asymptotic methods as well as the asymptotic interval
(9) based on thac.

The bootstrap procedure we adopt is the so-called dependent wild bootstrap
(DWB, henceforth), introduced by Shao (2010). The DWB is designed to simul-
taneously capture unconditional heteroskedasticity and potential temporal depen-
dence in the errors, and thus is a natural extension of the wild bootstrap developed
by Wu (1986) and Liu (1988) for serially uncorrelated errors. While originally
proposed for stationary time series by Shao (2010), several recent studies have
investigated its applicability in the nonstationary time series setup. For instance,
Smeekes and Urbain (2014) study several modified wild bootstrap methods,
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including the DWB, in a multivariate framework and prove its asymptotic validity
in testing for unit roots. Rho and Shao (2019) propose the DWB in the unit-root
testing context with piecewise locally stationary errors and provide justification for
its consistency. Our paper contributes to the DWB literature by further extending its
validity to the MEA framework allowing for general and flexible forms of variance
and dependence structures in the errors.4

The DWB is based on generating a series of random variables {ηt}T
t=1 that are

independent of the data in order to capture the heteroskedasticity in the errors.
In the original wild bootstrap (Liu, 1988), the {ηt}T

t=1 are independent while in
the DWB, the {ηt}T

t=1 are correlated to accommodate temporal dependence in the
errors. Specifically, we make the following assumption on {ηt}T

t=1 (Shao, 2010).

Assumption 5. The series {ηt}T
t=1 is drawn independently of the data such that

E(ηt) = 0, Var(ηt) = 1, Cov(ηs,ηt) = K( s−t
lT

), where K: R→ [0,1] is a symmetric
kernel function that satisfies K(0) = 1, K(x) = 0 for x ≥ 1, limx→0[1−K(x)]/|x|q �=
0 for some q ∈ (0,2], and

∫ ∞
−∞ K(u)e−iuxdu ≥ 0 for x ∈ R. The quantity lT is a

bandwidth parameter satisfying lT = O(Tg), 0 < g < 1/3. Assume that ηt is lT -
dependent and E(η4

t ) < ∞.

In practice, the series {ηt}T
t=1 can be obtained by drawing samples from a multi-

variate normal distribution with zero mean and covariance function Cov(ηs,ηt) =
K( s−t

lT
).5 Several kernels popular in practice such as the Bartlett kernel (with q = 1)

and the Parzen and Tukey-Hanning kernels (with q = 2) satisfy Assumption 5.
Alternative choices for the bandwidth will be explored via simulations in Section 5.
In addition to the restriction on the bandwidth lT as specified in Assumption 5, our
theoretical analysis is based on the following additional assumption which is akin
to Assumption 3′ in the preceding section.

Assumption 6. The bandwidth lT satisfies k−1/2
T lT → 0 as T → ∞.

With the OLS residuals ût = yt − μ̂T − ρ̂Tyt−1 at hand, the DWB residuals are
simply constructed as u∗

t = ηtût. To analyze the properties of the bootstrap samples,
we first derive the following invariance principle for {u∗

t } which parallels that
derived in Theorem 1 for the original errors {ut}.

Theorem 6. Under Assumptions 1–5, as T → ∞,

X∗
T := a−1

T k−1/2
T

T∑
t=1

ρ̂
−(T−t)−1
T u∗

t
w→p X ∼ N(0,Vx),

4Weak dependence in the errors can be alternatively captured using a block bootstrap based approach (e.g., Carlstein,
1986; Kunsch, 1989) or a sieve bootstrap approach (Bühlmann, 1997). Therefore, apart from the DWB analyzed
in this paper, heteroskedasticity-robust versions of certain block and sieve bootstrap methods may also be viable
in the present context. A comparison of alternative bootstrap approaches within the MEA framework allowing for
unconditionally heteroskedastic and weakly dependent errors is a potentially interesting topic for future research.
5As illustrated in Example 4.1 of Shao (2010), {ηt}T

t=1 can also be generated from a non-normal distribution.
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Y∗
T := a−1

kT
k−1/2

T

T∑
t=1

ρ̂−t
T u∗

t
w→p Y ∼ N(0,Vy). (22)

This theorem reveals that the DWB is able to mimic the unknown heteroskedas-
ticity and temporal dependence in the errors within the MEA framework, thereby
generalizing the set of time series to which the procedure is applicable. However,
it is not fully transferable from the stationary/unit-root case since the additional
Assumption 5 plays a crucial role in ensuring its validity (see Appendix B of the
Supplementary Material for details).

We now discuss how to apply the DWB in constructing a bootstrap-based
confidence interval for the autoregressive parameter ρT . The following algorithm
enumerates the steps involved in implementation of the DWB.

Residual-Based DWB Algorithm

1. Generate T bootstrap innovations ηt, t = 1, . . . ,T from a multivariate normal
distribution with zero mean and covariance function Cov(ηs,ηt) = K( s−t

lT
),

and construct the DWB residuals u∗
t = ηtût, where ût = yt − μ̂T − ρ̂Tyt−1,

t = 1, . . . ,T , are the OLS regression residuals.
2. Construct the bootstrap samples {y∗

t , t = 1, . . . ,T}, recursively as

y∗
t = μ̂T + ρ̂Ty∗

t−1 +u∗
t , t = 1, . . . ,T, (23)

with y∗
0 = y0.

3. Calculate the thac statistic defined in (9) for the bootstrap data as t∗
ρ̂T,hac =

(ρ̂∗
T − ρ̂T)/�̂∗ 1

2 , where ρ̂∗
T is the bootstrap OLS estimate and �̂∗ is the bootstrap

analogue of �̂ computed from the estimated bootstrap residuals û∗
t = y∗

t − μ̂∗
T −

ρ̂∗
Ty∗

t−1. Specifically, �̂∗ = T−1Q∗−2
T �̂∗, where Q∗

T = T−1 ∑T
t=1 ẏ∗2

t−1, ẏ∗
t−1 =

y∗
t−1 − ȳ∗

−1, ȳ∗
−1 = T−1 ∑T

t=1 y∗
t−1, and �̂∗ is computed as in (8),

�̂∗ =
T−1∑

j=−(T−1)

w(j/b∗
T)�̂∗(j), �̂∗(j) = T−1

T−|j|∑
t=1

ẏ∗
t−1û∗

t ẏ∗
t−1+|j|û

∗
t+|j|. (24)

4. Repeat steps 1–3 B times to approximate the distribution of the original statistic
thac. Obtain the δ/2 and (1 − δ/2) quantiles from the empirical distribution of
t∗
ρ̂T,hac, denoted t∗δ/2 and t∗1−δ/2, respectively. Construct the equal-tailed 100(1−
δ)% bootstrap confidence interval as(
ρ̂T − �̂

1
2 t∗1−δ/2,ρ̂T − �̂

1
2 t∗δ/2

)
. (25)

Remark 13. The bandwidth parameter b∗
T in step 3 is determined in a data-

dependent way as bT in the original statistic (9), albeit based on the bootstrap
data {y∗

t }. It should be noted that using the same bT as in the original statistic for
all bootstrap replications is also a valid procedure. Nevertheless, the results were

https://doi.org/10.1017/S0266466624000215 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466624000215


INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS 19

found to be qualitatively similar in simulations to those reported and are available
upon request.

Finally, the asymptotic validity of the residual-based DWB is formally estab-
lished in the following theorem.

Theorem 7. Under Assumptions 1, 2, 3′, and 4–5, as T → ∞,

t∗ρ̂T,hac := ρ̂∗
T − ρ̂T

�̂∗ 1
2

w→p N(0,1). (26)

Theorem 7 demonstrates that the residual-based DWB is consistent, i.e., the
bootstrap t-statistic has the same first-order limiting distribution as the original test
statistic thac. Thus, the bootstrap statistic achieves (asymptotically) correct size and
the associated bootstrap confidence interval (25) achieves (asymptotically) correct
coverage.

Remark 14. The validity of the bootstrap algorithm as stated in Theorem 7
requires the stronger Assumption 3′ instead of Assumption 3 that was sufficient
to derive the limit distribution of ρ̂T (Corollaries 1 and 3). The reason is that
in constructing the bootstrap samples, we utilize the estimated deterministic
component μ̂T whose consistency requires Assumption 3′ (Corollary 2).

5. MONTE CARLO SIMULATIONS

This section conducts a set of Monte Carlo experiments designed to assess
the finite-sample adequacy of the asymptotic approximations developed in the
preceding section as well as provide a numerical comparison of the proposed
approach with existing approaches. In particular, we evaluate the relative efficacy
of the different procedures via the coverage rates and average effective length (i.e.,
length conditional on covering the true parameter value) of the resulting confidence
intervals. The simulation design is similar to Guo et al. (2019).

The DGP is given by

yt = μT +ρTyt−1 +ut, t = 1,...,T,

ρT = 1+ c

Tα
, c = 0.5, α ∈ {0.5,0.8}.

Two specifications for the drift are considered: (i) μT = 0; (ii) μT = T−α/4. For
the noise component ut, we consider the case with no serial correlation (ut = et)

as well as cases with the following autoregressive (AR) and moving average (MA)
structures:

ut = φut−1 +
√

1−φ2et,

ut =
√

1− θ2et + θet−1.
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The time series for et is generated based on the following specifications that include
homoskedastic, conditionally heteroskedastic, and unconditionally heteroskedas-

tic cases with εt
iid∼ N(0,1) throughout:

• DGP-0 [constant volatility]: et = σtεt, σt = 1.
• DGP-1 [single volatility shift]: et = σtεt, σt = 1(t ≤ τ1T)+σ1(t > τ1T), τ1 =

0.5, σ = 1/3.
• DGP-2 [double volatility shift]: et = σtεt, σt = 1(t ≤ τ1T)+σ1(τ1T < t ≤ τ2T)+

1(t > τ2T), (τ1,τ2) = (0.3,0.7),σ = 3.
• DGP-3 [trending volatility]: et = σtεt, σt = 1+5t/T .
• DGP-4 [GARCH]: et = √

htεt, ht = β0 + β1ht−1 + β2e2
t−1, (β0,β1,β2) =

(0.01,0.9,0.09).
• DGP-5,6 [stochastic volatility]: et = vt exp( 1

2 (ω0 + ω1
T1/2 ht)), ht = (1 − c1/T)

ht−1 +εt, h0 = 0, (vt,εt)
iid∼ N(0,�vε), �vε =

[
1 ω̄

ω̄ 1

]
. We set ω0 = 0,ω1 = 5, and

c1 = 0. DGP-5 and DGP-6 correspond to the cases with ω̄ = 0 and ω̄ = −0.5,
respectively.

DGP-0 is the base case with constant volatility. DGP-1 and DGP-2 exhibit
discrete jumps in volatility, while DGP-3 is a case of trending volatility.6 DGP-4
follows a GARCH specification adopted from Gonçalves and Kilian (2004) which
is in turn based on Engle and Ng (1993).7 The SV specification for DGP-5 and
DGP-6 is borrowed from Cavaliere and Taylor (2009). DGP-5 represents a case
with no leverage, while DGP-6 allows for leverage via a nonzero correlation
between the shocks vt and εt.8 Note that DGP-6 is ruled out by Assumption 2
so that the results for this case serve as a check on the robustness of the various
methods to the violation of this assumption.

Three alternative values for the sample size are considered: T ∈ {50,100,200}.
The nominal level of the confidence intervals is set at 95%. The results for α = 0.5
are reported in the main text, while those for α = 0.8 are presented in Appendix
C of the Supplementary Material. Except for the PM interval, the estimated
regression always includes a constant regardless of whether the true drift is zero
or not. All experiments are based on 10,000 Monte Carlo replications and 399
bootstrap replications.

Seven alternative methods for the construction of confidence intervals for ρT

are considered. These include (i) the HAC-based interval based on the statis-
tic (9), denoted “thac”; (ii) the Phillips and Magdalinos (2007a) interval (5),

6The results for DGP-1 with σ = 3 (not reported) are qualitatively similar to those with σ = 1/3, while the results
for DGP-2 with σ = 1/3 (not reported) are qualitatively similar to those with σ = 3. The full set of results is available
upon request.
7Engle and Ng (1993, p. 1760) consider two different configurations of parameter values: (i) “medium persistence”—
(β0,β1,β2) = (0.05,0.9,0.05); (ii) “high persistence”—(β0,β1,β2) = (0.01,0.9,0.09). We only present results for (ii)
since the results for (i) have a similar overall pattern. The latter set of results is available upon request.
8Cavaliere and Taylor (2009) also considered other parameter values, namely, c1 ∈ {10,20} and ω1 = 10. For brevity,
we do not present these results given that the results reported are fairly representative of these cases.
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denoted “PM”;9 (iii): the Guo et al. (2019) interval based on the t -statistic (6),
denoted “GSW”; (iv)–(vi): the dependent wild bootstrap with bandwidth l, denoted
DWBl, l ∈ {3,5,10}; and (vii) the dependent wild bootstrap with bandwidth chosen
according to the deterministic rule l = ⌊

4.5(T/100)1/4
⌋

, denoted DWBr. This rule
yields bandwidths of 3,4,5 for T = 50, T = 100, T = 200, respectively. Rho
and Shao (2019) propose an alternative rule in the context of unit-root testing:
l = ⌊

6(T/100)1/4
⌋

. In our simulations, we found this rule to generate bandwidths
that are too large to deliver confidence intervals with adequate coverage. The
Quadratic Spectral kernel is used to construct the HAC long-run variance estimate
and, following Andrews (1991), a data-dependent bandwidth rule based on an
AR(1) approximating model for each element of the vector ztût is used (see
equation (6.4) of Andrews, 1991). To improve finite-sample performance, we
employ prewhitening as suggested by Andrews and Monahan (1992) based on a
VAR(1) model for ztût.10 The Bartlett kernel is adopted as the kernel function for
implementing the dependent wild bootstrap procedure.

Table 1 presents the empirical coverage rates of the different methods for the
case without drift (μT = 0). Panels A–C report the results with serially uncorrelated
errors, AR errors with φ = 0.5, and MA errors with θ = 0.5, respectively. Consider
first the coverage rates based on thac. With serially uncorrelated errors, the coverage
rates of thac are liberal (i.e., less than the nominal level) regardless of whether
the errors are heteroskedastic with the degree of undercoverage being especially
severe when the sample size is small. For instance, when T = 50, the maximum
coverage across all DGPs is only 85%, while coverage is below 80% for five out
of the seven DGPs considered, including the constant volatility case. The overall
pattern of results with AR errors is similar to that in the serially uncorrelated case
although the liberal nature of the confidence intervals is somewhat mitigated in
the former case relative to the latter when T = 50. When errors are of the MA
type, the performance of thac is considerably improved relative to the other two
error structures with coverage exceeding 90% for six of the seven DGPs as long as
T ≥ 100. The thac intervals in the MA case are notably conservative in the presence
of a single volatility shift (DGP-1).

Turning to the PM interval, we find that with constant volatility, its coverage
can be quite conservative (> 98%) when T ≤ 100 regardless of the serial cor-
relation structure but moves closer to the nominal level when T = 200. This is
not surprising given that the interval is (asymptotically) justified in this case.
When the errors are heteroskedastic, the performance of PM depends crucially
on the specific form of heteroskedasticity. For DGP-1 and DGP-2 which are

9The results for the PM interval are conditioned on those realizations for which ρ̃T > 1 and increasing the number
of Monte Carlo replications till 10,000 estimates satisfying this condition were obtained. Without conditioning, the
method often yields poor (liberal) coverage rates, especially when ρT is close to (but greater than) unity (e.g., when
α = 0.8).
10We found the prewhitened HAC estimator to deliver considerably more accurate coverage rates relative to its non-
prewhitened counterpart. The asymptotic results derived in Sections 3 and 4, however, remain valid for the pre-
whitened estimator as well.
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Table 1. Empirical coverage rate of various inferential methods for ρ = 1 + c/Tα , 95% nominal rate, T = 50,100,200, c = 0.5,
α = 0.5, μT = 0.

DGP 0 1 2 3 4 5 6

T 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Panel A: No serial correlation

thac 76.4 87.4 91.4 82.5 90.3 93.1 74.3 85.4 92.2 72.3 83.0 89.4 72.9 84.5 90.9 79.5 88.0 92.1 85.4 90.6 93.7

PM 99.2 98.8 95.8 99.8 100 98.5 99.6 99.8 95.1 93.2 92.9 81.7 95.7 96.0 88.8 94.9 94.9 84.9 91.6 91.8 86.8

GSW 84.2 91.8 94.4 90.7 96.5 99.1 88.2 94.6 98.6 76.0 79.5 82.6 77.1 85.3 89.8 83.5 86.4 87.7 87.1 88.5 88.6

DWB3 86.9 91.3 92.2 91.1 92.6 93.5 88.8 90.9 92.5 84.5 88.7 91.6 84.9 89.1 92.5 91.7 92.3 93.4 92.7 93.1 94.3

DWB5 85.1 89.3 90.8 89.7 91.9 92.8 88.4 90.4 92.0 82.9 87.2 90.1 83.4 87.6 91.5 90.5 91.5 92.9 91.8 92.2 93.7

DWB10 81.1 86.2 88.0 86.8 89.9 91.3 86.8 89.5 90.7 80.4 84.2 87.1 80.9 84.8 88.9 88.4 90.0 91.7 89.9 90.7 92.4

DWBr 88.3 90.9 91.9 91.9 92.7 93.6 89.7 91.0 92.8 85.8 88.6 91.8 86.2 89.1 92.8 92.1 92.3 93.4 93.0 92.7 94.1

Panel B: AR case, φ = 0.5

thac 82.6 88.4 90.1 85.2 91.9 93.6 86.0 90.2 93.0 79.2 83.6 87.6 80.3 85.4 89.4 84.2 89.5 92.2 85.3 90.0 93.0

PM 98.3 98.3 95.3 99.8 99.8 98.5 99.6 99.6 95.4 91.1 90.9 82.0 94.2 94.6 88.8 92.3 92.8 85.5 89.2 89.7 86.7

GSW 87.4 91.2 92.9 90.0 95.6 98.4 96.8 97.9 98.9 86.6 82.9 81.8 84.0 85.7 88.9 86.2 87.5 86.9 84.9 86.0 87.4

DWB3 86.1 88.2 89.5 89.7 91.2 92.2 89.9 89.9 91.5 84.5 86.4 89.1 84.9 86.4 90.1 90.6 90.7 92.2 90.4 90.9 92.7

DWB5 84.0 86.9 88.7 89.1 91.0 92.1 88.9 89.6 91.3 81.3 84.7 87.6 82.6 84.9 89.3 89.1 90.0 92.0 89.2 89.9 92.1

DWB10 79.5 83.6 86.5 86.0 89.0 91.1 87.2 88.6 90.2 77.1 81.4 85.1 79.1 81.8 87.1 86.3 88.0 90.9 86.6 88.1 91.0

DWBr 87.1 88.1 89.6 89.7 91.4 92.1 90.6 90.1 91.5 86.1 86.5 88.8 86.5 86.5 90.3 91.1 90.5 92.1 90.9 90.9 92.7

Panel C: MA case, θ = 0.5

thac 88.1 93.2 95.0 91.7 96.1 97.1 90.1 94.2 96.2 84.0 89.5 93.0 85.6 90.7 93.9 89.6 94.2 96.0 90.1 94.3 96.2

PM 98.8 98.6 95.4 99.9 99.9 98.5 99.5 99.5 95.0 91.7 91.9 80.8 94.8 95.2 88.5 93.4 93.8 85.0 90.5 89.9 86.8

GSW 89.8 92.8 94.3 93.7 97.1 99.2 95.4 97.2 99.1 85.7 81.7 81.7 86.5 87.2 90.5 88.1 88.2 88.1 86.8 87.5 87.4

DWB3 90.4 92.9 93.5 93.1 94.8 95.5 92.4 94.1 94.9 88.4 91.0 92.6 88.7 91.3 93.8 93.6 94.0 95.3 93.5 94.5 95.7

DWB5 87.4 90.5 91.3 91.6 93.2 94.1 91.3 92.6 93.6 85.5 88.5 90.3 86.0 88.5 92.1 91.8 92.7 93.8 92.3 92.9 94.2

DWB10 82.9 86.4 87.9 88.2 90.6 92.1 88.8 90.8 91.4 81.5 84.5 86.7 82.4 84.9 89.1 89.1 90.6 92.1 89.6 91.0 92.5

DWBr 92.4 92.8 93.4 94.2 94.8 95.3 93.9 94.0 94.9 90.6 91.0 92.8 90.8 91.3 93.9 94.6 94.1 95.3 94.6 94.3 95.8
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characterized by discrete volatility shifts, the interval continues to be conservative
with discernible improvement in coverage observed only for DGP-2 as the sample
size increases. In contrast, in the trending volatility case (DGP-3), coverage is
at most 82% across the three different error structures when T = 200. In fact,
coverage declines by at least 9 percentage points as the sample size increases
from T = 100 to T = 200, suggesting the inadequacy of the asymptotic approx-
imation on which the PM interval is based. A deterioration in performance as
the sample size increases is also observed for DGPs 4–6, though to varying
degrees.

For the GSW interval, the coverage rates are in excess of 90% in the constant
volatility case for T ≥ 100 and gradually approach the nominal level as the sample
size increases, consistent with the asymptotic validity of the interval in this case.
This is, however, no longer true with time-varying volatility, as exemplified by
the results for DGP-1 to DGP-6. When volatility is subject to discrete shifts, the
interval becomes more conservative as the sample size increases from T = 100
to T = 200. For instance, when T = 200, the coverage rates for DGP-1/DGP-2
are at least 98%. A similar lack of convergence toward the nominal level is also
observed for DGPs 3–6 although in these cases the coverage rates remain notably
liberal (< 90%) regardless of the sample size and the serial correlation structure
(except when T = 200 and errors are of the MA type).

Consider now the coverage rates of the intervals based on the dependent wild
bootstrap. Several features of these results are noteworthy. First, coverage perfor-
mance varies with the bandwidth employed with a smaller bandwidth generally
leading to intervals with more accurate coverage. The proposed bandwidth rule
exhibits coverage similar to that with the smallest bandwidth. Second, consistent
with Theorem 7, the coverage rates typically improve as the sample size increases
for each of the DGPs considered. Interestingly, this feature is also observed in
the SV case with leverage (DGP-6) despite the fact that this case is not allowed
for in the theory. Third, the coverage rates of the bootstrap-based intervals are
considerably less sensitive to the nature of serial correlation and the particular form
of heteroskedasticity relative to the thac and PM intervals. Fourth, the performance
of the bootstrap-based intervals is particularly impressive when the sample size
is small (T = 50), where the thac and PM intervals often suffer from substantial
under/over-coverage.

Table 2 reports the coverage rates when the DGP includes a drift. The per-
formance of thac in this case generally improves relative to the no drift case by
ameliorating the extent of undercoverage especially when the sample size is small.
The PM interval, on the other hand, is now seen to be severely conservative in most
cases with coverage being as high as 100% for four of the seven volatility speci-
fications considered, including the constant volatility case. Further, the coverage
rates do not necessarily approach the nominal level as the sample size increases for
any of the volatility structures. This feature can be explained by the fact that when
ν �= 0 in Assumption 2, the Cauchy limit distribution underlying the PM interval
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Table 2. Empirical coverage rate of various inferential methods for ρ = 1 + c/Tα , 95% nominal rate, T = 50,100,200, c = 0.5,
α = 0.5, μT = T−α/4.

DGP 0 1 2 3 4 5 6

T 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Panel A: No serial correlation

thac 88.9 91.3 92.0 91.9 94.0 94.1 93.2 93.9 93.8 81.9 88.6 91.3 87.2 90.0 92.0 87.4 91.0 93.4 84.2 90.6 93.6

PM 99.8 99.9 100 99.9 100 100 99.9 99.9 100 97.2 98.6 99.3 100 100 100 96.7 97.1 94.5 94.4 94.7 89.3

GSW 94.3 95.0 94.5 98.0 98.8 99.4 98.9 99.6 99.7 83.8 85.3 82.6 90.8 91.0 91.1 89.0 88.7 89.1 86.9 87.6 88.1

DWB3 90.1 91.7 92.7 91.9 93.5 94.3 87.4 88.3 92.8 86.8 89.7 91.6 89.3 91.1 93.1 91.6 91.8 92.8 91.8 92.0 93.9

DWB5 88.1 90.3 91.6 90.5 92.6 93.8 86.8 87.3 92.2 84.8 87.4 90.3 87.3 89.3 92.0 90.7 90.9 92.1 91.2 91.6 93.3

DWB10 84.0 87.1 88.9 87.5 90.4 92.6 85.7 85.3 90.6 80.9 84.0 86.9 83.6 86.0 89.6 88.6 89.5 91.1 89.7 90.3 92.6

DWBr 91.0 91.7 92.6 92.3 93.3 94.2 87.8 88.2 92.8 88.2 89.7 91.6 90.5 91.2 93.4 91.7 91.7 92.8 92.0 92.0 93.9

Panel B: AR case, φ = 0.5

thac 85.7 89.5 91.1 89.3 92.9 93.9 91.6 93.4 93.3 80.1 86.3 88.3 84.1 87.9 89.9 85.6 90.4 92.0 84.8 89.9 92.6

PM 98.8 99.0 99.0 99.1 99.1 98.9 99.4 99.4 98.7 93.3 94.6 93.7 99.8 99.9 100 94.3 95.0 91.9 91.6 92.3 87.2

GSW 90.3 92.3 93.1 93.4 96.3 98.6 98.0 99.2 99.3 86.3 83.5 82.4 86.6 87.6 89.1 87.1 86.8 87.3 85.2 86.6 86.3

DWB3 86.5 88.7 90.3 88.7 91.0 92.5 87.5 85.8 89.6 84.2 86.5 89.0 86.0 87.7 90.7 90.3 89.9 91.2 89.8 90.7 92.5

DWB5 84.9 87.7 89.8 87.7 90.7 92.6 86.9 84.8 89.3 81.9 84.2 87.8 84.0 86.5 90.2 89.1 89.3 91.0 88.5 89.8 92.3

DWB10 81.1 84.9 87.9 84.9 89.2 91.8 85.7 83.5 88.3 77.5 80.9 84.9 80.1 83.4 87.9 86.7 87.9 89.8 86.2 88.1 91.3

DWBr 87.4 88.3 90.7 89.0 91.1 92.7 87.9 85.8 89.7 86.1 86.3 88.9 86.9 87.8 91.1 90.6 90.1 91.2 90.0 90.7 92.6

Panel C: MA case, θ = 0.5

thac 92.7 94.3 95.1 95.2 96.8 97.2 95.7 97.1 97.1 86.9 91.6 93.6 90.0 93.2 94.6 91.6 94.6 96.1 89.5 94.4 96.1

PM 99.4 99.5 99.7 99.4 99.5 99.6 99.7 99.7 99.6 94.6 96.5 96.7 100 100 100 96.0 96.1 93.0 92.8 93.5 88.1

GSW 94.1 95.0 94.6 97.0 98.5 99.2 98.7 99.3 99.5 86.2 84.1 82.8 90.4 90.3 91.4 89.3 88.6 88.2 87.2 87.8 87.2

DWB3 91.2 93.1 94.4 92.9 95.1 96.0 90.5 89.5 93.7 88.8 91.2 92.8 90.5 92.6 94.6 93.3 93.5 94.7 93.2 93.9 95.7

DWB5 88.7 90.9 92.3 91.4 93.7 94.9 89.1 87.6 92.3 85.8 88.1 90.3 87.8 90.2 92.6 91.9 92.1 93.1 91.9 92.6 94.3

DWB10 84.5 87.2 89.2 88.4 91.2 93.2 87.3 85.4 90.1 81.5 84.2 86.7 83.8 86.3 89.6 89.6 90.1 91.4 89.6 90.7 92.8

DWBr 93.0 93.1 94.4 94.1 95.1 96.1 91.4 89.8 93.7 91.0 91.2 92.8 92.5 92.6 94.5 94.4 93.8 94.7 94.1 94.0 95.7
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is no longer valid.11 The coverage rates of the GSW interval remain inadequate
when volatility is time-varying although some improvements may be noted for
DGP-3 and DGP-4 in the serially uncorrelated case. In contrast, the bootstrap-
based intervals are much more stable with coverage rates bearing a very similar
pattern to those in the no drift case. In summary, the coverage results in Tables 1
and 2 make a favorable case for employing the dependent wild bootstrap based on a
small bandwidth or the recommended bandwidth rule compared to the asymptotic
approaches.

Table 3 presents the average effective lengths of the confidence intervals,
normalized with respect to the thac interval. Thus, a ratio smaller (larger) than one
indicates an interval with average effective length shorter (longer) than the thac

interval. The results reveal the following notable patterns. First, the PM interval
can be discernibly longer than the other intervals in cases where the errors have
constant conditional variance or involve discrete shifts in volatility. In contrast, it
typically delivers the shortest average length in the trending and nondeterministic
volatility cases (DGPs 3–6) when T = 200. Thus, as with coverage, the length of
the PM interval can be quite sensitive to the underlying volatility specification.
Second, the length of the GSW interval depends to a considerable extent on both
the serial correlation and volatility structures driving the true DGP. For instance,
this interval is the shortest on average relative to the other intervals for DGPs 3–6
when T ≤ 100 but always longer than the interval based on thac for DGP-1 and
DGP-2. In the constant volatility case, the GSW interval is longer than the HAC-
based interval with serially uncorrelated errors but shorter than the same in the
serially correlated scenarios. Third, for the bootstrap-based intervals, the average
length is generally shorter, the larger the bandwidth employed. The average length
based on the bandwidth rule DWBr typically lies between the average lengths
for the smallest and largest bandwidths considered. Fourth, the length improve-
ments offered by the bandwidth rule over the asymptotic methods are primarily
concentrated in situations where the errors are serially correlated and volatility
is subject to discrete shifts. Fifth, the performance of the rule-based bandwidth is
substantially more stable across the different volatility specifications relative to the
asymptotic procedures, a feature also previously observed for the coverage rates.
Table 4 reports the corresponding length results in the drift case. These results
paint a qualitatively similar overall picture as the results in the no drift case.

In summary, the Monte Carlo results indicate that while employing a relatively
smaller bandwidth leads to more accurate coverage, it also leads to longer average
effective lengths. The recommended bandwidth rule offers a reasonable approach
to addressing the coverage-length trade-off by delivering relatively short intervals
while retaining adequate coverage properties. Additional Monte Carlo results

11When ν = ∞, ρ̃T converges to ρT at rate μT k3/2
T ρT

T , which is faster than the rate kTρT
T in Phillips and Magdalinos

(2007a) and ρ̃T is asymptotically normal (see Fei, 2018; Liu and Peng, 2019). When ν ∈ (0,∞), the limit distribution
is mixed normal (see Guo et al., 2019).
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Table 3. Effective interval length ratio (benchmark: thac) of various inferential methods for ρ = 1 + c/Tα , 95% nominal rate, T =
50,100,200, c = 0.5, α = 0.5, μT = 0.

DGP 0 1 2 3 4 5 6

T 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Panel A: No serial correlation

PM 2.62 2.06 1.47 3.23 3.01 2.49 2.52 2.11 1.38 1.42 1.04 0.49 1.68 1.31 0.71 1.27 0.88 0.41 1.06 1.13 0.58

GSW 1.07 1.02 1.09 1.12 1.22 1.39 1.26 1.40 1.54 0.98 0.81 0.70 0.92 0.90 0.90 0.83 0.71 0.58 0.52 0.71 0.56

DWB3 1.28 1.18 1.11 1.16 1.01 0.94 1.13 1.09 1.17 1.33 1.24 1.19 1.30 1.22 1.16 1.57 1.27 1.20 2.54 1.37 1.22

DWB5 1.25 1.15 1.09 1.16 1.00 0.93 1.13 1.08 1.17 1.27 1.20 1.15 1.26 1.18 1.13 1.54 1.20 1.14 2.48 1.28 1.15

DWB10 1.21 1.12 1.03 1.20 1.00 0.93 1.19 1.12 1.17 1.21 1.14 1.08 1.20 1.12 1.07 1.50 1.09 1.06 2.41 1.16 1.06

DWBr 1.31 1.18 1.11 1.18 1.01 0.95 1.15 1.09 1.16 1.35 1.24 1.19 1.33 1.21 1.15 1.60 1.27 1.20 2.33 1.36 1.22

Panel B: AR case, φ = 0.5

PM 1.90 1.62 1.22 2.67 2.32 1.92 2.02 1.53 1.03 0.47 0.73 0.45 1.15 0.89 0.56 0.85 0.70 0.29 1.33 0.98 0.48

GSW 0.99 0.92 0.97 1.09 1.05 1.07 1.43 1.40 1.35 0.44 0.80 0.78 0.80 0.74 0.77 0.62 0.68 0.50 0.70 0.64 0.54

DWB3 1.24 1.02 1.01 0.97 0.83 0.77 0.92 0.85 0.90 1.23 1.09 1.04 1.23 1.05 1.03 1.37 1.15 1.05 1.66 1.42 1.11

DWB5 1.25 1.00 1.00 0.96 0.81 0.78 0.91 0.82 0.88 1.21 1.05 1.03 1.20 1.02 1.02 1.12 1.10 1.02 1.54 1.49 1.08

DWB10 1.33 0.97 0.96 0.96 0.79 0.75 0.93 0.83 0.89 1.15 0.98 0.98 1.10 0.95 0.97 0.94 1.02 0.97 1.39 1.35 1.02

DWBr 1.20 1.01 1.01 0.99 0.83 0.77 0.93 0.86 0.90 1.25 1.09 1.04 1.22 1.05 1.02 1.34 1.14 1.03 1.68 1.48 1.11

Panel C: MA case, θ = 0.5

PM 1.76 1.49 1.09 2.51 2.20 1.62 1.89 1.35 0.92 0.64 0.67 0.39 0.88 0.82 0.55 0.43 0.59 0.31 1.17 0.76 0.37

GSW 0.92 0.87 0.84 1.07 1.05 1.02 1.29 1.12 1.21 0.58 0.71 0.65 0.62 0.67 0.69 0.32 0.56 0.49 0.61 0.51 0.41

DWB3 1.10 0.99 0.99 0.96 0.81 0.82 0.91 0.84 0.88 1.23 1.08 1.03 1.18 1.03 1.01 1.54 1.13 1.02 1.58 1.27 1.11

DWB5 1.04 0.92 0.94 0.94 0.77 0.79 0.89 0.79 0.83 1.17 0.99 0.97 1.10 0.96 0.95 1.47 1.06 0.96 1.46 1.22 1.07

DWB10 0.95 0.85 0.85 0.92 0.74 0.74 0.88 0.77 0.80 1.07 0.78 0.88 1.00 0.88 0.87 1.35 0.96 0.87 1.32 1.08 0.99

DWBr 1.15 0.99 0.99 1.00 0.81 0.82 0.94 0.84 0.87 1.26 1.02 1.03 1.21 1.03 1.00 1.59 1.13 1.01 1.66 1.26 1.11
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Table 4. Effective interval length ratio (benchmark: thac) of various inferential methods for ρ = 1 + c/Tα , 95% nominal rate, T =
50,100,200, c = 0.5, α = 0.5, μT = T−α/4.

DGP 0 1 2 3 4 5 6

T 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200 50 100 200

Panel A: No serial correlation

PM 11.5 16.0 20.1 18.3 27.2 38.5 6.55 10.7 14.9 2.16 2.42 3.16 11.0 15.2 19.1 1.88 1.59 1.23 1.33 1.31 0.71

GSW 1.11 1.06 1.03 1.31 1.33 1.49 1.58 1.58 1.62 0.96 0.81 0.78 0.96 0.93 0.93 0.80 0.74 0.67 0.72 0.82 0.72

DWB3 1.14 1.08 1.06 1.04 1.02 1.01 0.99 0.95 1.01 1.39 1.19 1.11 1.22 1.12 1.08 1.68 1.33 1.14 2.20 1.65 1.20

DWB5 1.07 1.03 1.02 0.99 0.99 0.99 0.98 0.92 0.98 1.38 1.14 1.07 1.13 1.06 1.03 1.62 1.26 1.11 2.06 1.52 1.14

DWB10 0.95 0.95 0.96 0.92 0.95 0.95 1.00 0.87 0.94 1.37 1.05 0.98 1.00 0.96 0.96 1.51 1.18 1.04 1.94 1.45 1.10

DWBr 1.18 1.08 1.06 1.07 1.02 1.01 1.01 0.95 1.01 1.38 1.19 1.11 1.27 1.12 1.08 1.71 1.32 1.15 2.14 1.56 1.20

Panel B: AR case, φ = 0.5

PM 4.48 5.62 6.95 8.09 10.1 11.7 2.84 3.80 4.92 0.72 0.99 0.99 3.33 7.16 10.3 1.08 1.06 0.69 1.47 0.93 0.43

GSW 0.99 0.93 1.03 1.19 1.13 1.16 1.45 1.56 1.45 0.53 0.75 0.74 0.51 0.76 0.87 0.62 0.68 0.61 0.91 0.70 0.57

DWB3 1.16 1.06 1.02 1.07 0.99 0.96 0.95 0.90 0.92 1.25 1.10 1.09 1.30 1.10 1.05 1.52 1.47 1.06 1.59 1.29 1.11

DWB5 1.12 1.05 1.02 1.06 0.98 0.98 0.95 0.88 0.93 1.22 1.08 1.06 1.24 1.08 1.04 1.40 1.48 1.02 1.55 1.23 1.05

DWB10 1.04 1.00 0.98 1.04 0.98 0.96 0.99 0.86 0.92 1.12 1.03 1.01 1.33 1.00 0.99 1.29 1.34 0.94 1.39 1.15 1.00

DWBr 1.17 1.07 1.02 1.10 0.99 0.96 0.95 0.90 0.92 1.26 1.11 1.08 1.32 1.10 1.05 1.54 1.49 1.05 1.65 1.28 1.10

Panel C: MA case, θ = 0.5

PM 5.33 7.71 10.3 9.33 13.0 20.0 3.27 5.05 7.13 1.12 1.18 1.39 4.99 8.66 11.6 0.48 0.39 0.73 0.93 0.77 0.42

GSW 0.89 0.84 0.87 1.13 1.04 1.40 1.35 1.38 1.40 0.75 0.67 0.67 0.63 0.75 0.78 0.25 0.22 0.55 0.58 0.54 0.50

DWB3 1.14 1.05 1.00 1.03 0.98 0.96 0.92 0.88 0.91 1.29 1.12 1.04 1.21 1.08 1.02 1.67 1.18 1.12 1.66 1.31 1.07

DWB5 1.06 0.97 0.95 0.96 0.92 0.92 0.90 0.83 0.84 1.24 1.05 0.98 1.11 1.02 0.96 1.55 1.11 1.02 1.62 1.18 0.99

DWB10 0.96 0.88 0.87 0.89 0.84 0.88 0.90 0.78 0.80 1.12 0.93 0.89 0.96 0.90 0.87 1.40 1.01 0.97 1.52 1.09 0.90

DWBr 1.16 1.05 1.00 1.07 0.99 0.96 0.96 0.88 0.89 1.31 1.11 1.05 1.26 1.08 1.02 1.68 1.17 1.08 1.69 1.26 1.06
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presented in Appendix C of the Supplementary Material for the case α = 0.8 fur-
ther confirm the effectiveness of the proposed procedure for conducting inference
within the MEA framework.

6. EMPIRICAL APPLICATIONS

This section illustrates the proposed methodology on two sets of time series.
The first application revisits the empirical application in GSW where the degree
of explosiveness of 10 major stock market indices in the pre-2008 financial
exuberance period is studied. In particular, our analysis accounts for the potential
nonstationary volatility pattern in the stock indices and highlights the difference
between our results and those in GSW which are based on assuming stationary
volatility. The second application investigates the extent of explosive behavior in
three monthly U.S. home price indices during the 2002–2006 housing bubble, and
the details are suppressed into Appendix D of the Supplementary Material.

6.1. Stock Market Indices

GSW employ a two-step testing strategy to identify the degree of explosiveness
in 10 major stock indices over the period leading up to the 2008 financial crisis.
The first step entails a pretest for detecting whether the time series is explosive, and
the second step uses their proposed method to construct a confidence interval if the
pretest signals the presence of explosive behavior. They find limited evidence of
explosive behavior with most series either only mildly explosive, or not explosive
at all. To facilitate comparison with their results, our analysis employs the same
dataset as GSW.12 The data are weekly, and the sample size is T = 100 for all series.
Specifically, the data are collected in a way that end at the (pre-selected) highest
point in the pre-2008 financial crisis period and then span 100 periods before that
highest point. All of the series peaked at some point during 2007–2008, thereby
making the whole sample approximately span from 2005 to 2008. A plot of the
indices is displayed in Figure 1.

We start with an assessment of the time series behavior of volatility in these
series to justify the plausibility of allowing for unconditional heteroskedasticity.
Following Cavaliere and Taylor (2007a), Figure 2 plots the estimated variance

profile, defined by V̂P(s) = (∑
sT�
t=1 ê2

t + (sT −
sT�)ê2

sT�+1

)
/
∑T

t=1 ê2
t , 0 ≤ s ≤ 1,

as well as the volatility estimates σ̂ 2
t , obtained by fitting a nonparametric regression

to the squared residuals ê2
t as suggested by Xu and Phillips (2008)13. Specifically,

to adjust for potential serial correlation in the errors, the residuals êt are obtained
by fitting an autoregressive model to the series with lags determined by BIC with

12The data come from Wind Economic Database and consist of 10 countries/districts, namely, USA, Brazil, China,
Hong Kong, Australia, France, Germany, Italy, Egypt, and Nigeria, which are representatives of the world stock
markets in different continents: America, Asia-Pacific, Europe, and Africa. See Guo et al. (2019) for further details.
13To make the estimated volatility curves comparable across the different time series, we plot the estimated volatility
ratio over t = 1, . . . ,T: σ̂ 2

t / ¯̂σ 2, where ¯̂σ 2 = ∑T
t=1 σ̂ 2

t /T .
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Figure 1. Plots of 10 stock indices during 2005–2008.

a maximum of six lags. For the nonparametric estimates, a Gaussian kernel is
used with the bandwidth chosen by cross-validation, searching over bandwidths
hi = ciT−0.4,i = 1, . . . ,4, with {c1, . . . ,c4} = {0.25,0.4,0.6,0.75}. As observed from
Figure 2, the estimated variance profile of several series, especially USA, Brazil,
China, and Hong Kong, deviates substantially from the 45◦ line, which represents
the constant volatility scenario. The corresponding nonparametric estimates of
the volatility clearly depict the underlying nonstationary evolution of the sample
volatility paths, indicating smooth trending changes for USA, Brazil, China, and
Hong Kong, and possibly single/multiple shifts for the remaining countries.

In addition to visualizing the sample volatility paths, we also conduct formal
diagnostic tests for the stationarity of unconditional volatility proposed by Cava-
liere and Taylor (2007b). They present four test statistics, HKS, HR, HCVM , HAD,
and derive their asymptotic distributions under the stationarity null from which
the relevant critical values of the tests are obtained. In implementing these tests,
the squared residuals ê2

t are used in constructing the stationary volatility test
statistics. A long-run variance estimator based on the Bartlett kernel with lag
truncation parameter 4 is employed.14 Panel A of Table 5 presents the testing

14To conserve space, we omit the details pertaining to the construction of the test statistics and refer the interested
reader to Cavaliere and Taylor (2007b).
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Figure 2. Variance profiles and nonparametric volatility estimates of 10 stock indices.

results along with the 10%, 5%, and 1% critical values. It is clear that the first
four series, namely, USA, Brazil, China, and Hong Kong, show evidence of
significant nonstationary volatility from a majority of the tests. As noted in the
simulation evidence in Cavaliere and Taylor (2007b), when volatility exhibits
trending behavior or a single abrupt break, HAD and HCVM usually have the
highest finite-sample power out of the four tests, while the HR test is the least
powerful. In contrast, the HR test is the most powerful in the presence of multiple
discrete volatility breaks. Considering these facts together with the visual evidence
presented in Figure 2, we believe a smooth trending variation of the volatility is
more likely to prevail in these four series, as opposed to single/multiple discrete
volatility break(s).

We now turn to the two-step testing strategy adopted by GSW. Their first step
involves a pretest for explosiveness using the right-tailed augmented Dickey–
Fuller (RADF) and the supremum augmented Dickey–Fuller (SADF) tests pro-
posed by Phillips et al. (2011; PWY henceforth) and Phillips et al. (2015; PSY
henceforth), both of which assume stationary volatility. In contrast, drawing upon
recent developments in the literature, we employ two set of tests proposed in
Harvey et al. (2019, 2020) which allow for nonstationary volatility. In the first
set of tests, Harvey et al. (2019) modify the RADF statistic of PWY using a
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Table 5. Empirical results table for 10 stock indices, consisting of three panels.
Panel A: Nonstationary volatility tests (Cavaliere and Taylor, 2007b) and their
critical values (C.V.). Panel B: Explosiveness estimates and p-values of bubble
tests allowing for nonstationary volatility (Harvey, Leybourne, and Zu, 2019,
2020). Panel C: AR(1) estimates and 95% confidence intervals (presented for
(ρT −1)×100) of various methods.

Panel A: Heteroskedasticity tests Panel B: Explosiveness estimates and p-values

Country HKS HR HCVM HAD ρ̂T U supBZ supDF uPSY PSY sPSY

USA 1.382 1.328∗ 0.541∗∗ 2.965∗∗ 1.003 0.100 0.072 0.293 0.000 0.607 0.000

Brazil 1.560 1.487∗∗ 0.870∗∗∗ 4.223∗∗∗ 1.001 0.070 0.034 0.210 0.006 0.555 0.006

China 1.717∗ 1.634∗∗∗ 0.993∗∗∗ 4.744∗∗∗ 1.025 0.022 0.002 0.022 0.000 0.016 0.000

Hong Kong 1.368 1.368∗∗ 0.728∗∗ 3.753∗∗ 1.051 0.004 0.006 0.004 0.000 0.038 0.000

Australia 1.024 0.993 0.280 1.582 1.000 0.062 0.052 0.493 0.086 0.497 0.080

France 1.264 1.055 0.174 0.890 0.998 0.060 0.054 0.505 0.000 0.766 0.000

Germany 0.968 0.747 0.098 0.523 1.012 0.004 0.002 0.054 0.000 0.190 0.000

Italy 0.879 0.716 0.108 0.660 0.998 0.112 0.106 0.461 0.000 0.673 0.000

Egypt 1.660∗ 0.914 0.190 1.387 1.007 0.012 0.008 0.044 0.010 0.337 0.010

Nigeria 1.070 0.941 0.205 1.190 1.004 0.024 0.030 0.014 0.000 0.020 0.000

C.V. (10%) 1.620 1.230 0.347 1.933

C.V. (5%) 1.750 1.360 0.461 2.492

C.V. (1%) 2.010 1.630 0.743 3.850

Panel C: AR(1) estimates and 95% confidence intervals (presented for (ρT −1)×100)

Country ρ̂T thac PM GSW DWB3 DWB5 DWB10 DWBr

USA 1.003 [0.1, 3.1] [0.1, 5.3] [0.1, 2.8] [0.1, 3.9] [0.1, 3.8] [0.1, 3.5] [0.1, 3.7]

Brazil 1.001 [0.1, 2.4] [0.1, 2.4] [0.1, 2.6] [0.1, 3.3] [0.1, 3.3] [0.1, 3.1] [0.1, 3.4]

China 1.025 [0.8, 4.2] [0.1, 7.9] [1.1, 3.9] [0.7, 4.5] [0.8, 4.4] [1.2, 4.3] [1.0, 4.4]

Hong Kong 1.051 [2.1, 8.1] [4.2, 6.0] [2.6, 7.6] [2.2, 8.8] [2.2, 9.2] [2.0, 9.3] [2.0, 9.0]

Australia 1.000 – – – – – – –

France 0.998 – – – – – – –

Germany 1.012 [0.1, 3.1] [0.1, 10.4] [0.1, 3.3] [0.1, 3.5] [0.1, 3.6] [0.1, 3.8] [0.1, 3.5]

Italy 0.998 – – – – – – –

Egypt 1.007 [0.1, 3.4] [0.1, 9.4] [0.1, 3.0] [0.1, 4.1] [0.1, 4.0] [0.1, 3.4] [0.1, 3.9]

Nigeria 1.004 [0.1, 2.5] [0.1, 6.8] [0.1, 2.3] [0.1, 2.7] [0.1, 2.4] [0.1, 2.3] [0.1, 2.6]

Note: ∗ denotes 10%, ∗∗ denotes 5%, and ∗∗∗ denotes 1% significance levels for the above tests.

weighted least squares-based variant (supBZ) which is borrowed from Boswijk
and Zu (2018). To further increase power, they propose a union of rejections
test (U ) that combines the original PWY test statistic (supDF) and supBZ. In the
second set of tests, Harvey et al. (2020) suggest a sign-based version (sPSY) of
the PSY test for multiple bubbles and for the same reason also advocate a union of
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rejections test (uPSY) which consists of sPSY and the original PSY test. Following
these studies, we present the bootstrap p-values of these six tests in Panel B of
Table 5. It is evident that both the union tests reject the unit-root null at the 10%
significance level for all series except USA and Italy for the U test. As noted by
Harvey et al. (2020), the first set of tests—U , supBZ, and supDF tests, which build
on the PWY testing approach—are usually less powerful than the second set of
tests based on the PSY testing principle. Interestingly, we also observe a similar
phenomenon here: for each case except Australia, uPSY test has a lower p-value
than U . Based on the overall pattern found in Panel B of Table 5 and the superior
power performance of uPSY test revealed in Harvey et al. (2020), all of the 10
series are deemed to be explosive. However, to construct a meaningful confidence
interval in the second step, we conclude a series to be explosive if and only if both
of the following two conditions are satisfied—the pretest must reject the unit-root
null and the point estimate of the degree of explosiveness must exceed unity, i.e.,
ρ̂T > 1. Taking into account these conditions, we exclude Australia, France, and
Italy from the second step analysis since their estimates ρ̂T ≤ 115.

The second step entails constructing HAC-based confidence intervals for the
parameter ρT that governs the degree of explosiveness. To this end, we fol-
low the approach in GSW of testing over a certain grid of values, H0 : ρ ∈
{1.001,1.002, . . . ,1.500}. In practice, this corresponds to constructing a 100(1 −
δ)% confidence interval [ρ̂L,ρ̂U] such that

ρ̂L = max{1.001,ρ̂T −D1−δ/2 × σ̂ (ρ̂T)}, ρ̂U = ρ̂T −Dδ/2 × σ̂ (ρ̂T), (27)

where Dδ/2, D1−δ/2 represents the δ/2 and 1−δ/2 percentiles of the approximating
distribution D, and σ̂ (ρ̂T) is an estimate of the standard deviation of ρ̂T . In our
case, D is either the standard normal distribution or the DWB distribution and
σ̂ (ρ̂T) is the HAC estimate as defined in (9). Panel C of Table 5 presents the
confidence intervals constructed by the HAC-based approach as well as the other
methods compared in the simulations. Overall, our proposed DWB approach
is supportive of the hypothesis in GSW that most series are mildly explosive
(ρT ∈ [

1.004,1.04
]
). However, the DWB-based confidence intervals are in general

a bit wider than those of GSW with a larger upper bound for the former, which is
consistent with the preceding simulation evidence that GSW usually under-covers
in most of the nonstationary volatility cases considered. Hence, the GSW interval
tends to understate both the sampling uncertainty associated with the point estimate
of ρT as well as the degree of explosiveness driving the time series. Moreover, for
the four series which showed considerable evidence of time-varying volatility in
the foregoing analysis, the difference between the GSW and DWBr methods is
more prominent than for countries such as Germany and Nigeria which do not show

15It is worth noting that in GSW, the time series for Australia, France, and Italy are also categorized as nonexplosive
but for a different reason—due to failing to reject their bubble detection tests that do not allow for nonstationary
variance. In contrast, after adjusting for potential nonstationarity in the variance, the three series show significant
evidence of explosive behavior, although the p-values for Australia (0.086) and Italy (0.112) are the largest in the
uPSY and U tests, respectively.
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significant time variation in volatility. This pattern suggests that when volatility is
not time-varying, our DWB-based thac method suffers little efficiency loss, further
highlighting the advantages of using our proposed procedure relative to those that
do not control for unconditional heteroskedasticity. Finally, the PM intervals are
in general too wide and thus not particularly informative, again consistent with
the simulation evidence that PM intervals tend to over-cover under nonstationary
volatility.

In summary, we find that four out of the seven explosive stock market series
analyzed in GSW show strong evidence of time-varying volatility. For these
explosive series, our DWB-based method produces wider confidence intervals than
GSW, while the two methods provide very similar intervals for series that do not
exhibit time variation in volatility as indicated by the tests for stationary volatility.
These patterns are consistent with the simulation results in Section 5 and confirm
the effectiveness of our proposed method in constructing confidence intervals for
the degree of explosiveness in time series analysis.

6.2. U.S. Housing Price Indices

The details of this application can be found in Appendix D of the Supplementary
Material.

7. CONCLUSION

The recent upsurge of interest in the MEA framework has been spurred by its
ability to provide a simple yet effective tool for modeling the presence of asset
market bubbles. The development of this framework has been followed by a
plethora of theoretical and empirical studies that have sought to generalize the
original framework or apply it to study the time series evolution of several price
indices that may potentially be subject to explosive behavior. This paper considers
the problem of constructing asymptotically justified confidence intervals for the
autoregressive parameter that represents the degree of explosiveness. Existing
approaches typically employed in empirical practice are valid only under the
assumption of conditional homoskedasticity/heteroskedasticity, notwithstanding
extensive empirical evidence against the same for a wide range of important
economic and financial time series. Our framework allows the noise component to
be unconditionally heteroskedastic and sufficiently general to subsume a variety
of volatility specifications common in the literature. We propose a dependent wild
bootstrap-t procedure for inference that is shown to provide an improved approx-
imation to the finite-sample distribution of the t-statistic relative to asymptotic
methods. Given that the t-statistic is asymptotically pivotal, it is possible that the
bootstrap offers asymptotic refinements (Hall, 1992). A theoretical investigation
of this possibility is outside the scope of the present paper but a potentially fruitful
avenue for future research.
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