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Abstract

We determine the characteristic polynomials of the matrices [¢/™ + f]1<jx<n and [¢/™ + fl1<jj<n for
any complex number ¢g # 0, 1. As an application, for complex numbers a, b, ¢ with b # 0 and a® + 4b,
and the sequence (Wy)mez With Wy = aw,, — bw,,_; for all m € Z, we determine the exact value of
det[wj_x + cOj)i<jk<n-
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1. Introduction
For any integer n > 3, we have the determinant identity
det[j — Kli<jpen = 0

since (1 —k)+(3—-k)=2@2 -k)forallk =1,...,n However, it is nontrivial to deter-
mine the characteristic polynomial det[x/,, — (j — k)]1<j k<, Of the matrix [j — kli<jk<n,
where I, is the identity matrix of order n.

For j,keN=1{0,1,2,...}, the Kronecker symbol 6y takes the value 1 or O
according to whether j =k or not. In 2003, Cloitre [I] generated the sequence
det[j — k + 0ili<jrn (n = 1,2,3,...) with the initial fifteen terms:

1, 2, 7, 21, 51, 106, 197, 337, 541, 826, 1211, 1717, 2367, 3186, 4201.
In 2013, C. Baker added a comment to [1] in which he claimed that

n*(n® -1
det[j —k+ Oplicjpsn = 1 + % (1.1)

without any proof. It seems that Baker found the recurrence of the sequence using the
MAPLE package gfun.
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2 H. Wang and Z.-W. Sun 2]

Recall that the g-analogue of an integer m is given by

q" -1
_1'

[m]q =

Note that lim,_,{[m], = m.
In our first theorem, we determine the characteristic polynomial of the matrix
g7 + 1)< jk<n Tor any complex number g # 0, 1.

THEOREM 1.1. Let n > 2 be an integer and let g # 0, 1 be a complex number. Then the
characteristic polynomial of the matrix P = [¢/™* + 1];< J<n IS

det(xl, — P) = x"(x” — n(t + Dx + t(n* — q' " [n]})). (1.2)

Putting # = —1 and replacing x by (¢ — 1)x in Theorem 1.1, we immediately obtain
the following corollary.

COROLLARY 1.2. Let n > 2 be an integer and let g # 0,1 be a complex number. For
the matrix Py = [[j = klgli<jk<n

q'"[nl; - n?
(q—1)?
REMARK 1.3. Fix an integer n > 2. Observe that

det(xl, — P,) = X" + n-2

" "n; -0t @+ DI+ D = DR -
= lim

lim
=1 (g—1)2 -0 2
(t+ DI, () = n?) + (@ + D" = Dn?
= lim
=0 2
+ ()t +(2)2+ ) —n? _ n-1
_ hm((n (2) (3) ) n + 21 (t + 1) )
-0 (t+ 1)1 (t+ 1)1

W2\ (o (n) i ()R
- (2) +2”(3)+£§’3 (2”(2)(t+ Dt T T et )
n\> Hfn—1 n*(n® - 1)
(o) ()" ) -
n*(n® — l)x"_z

12 ’

which indicates that when n > 2, the n eigenvalues of A, = [j — k]1<jx<, are

S

So, by Corollary 1.2,

det[x6 — (j = D) li<jksn = X" + (1.3)

nvVn? -1 nvn? -1
=y =P T ==, =0
243 '
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[3] The matrices with (j, k)-entry ¢/ + ¢ 3
Note that (1.1) follows from (1.3) with x = —1. Concerning the permanent of A,,
motivated by [3, Conjecture 11.23], we conjecture that

per(A,_1) = 3 (mod p) and per(A,) =1+ 4p (mod p*)

for any odd prime p. Inspired by (1.1), Sun [4] conjectured that for any positive integers
m and n,

det[(j = b)" + Sulisjuen = 1+ 12 = 1) f(n)
for a certain polynomial f(x) € Q[x] with deg f = (m + 1)*> — 4.
Applying Corollary 1.2 with g = —1, we find that

-1 n—1 n 2 _n2
+ ( ) [ ]—1 xn—2

det(xl, — P_) = x" 2

for any integer n > 2. In particular,

1 —(=1)i* 9 —(=1)" = 2n?
det| ———— +; =
2 7 1<jksn 8
Applying Theorem 1.1 with (¢,x) = (-=1,-2) and (1,—1), we obtain the following
result.

COROLLARY 1.4. For any positive integer n,
; 4n —n=ly? 4 ]
det[277% = 1+ 26, ] 1< ken = +
and
detl2* + 1+ 6]i<jucn = (n+ 1)? =217"2" = 1)%.
In contrast to Theorem 1.1, we also establish the following result.

THEOREM 1.5. Letn > 2 be an integer and let g # 0, 1 be a complex number. Then the
characteristic polynomial of the matrix Q = [¢/** + t]o< jk<n—1 1S

det(xl, — Q) = X" — (nt + [n]2)X"~" + (n[n] 2 — [Nt (1.4)
The identity (1.4) with ¢ = 2 and x = t = —1 yields the following corollary.

COROLLARY 1.6. For any positive integer n,
4" +2

3

For complex numbers a and b # 0, the Lucas sequence u,, = u,,(a,b) (m € Z) and
its companion sequence v,, = v,;(a, b) (m € Z) are defined as follows:

det[27* — 1 + Splogjhsnt = Q"= 1 = (n— 1)

up=0, u; =1 and wy; = auy — buy_, forallk e Z;

vo=2,vi=a and vy =avy—bv_ forallkeZ.
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By the Binet formula,
(@a-Pup,=a"-p" and v,=a"+p" forallmeZ,
where

a+ Va® —4b a—Va® - 4b
a=——— and ’Bzf

2
are the two roots of the quadratic equation x* — ax + b = 0. Clearly, b"u_, = —u, and

b'*v_, = v, for all n € N. For any positive integer #, it is known that

-1)/2
Ln >/J(n_1_k w2l (n—k

(1.5)

2

u, =

N )a"_l_Zk(—b)k and v, = .

n—2k k
-b
Lk )a (-b)

k=0 k=

(see [5, page 10]), which can be easily proved by induction. Note also that u,,(2,1) = m
forallm e Z.
For P(z) = Z;é axz" € C[z], it is known (see [2, Lemma 9]) that

n—1 -1
det[P(x; + y)li<jksn = a,_, 1_[ (n . ) X 1_[ (x5 = )k — ¥))-

r=0 1<j<k<n
Thus, for any integer n > 3 and complex numbers a and b # 0,
(a — p)" det[uj_i(a,b)]i<ji<n = det[v;i(a,b)]i<jk<n =0

(where @ and g are given by (1.5)), since

. . 2 - j a j a k
det[aj_k iﬂj_k]l_ k<n = a—k X ﬁ/ % det [(—) + (—) ] =0.
<jiks g 1:1[ B B/ h<jks<n

As an application of Theorem 1.1, we obtain the following new result.

THEOREM 1.7. Let a and b # 0 be complex numbers with a> # 4b. Let (Wy,)mez be a
sequence of complex numbers with wy,1 = awy — bwy_; for all k € Z. For any complex
number ¢ and integer n > 2,

l—nun(a, b)Z _ n2

a*—4b
(1.6)

n—1

_ b
det[wj + cjxli<jk<n = " + " nwy + " Z(W% —awowy + bw(z))

REMARK 1.8. It would be hard to guess the exact formula for det[w ;_x + ¢djx]i<jk<n in
Theorem 1.7 by looking at various numerical examples.

COROLLARY 1.9. Let a,b,c be complex numbers with b # 0 and a? + 4b. For any
integern > 2,
b " uy(a, by — n?

a* — 4b

det[u; r(a,b) + cOli<jisn = " + ¢
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and
det[v—(a, b) + cOjli<jrsn = " (n + )* = b "uy(a, b)?).

For any me€Z, u,(-1,1) coincides with the Legendre symbol (73), and

vm(1,—-1) = W™ + @™, where w denotes the cube root (—1 + V—3)/2 of unity. Applying
Corollary 1.9 with a = —1 and b = 1, we get the following result.

COROLLARY 1.10. For any integer n > 2 and complex number c,

j_k -2 I’l2
dt[(—)+ 5~] ="+ {—J
© 3 Ok 1<jk<n e 3

Recall that F,, = u,,(1,—1) (m € Z) are the well-known Fibonacci numbers and
L, = viu(1,—-1) (m € Z) are the Lucas numbers. Corollary 1.9 witha =1 and b = -1
yields the following result.

COROLLARY 1.11. For any integer n > 2 and complex number c,

Cn—2
det[Fj_k + Cdjk]lgj,ksn =c"+ ?((_l)n_lFﬁ - n2)

and
det[Lj,k + C6jk]lsj,ksn = Cn—Z((n + C)2 + (_l)nFyzl)
Although we have Theorem 1.5 which is similar to Theorem 1.1, it seems impossible
to use Theorem 1.5 to deduce a result similar to Theorem 1.7.

2. Proof of Theorem 1.1

LEMMA 2.1. Let n be a positive integer, and let g # 0 and t be complex numbers with
n—[n], + t(g'™" [n]; —n) # 0. Suppose that

n(t+1) = \/nz(t — 1 + dig! " [n]2

_ and y= vy —[nl, —nt
Y 2 n-— [n]q + (ql_n[n]q - n)t'
2.1)
Then, for any positive integer j,
D@+ 0+ (g = 1) =y + 3@ = D). 2.2)
k=1
PROOF. Asy? —n(t + 1)y + (n* — ¢'""[n]})t = 0,
[n)y(n = [nl, + (q'™"[nlg = m)1) = (y = [n], = nD)(y = n + [n],)
and hence
(?’ -—n+ [n]q)y = [n]q- (2.3)
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Forje{l,2,3,...}, set

Aj= D@+ 000+ 3@ = 1) =y + (g - 1),
k=1

Then, by (2.3),
A= 11+ 3¢ = D)+ 70 =) = (Y a1+ 5@ = 1) =)
k=1

= ¢/"([nly(1 —y) + ny —yy) = 0.
SoAi=Ay=---.
Next we show that A,, = 0. Observe that

DU+ DA+ (G =Dy = Y@ A=) + 1 =y) +y+ ¢y
k=1 k=1

= [nly(1 = y) + nt(1 = y) + ny + ¢' "[nl,ty
= [n]y + nt + y(n = [nly + (g'"[nly = D)
=y=y(L+y¢"™"-1)
by the definition of y. So A, = 0.
In view of the above, A; = O for all j = 1,2, 3, .... This concludes the proof. O

PROOF OF THEOREM L.1. It is easy to verify the desired result for n = 2. Below we
assume that n > 3.
If n — [n], and qlf”[n]q — n are both zero, then ¢"! = 1 and n = [nl; =1.Asn >3,
there are infinitely many ¢ € C such that
n—[nl,+tq" "[nly—n)#0 and n’(t— 1) +4tg'"[n]; # 0.

Take such a number ¢, and choose y and y as in (2.1). Then y given in (2.1) is an
eigenvalue of the matrix P = [¢/™* + 1]) < x<n, and the column vector v = (vy,...,v,)"
with v, = 1 + y(¢"™" — 1) is an eigenvector of P associated with the eigenvalue y. Note
that y given by (2.1) has two different choices since n?(t — 1)* + 4t¢' ™" [n]é #0.
Lets e {3,...,n}. For 1 <k < n, let us define
qz_s[s—Z]q ifk=1,
W= s 1], ifk=2,
Osk if3<k<n

It is easy to verify that

n n
va) =0= qu_kv;:) forallj=1,...,n.
k=1 k=1

Thus, 0 is an eigenvalue of the matrix P = [qj‘k + tli<jk<n, and the column vector
V) = (v(]s), ... ,vﬁf))r is an eigenvector of P associated with the eigenvalue 0.
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If >0, ¢,y is the zero column vector for some cs,...,c, € C, then for each
k=3,...,n,

n

n
cr = Z O = Z csvﬁf) =0.
s=3

s=3
Thus, the  — 2 column vectors V¥, ..., v® are linearly independent over C.
By the above, the n eigenvalues of the matrix P = [¢/~% + £];< Jk<n are the two values
of y given by (2.2) and A3 = --- = A, = 0. Thus, the characteristic polynomial of P is

n(t +1) \/nz(t - 1?2+ 4tq1‘”[n]2
2 2
ni a1y P 1P+ 4

X (x 5 + 3 ) ﬁ(x - Ay)

s=3
(. n+ N2 n( =D +dig' "]
-7 ((x T ) - 4 )
= X7 = n(t + Dx + 1(n” = ' "[n]})).

det(xl, — P) = (x

Thus, the identity (1.2) holds for infinitely many values of 7. Note that both sides of
(1.2) are polynomials in ¢ for any fixed x € C. Thus, if we view both sides of (1.2) as
polynomials in x and ¢, then the identity (1.2) still holds. This completes the proof. O

3. Proof of Theorem 1.5

The following lemma is quite similar to Lemma 2.1.

LEMMA 3.1. Let n be a positive integer, and let g # 0 and t be complex numbers with
[n]p + (¢" "t - q"‘l)[n]q —nt # 0. Suppose that

nt + [n],p + \/(nt — [n]2)* + 41["]5 y-q" '[nl, - nt

7 2 e < [nle + (q'~"t — " Hlnl, — nt
3.1
Then, for everyj=0,1,2,...,
n—1
D@+ 0+ 2 = D) = (1 + 2@ - 1), (3.2)
k=0
PROOF. Since y? — (nt + [n]2)y + t(n[n] 2 — [n]é) = 0, we have
(v = [nlg +¢" ' [nl)z = ¢ nl,. (3.3)

https://doi.org/10.1017/5S000497272400039X Published online by Cambridge University Press


https://doi.org/10.1017/S000497272400039X

8 H. Wang and Z.-W. Sun [8]

Forje{0,1,2,...}, set

n—1

Rj= Y @™ + 01+ ¢ = 1) =1 +2(g" " = 1),
k=0

It is easy to see that

n-1

Ry = > i1 +2(d ™™ = 1) +y(1 = 2) = ¢/ (g" [nly(1 = 2) + 2ln],p = y2) = O

k=0
with the aid of (3.3). SoRy =R; =---. As
n-1
D@00+ 2T = 1) =y =y +2g" T - 1),
k=0
we get R,—; = 0. So the desired result follows. |

PROOF OF THEOREM L.5. It is easy to verify the desired result for n = 2. Below we
assume that n > 3.
If [n],2 — ¢"~'[n], and ¢'~"[n], — n are both zero, then [n], # 0 and

(¢" + DInlg = (g + Dlnlg = (g + D" [nlg = (¢" + ¢ Dlnl,,

and hence ¢! =1 and n = [n], = 1. As n > 3, there are infinitely many ¢ € C such
that

[nlg+ (¢ "t —¢q" Dlnly—nt #0 and (nt —[n]p)* +4i[n]] # 0.

Take such a number ¢, and choose y and z as in (3.1). Then y given in (3.1)

is an eigenvalue of the matrix Q = [qj”‘ + tlo<jk<n-1, and the column vector

v=0,...,vp1)! with vy = 1+ z(¢""*! — 1) is an eigenvector of Q associated with

the eigenvalue y. There are two different choices for y since (nt — [n] qz)2 + 4t[n]2 # 0.
Letse(3,...,n}. Forke{0,...,n— 1}, define

qls -2], ifk=0,
W=d-[s-1], ifk=1,

Osk+l if2<k<n-1
It is easy to verify that
n—1 n—1
v;:) =0= Z q”kv;:) forallj=1,...,n.
k=0 k=0

Thus, 0 is an eigenvalue of the matrix Q = [qj+k + tlo<jk<n—1, and the column vector
V) = (vés), ... ,vflsjl)r is an eigenvector of Q associated with the eigenvalue 0.
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If >0, ¢,y is the zero column vector for some cs,...,c, € C, then for each
k=2,....,.n—1,
n n
Cisl = Z CsOsks1 = Z CsV,(f) =0.
s=3 s=3

Thus, the n — 2 column vectors v, ..., v® are linearly independent over C.

By the above, the n eigenvalues of the matrix Q = [qf”‘ + tlo<jk<n-1 are the two
values of y given by (3.2) and A3 = - - - = 4, = 0. Thus, the characteristic polynomial
of Qis

by = [n) + 4t[n]g)

det(xl, — Q) = (x 5 -

( nt+ Il 0= 1) + 40
XX -

PR 2 )ﬁ(x_m

s=3
- nt+[n]p\2 (nt - [n]2)* + 4t[n]£21
- ((x 2 ) - 4 )
=x" = (nt + [n] 2" + (n[n],z — (],

Thus, the identity (1.4) holds for infinitely many values of 7. Note that both sides
of (1.4) are polynomials in ¢ for any fixed x € C. If we view both sides of (1.4) as
polynomials in x and ¢, then the identity (1.4) still holds. This concludes the proof. O

4. Proof of Theorem 1.7

PROOF OF THEOREM 1.7. If wyg = wy =0 or n = 2, then the desired result can be
easily verified. Below we assume that n > 3 and {wg, w;} # {0}.

Let o and S8 be the two roots of the quadratic equation z> — az + b = 0. Note that
af =b # 0. Also, a # f3 since A = a> — 4b is nonzero. It is well known that there are
constants ¢y, c; € C such that w,, = c1@” + ¢," for all m € Z. As ¢ + ¢, = wy and

cia + B = wy,
wi — Bwg awy — wq
=———— and ¢p=——-

s sy 4.1)

(&

Since wq or w; is nonzero, one of ¢; and ¢, is nonzero. Without any loss of generality,
we assume c¢; # 0.
Let W denote the matrix [w;_ + cdjx]i<jr<n- Then

det(W) = det[cla/j_k + czﬁj_k + cOili<jksn

L £ 7k ey + C5'kﬁk_j
=" J "‘xdt[(g) —
i} gﬂ gﬁ e B o

= ' det[q/™ + t = X0 ]i<jren = (—c1)" detxd — ¢/ = 1< rens

1<jk<n
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where ¢ = @/ #0,1,t = cy/c; and x = —c/c;. By applying Theorem 1.1, we obtain
det(W) = (=c1)"x" 2 = n(t + Dx + t(n* — ¢' " [n]}))

_ cn—z(cz +nc(er + ) + clc2(n2 B al—n(w)z))

g\ a/p-1
="+ nwoc" ! + C"_chz(nz - (a’ﬂ)l_n(%)z)

"+ nwoc !+ "oy (n® = b M uy(a, b)?).

In view of (4.1),

e = (w1 — Bwo)(awg —wy) —w% + (a + Bwow; — afﬁwg B _w% —awgwy + bw(z)
2 (@ - p)? N A B a? — 4b
Therefore, the desired evaluation (1.6) follows. O
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