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Abstract

In this paper, we provide sufficient conditions for a space X to satisfy the Ganea conjec-
ture for topological complexity. To achieve this, we employ two auxiliary invariants: weak
topological complexity in the sense of Berstein–Hilton, along with a certain stable version
of it. Several examples are discussed.

2020 Mathematics Subject Classification: 55M30 (Primary); 55P99, 55Q25 (Secondary)

Introduction

The topological complexity of a space X, denoted TC(X), is defined as the sectional
category (or Schwarz genus) of the evaluation fibration πX:XI → X × X,

π(α) := (α(0), α(1)).

This numerical homotopy invariant was defined by M. Farber [5] in order to study the
measure of discontinuity of any motion planning algorithm in Robotics. Topological com-
plexity is related to Lusternik–Schnirelmann category, as the latter may be also defined as
the sectional category of the path fibration PX → X.

In this paper, our focus is on exploring the Ganea conjecture in the context of topo-
logical complexity, which is a variation of the classical Ganea conjecture for Lusternik–
Schnirelmann category [8]. The original Ganea conjecture posed the question of whether
the equality cat(X × Sk) = cat(X) + 1 holds true for any finite CW-complex and k � 1. The
affirmation of this equality is known as the classical Ganea conjecture, which remained
open until Iwase [12] provided a set of counterexamples refuting it. Nonetheless, over the
years of studying this conjecture, several positive outcomes have emerged. In particular, the
equality cat(X × Sk) = cat(X) + 1 has been established for simply connected rational spaces
([11, 14]) and for certain classes of manifolds and CW-complexes ([16, 17, 18]). In the
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sequel of Iwase’s result, further works have been realised (for instance, [13, 20, 21, 22]) in
order to exhibit additional classes of counterexamples and of spaces satisfying the Ganea
conjecture.

The TC-Ganea conjecture, or Ganea conjecture for topological complexity, seeks to
determine whether the following equality holds:

TC(X × Sk) = TC(X) + TC(Sk).

This conjecture explores the relationship between the topological complexity of a finite CW-
complex X and the topological complexity of the product space X × Sk, where k � 1. It is
worth noting that TC(Sk) equals 1 when k is odd and 2 when k is even. Additionally, the
following sequence of inequalities is well–known:

TC(X) � TC(X × Sk) � TC(X) + TC(Sk).

Significant progress has been made in establishing positive results for the TC-Ganea con-
jecture in the realm of rational homotopy theory. Jessup, Murillo and Parent [15] as well as
Carrasquel [2] have made noteworthy advancements in this direction. Conversely, in their
work [9], J. Gonzalez, M. Grant and L. Vandembroucq provided a counterexample for the
case where k is even. However, the situation for odd values of k remains unresolved and
awaits further investigation.

In this paper, we aim to establish sufficient conditions for a space X to satisfy the TC-
Ganea conjecture. To accomplish this, we initially focus on the case where the dimension
is odd, that is, k = 2n + 1, and build on the approach developed by Strom in [18] where the
Berstein–Hilton weak-category was used as an auxiliary invariant. Here our auxiliary invari-
ant will be the “weak topological complexity” (wTC(−)), which was introduced in [6]. Our
first main result, as stated in Theorem 2·2, demonstrates that under certain conditions, we
have wTC(X × S2n+1) � wTC(X) + 1. To prove this result, we utilise the crucial relationship
between weak topological complexity and the weak category of the homotopy cofiber of the
diagonal map �:X → X × X, which was established in [6]. From the inequalities

wTC(X) + 1 � wTC(X × S2n+1) � TC(X × S2n+1) � TC(X) + 1,

we can then deduce that TC(X × S2n+1) = TC(X) + 1, provided that the approximation
wTC(X) is optimal, meaning that wTC(X) = TC(X). By employing a similar strategy for
the even dimensional case, we are able to derive our second key result, as presented in
Theorem 2·11. However, in the case of even dimensions, we need to introduce a stable ver-
sion of the auxiliary invariants, namely wcat and wTC, beforehand. Subsequently, we delve
into the study of a specific class of two-cell complexes and utilise Hopf invariants to establish
conditions that guarantee the equality between our auxiliary invariants and TC. This explo-
ration leads us to identify classes of spaces that satisfy the TC-Ganea conjecture. It is worth
noting that Hopf invariants have played a pivotal role in Iwase’s disproof of the classical
Ganea conjecture [12]. In the context of topological complexity, techniques involving Hopf
invariants have been developed in [9, 10], with particular applications to the class of two-
cell complexes X = Sp ∪α eq+1 in the metastable range (2p − 1 < q < 3p − 2). It is within
this class of spaces that we focus our study, making use of results from the aforementioned
papers [9, 10].

The paper is organised as follows. In the first section, we provide essential notation, def-
initions, and results that will be crucial for our main findings. This includes a review of the
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concepts of Berstein–Hilton weak category and weak topological complexity, along with
their key properties. Additionally, we present relevant information on Berstein–Hilton Hopf
invariants and the homotopy cofiber of the diagonal map for spheres. The second section of
the paper focuses on presenting the proofs of our main results. Here, we establish sufficient
conditions under which the TC-Ganea conjecture is satisfied. We provide detailed explana-
tions and justifications for these conditions. Finally, the paper concludes with an application
of our results to the study of two-cell complexes in the metastable range. We demonstrate
how our findings can be applied to this specific class of spaces and discuss the implications
of our results in this context.

1. Preliminaries

Throughout the paper, we shall work in the category of well-pointed compactly generated
Hausdorff spaces. We assume that the reader is familiarised with the notions of sectional
category and its main specialisations: topological complexity and Lusternik–Schnirelmann
category. For fundamental aspects on these invariants see [3, 5, 19].

1·1 Weak category and weak topological complexity

We here recall some material from [6], referring the reader to this paper for more details.
Recall that, given any map f :E → B, there is a Whitehead-type characterisation of sec-

tional category, which is given as follows. Consider the n-sectional fatwedge of any map
f :E → B, κn:Tn(f ) → Bn+1, inductively defined by starting with κ0 = f :E → B and consid-
ering the (fibrewise) join of κn−1 × idB and idBn × f . Then secat(f ) � n if and only if there
is, up to homotopy, a lift of the (n + 1)-diagonal map �n+1 = �B

n+1:B → Bn+1.

Tn (f)

κn

B
Δn  1

B .n+1

For any n � 0, we shall denote by B∧n the n-fold smash-product, by qn = qB
n :Bn → B∧n the

identification map and by �̄n = �̄B
n :B

�n→ Bn qn→ B∧n the reduced n-diagonal. Recall that the
weak category of B, wcat(B), introduced by Berstein and Hilton [1], is the least integer n
such that �̄n+1 is homotopically trivial. This is a lower bound for the L-S category of B
since cat(B) � n if and only if the diagonal �B

n+1:B → Bn+1 lifts, up to homotopy, in the
fatwedge Tn(B) = {(b0, b1, ..., bn) ∈ Bn+1:bi = ∗, for some i} and B∧(n+1) = Bn+1/Tn(B).

Let f :E → B be a map and, for any integer n, let Cκn be the homotopy cofibre of the n-
sectional fat wedge of f , κn:Tn(f ) → Bn+1. If ln:Bn+1 → Cκn denotes the induced map, then
the weak sectional category of f , denoted by wsecat(f ), is the least integer n (or ∞) such
that the composition

B
�n+1−→ Bn+1 ln−→ Cκn

is homotopically trivial. This is a lower bound of sectional category whose most important
properties are summarised in the following result.

PROPOSITION 1·1. [6, theorem 21] Let f :E → B be a map and Cf be its homotopy cofibre.
Then:
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(a) max{wcat(Cf ) − 1, nil ker f ∗}� wsecat(f ) � min{wcat(B), wcat(Cf )};
(b) if the map f :E → B admits a homotopy retraction (i.e., there is a map r:B → E such

that rf 	 1E), then

wsecat(f ) = wcat(Cf ) and nil ker f ∗ = cuplength(Cf ).

Here nil ker f ∗ denotes the nilpotency of the kernel of the morphism f ∗ which is induced
by f in cohomology (where the coefficients can be taken in any commutative ring). This is
a classical lower bound for sectional category [19]. As a consequence of Proposition 1·1(a),
we note that wsecat(f ) = secat(f ) when secat(f ) = nil ker f ∗. Additional conditions which
ensure the equality wsecat(f ) = secat(f ) are given in the following proposition established
in [6]:

PROPOSITION 1·2. Let f :E → B be any map, where E and B are (p − 1)-connected CW-
complexes (p � 1). If dim (B) = N and either one of the following conditions is satisfied:

(i) N � p(wsecat(f ) + 2) − 2:

(ii) N � p(secat(f ) + 1) − 2,

then secat(f ) = wsecat(f ).

Note that in [6] this result was stated for p � 2. Since we always have secat(f ) � cat(B) �
N, the statement is actually also true for p = 1.

In this paper, we are more interested in the particular case of weak topological complexity,
denoted by wTC(X). This is a lower bound of topological complexity defined as wTC(X) :=
wsecat(π) where π :XI → X × X denotes the evaluation path fibration. As π is the fibration
associated with the diagonal map �:X → X × X, we also have that wTC(X) = wsecat(�).
As a consequence of Proposition 1·1 we have the following equality:

wTC(X) = wcat(C�(X)),

where C�(X) stands for the homotopy cofibre of the diagonal map �:X → X × X. We
note that the equality TC(X) = cat(C�(X)) holds for several classes of spaces (see [7, 10]).
However, it is not true in general as established by Dranishnikov ([4]).

As a direct consequence of Proposition 1·2, we have the following corollary:

COROLLARY 1·3. Let X be any (p − 1)-connected CW-complex (p � 1). Assume that
dim(X) = N and either one of the following conditions is satisfied:

(i) N � (p(wTC(X) + 2))/2 − 1; or

(ii) N � (p(TC(X) + 1))/2 − 1.

Then TC(X) = wTC(X).

Remark 1·4. As pointed out for the general case of sectional category, we also have a coho-
mological condition ensuring the equality TC(X) = wTC(X). Indeed, if H̃∗ stands for the
reduced cohomology with coefficients in a field k, then nil ker �∗ is exactly zclk(X), the
zero divisor cup length introduced by Farber in [5]. Then, from Proposition 1·1(b) we have
that TC(X) = wTC(X) as far as TC(X) = zclk(X). In [6, 7], we have shown that there exist
spaces X for which TC(X) = wTC(X) > zclk(X). More precisely, the space X = S3 ∪α e7,
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where α ∈ π6(S3) is the Blakers–Massey element (that is, X is the 7-skeleton of Sp(2)),
satisfies

zclk(X) = 2 wTC(X) = TC(X) = 3.

In the sequel, we will also use the following result (see [6]).

PROPOSITION 1·5. Let f :A → B be a map between (p − 1)-connected CW-complexes (p �
1). If f is an r-equivalence, wcat(A) � k and dim (A) � r + p(k − 1) − 1 then wcat(B) �
wcat(A).

1·2. Hopf invariants

In [1], Berstein and Hilton have introduced two notions of (generalised) Hopf invariants
to study the increment of the category/weak-category upon cell attachments. We will refer
to these invariants as the cat-Hopf invariants and crude Hopf invariants, respectively. For
the sake of simplicity, we will consider the following conditions, which are sufficient for
our purpose. Let X = K ∪α CS where K is a (p − 1)-connected CW complex with p � 2,
cat(K) � k and dim (K) � (k + 1)p − 2. We also assume that S is a finite wedge of spheres
of the same dimension d satisfying d � dim (K).

Given an attaching map α, the definition of the Berstein–Hilton Hopf invariants depends
on the choice of a homotopy lifting φ:K → Tk(K) of the diagonal map �K

k+1:K → Kk+1.
However, under the condition dim (K) � (k + 1)p − 2, there is a unique such lifting and
the Hopf invariants depend only on the homotopy class of α. We denote by H(α) ∈
[(CS, S), (Kk+1, Tk(K))] ∼= [S, Fk(K)] the cat-Hopf invariant of α (which can be seen as the
obstruction to extend to X the lifting φ of �K

k+1 – see [1] or [3] for the precise defini-
tion). Here Fk(K) denotes the homotopy fibre of the inclusion Tk(K) ↪→ Kk+1. The crude
Hopf invariant of α is given by H̄(α) := (qk+1)∗H(α) ∈ [�S, K∧(k+1)], where (qk+1)∗ is the
morphism induced by the identification map (Kk+1, Tk(K)) → (K∧(k+1), ∗).

Under the conditions above, it follows from [1, corollary 3·9 and theorem 3·19] that

(i) cat(X) � k if, and only if, H(α) = 0,

(ii) wcat(X) � k if, and only if, H̄(α) = 0.

As it will be useful in this work, we detail the second statement through the follow-
ing lemma. We include a proof which will lead to a generalisation in a subsequent section
(Lemma 3·3).

LEMMA 1·6. Let K be a (p − 1)-connected CW complex with p � 2, cat(K) � k and
dim (K) � (k + 1)p − 2. Let d � dim (K) and α:S → K be a map where S is a finite wedge of
spheres Sd. Then, for X = K ∪α CS, there exists a homotopy commutative diagram

X

–
Δk+1

δ

X k+1

ΣS –
H α

K k+1

where δ is the connecting map in the Puppe sequence of the cofibration S
α→ K → X.

Moreover wcat(X) � k if, and only if, H̄(α) = 0.
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Proof. The diagram can be deduced from [1, proposition 3·7(ii)], see also [3, lemma 6·33].
It is clear that H̄(α) = 0 implies that wcat(X) � k. Conversely, let us suppose that wcat(X) �
k. Then �̄k+1 	 ∗. Note that the inclusion K∧(k+1) ↪→ X∧(k+1) is a (kp + d)-equivalence.
Since dim (X) = d + 1 < kp + d, we deduce from �̄k+1 	 ∗ that H̄(α)δ 	 ∗. Considering the
Puppe sequence of the cofibration S

α→ K → X we then get a map �K → K∧(k+1) making
homotopy commutative the following diagram:

X

δ

ΣS
H̄ (α)

Σα

K (k+1)

ΣK .

Since K∧(k+1) is (k + 1)p − 1-connected and dim (K) � (k + 1)p − 2 we see that this map is
homotopically trivial and consequently H̄(α) = 0.

We will also use the following observations:

Remark 1·7. Let us consider the commutative diagram corresponding to the identification
map (Kk+1, Tk(K)) → (K∧(k+1), ∗). If we denote by q̄k+1:Fk(K) → 
K∧(k+1) the induced
map at the level of the homotopy fibers, then, through adjunction, H̄(α) can be identified to
the following composite:

�S
�H(α)−→ �Fk(K)

�q̄k+1−→ �
K∧(k+1) ev−→ K∧(k+1),

where ev is the evaluation map. When K = Sp or more generally any (p − 1)-connected
CW-complex with p � 2, we can use a Blakers–Massey argument to see that the map

�Fk(K)
�q̄k+1−→ �
K∧(k+1) ev−→ K∧(k+1)

is a p(k + 2) − 1 equivalence.

Remark 1·8. In the specific case of a map α:S → Sp (p � 2), where S is a finite wedge of
spheres Sd with d < 3p − 2, the cat-Hopf invariant H(α) exhibits stability and is entirely
determined by its projection H0(α):S → S2p−1 onto the bottom sphere of

F1(Sp) = 
Sp ∗ 
Sp 	 S2p−1 ∨ S3p−2 ∨ S3p−2 ∨ · · ·
In this case we also have H̄(α) = �H0(α).

1·3. Cofibre of the diagonal map of spheres

Recall that we denote the homotopy cofiber of the diagonal map �:X → X × X for any
space X as C�(X). In this subsection, we will recall important facts on C�(Sn) and its
reduced diagonal �̄ = �̄2:C�(Sn) → C�(Sn) ∧ C�(Sn).

As shown in [6, proposition 28]), C�(Sn) is homotopy equivalent to the adjunction space
Sn ∪[ιn,ιn] e2n, where [ιn, ιn]:S2n−1 → Sn represents the Whitehead bracket of the identity
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map ιn:Sn → Sn with itself. Taking this fact into consideration, we can easily obtain our next
result:

PROPOSITION 1·9. The following statements hold:

(a) �C�(Sn) 	 Sn+1 ∨ S2n+1;

(b) �(C�(Sn) ∧ C�(Sn)) 	 S2n+1 ∨ S3n+1 ∨ S3n+1 ∨ S4n+1. In general, �(C�(Sn)∧k) is a
wedge of spheres where Snk+1 is the one with minimun dimension, for all k � 1.

Observe that the suspension �[ιn, ιn] is homotopical trivial so (a) is easily satisfied,
whereas (b) is a direct consequence of (a) and the properties of the smash product and
the suspension functors.

Let us delve into the analysis of the reduced diagonal map

�̄:C�(Sn) → C�(Sn) ∧ C�(Sn)

and its implications. By utilising Lemma 1·6 mentioned earlier, with K = Sn and α = [ιn, ιn],
we can decompose the reduced diagonal as follows:

CΔ(Sn ) Δ̄
CΔ(Sn ) CΔ(Sn )

S2n

H̄ ([ιn ,ι n ])
S .2n

As observed in Remark 1·8, H̄([ιn, ιn]) is precisely the suspension of the map

H0([ιn, ιn]):S2n−1 → S2n−1.

Moreover, it is well–known that H0([ιn, ιn]) = ±h([ιn, ιn])ι2n−1, where h([ιn, ιn]) ∈Z

denotes the classical Hopf invariant of [ιn, ιn], and that h([ιn, ιn]) = 0 when n is odd, and
h([ιn, ιn]) = 2 when n is even. Hence, �̄:C�(Sn) → C�(Sn) ∧ C�(Sn) is homotopically triv-
ial when n is odd. However, when n is even, H̄([ιn, ιn]):S2n → S2n is a map whose degree is
(up to sign) 2. Applying the suspension functor to the diagram above we can obtain another
homotopy commutative diagram

S2n+1 Sn+1 ΣΔ̄
S2n+1 S3n+1 S3n+2 S4n+1

S2n+1
± 2Id

S2n+1

where ±2Id:S2n+1 → S2n+1 denotes the map having degree ±2, S2n+1 ∨ S3n+1 ∨ S3n+2 ∨
S4n+1 → S2n+1 is a homotopy retraction of S2n+1 → S2n+1 ∨ S3n+1 ∨ S3n+2 and S2n+1 →
S2n+1 ∨ Sn+1 a homotopy section of S2n+1 ∨ Sn+1 → S2n+1.
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2. Product formulas

In this section, we will explore the investigation of the Ganea conjecture concerning topo-
logical complexity. As previously mentioned, we will present sufficient conditions for a
space X to fulfill TC(X × Sn) = TC(X) + TC(Sn) by employing the concepts of weak topo-
logical complexity and weak category in the sense of Berstein–Hilton, along with certain
variations of such invariants. Considering the importance of the parity of the dimension
in the sphere Sn, we have opted to analyse each case separately: odd-dimensional and
even-dimensional.

2·1 Odd dimensional case

To begin with, let us recall that for any space X we can construct the homotopy cofiber of
the diagonal map given by

X
�−→ X × X

ρX−→ C�(X),

where ρX denotes the canonical map. It is worth noting that for any sphere Sn, the
projections p1:X × Sn → X and p2:X × Sn → Sn induce a natural map π :C�(X × Sn) →
C�(X) × C�(Sn). In fact, we can regard π as the map induced by the homeomorphism idX ×
T × idSn :X × Sn × X × Sn

∼=−→ X × X × Sn × Sn, where T is defined as T(x, s) := (s, x). In
particular, we have the following commutative diagram

X Sn X Sn

idX T idS n

ρX ×S n

CΔ(X Sn )

π

X X Sn Sn
ρX ×ρS n

CΔ(X) CΔ(Sn ).

(∗)

The forthcoming lemma concerning the previously defined map π is of great importance
for our purposes. Its proof relies on the following well-known facts:

(i) if X
f−→ Y

p−→ Cf is a homotopy cofibre sequence and f admits a homotopy
retraction, then there exists σ :�Cf → �Y a homotopy section of �p;

(ii) for any two connected spaces X, Y , there is a natural homotopy equivalence �(X ×
Y)

	→ �X ∨ �Y ∨ �(X ∧ Y). In particular, there exists a homotopy section for the
suspension of the projection map X × Y → X ∧ Y .

LEMMA 2·1. The suspension �π :�C�(X × Sn) → �(C�(X) × C�(Sn)) of π admits a
homotopy section.

Proof. For any space Z, we take σZ :�C�(Z) → �(Z × Z) a homotopy section of �ρZ . Then,
by the following decomposition of the map �(ρX ∧ ρSn):
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Σ((X × X) (Sn
× Sn ))

Σ(ρX ρS n)

(Σ(X × X)) (Sn
× Sn )

(ΣρX ) id

(ΣCΔ(X)) (Sn
× Sn )

σX id

CΔ(X) Σ(Sn
× Sn )

id ΣρS n

CΔ(X) ΣCΔ(Sn )

id σS n

Σ(CΔ(X) CΔ(Sn ))

we see that �(ρX ∧ ρSn) admits a homotopy section. As we have the homotopy equivalence
�(ρX × ρSn) 	 �ρX ∨ �ρSn ∨ �(ρX ∧ ρSn) we easily obtain a homotopy section for �(ρX ×
ρSn). We complete the proof by applying the suspension functor to the diagram (∗) above.

We are now in a position to state and prove our first main result in this section, specifically
when the dimension of the sphere is odd:

THEOREM 2·2. Suppose X is a (p − 1)-connected CW-complex (p � 2) satisfying
wTC(X) = k � 2. If dim (X) � pk − 1, then we have

wTC(X × Sn) � wTC(X) + 1

for all n. If, in addition, wTC(X) = TC(X), then TC(X × Sn) � TC(X) + 1 and hence,
TC(X × Sn) = TC(X) + 1 when n is odd.

Proof. By utilising the identity wTC(X) = wcat(C�(X)), we can establish that the kth
reduced diagonal �̄k:C�(X) → C�(X)∧k is not trivial. Furthermore, due to the inequality
dim (X) � pk − 1, the map �̄k is stably non-trivial, that is, ��̄k �	 ∗ (equivalently, �m�̄k �	
∗, for all m). Indeed, we have dim (C�(X)) = 2 dim (X) and C�(X)∧k is (pk − 1)-connected,
allowing us to apply the Freudenthal suspension theorem.

In order to establish the non-triviality of the (k + 1)th reduced diagonal �̄k+1:C�(X ×
Sn) → C�(X × Sn)∧k+1, it is enough to demonstrate that its suspension is not homotopically
trivial. To accomplish this, we first construct the following commutative diagram:

CΔ(X × Sn )
Δ̄k +1

π

CΔ(X × Sn ) k CΔ(X × Sn )

CΔ(X) × CΔ(Sn )
Δ̄k +1

(CΔ(X) × CΔ(Sn )) k (CΔ(X) × CΔ(Sn ))

CΔ(X) CΔ(Sn )
Δ̄k id

(CΔ(X)) k CΔ(Sn ).
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Next, we apply the suspension functor to the diagram above, resulting in a new diagram
where the curved arrows represent homotopy sections. Those are given by Lemma 2·1 and
the fact that, for any pair of connected spaces X,Y , the suspension of the projection map
X × Y → X ∧ Y always has a homotopy section:

ΣCΔ(X × Sn )
ΣΔ̄k +1

Σπ

ΣCΔ(X × Sn ) k CΔ(X × Sn )

Σ(CΔ(X) × CΔ(Sn ))
ΣΔ̄k +1

Σ(CΔ(X) × CΔ(Sn )) k (CΔ(X) × CΔ(Sn ))

ΣCΔ(X) CΔ(Sn )
ΣΔ̄k id

Σ(CΔ(X)) k CΔ(Sn ).

By using a simple diagram chase argument, where the homotopy sections must be consid-
ered, we can verify that the top map ��̄k+1 is not homotopy trivial as long as the bottom
map, ��̄k ∧ id, is not homotopy trivial.

On the other hand, as we have that �C�(Sn) 	 Sn+1 ∨ S2n+1 are homotopy equivalent
(see Proposition 1·9 (a)) such a bottom map, which is equivalent to �̄k ∧ �id:C�(X) ∧
�C�(Sn) → C�(X)∧k ∧ �C�(Sn) can be, in turn, naturally identified with �n+1�̄k ∨
�2n+1�̄k. Since �̄k:C�(X) → C�(X)∧k is stably non trivial, we conclude the result. The
final statement follows from the product formula TC(X × Sn) � TC(X) + TC(Sn) which
yields TC(X × Sn) � TC(X) + 1 when n is odd.

2·2. Even dimensional case

We first recall that, when n is even, the product formula TC(X × Sn) � TC(X) + TC(Sn)
reads TC(X × Sn) � TC(X) + 2. To examine and analyse this case, it is necessary to intro-
duce a new notion for maps beforehand, which has certain similarities with both the
conilpotency of a topological space and the weak sectional category of a map.

Remember that, for a given map f :E → B and any integer n, we use the notation Cκn to

represent the homotopy cofiber of the n-sectional fat wedge of f . Additionally, let �
f
n+1:B →

Cκn denote the composite of the induced map ln into the cofiber with the diagonal map
�B

n+1:B → Bn+1:

Tn (f)
κn

Bn+1 ln
Cκn

B .

ΔB
n +1

Δ f
n +1

We will conveniently restrict ourselves to maps over a finite-dimensional CW-complex.
Observe that, if B is a finite dimensional CW-complex and X is any space, then by the
Freudenthal suspension theorem we have that

[�NB, �NX] ∼= [�N+1B, �N+1X] ∼= [�N+2B, �N+2X] ∼= ...

for N sufficiently large. In this case, [�∞B, �∞X] ∼= [�NB, �NX].
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Definition 2·3. Let f :E → B be a map where B is a finite dimensional CW-complex. The
2-sigma weak sectional category of a space f, denoted as σwsecat(f ;2), is defined as the
smallest non-negative integer n for which the stable map

2�∞(�f
n+1):�∞B → �∞Cκn

is trivial. If no such integer k exists, then σwsecat(f ;2) = ∞.

It is evident from its definition that this homotopy invariant serves as a lower bound
for the weak sectional category: σwsecat(f ;2) � wsecat(f ). Similarly to the approach taken
with the weak sectional category [6], this invariant can also be described in a more man-

ageable equivalent form. Indeed, if we take the homotopy cofiber of f , E
f−→ B

j−→ Cf ,
then we can consider both the reduced diagonal �̄B

n+1:B → B∧(n+1) and the induced map

j∧(n+1):B∧(n+1) → C∧(n+1)
f . We can denote their composite as follows:

�̄
f
n+1 := j∧(n+1)�̄B

n+1:B → C∧(n+1)
f .

PROPOSITION 2·4. Let f :E → B be a map where B is a finite dimensional CW-complex.
Then, σwsecat(f ;2) � n if, and only if, the stable map

2�∞(�̄f
n+1):�∞B → �∞C∧(n+1)

f

is trivial.

Proof. By following the analogous steps outlined for the weak sectional category in [6], one
simply needs to consider the following homotopy commutative diagram. The top square of
the diagram represents a homotopy pushout, and as a result, the induced map Cκn → C∧(n+1)

f
between the corresponding homotopy cofibers becomes a homotopy equivalence:

Tn (f)

κn

T n (Cf )

B
ΔB

n +1

Δ f
n +1

Bn+1 jn +1

ln

Cn+1
f

q
C f
n +1

Cκn
C .

(n+1)
f

Applying conveniently the suspension functor we obtain the result. We leave the details to
the reader.

A special case of σwsecat(−;2) is σwcat(−;2) for finite dimensional CW-complexes.

Definition 2·5. Let B be a finite dimensional CW-complex. Then we define the 2-sigma
weak category of B, denoted as σwcat(B;2), as the sigma weak sectional category of the map
∗ → B. In other words, it is the smallest non-negative integer n for which the stable map

2�∞�̄B
n+1:�∞B → �∞B∧(n+1)

is trivial. If no such integer n exists, then σwcat(B;2) = ∞.
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Recall that the conilpotency of a space B, usually denoted as conil(B), is defined as the
least integer n (or infinity) such that the suspension of the (n + 1)th reduced diagonal map,
��̄B

n+1:�B → �B∧(n+1), is homotopically trivial. By the very definition of σwcat(−;2), we
have a chain of inequalities

σwcat(B;2) � conil(B) � wcat(B) � cat(B).

COROLLARY 2·6. If f :E → B is a map where B is a finite dimensional CW-complex, then

σwsecat(f ;2) � σwcat(B;2).

We also have an analogous result to that given for weak category as in Proposition 1·5.
Indeed,

PROPOSITION 2·7. Let f :A → B be a map between finite dimensional (p − 1)-connected
CW-complexes (p � 1). If f is an r-equivalence, wcat(A) � k and dim (A) � r + p(k − 1) − 1,
then σwcat(B;2) � σwcat(A; 2).

Proof. We take N sufficiently large so that [�∞A, �∞A∧k] ∼= [�NA, �NA∧k] and
[�∞B, �∞B∧k] ∼= [�NB, �NB∧k]. Since f ∧k is an (r + p(k − 1))-equivalence, we deduce
that �Nf ∧k is an (r + p(k − 1) + N)-equivalence. Furthermore, dim (�NA) = dim (A) + N,
and thus

(�Nf ∧k)∗:[�NA, �NA∧k] → [�NA, �NB∧k]

is injective. Now, since σwcat(A;2) � k, we have 2�N(�̄A
k ) �	 ∗. Taking into account the

injection above and the following commutative diagram

ΣN A

2Σ N (Δ̄A
k )

ΣN f
ΣN B

2Σ N (Δ̄B
k )

ΣN A k

ΣN (f k )
ΣN B

we conclude that 2�N(�̄B
k ) �	 ∗, implying σwcat(B;2) � k.

Continuing the parallelism with the weak sectional category, we will now explore the
relationship with the homotopy cofiber of the map when it admits a homotopy retraction.

PROPOSITION 2·8. Let f :E → B be a map between finite dimensional CW-complexes. If f
admits a homotopy retraction, then

σwsecat(f ;2) = σwcat(Cf ;2).

Proof. If σwcat(Cf ;2) � n, then 2�∞�̄
Cf
n+1 is trivial. Consequently, 2�∞(�̄

Cf
n+1j) is also

trivial. Considering the commutativity �̄
Cf
n+1j = j∧(n+1)�̄B

n+1 = �̄
f
n+1 we can easily conclude

that σwsecat(f ;2) � n.
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Now suppose that σwsecat(f ;2) � n. We choose N sufficiently large so that

[�∞B, �∞C∧(n+1)
f ] ∼= [�NB, �NC∧(n+1)

f ]

and [�∞Cf , �∞C∧(n+1)
f ] ∼= [�NCf , �NC∧(n+1)

f ]. Taking into account the commutative
diagram

ΣN B

ΣN j

2Σ N (Δ̄B
n +1 )

ΣN B (n+1)

ΣN j (n +1)

ΣN Cf
2Σ N (Δ̄

C f
n +1 )

ΣN (C (n+1)
f )

we have that the following composite is homotopically trivial

(2�N(�̄
Cf
n+1))(�Nj) = (�Nj∧(n+1))(2�N(�̄B

n+1)) = 2�N(�̄f
n+1) 	 ∗.

Therefore, if we denote as δ:Cf → �E the induced map in the homotopy cofiber of j:B → Cf ,
then there is a map φ making commutative the following diagram

ΣN B
ΣN j

ΣN Cf
ΣN δ

2Σ N (Δ̄
C f
n +1)

ΣN +1 E

φ

ΣN C .
(n+1)

f

However, from the Barrat–Puppe sequence

E
f−→ B

j−→ Cf
δ−→ �E

�f−→ �B−→ · · ·
we deduce that δ 	 (�r)(�f )δ 	 ∗, where r stands for the homotopy retraction of f . We
conclude that 2�N(�̄n+1

Cf
) 	 ∗, that is, σwcat(Cf ;2) � n.

A particular case of σwsecat(−;2) that is specially relevant in our work is as follows:

Definition 2·9. The 2-sigma weak topological complexity of a finite dimensional CW-
complex X is defined as the 2-sigma weak sectional category of the diagonal map � : X →
X × X:

σwTC(X; 2) := σwsecat(�; 2).

As a direct consequence of this definition and all the previously established results, we
obtain the following corollary:

COROLLARY 2·10. Let X be a finite dimensional CW-complex. Then

σwTC(X;2) = σwcat(C�(X);2) � wcat(C�(X)) = wTC(X).
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And now we are ready to state and prove the main result of this subsection, considering
the even-dimensional case.

THEOREM 2·11. Suppose X is a finite dimensional (p − 1)-connected CW-complex
(p � 2) satisfying σwTC(X;2) = k � 2. If dim (X) � pk − 1, then we have

wTC(X × Sn) � σwTC(X;2) + 2

for all n even. If, in addition, σwTC(X;2) = TC(X), then TC(X × Sn) = TC(X) + TC(Sn), for
all n, independently of its parity.

Proof. Since σwTC(X;2) = σwcat(C�(X);2), we can deduce that the map

2�∞(�̄k):�∞C�(X) → �∞C�(X)∧k

is nontrivial. Additionally, applying the Freudenthal suspension theorem, we obtain that,
2�m(�̄k):�mC�(X) → �mC�(X)∧k is not homotopy trivial for all m, considering that
dim (X) � pk − 1.

To establish the inequality wTC(X × Sn) � k + 2, we can follow the same steps as in
Theorem 2·2 for the case of odd dimensions. In this sense it suffices to demonstrate that the
suspension of the map �̄k+2:C�(X × Sn) → C�(X × Sn)∧(k+2) is not homotopically trivial.
To this aim we first construct a similar diagram

CΔ(X × Sn )
Δ̄k +2

π

CΔ(X × Sn ) k CΔ(X × Sn ) 2

CΔ(X) × CΔ(Sn )
Δ̄k +2

(CΔ(X) × CΔ(Sn )) k (CΔ(X) × CΔ(Sn )) 2

CΔ(X) CΔ(Sn )
Δ̄k Δ̄

(CΔ(X)) k CΔ(Sn ) .2

By applying the suspension functor to this diagram, we obtain

ΣCΔ(X × Sn)
ΣΔ̄k+2

Σπ

ΣCΔ(X × Sn)∧k ∧ CΔ(X × Sn)∧2

Σ(CΔ(X) × CΔ(Sn))
ΣΔ̄k+2

Σ(CΔ(X) × CΔ(Sn))∧k ∧ (CΔ(X) × CΔ(Sn))∧2

ΣCΔ(X) ∧ CΔ(Sn)
ΣΔ̄k∧Δ̄

Σ(CΔ(X))∧k ∧ CΔ(Sn)∧2

where the curved arrows are homotopy sections. By a completely analogous argument to
the one made in the proof of Theorem 2·2, ultimately we must verify that the bottom map
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��̄k ∧ �̄:�C�(X) ∧ C�(Sn) → �(C�(X))∧k ∧ C�(Sn)∧2, is non-trivial. This map can be
considered, up to homeomorphism, as

�̄k ∧ ��̄:C�(X) ∧ �C�(Sn) → (C�(X))∧k ∧ �C�(Sn)∧2.

Moreover, it produces, according to the argument at the end of Section 2, the following
homotopy commutative diagram, where the curved arrow on the left represents a homotopy
section, and the curved arrow on the right represents a homotopy retraction:

CΔ(X) ∧ (S2n+1 ∨ Sn+1)
Δ̄k∧ΣΔ̄

CΔ(X)∧k ∧ (S2n+1 ∨ S3n+1 ∨ S3n+2 ∨ S4n+1)

CΔ(X) ∧ S2n+1

Δ̄k∧±2Id
CΔ(X) .∧kS2n+1

Once again, the top arrow in the diagram is non-trivial in homotopy as long as the
bottom arrow remains non-trivial in homotopy. However, the bottom arrow can be equiva-
lently expressed as ±2�2n+1(�̄k):�2n+1C�(X) → �2n+1C�(X)∧k, which, according to our
assumptions, is not homotopy trivial. The remainder of the proof is straightforward. Note
that the equality σwTC(X;2) = TC(X) implies wTC(X) = TC(X). Therefore the equality
TC(X × Sn) = TC(X) + TC(Sn) for n odd follows from Theorem 2·2.

3. Examples: two-cell complexes

We will now apply our results in order to exhibit a new class of spaces for which the
equality

TC(X × Sn) = TC(X) + TC(Sn)

holds for any n.
We first note that, since the zero-divisor cuplength over a field k of X × Sn is at least

zclk(X) + 1, any space X satisfying zclk(X) = TC(X) satisfies TC(X × Sn) � TC(X) + 1 for
any n and TC(X × Sn) = TC(X) + 1 when n is odd. As is well known, there are a lot of spaces
for which the equality zclk(X) = TC(X) holds, for instance, the orientable surfaces and the
1-connected symplectic manifolds. When n is even and 2 is invertible in the field k, we
have zclk(X × Sn) = zclk(X) + 2. Consequently, the same reasoning shows that, any space
X satisfying zclk(X) = TC(X) where 2 is invertible in the field k, satisfies TC(X × Sn) =
TC(X) + TC(Sn) for any n.

We are therefore interested in spaces for which zclk(X) < wTC(X) = TC(X). As men-
tioned before, the space X = S3 ∪α e7, where α ∈ π6(S3) is the Blakers–Massey element,
satisfies zclk(X) = 2 and wTC(X) = TC(X) = 3. As X is 2-connected and dim(X) = 7 � 8,
Theorem 2·2 guarantees that

TC(X × Sn) � TC(X) + 1

and that the equality holds for n odd. This space is a two-cell complex Sp ∪ eq+1 in the
metastable range, which means that 2p − 1 < q < 3p − 2.

By using results from [9, 10], we will establish a more general result on two-cell com-
plexes X = Sp ∪α eq+1 in the metastable range. The analysis of cat(C�(X)) for such spaces
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by means of Hopf invariants
1

realised in [10] will be especially relevant for us. Let us
recall from Remark 1·8 that, for α:Sq → Sp in the metastable range, H(α) is a stable homo-
topy class in πq(
Sp ∗ 
Sp) which is completely determined by its projection H0(α) on the
bottom sphere S2p−1 of 
Sp ∗ 
Sp 	 S2p−1 ∨ S3p−2 ∨ S3p−2 ∨ · · · .

From [10] we have a cone decomposition of C�(X)

∗ = D0 ⊂ D1 ⊂ D2 ⊂ D3 ⊂ D4 = C�(X) (3·1)

with attaching maps of the form Si
βi−→ Di where

S0 = Sp−1, S1 = S2p−1 ∨ Sq, S2 = Sp+q ∨ Sp+q and S3 = S2q+1.

In particular D1 = Sp and D2 = Sp ∪ e2p ∪ eq+1. For each i, cat(Di) � i and it is shown in
[10] that the relevant Hopf invariant for the study of cat(Di), here denoted by H(βi), can be
expressed in terms of H0(α).

We will here use this information to estimate wTC(X) = wcat(C�(X)) and σwTC(X;2)
= σwcat(C�(X;2)). We first establish:

THEOREM 3·1. Let X = Sp ∪α eq+1 be a two-cell complex such that 2p − 1 < q < 3p − 2
(p � 2) and (2 + (−1)p)H0(α) �= 0. Then:

(a) wTC(X) � 3;

(b) wTC(X) = TC(X).

Consequently, for any odd n, TC(X × Sn) = TC(X) + 1.

Proof. Considering the cone decomposition (3·1), we first note that wcat(D2) = cat(D2)

= 2. Indeed the map X
i1→ X × X → C�(X) induces a map X → D2 which is a (2p −

1)-equivalence and the result follows from wcat(X) = 2 and Proposition 1·5.

As p + q � dim D2 = q + 1 and dim D2 � 3p − 2 we apply Lemma 1·6 to the cofibration
sequence

S2
β2−→ D2 ↪→ D3.

We then obtain the following homotopy commutative diagram:

D3
Δ̄

δ

D∧3
3

ΣS2
H̄(β2)

D∧3
2

1 Actually the cat-Hopf invariants used in [9] and [10] are based on Iwase’s approach and defined using the
characterization of the LS-category in terms of Ganea fibrations. The information contained in these invari-
ants is nevertheless equivalent to the information contained in the Berstein–Hilton invariants considered
here.
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and wcat(D3) � 2 if and only if H̄(β2) = 0. Note that

�S2 = Sp+q+1 ∨ Sp+q+1 and D∧3
2 	 S3p ∪

⋃

3

e4p ∪ . . . .

Note also that the cat-Hopf invariant H(β2) is given by a map

S2 = Sp+q ∨ Sp+q → F2(D2) = 
D2 ∗ 
D2 ∗ 
D2 	 S3p−1 ∪
⋃

3

e4p−2 ∪ . . . .

Since p + q < 4p − 2, this map can only touch the bottom sphere S3p−1 of F2(D2). It fol-
lows from [10, corollary 4·8] that H(β2) is completely determined by the stable class
(2 + (−1)p)H0(α). Actually it follows from the analysis done in the proof of [10, corollary
4·8] and [9, theorem 5·6] that, on each sphere Sp+q, H(β2) can be identified to

�p((2 + (−1)p)H0(α)):Sp+q → S3p−1.

Taking into account Remark 1·7, we can then conclude that on each sphere Sp+q+1, the crude
invariant H̄(β2) can be identified to

�p+1((2 + (−1)p)H0(α)):Sp+q+1 → S3p.

Since (2 + (−1)p)H0(α) is stable and nontrivial, we conclude that wcat(D3) � 3 and, by
Proposition 1·5, that wTC(X) = wcat(C�) � 3.

We now prove (b). We first note that, since wTC(X) � 3 and wTC(X) � TC(X) �
2cat(X) = 4, we have either TC(X) = 3 or TC(X) = 4. If TC(X) = 3, we immediately have
wTC(X) = TC(X). Let us suppose that TC(X) = 4. Since D3 is a 3-cone, we have cat(D3) � 3
(actually cat(D3) = 3 since wcat(D3) � 3). As we have dim (D3) = p + q + 1 � 4p − 2 and
dim (D3) � 2q + 1 we can apply Lemma 1·6 to the cofibration sequence

S3
β3−→ D3 ↪→ D4 = C�(X).

We then obtain the following homotopy commutative diagram:

D4
Δ̄

δ

D∧4
4

ΣS3
H̄(β3)

D∧4
3

and wcat(D4) � 3 if and only if H̄(β3) = 0. As before we observe that

�S3 = S2q+2 and D∧4
3 	 S4p ∪

⋃

4

e5p ∪ . . .

and that the cat-Hopf invariant H(β3) is given by a map

S3 = S2q+1 → F3(D3) = 
D3 ∗ 
D3 ∗ 
D3 ∗ 
D3 	 S4p−1 ∪
⋃

4

e5p−2 ∪ . . . .
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In this case, dimensional reasons do not permit us to see that H(β3) can only touch the
bottom sphere S4p−1 of F3(D3). However, in [10, proof of theorem 1·1], it has been proved
that H(β3) coincides with the map

S2q+1
2(2+(−1)p)·H0(α)∗H0(α)

S4p−1 F3(D3),

where the second map is the inclusion of the bottom sphere. Furthermore, it follows from
[10, lemma 4·9] that the bottom sphere S4p−1 of the (3p + q − 1)-skeleton of F3(D3) splits
off as a wedge summand, which permits one to say that H(β3) is completely determined
by the (stable) map h := 2(2 + (−1)p)H0(α) ∗ H0(α). We will see that the same is true for
H̄(β3). Indeed, since the inclusion Sp ↪→ X = Sp ∪α eq+1 is a q-equivalence, it induces a q-
equivalence C�(Sp) → C�(X) and we can see that all the vertical maps in the following
diagram are (3p + q)-equivalence:

ΣF3(CΔ(Sp))
ev◦Σq̄4

CΔ(Sp)∧4

S2q+2 Σh

ΣH(β3)

S4p ΣF3(D3) .
ev◦Σq̄4

D∧4
3

Recall that the composition of the bottom line coincides with H̄(β3) and that this ele-
ment is stable. As �C�(Sp)∧4 → �D∧4

3 is a (3p + q + 1)-equivalence, we can deduce from
Proposition 1·9 that the bottom sphere S4p+1 of the (3p + q + 1)-skeleton of �D∧4

3 splits
off as a wedge summand. Furthermore, as indicated in the diagram, the inclusion of the
bottom sphere of �F3(C�(X)) lifts into �F3(C�(Sp)) and, by using Remark 1·7, we can
see that all the maps from S4p correspond to the inclusion of the bottom sphere. Since
2q + 2 < 3p + q, we can then see, after suspension of the diagram, that �H̄(β3) is com-
pletely determined by �2h. By stability, we can then conclude that H̄(β3) is completely
determined by 2(2 + (−1)p)H0(α) ∗ H0(α). Since TC(X) = 4, this element is nontrivial ([10,
corollary 4·10]) and consequently wcat(D4) � 4. Therefore wcat(C�(X)) = wTC(X) = 4 and
wTC(X) = TC(X). The final statement follows from Theorem 2·2.

We now exhibit a class of spaces which satisfy TC(X × Sn) = TC(X) + TC(Sn) for any n.

THEOREM 3·2. Let X = Sp ∪α eq+1 be a two-cell complex such that 2p − 1 < q < 3p − 2
(p � 2) and 2(2 + (−1)p)H0(α) �= 0. Then:

(a) σwTC(X;2) � 3;

(b) moreover, if one of the following conditions holds:

(i) 2(2 + (−1)p)H0(α) ∗ H0(α) = 0;
(ii) 4(2 + (−1)p)H0(α) ∗ H0(α) �= 0;

then σwTC(X;2) = TC(X) and, for any n,

TC(X × Sn) = TC(X) + TC(Sn).

We will follow the same strategy as before by using the following adaptation of
Lemma 1·6.
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LEMMA 3·3. Let K be a (p − 1)-connected CW complex with p � 2, cat(K) � k and
dim (K) � (k + 1)p − 2. Let d � dim (K) and α:S → K be a map where S is a finite wedge
of spheres Sd. Then, for X = K ∪α CS and any integer N � 0, there exists a homotopy
commutative diagram

ΣNX
2ΣN Δ̄k+1

ΣN δ

ΣNX∧(k+1)

ΣN+1S
2ΣN H̄(α)

ΣNK∧(k+1)

where δ is the connecting map in the Puppe sequence of the cofibration S
α→ K → X.

Moreover σwcat(X;2) � k if and only if the stable class of 2H̄(α) is trivial.

Proof. The diagram is obtained from the diagram of Lemma 1·6 and the proof of the last
statement follows from a direct adaptation of the arguments given in the proof of Lemma 1·6.

Remark 3·4. Applying Lemma 3·3 to X = Sp ∪α eq+1 where 2p − 1 < q < 3p − 2 and
2H0(α) �= 0, we obtain that σwcat(X;2) � 2 since 2H0(α) is a stable class. In this case we
will have σwcat(X) = wcat(X) = 2. However if H0(α) �= 0 but 2H0(α) = 0 then X satisfies
σwcat(X;2) = 1 < wcat(X) = 2.

Proof of Theorem 3·2. The proof is parallel to the proof of Theorem 3·1. We first note that,
since the hypothesis implies that σwcat(X;2) = wcat(X) = 2, it follows from Proposition 2·7
that the stage D2 of the cone decomposition (3·1) satisfies σwcat(D2;2) = wcat(D2) = 2.
Applying Lemma 3·3 to the cofibration sequence

S2
β2−→ D2 ↪→ D3

we see that σwcat(D3;2) � 2 if and only if 2H̄(β2) is stably trivial. Since this class
is completely determined by the stable class 2(2 + (−1)p)H0(α), the hypothesis 2(2 +
(−1)p)H0(α) �= 0 permits us to conclude that σwcat(D3;2) � 3. It then follows from
Proposition 2·7 that σwTC(X;2) = σwcat(C�(X); 2) � 3 as claimed in (a). By [9], we know
that the condition given in (i) of (b) implies that TC(X) � 3 so we have σwTC(X;2) = TC(X)
in that case. In case (ii), the equality σwTC(X;2) = TC(X) follows from the application of
Lemma 3·3 to the cofibration sequence

S3
β3−→ D3 ↪→ D4 = C�(X)

together with the fact that the stable class of 2H̄(β3) is completely determined by the stable
class 4(2 + (−1)p)H0(α) ∗ H0(α).

Example 3·5. As an application of Theorem 3·2, we consider the space X = S8 ∪α e19 where
α:S18 → S8 is the composition of a generator γ of the stable group π18(S15) =Z/24Z with
the Hopf map S15 → S8. The map α is in the metastable range and H0(α) = γ (see, for
instance [3, corollary 6·23]). Consequently 3H0(α) and 6H0(α) are not trivial while 6H0(α) ∗
H0(α) = 0 since H0(α) ∗ H0(α) ∈ π37(S31) =Z/2Z. We then obtain TC(X × Sn) = TC(X) +
TC(Sn) for any n.
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Remark 3·6. As mentioned in the introduction of [10], the first possible instance (q,p) of
a map α:Sq → Sp in the metastable range satisfying H0(α) �= 0 but 3H0(α) = 0 is (q, p) =
(14, 6). We here construct such a map. We consider the following part of the EHP sequence
together with the isomorphism given by the double suspension E2 and the description of the
composite PE2 (see [23], p. 548)

π13(S5) E
π14(S6) H

π14(S11) P
π12(S5)

π12(S9).

E2 ∼=
[ι5,ι5]◦(−)

We note that the map H corresponds to our H0. Let γ ∈ π12(S9) =Z/24Z be a generator and
β = E2(8γ ). We have

Pβ = [ι5, ι5] ◦ 8γ = 2[ι5, ι5] ◦ 4γ = 0

since [ι5, ι5] is of order 2. Note that the second equality holds because any map in π12(S9)
is a suspension and therefore a co-H-map. Consequently, there exists α ∈ π14(S6) such that
H(α) = β �= 0. However, 3H(α) = 3β = E2(24γ ) = 0. In conclusion, X = S6 ∪α e15 is a two-
cell complex in the metastable range which does not satisfy the conditions of Theorem 3·1.
Therefore it might be a candidate for an example of a two-cell space satisfying TC(X × Sn) =
TC(X) for n odd.
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