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Abstract

Recently, when studying intricate connections between Ramanujan’s theta functions and a class of
partition functions, Banerjee and Dastidar [‘Ramanujan’s theta functions and parity of parts and cranks of
partitions’, Ann. Comb., to appear] studied some arithmetic properties for co(n), the number of partitions of
n with odd crank. They conjectured a congruence modulo 4 satisfied by co(n). We confirm the conjecture
and evaluate co(4n) modulo 8 by dissecting some q-series into even powers. Moreover, we give a conjecture
on the density of divisibility of odd cranks modulo 4, 8 and 16.
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1. Introduction

A partition λ of a nonnegative integer n is a finite weakly decreasing sequence of
positive integers λ1 ≥ λ2 ≥ · · · ≥ λr such that

∑r
i=1 λi = n. The λi for 1 ≤ i ≤ r are

called the parts of the partition λ. Let p(n) denote the number of partitions of n. In 1919,
Ramanujan [8] discovered three remarkable congruences enjoyed by p(n), namely,

p(5n + 4) ≡ 0 (mod 5), (1.1)

p(7n + 5) ≡ 0 (mod 7), (1.2)

p(11n + 6) ≡ 0 (mod 11). (1.3)

In 1944, Dyson [7] introduced the notion of the rank, and further conjectured that
this partition statistic could provide a combinatorial interpretation for (1.1) and (1.2).
Dyson’s conjecture was later confirmed by Atkin and Swinnerton-Dyer [4] in 1954.
Unfortunately, this partition statistic cannot interpret (1.3) combinatorially. Therefore,
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Dyson further conjectured that there exists another statistic, which he named the
‘crank’, providing a combinatorial interpretation of (1.3). This partition statistic was
discovered by Andrews and Garvan [3] in 1988. For a partition λ, let l(λ) denote the
largest part of λ, let ω(λ) and μ(λ) denote the number of ones in λ and the number of
parts of λ that are larger than ω(λ), respectively. The crank is defined by

crank(λ) =

⎧⎪⎪⎨⎪⎪⎩
l(λ) if ω(λ) = 0,
ω(λ) − μ(λ) if ω(λ) > 0.

Let co(n) denote the number of partitions of n with odd crank. The generating function
of co(n) is given by

∞∑
n=0

co(n)qn =
1
2

( 1
(q; q)∞

−
(q; q)3

∞

(q2; q2)2
∞

)
.

Throughout the rest of this paper, we always assume that q is a complex number such
that |q| < 1 and adopt the following customary notation:

(a; q)∞ :=
∞∏

k=0

(1 − aqk),

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

Recently, Banerjee and Dastidar [5] considered some arithmetic properties of co(n).
By means of q-series manipulations, Banerjee and Dastidar [5, (1.10)] proved that for
any n ≥ 0,

co(5n + 4) ≡ 0 (mod 10).

Based on computer experiments, they conjectured a congruence modulo 4 satisfied by
co(n).
CONJECTURE 1.1. We have co(2n) ≡ 0 (mod 4) for any n ≥ 0.

Banerjee and Dastidar [5] verified that Conjecture 1.1 holds for any 1 ≤ n ≤ 2000.
By using some q-series techniques, we not only confirm the above congruence
modulo 4, but also establish another congruence modulo 8.

THEOREM 1.2. For any n ≥ 0,

co(2n) ≡ 0 (mod 4), (1.4)

co(4n) ≡ 0 (mod 8). (1.5)

2. Proof of Theorem 1.2

To prove (1.4) and (1.5), we need the following three auxiliary identities.

LEMMA 2.1 [2, Lemma 4.1]. We have
1

(q; q)∞
=

1
(q2; q2)2

∞
((−q6,−q10, q16; q16)∞ + q(−q2,−q14, q16; q16)∞). (2.1)
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LEMMA 2.2 (Jacobi’s identity [6, Theorem 1.3.9]).

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n + 1)qn(n+1)/2. (2.2)

LEMMA 2.3 (Jacobi’s triple product identity [1, Lemma 1.2.2]).
∞∑

n=−∞
an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, |ab| < 1. (2.3)

Now we are in a position to prove Theorem 1.2.

PROOF OF THEOREM 1.2. Define the sequence {A(n)}n≥0 by
∞∑

n=0

A(n)qn =
1

(q; q)∞
−

(q; q)3
∞

(q2; q2)2
∞

. (2.4)

Therefore, (1.4) and (1.5) are equivalent respectively to

A(2n) ≡ 0 (mod 8), (2.5)

and

A(4n) ≡ 0 (mod 16). (2.6)

However, from (2.2),

(q; q)3
∞ =

∞∑
n=0

(−1)n(2n + 1)qn(n+1)/2

=

∞∑
n=0

(−1)8n(16n + 1)q4n(8n+1) +

∞∑
n=0

(−1)8n+1(16n + 3)q(4n+1)(8n+1)

+

∞∑
n=0

(−1)8n+2(16n + 5)q(4n+1)(8n+3) +

∞∑
n=0

(−1)8n+3(16n + 7)q(4n+2)(8n+3)

+

∞∑
n=0

(−1)8n+4(16n + 9)q(4n+2)(8n+5) +

∞∑
n=0

(−1)8n+5(16n + 11)q(4n+3)(8n+5)

+

∞∑
n=0

(−1)8n+6(16n + 13)q(4n+3)(8n+7) +

∞∑
n=0

(−1)8n+7(16n + 15)q(4n+4)(8n+7),

from which we further obtain that

(q; q)3
∞ ≡

∞∑
n=0

q4n(8n+1) − 3
∞∑

n=0

q(4n+1)(8n+1)

+ 5
∞∑

n=0

q(4n+1)(8n+3) − 7
∞∑

n=0

q(4n+2)(8n+3)
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− 7
∞∑

n=0

q(4n+2)(8n+5) + 5
∞∑

n=0

q(4n+3)(8n+5)

− 3
∞∑

n=0

q(4n+3)(8n+7) +

∞∑
n=0

q(4n+4)(8n+7) (mod 16). (2.7)

Replacing n by −n − 1 in the last four infinite sums in (2.7),

∞∑
n=0

q(4n+2)(8n+5) =

−1∑
n=−∞

q(4n+2)(8n+3), (2.8)

∞∑
n=0

q(4n+3)(8n+5) =

−1∑
n=−∞

q(4n+1)(8n+3), (2.9)

∞∑
n=0

q(4n+3)(8n+7) =

−1∑
n=−∞

q(4n+1)(8n+1), (2.10)

∞∑
n=0

q(4n+4)(8n+7) =

−1∑
n=−∞

q4n(8n+1). (2.11)

Substituting (2.8)–(2.11) into (2.9),

(q; q)3
∞ ≡

∞∑
n=−∞

q4n(8n+1) − 3
∞∑

n=−∞
q(4n+1)(8n+1)

+ 5
∞∑

n=−∞
q(4n+1)(8n+3) − 7

∞∑
n=−∞

q(4n+2)(8n+3) (mod 16).

Thanks to (2.3),

(q; q)3
∞ ≡ (−q28,−q36, q64; q64)∞ − 3q(−q20,−q44, q64; q64)∞

+ 5q3(−q12,−q52, q64; q64)∞ − 7q6(−q4,−q60, q64; q64)∞ (mod 16). (2.12)

Substituting (2.1) and (2.12) into (2.4) yields

∞∑
n=0

A(n)qn ≡ 1
(q2; q2)2

∞
((−q6,−q10, q16; q16)∞ + q(−q2,−q14, q16; q16)∞)

− 1
(q2; q2)2

∞
((−q28,−q36, q64; q64)∞ − 3q(−q20,−q44, q64; q64)∞

+ 5q3(−q12,−q52, q64; q64)∞ − 7q6(−q4,−q60, q64; q64)∞) (mod 16).
(2.13)

Taking all terms of the form q2n in (2.13), after simplification,
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∞∑
n=0

A(2n)qn ≡ 1
(q; q)2

∞
((−q3,−q5, q8; q8)∞ − (−q14,−q18, q32; q32)∞

+ 7q3(−q2,−q30, q32; q32)∞) (mod 16). (2.14)

According to (2.3),

(−q3,−q5, q8; q8)∞ =
∞∑

n=−∞
q4n2+n

=

∞∑
n=−∞

q4(2n)2+2n +

∞∑
n=−∞

q4(2n−1)2+(2n−1)

=

∞∑
n=−∞

q16n2+2n +

∞∑
n=−∞

q16n2−14n+3

= (−q14,−q18, q32; q32)∞ + q3(−q2,−q30, q32; q32)∞, (2.15)

where we have used (2.3) in the last step. Combining (2.14) and (2.15) gives
∞∑

n=0

A(2n)qn ≡ 8q3 (−q2,−q30, q32; q32)∞
(q; q)2

∞
(mod 16). (2.16)

The congruence (2.5) follows immediately from (2.16).
Moreover, from the congruence (q; q)2

∞ ≡ (q2; q2)∞ (mod 2),
∞∑

n=0

A(2n)qn ≡ 8q3 (−q2,−q30, q32; q32)∞
(q2; q2)∞

(mod 16). (2.17)

The congruence (2.6) follows immediately from (2.17).
This completes the proof of Theorem 1.2. �

3. Concluding remarks

We conclude this paper with two remarks.
First, the numerical evidence suggests the following conjecture.

CONJECTURE 3.1. We have

lim
n→∞

#{m| co(2m + 1) ≡ 0 (mod 4), 1 ≤ m ≤ n}
n

=
1
2

,

lim
n→∞

#{m| co(2m) ≡ 0 (mod 8), 1 ≤ m ≤ n}
n

=
1
4

,

lim
n→∞

#{m| co(4m + 2) ≡ 0 (mod 8), 1 ≤ m ≤ n}
n

=
1
2

,

lim
n→∞

#{m| co(4m) ≡ 0 (mod 16), 1 ≤ m ≤ n}
n

=
1
2

.

Second, it would be interesting find a combinatorial proof of (1.4) and (1.5).
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