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CONSERVATION THEOREMS ON SEMI-CLASSICAL ARITHMETIC
MAKOTO FUJIWARA2) AND TAISHI KURAHASHI

Abstract. We systematically study conservation theorems on theories of semi-classical arithmetic,
which lie in-between classical arithmetic PA and intuitionistic arithmetic HA. Using a generalized negative
translation, we first provide a structured proof of the fact that PA is IT; | ,-conservative over HA + X, -LEM
where X -LEM is the axiom scheme of the law-of-excluded-middle restricted to formulas in X, . In addition,
we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic 7,
if PA is ITj ,-conservative over T, then T proves X;-LEM. In the same manner, we also characterize
conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules.
This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of
classical principles.

§1. Introduction. It is well-known that classical first-order arithmetic PA is
IT,-conservative over intuitionistic first-order arithmetic HA. There are several
approaches to prove this fundamental fact. One simple and well-known approach
is to apply the negative (or double negation) translation followed by the Friedman
A-translation [4]. Another possible approach is to apply a generalized negative
translation developed systematically by Ishihara [9, 10]. In fact, the latter is a
combination of Gentzen’s negative translation and the Friedman A-translation
(cf. [10, Section 4]). In [7, Theorem 6.14], the authors showed a conservation result
which generalizes the aforementioned conservation result on PA and HA in the
context of semi-classical arithmetic (which lies between classical and intuitionistic
arithmetic). In fact, the following is an immediate corollary of [7, Theorem 6.14]:

ProposiTiON 1.1. PA is Iy ,-conservative over HA + X;.-LEM where £;,-LEM is
the axiom scheme of the law-of-excluded-middle restricted to formulas in Xy '

The proof of [7, Theorem 6.14] in that paper is similar to the former approach in
the sense of using the Friedman A-translation. However, the proof has somewhat
intricate structure in dealing with the Friedman A-translation of the inner part of
Kuroda’s negative translation. In Section 3, by extending the latter approach from
[9, 10] in the context of semi-classical arithmetic, we provide a much more structured
proof of [7, Theorem 6.14]. As an advantage of the structured proof, we obtain an
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extended conservation result for much larger classes of formulas (see Theorem 3.17
and Remark 3.18).

In Section 4, we relate the classes used in Section 3 (which are based on the classes
introduced in [9]) to the classes Uy and E; introduced in Akama et al. [1] for studying
the hierarchy of the constructively-meaningful fragments of classical axioms
(including the law-of-excluded-middle and the double-negation-elimination). The
classes E; and Uy, correspond to classical £; and I respectively in the sense that
every formula in E; (resp. Uy ) is equivalent over PA to some formula in T, (resp. Iy )
and vice versa. This investigation reveals that our extended conservation theorem
for HA + X, -LEM is applicable to all formulas in E;,; (see Corollary 4.3).

In Sections 5-7, we investigate the entire structure of conservation theorems in
the arithmetical hierarchy of classical principles which was systematically studied
first in Akama et al. [1] and further extended by the authors recently in [6]. The
first motivation of this investigation comes from the observation that for any semi-
classical arithmetic T" such that PA is I1;_,-conservative over 7', T proves X;,-LEM
(cf. Lemma 5.5). This means that Proposition 1.1 is optimal in the sense that one
cannot replace HA + X;-LEM by any semi-classical arithmetic which does not
prove Z;-LEM. Another motivating fact is that for any semi-classical arithmetic
T, PA is I,-conservative over T if and only if 7 is closed under Markov’s rule for
primitive recursive predicate (cf. [14, Section 3.5.1]). Thus the IT,-conservativity is
also characterized by the X -fragment of the double-negation-elimination rule. Then
it is natural to ask whether this can be relativized in the context of semi-classical
arithmetic. Motivated by these facts, in Sections 5 and 6, we study the conservation
theorems for the well-studied classes (including Iy, ;. the classes in [1] and their
closed variants) and characterize them by fragments of classical axioms or rules.
The conservativity for a class of formulas is equivalent to that restricted only to
sentences if the class is closed under taking a universal closure. Then the strength of
the conservativity e.g., [1; does not vary even if we restrict them only to sentences.
On the other hand, since X; etc. are not closed under taking a universal closure,
this is not the case for such classes. We investigate the conservation theorems for
classes of formulas in Section 5 and those for sentences in Section 6. Through a lot
of delicate arguments in semi-classical arithmetic, we reveal the detailed structure
consisting of the conservation theorems and some fragments of logical principles,
which are summarized in Section 7. This exhaustive investigation shed light on the
close connection between the notion of conservativity and classical axioms and
rules in semi-classical arithmetic. For the purpose of future use, we present our
characterization results in a generalized form with adding a set X of sentences into
the theories in question.

In the end of this paper, as an appendix, we show the relativized soundness
theorem of the Friedman A-translation for HA + X;-LEM. By this relativized
soundness theorem, one may obtain a simple proof of Proposition 1.1 just by
imitating the aforementioned Friedman’s approach.

§2. Framework. We work with a standard formulation of intuitionistic arithmetic
HA described e.g., in [13, Section 1.3], which has function symbols for all primitive
recursive functions. Our language contains all the logical constants V.3, —, A,V
and L. In our proofs, when we use some principle (including induction hypothesis
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[L.H.]) which is not available in HA, it will be exhibited explicitly. As regards basic
reasoning over intuitionistic first-order logic, we refer the reader to [3. Section 6.2].

Throughout this paper, let k be a natural number (possibly 0). The classes X; and
IT; of HA-formulas are defined as follows:

e Let X and ITj be the set of all quantifier-free formulas;

oY :={Ixi.....xne | p e}

oIl :={Vxi.....xpn0 | p €Z}.

Let FV (¢) denote the set of all free variables in ¢. Note that every formula ¢ in
Y41 (resp. II;41) is equivalent over HA to some formula y in X, (resp. II;1)
such that FV (¢) = FV (y) and y is of the form Jxy’ (resp. Vxy’) where v’ is T1,
(resp. Z; ). For convenience, we assume that £, and I1,, denote the empty set for
negative integers m.

The classical variant PA of HA is defined as HA + LEM or HA + DNE, where
LEM is the axiom scheme of the law-of-excluded-middle ¢ V —¢ and DNE is that
of the double-negation-elimination ——¢ — . Recall that X£;-LEM and Z;-DNE
are LEM and DNE restricted to formulas in X (possibly containing free variables)
respectively. Similarly, IT,-LEM and I1;-DNE are defined for IT;. We call a theory
T such that HA C T C PA semi-classical arithmetic.

Unless otherwise stated, the inclusion between classes of HA-formulas is to
be understood modulo equivalences over HA. That is, for classes I' and I of
HA-formulas, I' C T” denotes that for all ¢ € I', there exists ¢’ € I'"” such that
FV(p) =FV(¢') and HAF ¢’ <> p, and T =T" denotes T CI" and T' CT. In
this sense, one may think of X, and I, as sub-classes of X;, and I,/ for all k¥’ > k
(see [7. Remark 2.5]).

§3. A relativization of Ishihara’s conservation result in semi-classical arithmetic.
In this section, we simulate Ishihara’s proof of [9, Theorem 10] in the specific context
of semi-classical arithmetic studied in [1, 7] with some additional arguments. We
first recall the translation studied in [9]. In the context of the translation, without
otherwise stated, we work in the language with an additional predicate symbol §
of arity 0, which behaves as “place holder” (see [9, 10] for more information). Let
HA® denote HA in that language. On the other hand, HA® + X,-LEM denotes HA®
augmented with X;-LEM for “HA”-formulas.

DEFINITION 3.1 (cf. [9, Definition 3]). Let —g¢ denote ¢ — $. For each formula ¢,
its $-translation * is defined inductively by the following clauses:

e For P prime such that P # |, P$ := —g—gP;

o 1%=3:

o (p1op)d = gof o <p§ foro € {A,—};

o (p1 V)% =5 (wf v 90§);

. (ngo)$ = Ve

o (Axp)® == —gg xS,

It is straightforward to see FV () = FV (¢%).
ProprosITION 3.2 (cf. [9, Proposition 4] and [10, Section 4]).
1. For any HA-formula ¢, HA® - —g50° < %
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2. For any HA-formula ¢ and any set X of HA-sentences, if PA+ X F ¢, then
HAS + X5 1 oS, where X% := {y® | w € X}.

ProoOF. The proofs are routine: One can show (1) by induction on the structure
of formulas, and (2) by induction on the length of the proof of ¢ in PA + X. -

COROLLARY 3.3. For any HA-formulas o and ;. if PAF ) <> @2, then
HAS - o5 < 3.

Proor. If PA proves ¢; <+ ¢,, by Proposition 3.2.(2), we have that HA® proves
(1 < <p2)$, which is in fact ¢} <> 5. —
LemMMA 3.4, For a quantifier-free formula g of HA, HAS proves wif “ g V S.

Proor. By induction on the structure of quantifier-free formulas of HA.
The case of L: Since L= $. we have trivially HAS 151 V8.
The case of that ¢ is a prime formula but L: It is trivial that HAS proves gqr V § —

—ss¢gr- On the other hand, since HAS proves @qr V ~@gr and s —gpqr A ~pgr — 3.
we also have that HA® proves g 5Pgf — Pqr V S
The case of ¢4 = @1 A 2: We have that HA® proves

(o1 A pa)® <—><P1/\<P2 o 1V A (@2 V) & (o1 A p2) VS,

The case of pqr = @1 V 2 Since ¢ and ¢, are decidable in HA (note that they
are quantifier-free), we have that HA® proves (1 V ) V (=1 A —¢5). In the latter
case of the disjunction, we have —s(p1 V @2 V' $). Thus HA® proves

—575(p1 V2 VS) = (p1 Vo) V8.
On the other hand, HA® also proves
(1 V2) VS = —s575(1 Vpa V 8).
Thus HA® proves
(o1 V 02)* = ~s75(0} V 03) 2 7575l Ve V) & (o1 Vi) VS,
The case of pgr = 1 — @21 Assume 1 V $ — ¢ V' $. Then we have

w1 — 2 V8. (1)

Since ¢; and ¢, are decidable in HA (note that they are quantifier-free), we have
that HAS proves (¢> V =1) V (1 A —¢»). In the former case, we have ¢, — ¢,. In
the latter case, by (1), we have $. Thus HAS proves

(1 VS = VS) = (o1 = ¢2) VS.
On the other hand, HA® also proves

(o1 > 2) VS = (1 VS =5 2 V).
Thus HA® proves

(<P1—>901)V$<—>(<.01\/$—><P2\/$) (901—>902)E(<P1—>s02)$- .
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The following lemma is the key for our generalized conservation result:

Lemma 3.5. For a formula ¢ of HA, the following hold.:

1. If o € . HAY + S -LEM F % & ¢ V §:
2. If o € L, HAS + 54-LEM F % <5 o V S.

Note that £,-LEM is an axiom scheme in the language of HA (which does not
contain $).

Proor. By simultaneous induction on k. The base case is by Lemma 3.4.
Assume items | and 2 for k to show those for k + 1. First, for the first item, let
@ = Vxyp where ¢; € Zj. By the induction hypothesis, we have HAS + 3, -LEM
<pf < 1 V8. Note that HAS proves Vxp; V' $ — Vx(p; V $). In the following, we
show the converse Vx(p; V$) — Vxe; V $ inside HAS + 2r+1-LEM. Since —¢;
has some equivalent formula in IT; in the presence of X, ;-DNE (cf. Remark
5.3). by ;. 1-LEM. we have now Ix—¢; V =dx—¢;. In the former case, we have
$ by using our assumption Vx(p; V$). In the latter case. we have Vx¢p; since
—E|X—|(p1 A4 VX—‘—Kpl and Ek+1—LEM 1mphes Ek+1-DNE. Thus HASs + Zk+1-LEM
proves Vx (o1 V' $) — Vx¢; V $. Then we have that HAS + % +1-LEM proves

©% = Vxy? [LH.mEM Vx (o1 V$) kaM Vxpr V S.

Next, for the second item, let ¢ := Jxp; where ¢; € IT;. Note that % is
—\$—|$E|x<pi$. By the induction hypothesis. we have HA® + X,-LEM proves <pi$ >
©1 V' $, and hence, ¢® > —s—g3x¢;. Then it is trivial that HA® + ¥,-LEM proves
Jxp; VS — 8. In the following, we show the converse direction inside HAS +
Y;+1-LEM. By X4 1-LEM, we have now Jx¢; V —3x¢;. Then it suffices to show
—3dxp; A 7g—sIxp; — §, which is trivial since =Ixp; — —gIx¢. -

COROLLARY 3.6. For a formula ¢ of HA. if ¢ = Axp, with ¢ € Ty, then HAS +
Z-LEM I 3x (%) <> ¢ V 8.

ProOF. Since Ixp; V $ <+ Ix(p1 V' $), this is trivial by Lemma 3.5.(1). 4

In the context of intuitionistic/semi-classical arithmetic, a formula does not have
an equivalent formula of the prenex normal form (namely, formula in ¥; or ITy)
while it does in classical arithmetic. Because of this fact, the conservation theorem
only for prenex formulas is not applicable in many practical cases. On the other hand,
Akama et al. [1] introduced the classes U and E;. of formulas which correspond to
classical IT; and I, respectively in the sense that every formula in Uy, (resp. E;) is
equivalent over PA to some formula in ITj, (resp. X;) and vice versa. In addition, the
authors introduced in [7] the classes U,f and EZ which are cumulative versions of
U and E;.. For obtaining the conservation results for the classes as large as possible,
we introduce classes Ry and J; (see Definition 3.11), which relativize R and 7 in
[9] respectively with regard to the formulas of degree < k in the sense of [1, 7].

To make the definitions absolutely clear, we recall some notions in [I, 7]: An
alternation path is a finite sequence of + and — in which + and — appear alternatively.
For an alternation path s, let i(s) denote the first symbol of s if s # () (empty
sequence); x if s = (). Let s+ denote the alternation path which is obtained by
switching + and — in s, and let /(s) denote the length of s. For a formula ¢, the set
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of alternation paths A4/t(¢) of ¢ is defined as follows:
o If ¢ is prime, then Alt(p) := {()}:;
e Otherwise, A/t(¢p) is defined inductively by the following clauses:
~If o =1 Ay or =1V, then Alt(p) := Alt(p1) U Alt(py);
—If o = @] — o, then Alt(p) := {s+ | s € Alt(p1)} U Alt(p5):
~If o =Vxp;, then Alt(p):={s|s € Alt(py)andi(s) =-}U{-s|s €
Alt(py) and i(s) £ —}:
—If o =3xp;, then Ali(p):={s|s € Alt(p;) andi(s) =+}U{+s | s €
Alt(py) and i(s) # +}.
In addition, for a formula ¢, the degree deg(p) of ¢ is defined as

deg(p) := max{I(s) | s € Alt(p)}.

DEeFINITION 3.7 (cf. [1, Definition 2.4] and [7, Definition 2.11]). The classes
Fi. U, Er. F;. U and E/ of HA-formulas are defined as follows:
o Fi = {p | deg(p) = k}: F :={p | deg(p) < k}:
e Ug := Eg := Fo (=X = Ip):
e U, :={peF,|ils)=—foralls € Alt(p) such that /(s) = k + 1};
o E; 1 :={p €Fry|i(s)=+foralls € Alt(p) such that /(s) = k + 1};
e U/ :=Uyu| JF:: B} =B, U JF
k- k i Lo k i

i<k i<k

REMARK 3.8. As shown in [7, Proposition 4.6]. for any ¢ € U; and y € E; .
there exist ¢’ € Uy and y’ € E; such that FV (¢) = FV ('), FV (w) = FV (y').
HAF ¢ < ¢" and HAF w « y'. Then it also follows that for any ¢ € F,". there
exists ¢’ € Fisuchthat FV (p) = FV (¢’) and HA | ¢ + ¢'. Thus one may identify
E;. U/ and F; with E;. Uy and Fy respectively over HA without loss of generality.

Then the authors showed the following prenex normal form theorem:
THEOREM 3.9 (cf. [7, Theorem 5.3] which corrects [1, Theorem 2.7]). For a

HA-formula ¢, the following hold:
1. If ¢ € E[. then there exists ¢’ € X such that FV (p) = FV (¢') and

HA + X;-DNE + U,-DNS I ¢ s ¢';
2. If ¢ € U, then there exists @' € Ty such that FV () = FV (¢’) and
HA + (IT; V I1;)-DNE F ¢ < ¢';
where U.-DNS is the axiom scheme of the double-negation-shift restricted to formulas
in Uy and (I v Iy )-DNE is DNE restricted to formulas of the form ¢ NV w with
w, y eIl

REMARK 3.10. HA + Z;-LEM proves X;-DNE, U;-DNS and (IT; Vv I1; )-DNE.
Then the prenex normal form theorems for E;” and U, are available in HA +
$.-LEM.

DerINITION 3.11 (cf. [9, Definition 6]). Define Ry := Jo := 2o (=1I1y). In
addition, we define simultaneously classes Ry, and J;; as follows: Let F range
over formulas in F;". R and R’ over those in Ry . and J and J' over those in .+
respectively. Then Ry and Ji 4 are inductively generated by the clauses
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1. ERAR.RVR YXR.J = R € Ry1:
2. EJANJJVJI . 3IxJR = J € Jis1.

LemMa 3.12 (A relativized version of [9, Proposition 7(2, 3)]). For a HA-formula
©, the following hold:

1. If ¢ € Ryt then HA® + 3, -LEM proves ~s—p — ¢

2. If ¢ € Jis1, then HA® + =, -LEM proves ¢° — —g—gp.

Proor. We show items 1 and 2 simultaneously by induction on the structure of
formulas.

Let ¢ be prime. Since ¢ is in Fy, we have ¢ € Ry 1 N Jiy1. Since HAF ¢ V -,
we have HA® - —=g—¢ — ¢ V' $. Then we have item | by Lemma 3.4. Item 2 is trivial.

The induction step is the same as that for [9, Proposition 7] in addition with the
cases of ¢ :=Vxp € Jiy1 and ¢ := Ixp; € Ryq1:

If ¢ :=Vxp| € Ji41. then we have ¢ € Ff, and hence. ¢ € U;. By Remark
3.10, one may assume ¢ € I1;. By Lemma 3.5.(1), we have HAS + 3,-LEM + AR
¢V $. Since ¢ V $ implies ~s—s¢p. we have HAS + 3 -LEM F ¢% — —g—g¢0.

If ¢ := 3xp; € Ryy1. then we have ¢ € F/'. and hence. ¢ € E/ (and k > 0).
By Remark 3.10, one may assume ¢; € IT;_ ;. Reason in HAS + 2i.-LEM. Now we
have Jxp; V =Ix¢p;. In the latter case, we have $ in the presence of —g—3x¢p;. Thus
we have —g—3xp; — Ixp; V $. By Corollary 3.6, we have that —¢—3x(p; implies
3x (¢1%). and hence, (3xp )$. -

DEFINITION 3.13 (cf. [9, Definition 6]). Define Qg := Xy (= Ily). In addition, we
define a class Q. as follows. Let P range over prime formulas, Q and Q' over
formulas in 9y, and J over those in J; . Then QO is inductively generated by
the clause

POAQ.OVQ.¥x0.3x0.J — Q € Qi1

LemMA 3.14 (A relativized version of [9, Proposition 7(1)]). For a HA-formula .
if o € Q1. then HAS + Z,-LEM F ¢ — 5.

Proor. By induction on the structure of formulas, we show that for any HA-
formula . if ¢ € Q1. then HAS + 3,-LEM F ¢ — 5.

If ¢ is prime, then we have HAS @ — ¢ trivially by the definition of 3. If ¢ :=
VLA 2.0 =1 V . p = Vxp or ¢ = Ixip;, we have HAS + 3 -LEM - ¢ — ¢°
in a straightforward way by using the induction hypothesis (as for [9, Proposition
7(DD.

Assume ¢ = ] — @2 € Q1. Then we have ¢ € J;41 and ¢y € Ok . By the
induction hypothesis, we have HAS + 3,-LEM + wr — <p§. On the other hand, by
Lemma 3.12.(2), we have HAS 4 %, -LEM F ¢ — —g—g¢01. Since HA® F —g—s5 <>
<p§ by Proposition 3.2.(1), we have that HA® + 3-LEM proves

(o1 = ¢2) — (1 — ¢3)

[LH.]Z;-LEM
— (mss1 — ﬂ$ﬁ$90§)
$ $
— — ¢
S LEM (@1 $ $‘P2)
— (3 — ¥3). .
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Now we define a class V;, of HA-formulas by using the class 7, in Definitions 3.11.

DEerINITION 3.15. Let J range over formulas in J;, V and V' over those in V.
Then V. is inductively generated by the clause

JV AV XV € V.
For our conservation result, we use the following fact on substitution.

LemMA 3.16 (cf. [3, Theorem 6.2.4] and [7, Lemma 6.10]). Let X be a set of
HA-sentences and ¢ be a HAS-formula. If HA® + X b @, then HA + X + @[y /$] for
any HA-formula w such that the free variables of w are not bounded in @, where @[y /$]
is the HA-formula obtained from ¢ by replacing all the occurrences of '$ in o with .

THEOREM 3.17. For any HA-formulas ¢ € Vo and w € Qp.1, if PAF w — o,
then HA + Z,-LEM F v — .

ProoF. Since one can freely replace the bounded variables, it suffices to show
that for any HA-formulas ¢ € Vi) and v € Q. such that the free variables of ¢
are not bounded in y, if PA+ w — ¢, then HA + 2,-LEM F v — . We show this
assertion by induction on the structure of formulas in V.

Case of ¢ € Jxy1: Fix y € Qi1 such that the free variables of ¢ are not
bounded in . Suppose PA - v — ¢. Then, by Proposition 3.2.(2), we have HAS +
w® — 3. By Lemma 3.14 and Lemma 3.12.(2), we have HAS + 5,-LEM + v —
—g—g. By Lemma 3.16, we have that HA 4 X, -LEM proves v — ((¢ — ) — ©)
equivalently, w — ¢.

Caseof p := 1 Ay € Viy1: Then oy, pr € Viy 1. Fixw € Qp | such that the free
variables of ¢ A ¢ are not bounded in . Suppose PA - v — ¢1 A 2. Then PA -
w — o1 and PA -y — ¢,. By the induction hypothesis, we have HA + X;-LEM F
v — ¢ and HA + Z;,-LEM F v — ;. and hence, HA + Z,-LEM F v — 1 A 5.

Case of ¢ := Vx| € Viy1: Then ¢ € Viyq. Fix w € Qi1 such that the free
variables of Vx¢p; are not bounded in . In addition, assume that x does not appear
in y without loss of generality. Suppose PAF v — Vx¢;. Then PAF y — ¢1.
By the induction hypothesis, we have that HA + X;-LEM proves ¥ — ;. Since
x ¢ FV (). we have HA + 2, -LEM  w — Vxo. -

RemaRrk 3.18. Since Iy, is a sub-class of V., and Oy contains all prenex
formulas, we have [7. Theorem 6.14] (and a-fortiori Proposition 1.1) as a corollary
of Theorem 3.17.

COROLLARY 3.19. Let X be a set of HA-sentences in Qy. For any HA-formulas
peVipqandy € Qi1 if PA+ X+ w — ¢, then HA + X + X -LEM F v — 0.

Proor. Assume PA + X v — . Then there exists a finite number of sentences
Wo,....Wm € X such that PA+yo+ -+ w, Fw — . Since PA satisfies the
deduction theorem, we have PAF wo A - Ay, Aw — . Since wo A Ay, A
w € Qy.1, by Theorem 3.17, we have HA + Z-LEM F wo A - A w,y Ay — ¢, and
hence, HA + X + %;-LEM F w — ¢. o

§4. The relation of the classes R; and 7, with the existing classes U; and E,.
In the following, we show that our classes R, and J; in Definition 3.11 are in fact
equivalent over HA to U, and E; (see Definition 3.7) respectively.
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ProposITION 4.1. Uy = Ry and E = Jj.

Proor. By induction on k. The base case is trivial. For the induction step, assume
U; = Ry and E] = J;. We show

L. ¢ € U, ifand onlyif ¢ € Ryyy.

2. ¢ € Ef | ifand onlyif ¢ € Jj1.
simultaneously by induction on the structure of formulas. If ¢ is prime, since ¢ € F,
we are done. Assume that items 1 and 2 hold for ¢; and ¢,. Using [7, Lemma 4.5(1)].
we have

piApreUp © e € UL, <= 0102 € Rt © 01 A2 € Riy.

In the same manner, we also have ¢; A p; € E;H S i Npr € Tivl, o1 Va €
UZH S 1V € Riqr. p1 Vo € Elj—o—l S 1 Vs € T, For ¢ — s, using
[7. Lemma 4.5(3)] we have

p1— w2 € UL,
< ¢ €El, and g € U,

= 1€ Jrv1and @3 € Ryyy

= @1 = P2 € Riy1.

In the same manner, we also have ¢; — ¢, € E,fﬂ & ) = 2 € Jiri1. For Vxopy,
using [7, Lemma 4.5(4,6)], we have

Vxp) € U/J;rl SAARS UZ+1 <I:H> Y1 € Rir1 < VX1 € Ria

and
Vxp1 € B, & Vxp) € U & Vxp, € Ff & Vxp € Jiqr

In the same manner, we also have dxp; € U;H < dxp) € Ry and dxp €
EZJFI ~ EX(pl S jk+1. -

COROLLARY 4.2. U, = Ry and E;, = J.
Proor. Immediate by Proposition 4.1 and Remark 3.8. -

COROLLARY 4.3. For aset X of HA-sentences in Oy, PA + X is E; . -conservative
over HA + X + X;.-LEM.

Proor. Immediate from Corollaries 3.19 and 4.2 since Ji41 € Viy1- =

REMARK 4.4. Corollary 4.3 deals with the conservativity of the class of formulas
in E; 1. which seems to be strictly stronger than that for sentences in E;; (cf.
Section 6.1).

REMARK 4.5. Similar to Definition 3.11, define the classes R;{ and J,é as follows.
Define R}, := Jj := Zo (= Ip) and R;, and J/,, simultaneously as follows: Let
E range over formulas in E;". U over those in U], R and R’ over those in R}, e
and J and J' over those in J/, | respectively. Then R; | and J; , are inductively

generated by the clauses
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I E.RAR.RVR VXR.J = RE R

2. UJNIIVI 3xJR—J €T/,
Then the proof of Proposition 4.1 shows that U, = R} and E] = J/. Hence Ry =
R and J, = J.

REMARK 4.6. Define RZH and j,é’H as for R;(H and jk/+1 in Remark 4.5 with
replacing E; and U} by X and II;. Then, as in the proof of Proposition 4.1 with
using the prenex normal form theorems in HA + Z;-LEM (cf. Remark 3.10), one

can show U} = =Ry, and E! = J;"., over HA + %, -LEM.

k+1 k+1 —

As described in Definition 3.7, the classes E; and U; are originally defined by
using the notion of alternation path. On the other hand, Remark 4.6 reveals that one
can define these classes (via Remark 3.8) inductively without using the notion of
alternation path. A technical advantage of this usual way of defining classes is that
one can prove properties of these classes by induction on the structure of formulas
in those classes.

§5. Conservation theorems for the classes of formulas. In this section, we explore
the notion that PA is I'-conservative over T for semi-classical arithmetic 7 and a
class T of formulas (especially, I, Z;. Uy, E;. Fy etc.).

DErINITION 5.1. For classes of HA-formulas I" and IV, ' VI” is the class of
formulas of form ¢ V y where ¢ € I'and w € T,

We recall the notion of duals for prenex formulas from [1, 6].

DEFINITION 5.2 (cf. [6, Definition 3.2]). For any formula ¢ in prenex normal
form, we define the dual ¢+ of ¢ inductively as follows:

1. ot = i ifgo is quantifier-free:
2. (Vxp)® := 3x(p) ™
3. (Bxp)* 1= valp)t.

REMARK 5.3. For ¢ in ; (resp. ITi ). ¢ is in II; (resp. Z¢). FV (o) = FV ()

and (cpl)l is equivalent to ¢ over HA. For each prenex formula ¢, ¢ implies
- intuitionistically. On the other hand, the converse direction for formulas in X
(resp. Iy ) is equivalent to X;_;-DNE (resp. £;-DNE). Then it follows that for ¢ € X
there exists ¢’ € I, such that FV (¢’) = FV () and HA + %, |-DNE I ¢’ <> —¢p
(cf.[7. Lemma 4.8(2)]). In addition, = implies ——¢ in the presence of £;_;-DNE
for the both cases of ¢ € X and ¢ € II;. Note also that PA proves ¢ V ¢ for each
prenex formula . We refer the reader to [6, Section 3] for more information about
the dual principles for prenex formulas in semi-classical arithmetic.

5.1. Conservation theorems for I, %, . E; and F.
DEerFINITION 5.4. Let T be a theory in the language of HA and I” be a class of
HA-formulas.

o T is closed under '-DNE-R if 7 F == implies T - ¢ forall p € T
o T is closed under I-CD-R if T+ Vx(p V y) implies T + ¢ V Vxy for all
.y € I' such that x ¢ FV (p).
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e T is closed under T-DML-R (resp. T-DMLL-R) if T+ =(p A ) implies
TF-pV-y(resp. T F ot Vyl)forall o,y eT.
Note that ¢ and  in the above may contain free variables.

As mentioned in [14, Section 3.5.1], £;-DNE-R is known as Markov’s rule (for
primitive recursive predicates). The fact that PA is X;-conservative (equivalently,
IT,-conservative) over HA implies that HA is closed under Markov’s rule
(X;-DNE-R), and vice versa. The generalization X;-DNE-R of Markov’s rule
is already mentioned in [8, Section 4.4]. It is easy to see that for semi-classical
arithmetic 7', if PA is X;-conservative over 7', then T is closed under X;-DNE-R.
Then it is natural to ask about the converse. As we show in Theorem 5.9, this is
also the case (note that the case for k = 2 is essentially shown in the proof of [12,
Proposition 3.3]).

The following are our “reversal” results.

LemMa 5.5. Let T be a theory containing HA. If PA is (X V I )-conservative
over T, then T + X;-LEM.

ProoF. Fix & € X;. Let £+ € I, be the dual of &. Since PA - & Vv &L, by our
assumption, we have T - & V ¢+, and hence, T - &V —¢. =

LEmMmA 5.6. Let T be a theory containing HA. If T is closed under ¥ 1-DNE-R,
then T proves %;.-LEM.

Proor. We show that for all m < k, T proves X,,-LEM, by induction on m.
Since T contains HA, the base case is trivial. Assumem +1 < kand T  X,,-LEM.
Let ¢ € X,,41. Since HA - =—(¢ V =), by Remark 5.3 and the fact that X,,-LEM
implies X,,-DNE. we have T + ——(¢ V ¢p+) where ¢+ € I1,,,1. Since ¢ V @t is
equivalent over HA to some formula in X,,,, (cf. [7, Lemma 4.4]), by Z;,;-DNE-R,
we have T F ¢ V ¢+, and hence. ¢ V —p. Thus we have shown T - X, 1-LEM.

LEMMA 5.7. Let T be a theory containing HA. If T is closed under £;-CD-R,
then T proves X -LEM.

Proor. We show that for all m <k, T proves X,-LEM, by induction on
m. Since T contains HA, the base case is trivial. Assume m +1 <k and
TFZX,-LEM. Let ¢ :=3dx¢; where ¢, € I1,,. Since T proves I1,,-LEM and
%,,-DNE, we have T I ¢; V =1, and hence, T + ¢ V @i (cf. Remark 5.3). Then
T FVx(3xp1 Vi) follows. Since Ixepr. i € Tyy1. by Zi-CD-R, we have
T F Ixp; \/VX%L, and hence, 7 F dx¢; V ~dxg,. Thus we have shown T +
Xe1-LEM. B

LEMMA 5.8. Let T be a theory containing HA. Then T is closed under T1;;-DML--R
if and only if T is closed under £;-DNE-R.

Proor. We first show the “only if” direction. Assume that 7 is closed under
IT;-DML*-R and T + ——¢ where ¢ € X;. Since -~y is equivalent over HA to
—(=p A =), by Remark 5.3, we have

T+ (et Ap™).

Since ¢+ € I, by [TI;-DML*-R, we have T (<p¢)L v (@L)L, and hence, T F ¢
(cf. Remark 5.3).
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For the converse direction, assume that 7' is closed under X;-DNE-R and
T+ =(p Ay) where @,y € II,. Since —(p A y) is intuitionistically equivalent
to —~(=—¢ A——y), by Lemma 5.6 and Remark 5.3 (note that X, ;-LEM
implies 3 -DNE). we have T k- (-¢* A-yt) where ¢, y* € 3. Then
T + == (p* Vv yt) follows. By Z,-DNE-R, we have T + o+ Vv yt. 8

THEOREM 5.9. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Qiv1. The following are pairwise equivalent:

1. PA + X is Vi, -conservative over T + X ;

2. PA + X is Iy, ,-conservative over T + X ;

3. PA+ X is Xy -conservative over T + X;

4. T + X is closed under Z; ;-DNE-R;

5. T + X is closed under T1; . ,-DML*-R;

6. PA + X is E;, -conservative over T + X;

7. PA + X is Fy-conservative over T + X ;

8. PA+ X is (2 V Ik )-conservative over T + X;
9. T+ X FZX,-LEM;
0. T+ XFZX-CD;
1. T + X is closed under X;-CD-R;

where 2;-CD is the scheme Vx(¢ V ) — o VVxy with o,y € X such that x ¢
FV () (cf. [6. Section T]).

Proor. The implications (1) — (6) — (7) — (8), (1) = (2) — (3) — (4) and
(9) — (10) — (11) are trivial (cf. Corollary 4.3 and Remark 3.18). The implications
(8) = (9), (4) — (9), (11) — (9) and (9) — (1) are by Lemmata 5.5, 5.6, 5.7 and
Corollary 3.19 respectively. The equivalence (4) <+ (5) is by Lemma 5.8. =

5.2. Conservation theorem for U.. In contrast to the fact that E; ;-conservativity
and F.-conservativity are characterized by X;-LEM (see Theorem 5.9), U, -
conservativity requires more than X;-LEM:

PROPOSITION 5.10. PA is not (I} V I;)-conservative over HA.

Proor. We use the same argument as in [7, Section 3]. Suppose that PA is
conservative over HA for all formulas ¢ V w with ¢,y € I1;. Let ®(x) be the
following formula:

Vu—(T(x, x.u) AU(u) = 0) VVu—~(T(x, x,u) AU(u) # 0), (2)

where T and U are the standard primitive recursive predicate and function from the
Kleene normal form theorem. Since

= (Fu(T(x, x,u) AU(u) = 0) A Ju(T(x. x,u) A U(u) #0))

is provable in HA, we have PA - ®(x). Then, by our assumption, we have HA -
®(x), and hence, HA - Vx®(x). On the other hand, as shown in the proof of [7,
Proposition 3.1], =Vx®(x) is provable in HA + CT, where CTj is the arithmetical
form of Church’s thesis from [13, Section 3.2.14]. Then we have HA + CTy F.L,
which is a contradiction by [13, Section 3.2.22]. =
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Let T be semi-classical arithmetic. By Theorems 3.9.(2) and 5.9, if T proves
(ITz41 V II;41)-DNE, then PA is Uy -conservative (and hence, a-fortiori (ITj; V
I, )-conservative) over 7. On the other hand, if PA is (IT;; V I1;{)-conservative
over T, then T proves X.-LEM by Lemma 5.5 and the fact that both of X,
and II; can be seen as sub-classes of I, ;. Thus (Il V II;,;)-DNE implies
the U, -conservativity, which implies the (IT;.; V II;1)-conservativity, which
implies Z;-LEM and not vice versa. For further studying the relation of the
Uji1 /(g4 V iy )-conservativity and semi-classical arithmetic, we introduce
some extended classes of IT; and X;.

DEFINITION 5.11.

o \/ II; denotes the class consisting of disjunctions of formulas in IT.
e A class EII, is defined by the following clauses:
- p el
— If ¢,y € EIl;, then ¢ V v € Elly;
— If ¢ € EIl. then Vx¢ € EIl.
e EX; | denotes the class consisting of formulas of the form 3x;., ..., x,¢ where
¢ € Ellg.

REMARK 5.12. TI; CTI; VII; C \/II; C EII; C EX; ;.

LemMa 5.13. For any HA-formulas ¢,y € EIly, there exists & € EIly such that
FV(E)=FV(pAw)andHAF ¢ < o Ay.

ProoF. By induction on the sum of the complexity of ¢ and .

If both of ¢ and  are in I, then we are done by [7, Lemma 4.3(2)].

Suppose v := w1 V w, where w1, y, € EIl;. By the induction hypothesis, there
exist &1, & € EIl; such that FV (&) = FV(p Aw1), FV (&) =FV(p Aws), HA -
¢ <> o Ay and HAF & < ¢ A wo. Then we have that

FV(fl \/62) = FV(él)UFV(fz) = FV(QD/\ l//l)UFV(QO/\ l//z) = FV(QO/\ l//)
and that HA proves
GVOh e (@AY VipAy) s oAyiVy) =e Ay

Thus one can take & Vv &, € EIlj as a witness.

Suppose w := Vxy, where y; € EIl;. Without loss of generality, assume x ¢
FV (). By the induction hypothesis, there exists &; € EIl; such that FV (&) =
FV (e Awi)and HAF &) < ¢ A w. Then we have

FV (Vx&1) = FV (e Ayi) \ {x} = FV (o AVxy,)
and that HA proves
Vxé) < Vx(o Awr) < @ AVxy).
Thus one can take Vx¢&; € EII; as a witness. =

In what follows, we use [7, Lemma 4.5] many times implicitly.
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LemMa 5.14.  For a HA-formula o, the following hold:

L. If o € U ,. then there exists ¢’ € Ellyyy such that FV () = FV (¢’). HA +
Y-LEM F ' — o and PAF ¢ — ¢';
2. If o € Ef|. then there exists ¢’ € Ell;y such that FV (¢) = FV (¢'), HA +

Si-LEM F ¢ — —p and PAF —p — ¢'.

Proor. We show items 1 and 2 by simultaneous induction on the structure of
formulas. We suppress the arguments on free variables when they are clear from the
context.

If ¢ is prime, then items 1 and 2 are trivial since ¢ is decidable in HA. For the
induction step, assume items 1 and 2 hold for ¢; and ;.

Case of ¢ =V py: For item 1, suppose @1V € Uy . Then @i, €
U;H. By using the induction hypothesis, there exist ¢{. ¢} € EIl;,; such that
HA + Z;-LEM proves ¢; — ¢ and ¢} — ¢, and PA proves ¢; — ¢} and ¢y — 3.
Now ¢} V ¢} € Elly,; and HA 4 X;-LEM proves

+

/ /
PV [I.H.]27>LEM ©1 V.
On the other hand, PA proves the converse. For item 2. suppose 1V ¢y €
El,,. Then ¢, ¢ € Ef . By the induction hypothesis, there exist ¢f. 5 €
EIlj; such that HA + X;-LEM proves ¢| — —¢; and ¢} — =, and PA proves
-1 — ¢ and —¢y — 5. By Lemma 5.13, there exists ¢’ € EIl;; such that
FV (¢') = FV (o] A ) and HA = ¢’ <> ¢} A ¢). Then we have that HA + ,-LEM
proves
"Gl ANy —  —p Ay < (1 V
PO RINGY Sy TP (o1 V p2)

and also PA proves the converse.

Cas.e of ¢ =1 A g For item.l, suppose 1 A @z € U, . Then ¢y, 2 € U,
By using the induction hypothesis and Lemma 5.13, one can take a witness for
1 A 3 1n a straightforward way. Item 2 follows from the induction hypothesis as
in the case of ¢ 1= @1 V p2: @] V ¢} € EIl; is the witness since HA + X;-LEM
proves

/ /
1V [I.H.]27>LEM @1V 2y = (o1 A @)
and PA proves the converse.

Case of ¢ := ¢ — ¢, For item 1, suppose ¢; — ¢, € U,‘;]. Then ¢, € E;H
and ¢, € Uf . By the induction hypothesis, there exist ¢, ¢} € EIl;;; such
that HA 4+ Z,-LEM proves o] — —¢; and ¢} — ¢, and PA proves —¢; — ¢{ and
©2 = 5. Now @1 V ¢} € Ell;; and HA + X;-LEM proves

/ li
\Y, — 1 V @y — — .
P1V P [LH] Z,-LEM P1 V2 (¢1 ©2)

On the other hand, PA proves the converse. For item 2, suppose ¢; — ¢, € EZ e

Then ¢; € U/, and ¢, € E,|. By the induction hypothesis, there exist ¢, @] €
ETlj . such that HA 4 X, -LEM proves ¢; — ¢ and ¢} — —¢> and PA proves ¢ —

¢} and ¢y — 5. By Lemma 5.13, there exists ¢’ € EIl;; such that FV (¢') =
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FV (¢ A @h) and HA - ¢’ 5 ¢ A 5. Then we have that HA + £-LEM proves

! ! !/
P eI ANy [I‘H_ELEM @1 A=y = (o1 — ¢2)
and also that PA proves the converse.

Case of ¢ = 3xg01.: For item 1, suppose dx¢; € UZ+1- Then dxp, € E,f By
Remark 3.10, there exists ¢’ € X such that FV (¢’) = FV (¢) and HA + Z;-LEM F
¢’ <> . Since X; can be seen as a subclass of I, |, we are done. For item 2,
suppose Jx¢; € E; .1 Then ¢ € EZH. By the induction hypothesis, there exists
¢{ € EIlyy such that FV (¢]) = FV (). HA + Z,-LEM F ¢{ — ¢ and PA
—p1 — ¢}. Now Vx| € Ell;;; and FV (Vxe{) = FV (3x¢;). Then we have that
HA + X, -LEM proves

!
VX, [I.H']Z—](?LEM Vx—p) > =3xp)
and also that PA proves the converse.

Case of ¢ := Vx¢p;: For item 1, suppose Vxg, € Uz_:+1‘ Then ¢; € UZTH. By the
induction hypothesis, there exists ¢ € EIl;,; such that FV (cp{) =FV (p1), HA +
2-LEM | ¢ — 1 and PAF ¢ — ¢f. It is straightforward to see that Vx¢| €
EIl; ;1 is a witness for Vxp; € U}, . Foritem 2, suppose Vxp; € E/ . ThenVxp; €
U} . By Remark 3.10, there exists ¢’ € IT; such that FV (¢’) = FV (¢) and HA +
Zi-LEM F ¢’ <5 . Since -’ is equivalent to some " € ¥, in the presence of
>+-DNE (cf. Remark 5.3), we are done. 4

LEMMA 5.15. Let T be a theory containing HA and X be a set of HA-sentences. If
PA + X is EIl; . -conservative over T + X, then so is Uy -conservative.

ProOOF. Let ¢ € Uy, ;. Suppose PA + X F ¢. By Lemma 5.14, there exists ¢’ €
EIl;; such that FV (p) = FV (¢’), HA+Z,-LEM F ¢’ — ¢ and PAF ¢ — ¢'.
Then PA + X F ¢’. By our assumption, we have T + X F ¢’. As in the proof of
Lemma 5.5, one can show T + X F X;,-LEM by using the EIlj-conservativity.
Then T + X F ¢ follows. -

THEOREM 5.16. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Q1. Then the following are pairwise equivalent:
PA + X is Uy -conservative over T + X ;
PA + X is EIly  -conservative over T + X ;
T + X is closed under EIlj, -DNE-R;
T + X is closed under EITj  ;-CD-R;
T + X is closed under Uy -DNE-R;
T + X is closed under Uy -CD-R.

Proor. Since EIl;,; C Uy, the equivalence between (1) and (2) follows
immediately from Lemma 5.15.
(2 — 3): Let ¢ € EIl;y and assume T + X - ——¢. Since T+ X C PA+ X, we
have PA+ X I~ . By (2). we have T + X - ¢.
(3 — 4): Let o, w(x) € Ell,; and x ¢ FV (¢). Assume T + X F Vx(¢ V y(x)).
Since HA proves ——(p V =) and (¢ V ~¢) AVx(p V w(x)) — ¢ VVxp(x), we
have T + X - =—=(p V Vxw(x)). Since ¢ V Vxw(x) € EIl; . by EIl;;-DNE-R,
we have T + X F ¢ V Vxy(x).

SAINANE ol ol
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(4 — 2): Assume that T + X is closed under EIl;,;-CD-R. By Lemma 5.7, we
have T+ X + Z;-LEM. We show that PA+ X F ¢, V-V ¢, implies T + X
w1 V-V, forany ¢, ..., p, € EIl;, by induction on the sum of the complexity
of o1....,n € Ellj4.

First, suppose that all of ¢;..... ¢, are in ITi,i. Let ¢; := Vx;] with ] € X
foreach i € {1,....n}. Assume PA+ X ¢ V-V, . Then PA+ X - p{ V --- V
en. Since T + X + %¢-LEM and X C Q. by Corollary 4.3, we have T + X F
o] V-V, Then T + X FVxi(p] V-V ¢},) follows. By EIl;;-CD-R. we have
T+ X FVxip] V@) V-V, Iterating this procedure for more n — 1 times, we
have T+ X F Vxip] V - V VX, ;.

Secondly, suppose @1, ..., ¢, € Elli 41 and @, := @), V @) with ¢, ¢ € EIl;, ;.
Without loss of generality, let n > 1. Assume PA + X F ¢ V - V ¢, 1 V @,. equiv-
alently, PA+ X F ¢ V-V g,_1 V@, V ¢, . By the induction hypothesis, we have
T+XFo VeV, Ve, Vel equivalently, T+ X F @ V-V, 1V @y.

Finally, suppose ¢, ..., ¢, € EIl; 1 and @, := Vx, ¢, with ¢/, € EIl;, ;. Without
loss of generality, let n > 1. Assume PA+ X F ¢ V-V ¢, 1 V ¢,. Then PA + X +
©1 V-V Ve, follows. By the induction hypothesis, we have T+ X F ¢; V
“+Vn1 Ve, and hence, T + X F Vx,(¢1 V-V p,1 V). By Ell;1-CD-R,
wehave T+ X o1 V-V, 1V,

The implications (I — 5) and (5 — 6) are shown as for (2 — 3) and (3 — 4)
respectively. In addition, (6 — 4) is trivial. =

Next, we characterize the (ITj, 1 V I, )-conservativity by several rules.

Lemma 5.17. Let T be a theory containing HA. If T is closed under
(I Vv I )-DNE-R, then so is I1;-CD-R.

Proor. The proof of (3 — 4) of Theorem 5.16 works. .

LEMMA 5.18. Let T be a theory containing HA. Then T is closed under
2-DML*-R if and only if T is closed under (I1;, v T1; )-DNE-R.

ProOOF. One can show the “only if” direction as in the proof of that in Lemma 5.8.
For the converse direction, again by the corresponding proofin Lemma 5.8, it suffices
to show that if 7" is closed under (IT; V IT;)-DNE-R, then T proves X; ;-LEM. The
latter is the case by Lemmata 5.17 and 5.7. =

THEOREM 5.19. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Qiy1. Then the following are pairwise equivalent:

PA + X is (g, V Iy oy )-conservative over T + X

T + X is closed under (I 1 V I )-DNE-R;

T + X is closed under 11, -CD-R;

T + X is closed under ;. ;-DML+-R;

T + X is closed under £j,1-DML-R and T + X proves £;-DNE.

Al e

PROOF. One can show (1 — 2) as in the proof of (2 — 3) of Theorem 5.16. The
implication (2 — 3) is by Lemma 5.17.

We show (3 — 1). Assume that 7 4 X is closed under I, ;-CD-R. By Lemma 5.7,
we have T + X F X -LEM. Let ¢ := Vx 1w and ¢, := Vxow, with wy, ) € 2.
Suppose PA + X t Vxjy; V Vxays. Then PA+ X F = (3xyi- A3xops). Since
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Ix1yi- A Jays- is equivalent to a formula in X, (cf. [7, Lemma 4.3(2)]). by
Remark 5.3, thereexists & € I suchthat FV (&) = FV (Vx 1y V Vxys) and HA +
%t -DNE - & > = (3x1w{ A 3xop3-). Then we have PA + X - &. Since X € Q1.
by Corollary 3.19, we have HA + X + X;-LEM F £. Since X;-DNE is derivable
from ¥;-LEM. we have that T + X proves — (3x;yi- A Ixaps-). equivalently,
Vx1. X271 (Wi Awy ). Since T + X + £-DNE, again by Remark 5.3, we have that
T + X proves Vxi, x2— (w1 A =), equivalently, Vxy, x,——(w; V w3). Since y; V
w7 is equivalent to a formula in I, (cf. [7, Lemma 4.4]), T + X F Vxy, x2(w1 V w2)
follows. By using I, ;-CD-R twice, we have T + X F Vx ) V Vxous.

The equivalence (2 <+ 4) is by Lemma 5.18. The implication (5 — 4) is by
the fact that for ¢ € ;.. ¢+ is derived from —¢ in the presence of X;-DNE
(cf. Remark 5.3). The implication (3 & 4 — 5) is by Lemma 5.7 (note that X;-LEM
implies ;-DNE). -

REMARK 5.20. From the perspective of Remark 5.12. it is natural to ask the status
of the \/ I, -conservativity. As in the proof of Theorem 5.19, one can show the
following equivalence:

1. PA+ X is \/ Iy, -conservative over T + X

2. Forany ¢1.....0, €. if T+ X F==(p1 V- V,).then T + X F ¢ V
...\/son;

3. For any ¢,...,p, € 41 such that x ¢ FV (o1 V- Vp,q), if T+ X+
Vx(p1 Ve Vo1 Ve,).then T + X F @ Ve Vg, 1 VVxp,:

4. For any @1, ....on € gy, it T+ X F =(p1 A Agy), then T+ X F @i v

5. T + X proves £;-DNE and for any @1, ..., ¢, € Zpy1, if T+ X F (@1 A=+ A
@p).then T + X F =1 V - V =,

where X' C Q. This characterization suggests that the \/ I, ;-conservativity lies
strictly between the Uy, j-conservativity and the (I, V T, )-conservativity, but
we do not have the proof of the strictness.

REmMARK 5.21. From the comparison between [6, Corollary 7.6] and the
equivalences in Theorem 5.19, it is natural to ask whether the (contrapositive)
collection rule restricted to formulas in Il is also equivalent to the items in
Theorem 5.19. This question is still open.

§6. Conservation theorems for the classes of sentences. In the study of fragments
of PA, the conservativity for classes of sentences has been studied extensively e.g., in
[11. Section 2]. The following proposition states that the conservativity for a class of
formulas is equivalent to that restricted only to sentences if the class is closed under
taking a universal closure:

PropoSITION 6.1. Let T be a class of HA-formulas such that T is closed under
taking a universal closure. For any theories T and T’ containing HA in the language
of HA., if T’ is conservative over T for any sentences in T, then T' is T-conservative
over T

Proor. Letp € I'. Assume T’ + . Then we have T’ - @ where ¢ is the universal
closure of ¢. Since ¢ is a sentence in I', by our assumption, we have T + @, and
hence, T F ¢. -
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Therefore, for classes as Iy, Uy, EIl; etc., the strength of the conservativity
does not vary even if we restrict them only to sentences. On the other hand, since
%, Er, Fi etc. are not closed under taking a universal closure, this is not the case
for such classes. In what follows, we explore the relation on the notion that PA is
I'-conservative over T for semi-classical arithmetic 7 and the class I" of sentences.

DEFINITION 6.2. Fora class I of HA-formulas, [ denotes the class of HA-sentences
inT.

6.1. Conservation theorems for X, sentences and E;, sentences. For the X;-
conservativity, we have the following:

PrOPOSITION 6.3. Let T be semi-classical arithmetic containing ¥;_1-LEM, and X
be a set of HA-sentences in Q). Then PA 4+ X is Lji1-conservative over T + X if and

only if T + X is closed under Zy-DNE-R.

Proor. We first show the “only if” direction. Let ¢ € Xj1. Assume 7 + X
—=p. Then PA + X I . Since PA + X is now Xy |-conservative over T + X, we
have T + X + .

In the following, we show the converse direction. Without loss of generality,
assume k > 0. Let IxVyw € iy with y in Zi . Assume PA+ X - 3xVyy.
By Proposition 3.2.(2), we have HA® + X% —g—s3xVyy®, and hence, HA® +
% 1-LEM + X F —s—3IxVyy® by Lemma 3.14. Using Lemma 3.5.(2), we have
HA® + % |-LEM + X F —g—43xVy (v V $). By substituting $ with L (cf. Lemma
3.16), we have HA + £, _|-LEM + X F ——3xVyw. Since T is semi-classical arith-
metic containing X; |-LEM, we have T + X - -—3dxVyy. By Zﬁl-DNE-R, T+
X + IxVyy follows. -

Proposition 6.3 is a counterpart of the equivalence between (3) and (4) in
Theorem 5.9 for the case of sentences. In what follows, we deal with the E; -

conservativity. In particular, we show that the E; |-conservativity can be reduced
to EX;, -conservativity.

LemMA 6.4. For HA-formulas ;. 2 € EXy (1, there exist y, & € EXy | such that
FV (y) =FV (p1 Aw2) =FV (1 V @2) = FV (&) and HA proves w <> o1 A @3 and
Ee V.

PROOF. Let ¢ :=3xy.....x,0] and ¢y = 3yi..... ymes with ¢f, ¢} € Ellj.
Without loss of generality, assume xi..... x, ¢ FV (¢}) and yi..... ym & FV (¢]).

By Lemma 5.13, there exists y’ € EIl; such that FV (y') = FV (¢] A ¢}) and
HAF v/ & ol A Put w = 3x1, ... X, y1..... Y @', which is in EX; . Then it
is trivial that FV (y) = FV (g1 A ¢2) and HAF v < 1 A pa.

Put & :=3xi..... X0 V1o oees Vi (cp{ V ¢}), which is in EX; . Since ¢ is equivalent
to 3xi. ... Xp0] V 31, ... ymeh over HA, we have that FV (&) = FV (¢ V ¢,) and
HAF E < o1 V). -

Lemma 6.5. For a HA-formula ¢, the following hold.:

L If ¢ € U, then there exists ¢' € EXy 1 such that FV () = FV ('), HA +

Y 1-LEM b ¢' — —p and PA+ —p — ¢'.
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2. If ¢ € B[ |. then there exists ¢' € EZ; such that FV (p) = FV (¢’). HA +

i 1-LEM o' — o and PAF o — ',

Proor. Note that UZH =R, and EZH = J/., where R) , and J/_ are the
classes defined in Remark 4.5. Then it suffices to show items 1 and 2 where U’ ol
and EZ 41 arereplaced by R; | and J; | respectively. In the following, we show the
assertions by induction on the constructions of R;( il and jk’ e

Forp e E C R}, - by Lemma 5.14. there exists ¢’ € EIT; (C EZ; ) such that
HA + 2 1-LEM - ¢" — —p and PA+ —p — ¢'. For ¢ € U C J/, . by Lemma
5.14, there exists ¢’ € EIl;(C EX;,) such that HA + X, ;-LEM F ¢’ — ¢ and
PAF ¢ — ¢'. For the induction step, let ¢1,¢2 € R}, and w1, y2 € J/ , and
@1. 05, wi. wh € EXi g satisfy FV (1) = FV (¢]). FV (p2) = FV (p3), FV (1) =
FV (v]). FV (y2) = FV (y}) and that HA + 3, -LEM proves @] — —py, @} —
—p2, Wi = Wi, Wy — ya and PA proves —@; — @, 72 = @), W1 — Wi W = Y.
By Lemma 6.4, for any conjunction and disjunction of 1. ¢}. w|. w5 € EX; . there
exists an equivalent (over HA) ¢ € EZ; | which preserves the free variables. For ¢ :=
©1 Vi € Ry, take ¢’ € EX; 1y as an equivalent of ¢f A 5. For ¢ := y Vy, €
Ji.1- take @' € EXi g as an equivalent of w V w). For ¢ := @1 Ay € R}, take
¢' € EX; 1 asanequivalent of o) V @;. For o := w1 Ayy € J, . take p’ € EZy
as an equivalent of w{ Ay} For ¢ :=y1 — ¢y € R} . take ¢’ € EX;(; as an
equivalent of y| A ). For ¢ := @1 — w2 € J/,|. take ¢’ € EZ; | as an equivalent
of @1 V. For ¢ :=Vxp € Ry ,,. take ¢’ := Ixg| € EZyy. For ¢ :=3Ixy; €
Ty take ' := 3xy| € EX; 1. We leave the routine verification for the reader.

COROLLARY 6.6. For a HA-formula ¢, the following hold:

L. If ¢ € U |, then there exists ¢' € Xiyy such that FV (p) = FV (¢’). HA +
(Mg VIIL)-DNE F ¢’ — = and PA - —=p — ',
2. If ¢ € E_,|. then there exists ¢' € iy such that FV () = FV (¢'), HA +
(I VII)-DNEF ' — p and PAF o — ¢'.

PrOOF. Since ¢’ € EXyyy is of the form Jxyp| where | € EIl; C U, by
Theorem 3.9.(2), there exists y € ¥;4; such that FV (¢’) = FV (y) and HA +
(I1; vV II;)-DNE I ¢ <+ w. Since HA + (I1; V I )-DNE proves X;_1-LEM., our
corollary follows from Lemma 6.5. -

THEOREM 6.7. Let T be semi-classical arithmetic and X be a set of HA-sentences.
Then PA + X is Eyq-conservative over T + X if and only if PA+ X is EX; -
conservative over T + X .

Proor. The “only if” direction is trivial since EX;,; C E; ;. We show the
converse direction. Let ¢ € E;, ;. Assume PA+ X F . By Lemma 6.5, there
exists ¢’ € EX;,1 such that HA + X, |-LEM I~ ¢’ — ¢ and PAF ¢ — ¢’. Then

PA + X F ¢’. By our assumption, we have 7 4+ X F ¢’. On the other hand, as in the
proof of Lemma 5.5, one can show T + X  £;_1-LEM (note that EI) can be seen

as a sub-class of EX; | and the EIlj-conservativity implies the EIl;-conservativity
by Proposition 6.1). Then we have T + X + ¢. -
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6.2. Conservation theorem for F, sentences. Next, we characterize the Fy-
conservativity. To investigate the class Fy, it is convenient to consider the following
class:

DEFINITION 6.8. Let B; be the class of formulas which are constructed from
formulas in E” UU; by using logical connectives A,V and —. Let B-LEM be
LEM restricted to formulas in BZ.

ProrosITION 6.9. HAF X;-LEM « B,j-LEM.

Proor. First, HA + B:—LEM F Z,-LEM is trivial since X, C EZ We show the
converse direction. By Remark 3.10, inside HA 4+ Z;-LEM, one may assume that
p € BZ is constructed from formulas in X; U I by using logical connectives A, V
and —. Then we have HA 4+ Z;-LEM F BZ—LEM in a straightforward way. o

PROPOSITION 6.10. B} = Fy.

ProoF. Since F;” = Fy (cf. Remark 3.8). it suffices to show B, = F}.

First, B, C F; is trivial since E” C F;". U;” C F{ and the fact that F} is closed
under A,V and —.

We show that ¢ € F;” implies ¢ € BZ for all HA-formulas ¢ by induction on
the structure of formulas. If ¢ is prime, since ¢ € B/, then we are done. For the
induction step, assume that it holds for ; and ;. If o1 A @ € F/. then ¢y, ¢ € F
follows. By the induction hypothesis, we have ¢, ¢, € BZ, and hence, | A @, € BZ.
The cases of 1 V @3 and ¢ — ¢ are similar. If Vxp; € F;, by the definition, we
have Vx¢p; € U}, and hence. Vx¢p; € B]. The case of 3x¢p; € F is similar. H

COROLLARY 6.11 (cf. [1, Corollary 2.8(i)]). HA - Z;-LEM <+ F;-LEM.
Proor. Immediate from Propositions 6.9 and 6.10. 4

REMARK 6.12. By using Proposition 6.10 and Theorem 3.9, one can show the
following: If ¢ € Fy, then HA® + %,-LEM F % < ¢ v $. This is an extension of
Lemma 3.5.

LEMMA 6.13. For all p € B, there exist @' and " which are constructed from
Sformulas in EX; | JZi by using A and V only, and satisfy FV (¢') = FV (") =
FV (), HA + 2, 1-LEM proves ¢’ — ¢ and " — —p, and PA proves ¢ — ¢’ and
_|(p N (p//.

Proor. By induction on the construction of BZ.

For the base case, first assume ¢ € UZ. By Lemma 5.14, there exists ¢’ €
ETl; such that FV (¢) =FV (¢'), HA+ %, |-LEM I ¢’ — ¢ and PAF ¢ — ¢'.
By Corollary 6.6, there exists ¢” € ¥; such that FV (p) =FV(¢”), HA +
i 1-LEM I ¢ — = (cf. Remark 3.10) and PA F —¢ — ¢”. Next assume ¢ €
E;. By Corollary 6.6, there exists ¢’ € Z; such that FV (¢) = FV (¢’). HA +
Y 1-LEM I ¢’ — ¢ and PA+ ¢ — ¢’. By Lemma 5.14, there exists ¢” € EIl;
such that FV (p) = FV (¢”), HA+ Z; |-LEM | ¢ — —p and PA F —p — ¢”.

For the induction step. let ¢1.¢, € B and ¢f. ¢! ¢). ¢} constructed from
formulas in EII; [ JZ by using A and V only satisfy the following: FV (¢]) =
FV (¢/') = FV (¢1). FV (¢}) = FV (¢Y) = FV (1), HA + %;_-LEM proves | —
1. @5 = 2, 9] = 1, @) — s and PA proves o1 — ¢}, @2 = 5. o1 — ¢,
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iy — @Y . Forp = @1 A ga.take ' = o] Aphand @ := o] V @) Forp = ¢ V
2. take ¢’ 1= @] V ¢} and ¢” 1= @] A ). For ¢ := 1 — ¢, take ¢’ = ' V ¢}
and ¢” = @] A @5 We leave the routine verification for the reader. =

THEOREM 6.14. Let T be semi-classical arithmetic and X be a set of HA-sentences.
Then PA + X is Fy-conservative over T + X if and only if PA + X is (% vV Egk>—

conservative over T + X .

Proor. The “only if” direction is trivial since X; V EIl; C Fy. We show
the converse direction. Let ¢ € Fy. Assume PA + X I~ ¢. By Lemma 6.13 and
Proposition 6.10, there exist ¢’ which is constructed from formulas in X [ EIl,
by using A and V only, and satisfy HA + X, _-LEM - ¢’ — ¢ and PAF ¢ — ¢’.
Without loss of generality, one may assume that ¢’ is of conjunctive normal form
such that each conjunct is a disjunction of sentences in X () EIly. Since disjunction
of sentences in ¥y is equivalent to a sentence in ¥4 over HA and EI, is closed under v,
each conjunct can be assumed to be of the form y Vv £ where y € X, and ¢ € EIl.
Let o' := A <;<, (Wi V&) where w; € Z; and &; € EIl. Since PA4 X I ¢'. by

the (;;g vEEk>-conservativity, we have that T + X proves y; V& for each i

Then we have T + X + ¢’. Since PA + X is now EIl;-conservative over 7 + X
(cf. Proposition 6.1), as in the proof of Lemma 5.5, we have T + X F Z;_;-LEM.
Then T + X F ¢ follows. -

In what follows, by further investigating the (Z‘J& V E&)-conservativity in
Theorem 6.14, we give a characterization of the Fj-conservativity by axiom
schemata.

DErINITION 6.15. Let I' be a class of HA-formulas. We introduce the following
axiom schemata:

e '-DNE: =—p — &

e -DNS : S5=p — ~—@:
where ¢ € I" and ==¢ and & are universal closures of ~—¢ and ¢ respectively.

ProOPOSITION 6.16. Let T be a class of HA-formulas such that T is closed under
taking a universal closure. Then I'-DNE is equivalent to T-DNS + [-DNE over HA.

Proor. It is trivial that I'-DNE implies I'-DNS and also [-DNE. We show
HA + I'-DNS + [-DNE + I''DNE. Let ¢ € I'. By -DNS, == implies =—. Since
@ isnowin I', by [-DNE. == implies ¢. Thus we have HA + I'-DNS + [-DNE -
g = P -

LEmMMA 6.17. Let T be a theory containing HA and satisfying the deduction theorem,
and X be a set of HA-sentences in Q. If T + X proves L;-LEM and T + X is
closed under EI1;.-DNE-R with assumptions of sentences in H’: TH+XFy— -
implies T + X =y — o for all y € Ty and ¢ € Elly, then PA + X is (;\15 \Y Eﬂk>-
conservative over T + X .

PrOOF. Lety € Xy and y € Ell;. Assume PA + X = ¢ V y. Since T satisfies the
deduction theorem and p+ € I;. by our second assumption, we have that 7" + X +
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o+ is closed under EIT;-DNE-R. Since ¢+ € Q. by Theorem 5.16, we have that
PA + X + ot is EIl;-conservative over T + X + . Since PA + X + ¢t F y, we
have T + X + <pJ- F w. and hence,

TH+XFet >y (3)

by the deduction theorem. In addition, by our second assumption and Theorem 5.16,
we have that T+ X is closed under EIl,-CD-R, and hence, T+ X + X, -LEM
by Lemma 5.7. Then, by Remark 5.3, we have T + X  —~¢p — ¢, and hence,
T+ X F =9 — w by (3). On the other hand, by our first assumption, we have
T+XtFeV-p. ThenT + X F ¢ V y follows. .

THEOREM 6.18. Let T be semi-classical arithmetic satisfying the deduction theorem
and X be a set of HA-sentences in Q. Then the following are pairwise equivalent:

1. PA+Xis Q-conservative over T + X ;

2. T + X proves Fx-LEM and U;-DNS;

3. T + X proves Zx-LEM and Uy-DNE;:

4. T + X proves X;-LEM and EI1;,-DNE.

PrOOF. (1 — 2): Let ¢ € Fy. Then ¢ V ¢ € Fy. Since PA I ¢ V —¢p, we have
T+XFeV-pby(l).Lety € Ug. Then ==y — =~ € Fy. Since PA - ==y —
——y, wehave T + X - ==y — =~y by (1).

(2 — 3): It suffices to show U;-DNE by using Fy-LEM and U,-DNS. Since
U, C Fy and Ug-LEM implies U, -DNE, by Proposition 6.16, we are done.

(3 — 4): Trivial.

(4 — 1): By Theorem 6.14 and Lemma 6.17, it suffices for (1) to show that
T + X is closed under EIT;-DNE-R with assumptions of IT; sentences. Let y € Tl

andp € EIl;. Assume T + X -y — ——¢p.ThenT 4+ X + w - =S=¢.Since T + X
proves EIT;-DNE now, we have T+ X + w - ¢. and hence. T 4+ X + y F ¢. Since
T satisfies the deduction theorem, 7'+ X F v — ¢ follows. o

REMARK 6.19. Uj-DNS in Theorem 6.18.(2) is equivalent over HA to the closed
fragment of U;-DNS:

—=Vxp — Vx——gp,
where ¢ € Uy such that FV (¢) = {x}.

In the following, we show that Fy-LEM and U;-DNS in Theorem 6.18.(2) are
independent over HA.

ProPOSITION 6.20. HA + [-LEM ¥ (IT, V I1;)-DNS for any class T’ of HA-
formulas.

PrOOF. Suppose HA + [-LEM F (IT; v I1;)-DNS. As in the proof of Propo-
sition 5.10, let ¢(x) € IT; vV I1; be formula (2). Since HA - Vx——¢(x), we have
HA 4 C-LEM F ——=Vx¥(x). Since the double negation of each instance of [-LEM
is provable in HA, by (the proof of) [7, Lemma 4.1], we have HA - ==Vx¢(x). This
is a contradiction as shown in the proof of Proposition 5.10. o
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ProposITION 6.21. HA + DNS ¥ X-LEM where DNS is the axiom scheme of the
double-negation-shift Vx(Yy——p(x,y) — ==Vyp(x. y)).

PrOOF. Let ¢ be a sentence in ITj such that PA¥ ¢ and PA ¥ —¢ (e.g.. the
Godel sentence for Godel’s first incompleteness theorem). Since each instance
of DNS is intuitionistically equivalent to a negated sentence (cf. [7, Remark
2.8]). by [13. Theorem 3.1.4 and Lemma 3.1.6], we have that HA + DNS has the
disjunction property. Suppose HA + DNS F @+ v —pL (where ¢+ € X). Then,
by the disjunction property, we have HA + DNS - o+ or HA + DNS I =+, and
hence, PA - —¢ or PA - ¢. This is a contradiction. -

REMARK 6.22. By using the disjunction property of HA + DNS as in the proof of
Proposition 6.21, one can extend Proposition 5.10 to that PA is not (IT; Vv IT;)-
conservative over HA + DNS: Suppose that PA is (IT; V IT;)-conservative over
HA + DNS. Then, by (the proof of) Theorem 5.19, HA + DNS is closed under
%;-DML*-R. Let ¢ and y be sentences in X; such that HA proves

p < dx (Pf (x, r<,0J‘"') AVy < x-Pf (y, "l//J‘T))
and
v < dy (Pf (y, "z//l"‘) AVx < y—Pf (x, "gol"‘)),

where Pf (z,7&7) denotes a proof predicate asserting that z is a code of the proof
& in HA + DNS (cf. [2. Chapter 2]). Since HA - =(¢ A ). by using £;-DML*-R,
we have HA + DNS I ¢+ V 1. Since HA + DNS has the disjunction property, we
have that HA + DNS F ¢+ or HA + DNS I . However, in both cases, we have a
contradiction by our choice of ¢ and .

Next, we show that Uz-DNE, EIl;-DNE in Theorem 6.18 and the rule in
Lemma 6.17 are pairwise equivalent.

PropoSITION 6.23. Let T be semi-classical arithmetic satisfying the deduction
theorem and X be a set of HA-sentences in Qy. Then the following are pairwise
equivalent:

1. T+ X - U,-DNE;

. T + X + EI;-DNE:

. T + X is closed under EI1;,-DNE-R with assumptions of sentences in I1y;
. Forany y € Iy, PA+ X + y is Ug-conservative over T + X + y;

. T + X is closed under U-DNE-R with assumptions of sentences in Uy;

. T + X is closed under U;.-DNE-R with assumptions of any sentences.

AN AW

ProoF. The implications (1 — 2) and (6 — 5) are trivial.
(2 — 3): By the proof of (4 — 1) in Theorem 6.18.
(3—=4):Fixy € II;. Let ¢ € Uy. Assume PA 4+ X + y I . Since X U {y} C Q4.
by Theorem 5.16, we have T+ X + w F ¢.
(4 = 5): Assume T + X + y — -~ where y € Uy and ¢ € U;. By Corollary

6.6.(1). there exists y’ € L such that HA +X; |-LEM - y' — -y (cf. Remark

3.10)and PA - -~y — v/ . Lety" = (z//’)L.ByRemarkS.fS,wehave w" € Ty, HA +
¥ 1-LEM F ==y — w” and PA + w” — w. Then we have now PA + X + y" I .
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By our assumption, 7 + X + ¢ I ¢ follows. Since T satisfies the deduction
theorem, we have T + X + y” — ¢.On the other hand, by (the proof of ) Lemma 5.5
and our assumption, we have 7'+ X + Z; ;-LEM. Then 7 + X F v — ¢ follows.
(5 — 1): Let ¢ € Uy. Note that =g € Uy. Since T + X + ¢ b ~—p, by the
deduction theorem, we have T + X - ==¢p — ——¢p. By our assumption, we have
T+ XF==p— ¢, andhence, T + X F ==p — 3.

(1 — 6): Assume T + X Iy — ——p where y is a sentence and ¢ € Uy. Then
we have T + X + w - ==¢. By our assumption, we have T + X + w - &. and
hence, T + X + y I . Since T satisfies the deduction theorem, T+ X - w — ¢
follows. .

COROLLARY 6.24. Let X be a set of HA-sentences in Q. Then PA + X is Uy-
conservative over HA + X + U, -DNE.

§7. Interrelations between conservation theorems and logical principles. The E; ;-
conservativity implies both of X ;-conservativity and Fy-conservativity. In what
follows, we investigate the relation among them.

PrOPOSITION 7.1.  Let T be semi-classical arithmetic and X be a set of HA-sentences.
IfPA + X is Xy -conservative over T + X and T + X proves (I V T1;)-DNE, then
PA + X is E@-conservative over T + X.

Proor. By Theorem 6.7, it suffices to show EX; ;-conservativity instead of
the Ej, -conservativity. Let ¢ := 3x,...,x, ¢ € EZ; . with w € EIl;. Assume
PA + X I . By Theorem 3.9.(2), there exists ' € I, such that FV (y) = FV (y/)

and HA + (IT; v I1;)-DNE F v’ <+ w. Now we have PA + X F Jxy, ..., x,, y'. Since
Xt .. x, v € it by our first assumption, we have that 7 + X F 3xq, ..., x, v’

By our second assumption, 7 + X + ¢ follows. o
PROPOSITION 7.2. Let T be a theory containing HA. If PA is Ly -conservative
over T. then T proves X;-LEM and also Z;_>-LEM.

Proo¥. Assume that PA is X, |-conservative over T'. Then PA is I, -conservative
over T (cf. Proposition 6.1), and hence, T proves X, »-LEM by (the proof of)
Theorem 5.9. Let ¢ € Zi. Then ot e I;. Since Xy and I, can be seen as sub-classes
of Xy 11 and Xy 4 ; is closed under Vv (in the sense of [7, Lemma 4.4]), one may assume
@ Vot €Zy. Since PAE ¢ Vo™, by our assumption, we have T - ¢ V o+, and
hence, T+ ¢ V —¢p. -

COROLLARY 7.3. Let T be semi-classical arithmetic satisfying the deduction
theorem and X be a set of HA-sentences in Qy. If PA + X is X; |-conservative over
T + X and T proves Up-DNE, then PA + X is EL(-conservaliveAt;ver T+X.

ProOF. Immediate by Theorem 6.18 and Proposition 7.2. o

REMARK 7.4. By using Theorem 3.9.(2), one can show that (IT; Vv IT;)-DNE
implies U;-DNE in a straightforward way. On the other hand, Ux-DNE implies
the Uy-conservativity by Corollary 6.24. In contrast, (I, V I1;)-DNE does not
imply Fy-conservativity since the latter is characterized by X;-LEM + U;-DNE
(cf. Theorem 6.18) and (ITj V IT;)-DNE does not imply %;-LEM (see [5]).
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34 -LEM « I »-CONS <> %; ,;-CONS « E4,-CONS < F,-CONS
]
(TT; V I;)-DNE & %, -CONS

{
E;.;-CONS
1
U.-DNE & 3, -CONS
(TT; V T )-DNE + 5, -LEM o
l - F;-CONS ., U;-DNE + %;-LEM
(I'Ik V Hk)—DNE !
Uy-DNE
1
(I v IT;)-DNE U,-CONS
\ L
(Hk V Hk)-CONS
1
Zk,l—LEM — Hk+1-CONS Ad Zk-CONS > Ek-CONS — Fk,l-CONS

FiGure 1. Conservation theorems in the arithmetical hierarchy of logical principles.

REmMARK 7.5. Itis straightforward to see that if a theory 7' containing HA proves
(ITx V I )-DNE, then T is closed under (ITy V IT; )-DNE-R. Thus (IT; V II;)-DNE
implies the (ITj V IIj)-conservativity (cf. Theorem 5.19). On the other hand,
(ITx v I )-DNE is a fragment of U;-DNE.

PrOPOSITION 7.6. Let X be a set of HA-sentences in Q. Then PA+ X is X, 1-
conservative over HA + X 4+ 2. 1-DNE + X, _-LEM.

Proor. Since HA + X + X, -DNE + %, ;-LEM contains X; ;-LEM and is
closed under X, ;-DNE-R, by Proposition 6.3, we are done. —

REMARK 7.7. Propositions 7.6 and 7.2 reveal that the X, -conservativity lies
between X;,-LEM +Z; |-LEM and X;-LEM + %; ,-LEM. This seems to be
another view of the status of the X, -conservativity.

Our results on the relation between conservation theorems and logical principles
are summarized in Figure 1 where ['-CONS denotes the I'-conservativity for class
I' of HA-formulas. Figure 1 reveals that the logical principle U;-DNE, which has
been first studied in the current paper (cf. Definition 6.15), is closely related to
the conservation theorems. For the comprehensive information on the arithmetical
hierarchy of logical principles including £, -LEM and (IT; V I )-DNE, we refer the
reader to [6]. For the underivability, we know only that £; |-LEM does not imply
(I Vv I )-CONS (cf. Proposition 5.10) and that (IT; V IT;)-DNE does not imply
Fj-CONS (cf. Remark 7.4). In addition, for T" € {Z IT;.. I V I, B Fr, U Zi ).
we have characterized ['-CONS by some fragment of the double-negation-
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elimination rule DNE-R. On the other hand, we have not achieved that for E;
and Fy.

§8. Appendix: A relativized soundness theorem of the Friedman A-translation for
HA + X,.-LEM. We provide a detailed proof of a relativized soundness theorem of
the Friedman A-translation [4] for HA + £;-LEM (see Theorem 8.3). In fact, this
result was suggested already in [8, Section 4.4] and the detailed proof for k =1
can be found in [12, Lemma 3.1]. The authors, however, couldn’t find the proof
for arbitrary natural number k£ anywhere, which is the reason why we present the
detailed proof here. For the relativized soundness theorem, we use a variant of
Lemma 3.5 with respect to the Friedman A-translation.

We first recall the definition of the Friedman A-translation. In this section, we use
symbol * for place holder instead of $ in the previous sections.

DEFINITION 8.1 (A-translation [4]). For a HA-formula ¢, we define ¢* as a
formula obtained from ¢ by replacing all the prime formulas ¢, in ¢ with ¢, V *
(of course, ¢* is officially defined by induction on the logical structure of ¢). In
particular, 1 *:= (L V ), which is equivalent to x over HA* (HA in the language with
a place holder ). In what follows, —. ¢ denotes ¢ — *. Notethat FV (¢) = FV (¢*)
for all HA-formulas ¢.

The following is a variant of Lemma 3.5 with respect to the Friedman
A-translation.

Lemma 8.2. For a formula ¢ of HA, the following hold:
1. If p € I, HA" + Z-LEM F ¢* < ¢ V %
2. If ¢ € X, HA* + 2, |-LEM F @* <5 o V .

ProoF. By simultaneous induction on k. The base case is verified by a routine
inspection. Assume items 1 and 2 for k to show those for k + 1. The first item for
k + 1 is shown by using the second item for k as in the proof of Lemma 3.5. For
the second item, let ¢ := Jxp; where ¢ € I1;. Then we have that HA 4+ X, -LEM
proves

" =3x(p1") T Ix(p1 V*) = @ V. -

THEOREM 8.3. IfHA + X, -LEM I @, then HA* + %, -LEM  *.

ProoOF. By induction on the length of the proof of ¢ in HA + X;-LEM. By
(the proof of) [4, Lemma 2], it suffices to show HA* + X, -LEM F ¢* for each
instance ¢ of £;-LEM. Fix ¢ := Jx¢; V =3x¢p| with ¢ € I1;_;. By Lemma 8.2.(1),
HA* + XZ;_-LEM proves

*

© s 3x(e1*) VvV 3x (1)
3 —,3
ZkﬁEM X (1 V*) V —=,3x (1 V *)
— Ix (1 V *) V = 3xe,
which is derived from Jx¢p; V —3xp; over HA*. Thus HA* + X -LEM proves o*. -

By the relativized soundness theorem of the Friedman A-translation combined
with the usual negative translation, one can show Proposition 1.1 as follows:
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PrROOF SKETCH OF PROPOSITION 1.1. Assume PA F Vx3dye where ¢ € I1;. By
using Kuroda’s negative translation (cf. [7, Proposition 6.4]), we have HA -
Vx——3Jypy where ¢y is defined as in [7, Definition 6.1]. Since HA + X;_-LEM
proves X;_1-DNE, we have HA + X;_;-LEM F —=—3y¢p (cf. [7, Lemma 6.5(2)]). By
Theorem 8.3, we have HA* + ¥, |-LEM + —,—,3yp*. and hence, HA* + X;-LEM +
-3y by Lemma 8.2.(1). By substituting * with 3y (cf. Lemma 3.16), we have
that HA + X;-LEM proves Jy¢. and hence, Vx3yp. —

The proof of [14, Theorem 3.5.5] (due to Visser) shows that any theory T
which contains HA and is sound for the Friedman A-translation is closed under
the independence-of-premise rule:

T+ —p — Ixy implies T F Ix (—¢ — w),
where x ¢ FV (—¢). Then, by using Theorem 8.3, we also have the following:

THEOREM 8.4. HA + Z;-LEM is closed under the independence-of-premise rule.
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