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CONSERVATION THEOREMS ON SEMI-CLASSICAL ARITHMETIC

MAKOTO FUJIWARA AND TAISHI KURAHASHI

Abstract. We systematically study conservation theorems on theories of semi-classical arithmetic,
which lie in-between classical arithmetic PA and intuitionistic arithmetic HA. Using a generalized negative
translation, we first provide a structured proof of the fact that PA is Πk+2-conservative over HA + Σk -LEM
where Σk -LEM is the axiom scheme of the law-of-excluded-middle restricted to formulas in Σk . In addition,
we show that this conservation theorem is optimal in the sense that for any semi-classical arithmetic T,
if PA is Πk+2-conservative over T, then T proves Σk -LEM. In the same manner, we also characterize
conservation theorems for other well-studied classes of formulas by fragments of classical axioms or rules.
This reveals the entire structure of conservation theorems with respect to the arithmetical hierarchy of
classical principles.

§1. Introduction. It is well-known that classical first-order arithmetic PA is
Π2-conservative over intuitionistic first-order arithmetic HA. There are several
approaches to prove this fundamental fact. One simple and well-known approach
is to apply the negative (or double negation) translation followed by the Friedman
A-translation [4]. Another possible approach is to apply a generalized negative
translation developed systematically by Ishihara [9, 10]. In fact, the latter is a
combination of Gentzen’s negative translation and the Friedman A-translation
(cf. [10, Section 4]). In [7, Theorem 6.14], the authors showed a conservation result
which generalizes the aforementioned conservation result on PA and HA in the
context of semi-classical arithmetic (which lies between classical and intuitionistic
arithmetic). In fact, the following is an immediate corollary of [7, Theorem 6.14]:

Proposition 1.1. PA is Πk+2-conservative over HA + Σk-LEM where Σk-LEM is
the axiom scheme of the law-of-excluded-middle restricted to formulas in Σk .1

The proof of [7, Theorem 6.14] in that paper is similar to the former approach in
the sense of using the Friedman A-translation. However, the proof has somewhat
intricate structure in dealing with the Friedman A-translation of the inner part of
Kuroda’s negative translation. In Section 3, by extending the latter approach from
[9, 10] in the context of semi-classical arithmetic, we provide a much more structured
proof of [7, Theorem 6.14]. As an advantage of the structured proof, we obtain an
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1470 MAKOTO FUJIWARA AND TAISHI KURAHASHI

extended conservation result for much larger classes of formulas (see Theorem 3.17
and Remark 3.18).

In Section 4, we relate the classes used in Section 3 (which are based on the classes
introduced in [9]) to the classes Uk and Ek introduced in Akama et al. [1] for studying
the hierarchy of the constructively-meaningful fragments of classical axioms
(including the law-of-excluded-middle and the double-negation-elimination). The
classes Ek and Uk correspond to classical Σk and Πk respectively in the sense that
every formula in Ek (resp. Uk) is equivalent overPA to some formula in Σk (resp. Πk)
and vice versa. This investigation reveals that our extended conservation theorem
for HA + Σk-LEM is applicable to all formulas in Ek+1 (see Corollary 4.3).

In Sections 5–7, we investigate the entire structure of conservation theorems in
the arithmetical hierarchy of classical principles which was systematically studied
first in Akama et al. [1] and further extended by the authors recently in [6]. The
first motivation of this investigation comes from the observation that for any semi-
classical arithmetic T such that PA is Πk+2-conservative over T , T proves Σk-LEM
(cf. Lemma 5.5). This means that Proposition 1.1 is optimal in the sense that one
cannot replace HA + Σk-LEM by any semi-classical arithmetic which does not
prove Σk-LEM. Another motivating fact is that for any semi-classical arithmetic
T , PA is Π2-conservative over T if and only if T is closed under Markov’s rule for
primitive recursive predicate (cf. [14, Section 3.5.1]). Thus the Π2-conservativity is
also characterized by the Σ1-fragment of the double-negation-elimination rule. Then
it is natural to ask whether this can be relativized in the context of semi-classical
arithmetic. Motivated by these facts, in Sections 5 and 6, we study the conservation
theorems for the well-studied classes (including Πk, Σk, the classes in [1] and their
closed variants) and characterize them by fragments of classical axioms or rules.
The conservativity for a class of formulas is equivalent to that restricted only to
sentences if the class is closed under taking a universal closure. Then the strength of
the conservativity e.g., Πk does not vary even if we restrict them only to sentences.
On the other hand, since Σk etc. are not closed under taking a universal closure,
this is not the case for such classes. We investigate the conservation theorems for
classes of formulas in Section 5 and those for sentences in Section 6. Through a lot
of delicate arguments in semi-classical arithmetic, we reveal the detailed structure
consisting of the conservation theorems and some fragments of logical principles,
which are summarized in Section 7. This exhaustive investigation shed light on the
close connection between the notion of conservativity and classical axioms and
rules in semi-classical arithmetic. For the purpose of future use, we present our
characterization results in a generalized form with adding a set X of sentences into
the theories in question.

In the end of this paper, as an appendix, we show the relativized soundness
theorem of the Friedman A-translation for HA + Σk-LEM. By this relativized
soundness theorem, one may obtain a simple proof of Proposition 1.1 just by
imitating the aforementioned Friedman’s approach.

§2. Framework. We work with a standard formulation of intuitionistic arithmetic
HA described e.g., in [13, Section 1.3], which has function symbols for all primitive
recursive functions. Our language contains all the logical constants ∀,∃,→,∧,∨
and ⊥. In our proofs, when we use some principle (including induction hypothesis
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CONSERVATION THEOREMS ON SEMI-CLASSICAL ARITHMETIC 1471

[I.H.]) which is not available in HA, it will be exhibited explicitly. As regards basic
reasoning over intuitionistic first-order logic, we refer the reader to [3, Section 6.2].

Throughout this paper, let k be a natural number (possibly 0). The classes Σk and
Πk of HA-formulas are defined as follows:

• Let Σ0 and Π0 be the set of all quantifier-free formulas;
• Σk+1 := {∃x1, ... , xn ϕ | ϕ ∈ Πk};
• Πk+1 := {∀x1, ... , xn ϕ | ϕ ∈ Σk}.

Let FV (ϕ) denote the set of all free variables in ϕ. Note that every formula ϕ in
Σk+1 (resp. Πk+1) is equivalent over HA to some formula � in Σk+1 (resp. Πk+1)
such that FV (ϕ) = FV (�) and � is of the form ∃x�′ (resp. ∀x�′) where �′ is Πk
(resp. Σk). For convenience, we assume that Σm and Πm denote the empty set for
negative integers m.

The classical variant PA of HA is defined as HA + LEM or HA + DNE, where
LEM is the axiom scheme of the law-of-excluded-middle ϕ ∨ ¬ϕ and DNE is that
of the double-negation-elimination ¬¬ϕ → ϕ. Recall that Σk-LEM and Σk-DNE
are LEM and DNE restricted to formulas in Σk (possibly containing free variables)
respectively. Similarly, Πk-LEM and Πk-DNE are defined for Πk . We call a theory
T such that HA ⊆ T ⊆ PA semi-classical arithmetic.

Unless otherwise stated, the inclusion between classes of HA-formulas is to
be understood modulo equivalences over HA. That is, for classes Γ and Γ′ of
HA-formulas, Γ ⊆ Γ′ denotes that for all ϕ ∈ Γ, there exists ϕ′ ∈ Γ′ such that
FV (ϕ) = FV (ϕ′) and HA 
 ϕ′ ↔ ϕ, and Γ = Γ′ denotes Γ ⊆ Γ′ and Γ′ ⊆ Γ. In
this sense, one may think of Σk and Πk as sub-classes of Σk′ and Πk′ for all k′ > k
(see [7, Remark 2.5]).

§3. A relativization of Ishihara’s conservation result in semi-classical arithmetic.
In this section, we simulate Ishihara’s proof of [9, Theorem 10] in the specific context
of semi-classical arithmetic studied in [1, 7] with some additional arguments. We
first recall the translation studied in [9]. In the context of the translation, without
otherwise stated, we work in the language with an additional predicate symbol $
of arity 0, which behaves as “place holder” (see [9, 10] for more information). Let
HA$ denote HA in that language. On the other hand, HA$ + Σk-LEM denotes HA$

augmented with Σk-LEM for “HA”-formulas.

Definition 3.1 (cf. [9, Definition 3]). Let¬$ϕ denoteϕ → $. For each formulaϕ,
its $-translation ϕ$ is defined inductively by the following clauses:

• For P prime such that P �≡⊥, P$ :≡ ¬$¬$P;
• ⊥$:≡ $;
• (ϕ1 ◦ ϕ2)$ :≡ ϕ$

1 ◦ ϕ$
2 for ◦ ∈ {∧,→};

• (ϕ1 ∨ ϕ2)$ :≡ ¬$¬$

(
ϕ$

1 ∨ ϕ$
2

)
;

• (∀xϕ)$ :≡ ∀xϕ$;
• (∃xϕ)$ :≡ ¬$¬$∃xϕ$.

It is straightforward to see FV (ϕ) = FV
(
ϕ$

)
.

Proposition 3.2 (cf. [9, Proposition 4] and [10, Section 4]).
1. For any HA-formula ϕ, HA$ 
 ¬$¬$ϕ

$ ↔ ϕ$;
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1472 MAKOTO FUJIWARA AND TAISHI KURAHASHI

2. For any HA-formula ϕ and any set X of HA-sentences, if PA + X 
 ϕ, then
HA$ + X $ 
 ϕ$, where X $ := {�$ | � ∈ X}.

Proof. The proofs are routine: One can show (1) by induction on the structure
of formulas, and (2) by induction on the length of the proof of ϕ in PA + X . �

Corollary 3.3. For any HA-formulas ϕ1 and ϕ2, if PA 
 ϕ1 ↔ ϕ2, then
HA$ 
 ϕ$

1 ↔ ϕ$
2 .

Proof. If PA proves ϕ1 ↔ ϕ2, by Proposition 3.2.(2), we have that HA$ proves
(ϕ1 ↔ ϕ2)$, which is in fact ϕ$

1 ↔ ϕ$
2 . �

Lemma 3.4. For a quantifier-free formula ϕqf of HA, HA$ proves ϕ$
qf ↔ ϕqf ∨ $.

Proof. By induction on the structure of quantifier-free formulas of HA.
The case of ⊥: Since ⊥$≡ $, we have trivially HA$ 
⊥$↔⊥ ∨$.
The case of thatϕqf is a prime formula but⊥: It is trivial thatHA$ provesϕqf ∨ $ →

¬$¬$ϕqf . On the other hand, since HA$ proves ϕqf ∨ ¬ϕqf and ¬$¬$ϕqf ∧ ¬ϕqf → $,
we also have that HA$ proves ¬$¬$ϕqf → ϕqf ∨ $.

The case of ϕqf ≡ ϕ1 ∧ ϕ2: We have that HA$ proves

(ϕ1 ∧ ϕ2)$ ↔ ϕ$
1 ∧ ϕ$

2 ←→
I.H.

(ϕ1 ∨ $) ∧ (ϕ2 ∨ $) ↔ (ϕ1 ∧ ϕ2) ∨ $.

The case of ϕqf ≡ ϕ1 ∨ ϕ2: Since ϕ1 and ϕ2 are decidable in HA (note that they
are quantifier-free), we have that HA$ proves (ϕ1 ∨ ϕ2) ∨ (¬ϕ1 ∧ ¬ϕ2). In the latter
case of the disjunction, we have ¬$(ϕ1 ∨ ϕ2 ∨ $). Thus HA$ proves

¬$¬$(ϕ1 ∨ ϕ2 ∨ $) → (ϕ1 ∨ ϕ2) ∨ $.

On the other hand, HA$ also proves

(ϕ1 ∨ ϕ2) ∨ $ → ¬$¬$(ϕ1 ∨ ϕ2 ∨ $).

Thus HA$ proves

(ϕ1 ∨ ϕ2)$ ≡ ¬$¬$(ϕ$
1 ∨ ϕ$

2) ←→
I.H.

¬$¬$(ϕ1 ∨ ϕ2 ∨ $) ↔ (ϕ1 ∨ ϕ2) ∨ $.

The case of ϕqf ≡ ϕ1 → ϕ2: Assume ϕ1 ∨ $ → ϕ2 ∨ $. Then we have

ϕ1 → ϕ2 ∨ $. (1)

Since ϕ1 and ϕ2 are decidable in HA (note that they are quantifier-free), we have
that HA$ proves (ϕ2 ∨ ¬ϕ1) ∨ (ϕ1 ∧ ¬ϕ2). In the former case, we have ϕ1 → ϕ2. In
the latter case, by (1), we have $. Thus HA$ proves

(ϕ1 ∨ $ → ϕ2 ∨ $) → (ϕ1 → ϕ2) ∨ $.

On the other hand, HA$ also proves

(ϕ1 → ϕ2) ∨ $ → (ϕ1 ∨ $ → ϕ2 ∨ $) .

Thus HA$ proves

(ϕ1 → ϕ1) ∨ $ ↔ (ϕ1 ∨ $ → ϕ2 ∨ $) ←→
I.H.

(
ϕ$

1 → ϕ$
2

)
≡ (ϕ1 → ϕ2)$

. �
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The following lemma is the key for our generalized conservation result:

Lemma 3.5. For a formula ϕ of HA, the following hold:

1. If ϕ ∈ Πk , HA
$ + Σk-LEM 
 ϕ$ ↔ ϕ ∨ $;

2. If ϕ ∈ Σk , HA
$ + Σk-LEM 
 ϕ$ ↔ ϕ ∨ $.

Note that Σk-LEM is an axiom scheme in the language of HA (which does not
contain $).

Proof. By simultaneous induction on k. The base case is by Lemma 3.4.
Assume items 1 and 2 for k to show those for k + 1. First, for the first item, let
ϕ :≡ ∀xϕ1 where ϕ1 ∈ Σk . By the induction hypothesis, we have HA$ + Σk-LEM 

ϕ$

1 ↔ ϕ1 ∨ $. Note that HA$ proves ∀xϕ1 ∨ $ → ∀x(ϕ1 ∨ $). In the following, we
show the converse ∀x(ϕ1 ∨ $) → ∀xϕ1 ∨ $ inside HA$ + Σk+1-LEM. Since ¬ϕ1

has some equivalent formula in Πk in the presence of Σk–1-DNE (cf. Remark
5.3), by Σk+1-LEM, we have now ∃x¬ϕ1 ∨ ¬∃x¬ϕ1. In the former case, we have
$ by using our assumption ∀x(ϕ1 ∨ $). In the latter case, we have ∀xϕ1 since
¬∃x¬ϕ1 ↔ ∀x¬¬ϕ1 and Σk+1-LEM implies Σk+1-DNE. Thus HA$ + Σk+1-LEM
proves ∀x(ϕ1 ∨ $) → ∀xϕ1 ∨ $. Then we have that HA$ + Σk+1-LEM proves

ϕ$ ≡ ∀xϕ$
1 ←→

[I.H.] Σk -LEM
∀x(ϕ1 ∨ $) ←→

Σk+1-LEM
∀xϕ1 ∨ $.

Next, for the second item, let ϕ :≡ ∃xϕ1 where ϕ1 ∈ Πk . Note that ϕ$ is
¬$¬$∃xϕ$

1 . By the induction hypothesis, we have HA$ + Σk-LEM proves ϕ$
1 ↔

ϕ1 ∨ $, and hence, ϕ$ ↔ ¬$¬$∃xϕ1. Then it is trivial that HA$ + Σk-LEM proves
∃xϕ1 ∨ $ → ϕ$. In the following, we show the converse direction inside HA$ +
Σk+1-LEM. By Σk+1-LEM, we have now ∃xϕ1 ∨ ¬∃xϕ1. Then it suffices to show
¬∃xϕ1 ∧ ¬$¬$∃xϕ1 → $, which is trivial since ¬∃xϕ1 → ¬$∃xϕ1. �

Corollary 3.6. For a formula ϕ of HA, if ϕ ≡ ∃xϕ1 with ϕ1 ∈ Πk , then HA$ +
Σk-LEM 
 ∃x

(
ϕ1

$
)
↔ ϕ ∨ $.

Proof. Since ∃xϕ1 ∨ $ ↔ ∃x(ϕ1 ∨ $), this is trivial by Lemma 3.5.(1). �
In the context of intuitionistic/semi-classical arithmetic, a formula does not have

an equivalent formula of the prenex normal form (namely, formula in Σk or Πk)
while it does in classical arithmetic. Because of this fact, the conservation theorem
only for prenex formulas is not applicable in many practical cases. On the other hand,
Akama et al. [1] introduced the classes Uk and Ek of formulas which correspond to
classical Πk and Σk respectively in the sense that every formula in Uk (resp. Ek) is
equivalent over PA to some formula in Πk (resp. Σk) and vice versa. In addition, the
authors introduced in [7] the classes U+

k and E+
k , which are cumulative versions of

Uk and Ek . For obtaining the conservation results for the classes as large as possible,
we introduce classes Rk and Jk (see Definition 3.11), which relativize R and J in
[9] respectively with regard to the formulas of degree ≤ k in the sense of [1, 7].

To make the definitions absolutely clear, we recall some notions in [1, 7]: An
alternation path is a finite sequence of + and – in which + and – appear alternatively.
For an alternation path s, let i(s) denote the first symbol of s if s �≡ 〈 〉 (empty
sequence); × if s ≡ 〈 〉. Let s⊥ denote the alternation path which is obtained by
switching + and – in s, and let l(s) denote the length of s. For a formula ϕ, the set
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of alternation paths Alt(ϕ) of ϕ is defined as follows:
• If ϕ is prime, then Alt(ϕ) := {〈 〉};
• Otherwise, Alt(ϕ) is defined inductively by the following clauses:

– If ϕ ≡ ϕ1 ∧ ϕ2 or ϕ ≡ ϕ1 ∨ ϕ2, then Alt(ϕ) := Alt(ϕ1) ∪ Alt(ϕ2);
– If ϕ ≡ ϕ1 → ϕ2, then Alt(ϕ) := {s⊥ | s ∈ Alt(ϕ1)} ∪ Alt(ϕ2);
– If ϕ ≡ ∀xϕ1, then Alt(ϕ) := {s | s ∈ Alt(ϕ1) and i(s) ≡ –} ∪ {– s | s ∈

Alt(ϕ1) and i(s) �≡ –};
– If ϕ ≡ ∃xϕ1, then Alt(ϕ) := {s | s ∈ Alt(ϕ1) and i(s) ≡ +} ∪ {+s | s ∈

Alt(ϕ1) and i(s) �≡ +}.
In addition, for a formula ϕ, the degree deg(ϕ) of ϕ is defined as

deg(ϕ) := max{l(s) | s ∈ Alt(ϕ)}.
Definition 3.7 (cf. [1, Definition 2.4] and [7, Definition 2.11]). The classes

Fk,Uk,Ek , F+
k , U+

k and E+
k of HA-formulas are defined as follows:

• Fk := {ϕ | deg(ϕ) = k}; F+
k

:= {ϕ | deg(ϕ) ≤ k};
• U0 := E0 := F0 (= Σ0 = Π0);
• Uk+1 := {ϕ ∈ Fk+1 | i(s) ≡ – for all s ∈ Alt(ϕ) such that l(s) = k + 1};
• Ek+1 := {ϕ ∈ Fk+1 | i(s) ≡ + for all s ∈ Alt(ϕ) such that l(s) = k + 1};
• U+

k
:= Uk ∪

⋃
i<k

Fi ; E+
k

:= Ek ∪
⋃
i<k

Fi .

Remark 3.8. As shown in [7, Proposition 4.6], for any ϕ ∈ U+
k and � ∈ E+

k ,
there exist ϕ′ ∈ Uk and �′ ∈ Ek such that FV (ϕ) = FV (ϕ′), FV (�) = FV (�′),
HA 
 ϕ ↔ ϕ′ and HA 
 � ↔ �′. Then it also follows that for any ϕ ∈ F+

k , there
existsϕ′ ∈ Fk such that FV (ϕ) = FV (ϕ′) andHA 
 ϕ ↔ ϕ′. Thus one may identify
E+
k ,U

+
k and F+

k with Ek,Uk and Fk respectively over HA without loss of generality.

Then the authors showed the following prenex normal form theorem:

Theorem 3.9 (cf. [7, Theorem 5.3] which corrects [1, Theorem 2.7]). For a
HA-formula ϕ, the following hold:

1. If ϕ ∈ E+
k , then there exists ϕ′ ∈ Σk such that FV (ϕ) = FV (ϕ′) and

HA + Σk-DNE + Uk-DNS 
 ϕ ↔ ϕ′;

2. If ϕ ∈ U+
k , then there exists ϕ′ ∈ Πk such that FV (ϕ) = FV (ϕ′) and

HA + (Πk ∨ Πk)-DNE 
 ϕ ↔ ϕ′;

where Uk-DNS is the axiom scheme of the double-negation-shift restricted to formulas
in Uk and (Πk ∨ Πk)-DNE is DNE restricted to formulas of the form ϕ ∨ � with
ϕ,� ∈ Πk .

Remark 3.10. HA + Σk-LEM proves Σk-DNE, Uk-DNS and (Πk ∨ Πk)-DNE.
Then the prenex normal form theorems for E+

k and U+
k are available in HA +

Σk-LEM.

Definition 3.11 (cf. [9, Definition 6]). Define R0 := J0 := Σ0 (= Π0). In
addition, we define simultaneously classes Rk+1 and Jk+1 as follows: Let F range
over formulas in F+

k , R and R′ over those in Rk+1, and J and J ′ over those in Jk+1

respectively. Then Rk+1 and Jk+1 are inductively generated by the clauses
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1. F,R ∧R′, R ∨R′,∀xR, J → R ∈ Rk+1;
2. F, J ∧ J ′, J ∨ J ′,∃xJ,R→ J ∈ Jk+1.

Lemma 3.12 (A relativized version of [9, Proposition 7(2, 3)]). For a HA-formula
ϕ, the following hold:

1. If ϕ ∈ Rk+1, then HA$ + Σk-LEM proves ¬$¬ϕ → ϕ$;
2. If ϕ ∈ Jk+1, then HA$ + Σk-LEM proves ϕ$ → ¬$¬$ϕ.

Proof. We show items 1 and 2 simultaneously by induction on the structure of
formulas.

Let ϕ be prime. Since ϕ is in F0, we have ϕ ∈ Rk+1 ∩ Jk+1. Since HA 
 ϕ ∨ ¬ϕ,
we have HA$ 
 ¬$¬ϕ → ϕ ∨ $. Then we have item 1 by Lemma 3.4. Item 2 is trivial.

The induction step is the same as that for [9, Proposition 7] in addition with the
cases of ϕ :≡ ∀xϕ1 ∈ Jk+1 and ϕ :≡ ∃xϕ1 ∈ Rk+1:

If ϕ :≡ ∀xϕ1 ∈ Jk+1, then we have ϕ ∈ F+
k , and hence, ϕ ∈ U+

k . By Remark
3.10, one may assume ϕ ∈ Πk . By Lemma 3.5.(1), we have HA$ + Σk-LEM 
 ϕ$ ↔
ϕ ∨ $. Since ϕ ∨ $ implies ¬$¬$ϕ, we have HA$ + Σk-LEM 
 ϕ$ → ¬$¬$ϕ.

If ϕ :≡ ∃xϕ1 ∈ Rk+1, then we have ϕ ∈ F+
k , and hence, ϕ ∈ E+

k (and k > 0).
By Remark 3.10, one may assume ϕ1 ∈ Πk–1. Reason in HA$ + Σk-LEM. Now we
have ∃xϕ1 ∨ ¬∃xϕ1. In the latter case, we have $ in the presence of ¬$¬∃xϕ1. Thus
we have ¬$¬∃xϕ1 → ∃xϕ1 ∨ $. By Corollary 3.6, we have that ¬$¬∃xϕ1 implies
∃x

(
ϕ1

$
)
, and hence, (∃xϕ1)$. �

Definition 3.13 (cf. [9, Definition 6]). Define Q0 := Σ0 (= Π0). In addition, we
define a class Qk+1 as follows. Let P range over prime formulas, Q and Q′ over
formulas in Qk+1, and J over those in Jk+1. Then Qk+1 is inductively generated by
the clause

P,Q ∧Q′, Q ∨Q′,∀xQ,∃xQ, J → Q ∈ Qk+1.

Lemma 3.14 (A relativized version of [9, Proposition 7(1)]). For a HA-formula ϕ,
if ϕ ∈ Qk+1, then HA$ + Σk-LEM 
 ϕ → ϕ$.

Proof. By induction on the structure of formulas, we show that for any HA-
formula ϕ, if ϕ ∈ Qk+1, then HA$ + Σk-LEM 
 ϕ → ϕ$.

If ϕ is prime, then we have HA$ 
 ϕ → ϕ$ trivially by the definition of ϕ$. If ϕ :≡
ϕ1 ∧ ϕ2,ϕ :≡ ϕ1 ∨ ϕ2,ϕ :≡ ∀xϕ1 orϕ :≡ ∃xϕ1, we haveHA$ + Σk-LEM 
 ϕ → ϕ$

in a straightforward way by using the induction hypothesis (as for [9, Proposition
7(1)]).

Assume ϕ :≡ ϕ1 → ϕ2 ∈ Qk+1. Then we have ϕ1 ∈ Jk+1 and ϕ2 ∈ Qk+1. By the
induction hypothesis, we have HA$ + Σk-LEM 
 ϕ2 → ϕ$

2 . On the other hand, by
Lemma 3.12.(2), we have HA$ + Σk-LEM 
 ϕ$

1 → ¬$¬$ϕ1. Since HA$ 
 ¬$¬$ϕ
$
2 ↔

ϕ$
2 by Proposition 3.2.(1), we have that HA$ + Σk-LEM proves

(ϕ1 → ϕ2) −→
[I.H.] Σk -LEM

(ϕ1 → ϕ$
2)

−→ (¬$¬$ϕ1 → ¬$¬$ϕ
$
2)

−→
Σk -LEM

(ϕ$
1 → ¬$¬$ϕ

$
2)

←→ (ϕ$
1 → ϕ$

2). �
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Now we define a class Vk of HA-formulas by using the class Jk in Definitions 3.11.

Definition 3.15. Let J range over formulas in Jk , V and V ′ over those in Vk .
Then Vk is inductively generated by the clause

J,V ∧ V ′,∀xV ∈ Vk.
For our conservation result, we use the following fact on substitution.

Lemma 3.16 (cf. [3, Theorem 6.2.4] and [7, Lemma 6.10]). Let X be a set of
HA-sentences and ϕ be a HA$-formula. If HA$ + X 
 ϕ, then HA + X 
 ϕ[�/$] for
anyHA-formula� such that the free variables of� are not bounded inϕ, whereϕ[�/$]
is the HA-formula obtained from ϕ by replacing all the occurrences of $ in ϕ with �.

Theorem 3.17. For any HA-formulas ϕ ∈ Vk+1 and � ∈ Qk+1, if PA 
 � → ϕ,
then HA + Σk-LEM 
 � → ϕ.

Proof. Since one can freely replace the bounded variables, it suffices to show
that for any HA-formulas ϕ ∈ Vk+1 and � ∈ Qk+1 such that the free variables of ϕ
are not bounded in �, if PA 
 � → ϕ, then HA + Σk-LEM 
 � → ϕ. We show this
assertion by induction on the structure of formulas in Vk+1.

Case of ϕ ∈ Jk+1: Fix � ∈ Qk+1 such that the free variables of ϕ are not
bounded in �. Suppose PA 
 � → ϕ. Then, by Proposition 3.2.(2), we have HA$ 

�$ → ϕ$. By Lemma 3.14 and Lemma 3.12.(2), we have HA$ + Σk-LEM 
 � →
¬$¬$ϕ. By Lemma 3.16, we have that HA + Σk-LEM proves � → ((ϕ → ϕ) → ϕ),
equivalently, � → ϕ.

Case ofϕ :≡ ϕ1 ∧ ϕ2 ∈ Vk+1: Thenϕ1, ϕ2 ∈ Vk+1. Fix� ∈ Qk+1 such that the free
variables of ϕ1 ∧ ϕ2 are not bounded in �. Suppose PA 
 � → ϕ1 ∧ ϕ2. Then PA 

� → ϕ1 and PA 
 � → ϕ2. By the induction hypothesis, we have HA + Σk-LEM 

� → ϕ1 and HA + Σk-LEM 
 � → ϕ2, and hence, HA + Σk-LEM 
 � → ϕ1 ∧ ϕ2.

Case of ϕ :≡ ∀xϕ1 ∈ Vk+1: Then ϕ1 ∈ Vk+1. Fix � ∈ Qk+1 such that the free
variables of ∀xϕ1 are not bounded in �. In addition, assume that x does not appear
in � without loss of generality. Suppose PA 
 � → ∀xϕ1. Then PA 
 � → ϕ1.
By the induction hypothesis, we have that HA + Σk-LEM proves � → ϕ1. Since
x /∈ FV (�), we have HA + Σk-LEM 
 � → ∀xϕ1. �

Remark 3.18. Since Πk+2 is a sub-class of Vk+1 and Qk+1 contains all prenex
formulas, we have [7, Theorem 6.14] (and a-fortiori Proposition 1.1) as a corollary
of Theorem 3.17.

Corollary 3.19. Let X be a set of HA-sentences in Qk+1. For any HA-formulas
ϕ ∈ Vk+1 and � ∈ Qk+1, if PA + X 
 � → ϕ, then HA + X + Σk-LEM 
 � → ϕ.

Proof. Assume PA + X 
 � → ϕ. Then there exists a finite number of sentences
�0, ... , �m ∈ X such that PA + �0 + ··· + �m 
 � → ϕ. Since PA satisfies the
deduction theorem, we have PA 
 �0 ∧ ··· ∧ �m ∧ � → ϕ. Since �0 ∧ ··· ∧ �m ∧
� ∈ Qk+1, by Theorem 3.17, we have HA + Σk-LEM 
 �0 ∧ ··· ∧ �m ∧ � → ϕ, and
hence, HA + X + Σk-LEM 
 � → ϕ. �

§4. The relation of the classes Rk and Jk with the existing classes Uk and Ek .
In the following, we show that our classes Rk and Jk in Definition 3.11 are in fact
equivalent over HA to Uk and Ek (see Definition 3.7) respectively.
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Proposition 4.1. U+
k = Rk and E+

k = Jk .

Proof. By induction on k. The base case is trivial. For the induction step, assume
U+
k = Rk and E+

k = Jk . We show

1. ϕ ∈ U+
k+1 if and only if ϕ ∈ Rk+1,

2. ϕ ∈ E+
k+1 if and only if ϕ ∈ Jk+1,

simultaneously by induction on the structure of formulas. Ifϕ is prime, sinceϕ ∈ F0,
we are done. Assume that items 1 and 2 hold forϕ1 andϕ2. Using [7, Lemma 4.5(1)],
we have

ϕ1 ∧ ϕ2 ∈ U+
k+1 ⇔ ϕ1, ϕ2 ∈ U+

k+1 ⇐⇒
I.H.
ϕ1, ϕ2 ∈ Rk+1 ⇔ ϕ1 ∧ ϕ2 ∈ Rk+1.

In the same manner, we also have ϕ1 ∧ ϕ2 ∈ E+
k+1 ⇔ ϕ1 ∧ ϕ2 ∈ Jk+1, ϕ1 ∨ ϕ2 ∈

U+
k+1 ⇔ ϕ1 ∨ ϕ2 ∈ Rk+1, ϕ1 ∨ ϕ2 ∈ E+

k+1 ⇔ ϕ1 ∨ ϕ2 ∈ Jk+1. For ϕ1 → ϕ2, using
[7, Lemma 4.5(3)] we have

ϕ1 → ϕ2 ∈ U+
k+1

⇐⇒ ϕ1 ∈ E+
k+1 and ϕ2 ∈ U+

k+1

⇐⇒
I.H.

ϕ1 ∈ Jk+1 and ϕ2 ∈ Rk+1

⇐⇒ ϕ1 → ϕ2 ∈ Rk+1.

In the same manner, we also have ϕ1 → ϕ2 ∈ E+
k+1 ⇔ ϕ1 → ϕ2 ∈ Jk+1. For ∀xϕ1,

using [7, Lemma 4.5(4,6)], we have

∀xϕ1 ∈ U+
k+1 ⇔ ϕ1 ∈ U+

k+1 ⇐⇒
I.H.
ϕ1 ∈ Rk+1 ⇔ ∀xϕ1 ∈ Rk+1

and

∀xϕ1 ∈ E+
k+1 ⇔ ∀xϕ1 ∈ U+

k ⇔ ∀xϕ1 ∈ F+
k ⇔ ∀xϕ1 ∈ Jk+1.

In the same manner, we also have ∃xϕ1 ∈ U+
k+1 ⇔ ∃xϕ1 ∈ Rk+1 and ∃xϕ1 ∈

E+
k+1 ⇔ ∃xϕ1 ∈ Jk+1. �

Corollary 4.2. Uk = Rk and Ek = Jk .

Proof. Immediate by Proposition 4.1 and Remark 3.8. �

Corollary 4.3. For a set X of HA-sentences inQk+1,PA + X is Ek+1-conservative
over HA + X + Σk-LEM.

Proof. Immediate from Corollaries 3.19 and 4.2 since Jk+1 ⊆ Vk+1. �

Remark 4.4. Corollary 4.3 deals with the conservativity of the class of formulas
in Ek+1, which seems to be strictly stronger than that for sentences in Ek+1 (cf.
Section 6.1).

Remark 4.5. Similar to Definition 3.11, define the classes R′
k and J ′

k as follows.
Define R′

0 := J ′
0 := Σ0 (= Π0) and R′

k+1 and J ′
k+1 simultaneously as follows: Let

E range over formulas in E+
k , U over those in U+

k , R and R′ over those in R′
k+1,

and J and J ′ over those in J ′
k+1 respectively. Then R′

k+1 and J ′
k+1 are inductively

generated by the clauses
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1. E,R ∧R′, R ∨R′,∀xR, J → R ∈ R′
k+1;

2. U, J ∧ J ′, J ∨ J ′,∃xJ,R→ J ∈ J ′
k+1.

Then the proof of Proposition 4.1 shows that U+
k = R′

k and E+
k = J ′

k . Hence Rk =
R′
k and Jk = J ′

k .

Remark 4.6. Define R′′
k+1 and J ′′

k+1 as for R′
k+1 and J ′

k+1 in Remark 4.5 with
replacing E+

k and U+
k by Σk and Πk . Then, as in the proof of Proposition 4.1 with

using the prenex normal form theorems in HA + Σk-LEM (cf. Remark 3.10), one
can show U+

k+1 = R′′
k+1 and E+

k+1 = J ′′
k+1 over HA + Σk-LEM.

As described in Definition 3.7, the classes Ek and Uk are originally defined by
using the notion of alternation path. On the other hand, Remark 4.6 reveals that one
can define these classes (via Remark 3.8) inductively without using the notion of
alternation path. A technical advantage of this usual way of defining classes is that
one can prove properties of these classes by induction on the structure of formulas
in those classes.

§5. Conservation theorems for the classes of formulas. In this section, we explore
the notion that PA is Γ-conservative over T for semi-classical arithmetic T and a
class Γ of formulas (especially, Πk,Σk,Uk,Ek,Fk etc.).

Definition 5.1. For classes of HA-formulas Γ and Γ′, Γ ∨ Γ′ is the class of
formulas of form ϕ ∨ � where ϕ ∈ Γ and � ∈ Γ′.

We recall the notion of duals for prenex formulas from [1, 6].

Definition 5.2 (cf. [6, Definition 3.2]). For any formula ϕ in prenex normal
form, we define the dual ϕ⊥ of ϕ inductively as follows:

1. ϕ⊥ :≡ ¬ϕ if ϕ is quantifier-free;
2. (∀xϕ)⊥ :≡ ∃x(ϕ)⊥;
3. (∃xϕ)⊥ :≡ ∀x(ϕ)⊥.

Remark 5.3. For ϕ in Σk (resp. Πk), ϕ⊥ is in Πk (resp. Σk), FV
(
ϕ⊥)

= FV (ϕ)

and
(
ϕ⊥)⊥

is equivalent to ϕ over HA. For each prenex formula ϕ, ϕ⊥ implies
¬ϕ intuitionistically. On the other hand, the converse direction for formulas in Σk
(resp. Πk) is equivalent to Σk–1-DNE (resp. Σk-DNE). Then it follows that forϕ ∈ Σk
there exists ϕ′ ∈ Πk such that FV (ϕ′) = FV (ϕ) and HA + Σk–1-DNE 
 ϕ′ ↔ ¬ϕ
(cf. [7, Lemma 4.8(2)]). In addition, ¬ϕ⊥ implies ¬¬ϕ in the presence of Σk–1-DNE
for the both cases of ϕ ∈ Σk and ϕ ∈ Πk . Note also that PA proves ϕ ∨ ϕ⊥ for each
prenex formula ϕ. We refer the reader to [6, Section 3] for more information about
the dual principles for prenex formulas in semi-classical arithmetic.

5.1. Conservation theorems for Πk,Σk,Ek and Fk .

Definition 5.4. Let T be a theory in the language of HA and Γ be a class of
HA-formulas.

• T is closed under Γ-DNE-R if T 
 ¬¬ϕ implies T 
 ϕ for all ϕ ∈ Γ.
• T is closed under Γ-CD-R if T 
 ∀x(ϕ ∨ �) implies T 
 ϕ ∨ ∀x� for all
ϕ,� ∈ Γ such that x /∈ FV (ϕ).
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• T is closed under Γ-DML-R (resp. Γ-DML⊥-R) if T 
 ¬(ϕ ∧ �) implies
T 
 ¬ϕ ∨ ¬� (resp. T 
 ϕ⊥ ∨ �⊥) for all ϕ,� ∈ Γ.

Note that ϕ and � in the above may contain free variables.

As mentioned in [14, Section 3.5.1], Σ1-DNE-R is known as Markov’s rule (for
primitive recursive predicates). The fact that PA is Σ1-conservative (equivalently,
Π2-conservative) over HA implies that HA is closed under Markov’s rule
(Σ1-DNE-R), and vice versa. The generalization Σk-DNE-R of Markov’s rule
is already mentioned in [8, Section 4.4]. It is easy to see that for semi-classical
arithmetic T , if PA is Σk-conservative over T , then T is closed under Σk-DNE-R.
Then it is natural to ask about the converse. As we show in Theorem 5.9, this is
also the case (note that the case for k = 2 is essentially shown in the proof of [12,
Proposition 3.3]).

The following are our “reversal” results.

Lemma 5.5. Let T be a theory containing HA. If PA is (Σk ∨ Πk)-conservative
over T , then T 
 Σk-LEM.

Proof. Fix � ∈ Σk . Let �⊥ ∈ Πk be the dual of �. Since PA 
 � ∨ �⊥, by our
assumption, we have T 
 � ∨ �⊥, and hence, T 
 � ∨ ¬�. �

Lemma 5.6. Let T be a theory containing HA. If T is closed under Σk+1-DNE-R,
then T proves Σk-LEM.

Proof. We show that for all m ≤ k, T proves Σm-LEM, by induction on m.
Since T contains HA, the base case is trivial. Assumem + 1 ≤ k and T 
 Σm-LEM.
Let ϕ ∈ Σm+1. Since HA 
 ¬¬(ϕ ∨ ¬ϕ), by Remark 5.3 and the fact that Σm-LEM
implies Σm-DNE, we have T 
 ¬¬(ϕ ∨ ϕ⊥) where ϕ⊥ ∈ Πm+1. Since ϕ ∨ ϕ⊥ is
equivalent over HA to some formula in Σm+2 (cf. [7, Lemma 4.4]), by Σk+1-DNE-R,
we have T 
 ϕ ∨ ϕ⊥, and hence, ϕ ∨ ¬ϕ. Thus we have shown T 
 Σm+1-LEM. �

Lemma 5.7. Let T be a theory containing HA. If T is closed under Σk-CD-R,
then T proves Σk-LEM.

Proof. We show that for all m ≤ k, T proves Σm-LEM, by induction on
m. Since T contains HA, the base case is trivial. Assume m + 1 ≤ k and
T 
 Σm-LEM. Let ϕ :≡ ∃xϕ1 where ϕ1 ∈ Πm. Since T proves Πm-LEM and
Σm-DNE, we have T 
 ϕ1 ∨ ¬ϕ1, and hence, T 
 ϕ1 ∨ ϕ⊥

1 (cf. Remark 5.3). Then
T 
 ∀x(∃xϕ1 ∨ ϕ⊥

1 ) follows. Since ∃xϕ1, ϕ
⊥
1 ∈ Σm+1, by Σk-CD-R, we have

T 
 ∃xϕ1 ∨ ∀xϕ⊥
1 , and hence, T 
 ∃xϕ1 ∨ ¬∃xϕ1. Thus we have shown T 


Σm+1-LEM. �
Lemma 5.8. LetT be a theory containingHA. ThenT is closed under Πk-DML⊥-R

if and only if T is closed under Σk-DNE-R.

Proof. We first show the “only if” direction. Assume that T is closed under
Πk-DML⊥-R and T 
 ¬¬ϕ where ϕ ∈ Σk . Since ¬¬ϕ is equivalent over HA to
¬(¬ϕ ∧ ¬ϕ), by Remark 5.3, we have

T 
 ¬(ϕ⊥ ∧ ϕ⊥).

Since ϕ⊥ ∈ Πk , by Πk-DML⊥-R, we have T 

(
ϕ⊥)⊥ ∨

(
ϕ⊥)⊥

, and hence, T 
 ϕ
(cf. Remark 5.3).
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For the converse direction, assume that T is closed under Σk-DNE-R and
T 
 ¬(ϕ ∧ �) where ϕ,� ∈ Πk . Since ¬(ϕ ∧ �) is intuitionistically equivalent
to ¬(¬¬ϕ ∧ ¬¬�), by Lemma 5.6 and Remark 5.3 (note that Σk–1-LEM
implies Σk–1-DNE), we have T 
 ¬

(
¬ϕ⊥ ∧ ¬�⊥)

where ϕ⊥, �⊥ ∈ Σk . Then
T 
 ¬¬

(
ϕ⊥ ∨ �⊥)

follows. By Σk-DNE-R, we have T 
 ϕ⊥ ∨ �⊥. �

Theorem 5.9. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Qk+1. The following are pairwise equivalent:

1. PA + X is Vk+1-conservative over T + X ;
2. PA + X is Πk+2-conservative over T + X ;
3. PA + X is Σk+1-conservative over T + X ;
4. T + X is closed under Σk+1-DNE-R;
5. T + X is closed under Πk+1-DML⊥-R;
6. PA + X is Ek+1-conservative over T + X ;
7. PA + X is Fk-conservative over T + X ;
8. PA + X is (Σk ∨ Πk)-conservative over T + X ;
9. T + X 
 Σk-LEM;

10. T + X 
 Σk-CD;
11. T + X is closed under Σk-CD-R;

where Σk-CD is the scheme ∀x(ϕ ∨ �) → ϕ ∨ ∀x� with ϕ,� ∈ Σk such that x /∈
FV (ϕ) (cf. [6, Section 7]).

Proof. The implications (1) → (6) → (7) → (8), (1) → (2) → (3) → (4) and
(9) → (10) → (11) are trivial (cf. Corollary 4.3 and Remark 3.18). The implications
(8) → (9), (4) → (9), (11) → (9) and (9) → (1) are by Lemmata 5.5, 5.6, 5.7 and
Corollary 3.19 respectively. The equivalence (4) ↔ (5) is by Lemma 5.8. �

5.2. Conservation theorem for Uk . In contrast to the fact that Ek+1-conservativity
and Fk-conservativity are characterized by Σk-LEM (see Theorem 5.9), Uk+1-
conservativity requires more than Σk-LEM:

Proposition 5.10. PA is not (Π1 ∨ Π1)-conservative over HA.

Proof. We use the same argument as in [7, Section 3]. Suppose that PA is
conservative over HA for all formulas ϕ ∨ � with ϕ,� ∈ Π1. Let Φ(x) be the
following formula:

∀u¬(T(x, x, u) ∧ U(u) = 0) ∨ ∀u¬(T(x, x, u) ∧ U(u) �= 0), (2)

where T and U are the standard primitive recursive predicate and function from the
Kleene normal form theorem. Since

¬
(
∃u(T(x, x, u) ∧ U(u) = 0) ∧ ∃u(T(x, x, u) ∧ U(u) �= 0))

is provable in HA, we have PA 
 Φ(x). Then, by our assumption, we have HA 

Φ(x), and hence, HA 
 ∀xΦ(x). On the other hand, as shown in the proof of [7,
Proposition 3.1], ¬∀xΦ(x) is provable in HA + CT0 where CT0 is the arithmetical
form of Church’s thesis from [13, Section 3.2.14]. Then we have HA + CT0 
⊥,
which is a contradiction by [13, Section 3.2.22]. �
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Let T be semi-classical arithmetic. By Theorems 3.9.(2) and 5.9, if T proves
(Πk+1 ∨ Πk+1)-DNE, then PA is Uk+1-conservative (and hence, a-fortiori (Πk+1 ∨
Πk+1)-conservative) overT . On the other hand, ifPA is (Πk+1 ∨ Πk+1)-conservative
over T , then T proves Σk-LEM by Lemma 5.5 and the fact that both of Σk
and Πk can be seen as sub-classes of Πk+1. Thus (Πk+1 ∨ Πk+1)-DNE implies
the Uk+1-conservativity, which implies the (Πk+1 ∨ Πk+1)-conservativity, which
implies Σk-LEM and not vice versa. For further studying the relation of the
Uk+1/(Πk+1 ∨ Πk+1)-conservativity and semi-classical arithmetic, we introduce
some extended classes of Πk and Σk .

Definition 5.11.

•
∨

Πk denotes the class consisting of disjunctions of formulas in Πk .
• A class EΠk is defined by the following clauses:

– ϕ ∈ Πk ;
– If ϕ,� ∈ EΠk , then ϕ ∨ � ∈ EΠk ;
– If ϕ ∈ EΠk , then ∀xϕ ∈ EΠk .

• EΣk+1 denotes the class consisting of formulas of the form ∃x1, ... , xnϕ where
ϕ ∈ EΠk .

Remark 5.12. Πk ⊆ Πk ∨ Πk ⊆
∨

Πk ⊆ EΠk ⊆ EΣk+1.

Lemma 5.13. For any HA-formulas ϕ,� ∈ EΠk , there exists � ∈ EΠk such that
FV (�) = FV (ϕ ∧ �) and HA 
 � ↔ ϕ ∧ �.

Proof. By induction on the sum of the complexity of ϕ and �.
If both of ϕ and � are in Πk , then we are done by [7, Lemma 4.3(2)].
Suppose � :≡ �1 ∨ �2 where �1, �2 ∈ EΠk . By the induction hypothesis, there

exist �1, �2 ∈ EΠk such that FV (�1) = FV (ϕ ∧ �1), FV (�2) = FV (ϕ ∧ �2), HA 

�1 ↔ ϕ ∧ �1 and HA 
 �2 ↔ ϕ ∧ �2. Then we have that

FV (�1 ∨ �2) = FV (�1) ∪ FV (�2) = FV (ϕ ∧ �1) ∪ FV (ϕ ∧ �2) = FV (ϕ ∧ �)

and that HA proves

�1 ∨ �2 ↔ (ϕ ∧ �1) ∨ (ϕ ∧ �2) ↔ ϕ ∧ (�1 ∨ �2) ≡ ϕ ∧ �.

Thus one can take �1 ∨ �2 ∈ EΠk as a witness.
Suppose � :≡ ∀x�1 where �1 ∈ EΠk . Without loss of generality, assume x /∈

FV (ϕ). By the induction hypothesis, there exists �1 ∈ EΠk such that FV (�1) =
FV (ϕ ∧ �1) and HA 
 �1 ↔ ϕ ∧ �1. Then we have

FV (∀x�1) = FV (ϕ ∧ �1) \ {x} = FV (ϕ ∧ ∀x�1)

and that HA proves

∀x�1 ↔ ∀x(ϕ ∧ �1) ↔ ϕ ∧ ∀x�1.

Thus one can take ∀x�1 ∈ EΠk as a witness. �

In what follows, we use [7, Lemma 4.5] many times implicitly.
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Lemma 5.14. For a HA-formula ϕ, the following hold:

1. If ϕ ∈ U+
k+1, then there exists ϕ′ ∈ EΠk+1 such that FV (ϕ) = FV (ϕ′), HA +

Σk-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′;
2. If ϕ ∈ E+

k+1, then there exists ϕ′ ∈ EΠk+1 such that FV (ϕ) = FV (ϕ′), HA +
Σk-LEM 
 ϕ′ → ¬ϕ and PA 
 ¬ϕ → ϕ′.

Proof. We show items 1 and 2 by simultaneous induction on the structure of
formulas. We suppress the arguments on free variables when they are clear from the
context.

If ϕ is prime, then items 1 and 2 are trivial since ϕ is decidable in HA. For the
induction step, assume items 1 and 2 hold for ϕ1 and ϕ2.

Case of ϕ :≡ ϕ1 ∨ ϕ2: For item 1, suppose ϕ1 ∨ ϕ2 ∈ U+
k+1. Then ϕ1, ϕ2 ∈

U+
k+1. By using the induction hypothesis, there exist ϕ′

1, ϕ
′
2 ∈ EΠk+1 such that

HA + Σk-LEM proves ϕ′
1 → ϕ1 and ϕ′

2 → ϕ2 and PA proves ϕ1 → ϕ′
1 and ϕ2 → ϕ′

2.
Now ϕ′

1 ∨ ϕ′
2 ∈ EΠk+1 and HA + Σk-LEM proves

ϕ′
1 ∨ ϕ′

2 −→
[I.H.] Σk -LEM

ϕ1 ∨ ϕ2.

On the other hand, PA proves the converse. For item 2, suppose ϕ1 ∨ ϕ2 ∈
E+
k+1. Then ϕ1, ϕ2 ∈ E+

k+1. By the induction hypothesis, there exist ϕ′
1, ϕ

′
2 ∈

EΠk+1 such that HA + Σk-LEM proves ϕ′
1 → ¬ϕ1 and ϕ′

2 → ¬ϕ2 and PA proves
¬ϕ1 → ϕ′

1 and ¬ϕ2 → ϕ′
2. By Lemma 5.13, there exists ϕ′ ∈ EΠk+1 such that

FV (ϕ′) = FV
(
ϕ′

1 ∧ ϕ′
2) andHA 
 ϕ′ ↔ ϕ′

1 ∧ ϕ′
2. Then we have thatHA + Σk-LEM

proves

ϕ′ ↔ ϕ′
1 ∧ ϕ′

2 −→
[I.H.] Σk -LEM

¬ϕ1 ∧ ¬ϕ2 ↔ ¬(ϕ1 ∨ ϕ2)

and also PA proves the converse.
Case of ϕ :≡ ϕ1 ∧ ϕ2: For item 1, suppose ϕ1 ∧ ϕ2 ∈ U+

k+1. Then ϕ1, ϕ2 ∈ U+
k+1.

By using the induction hypothesis and Lemma 5.13, one can take a witness for
ϕ1 ∧ ϕ2 in a straightforward way. Item 2 follows from the induction hypothesis as
in the case of ϕ :≡ ϕ1 ∨ ϕ2: ϕ′

1 ∨ ϕ′
2 ∈ EΠk+1 is the witness since HA + Σk-LEM

proves

ϕ′
1 ∨ ϕ′

2 −→
[I.H.] Σk -LEM

¬ϕ1 ∨ ¬ϕ2 → ¬(ϕ1 ∧ ϕ2)

and PA proves the converse.
Case of ϕ :≡ ϕ1 → ϕ2: For item 1, suppose ϕ1 → ϕ2 ∈ U+

k+1. Then ϕ1 ∈ E+
k+1

and ϕ2 ∈ U+
k+1. By the induction hypothesis, there exist ϕ′

1, ϕ
′
2 ∈ EΠk+1 such

that HA + Σk-LEM proves ϕ′
1 → ¬ϕ1 and ϕ′

2 → ϕ2 and PA proves ¬ϕ1 → ϕ′
1 and

ϕ2 → ϕ′
2. Now ϕ′

1 ∨ ϕ′
2 ∈ EΠk+1 and HA + Σk-LEM proves

ϕ′
1 ∨ ϕ′

2 −→
[I.H.] Σk -LEM

¬ϕ1 ∨ ϕ2 → (ϕ1 → ϕ2).

On the other hand, PA proves the converse. For item 2, suppose ϕ1 → ϕ2 ∈ E+
k+1.

Then ϕ1 ∈ U+
k+1 and ϕ2 ∈ E+

k+1. By the induction hypothesis, there exist ϕ′
1, ϕ

′
2 ∈

EΠk+1 such thatHA + Σk-LEM provesϕ′
1 → ϕ1 andϕ′

2 → ¬ϕ2 andPA provesϕ1 →
ϕ′

1 and ¬ϕ2 → ϕ′
2. By Lemma 5.13, there exists ϕ′ ∈ EΠk+1 such that FV (ϕ′) =
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FV
(
ϕ′

1 ∧ ϕ′
2) and HA 
 ϕ′ ↔ ϕ′

1 ∧ ϕ′
2. Then we have that HA + Σk-LEM proves

ϕ′ ↔ ϕ′
1 ∧ ϕ′

2 −→
[I.H.] Σk -LEM

ϕ1 ∧ ¬ϕ2 → ¬(ϕ1 → ϕ2)

and also that PA proves the converse.
Case of ϕ :≡ ∃xϕ1: For item 1, suppose ∃xϕ1 ∈ U+

k+1. Then ∃xϕ1 ∈ E+
k . By

Remark 3.10, there existsϕ′ ∈ Σk such that FV (ϕ′) = FV (ϕ) andHA + Σk-LEM 

ϕ′ ↔ ϕ. Since Σk can be seen as a subclass of Πk+1, we are done. For item 2,
suppose ∃xϕ1 ∈ E+

k+1. Then ϕ1 ∈ E+
k+1. By the induction hypothesis, there exists

ϕ′
1 ∈ EΠk+1 such that FV

(
ϕ′

1) = FV (ϕ1), HA + Σk-LEM 
 ϕ′
1 → ¬ϕ1 and PA 


¬ϕ1 → ϕ′
1. Now ∀xϕ′

1 ∈ EΠk+1 and FV
(
∀xϕ′

1) = FV (∃xϕ1). Then we have that
HA + Σk-LEM proves

∀xϕ′
1 −→

[I.H.] Σk -LEM
∀x¬ϕ1 ↔ ¬∃xϕ1

and also that PA proves the converse.
Case of ϕ :≡ ∀xϕ1: For item 1, suppose ∀xϕ1 ∈ U+

k+1. Then ϕ1 ∈ U+
k+1. By the

induction hypothesis, there exists ϕ′
1 ∈ EΠk+1 such that FV

(
ϕ′

1) = FV (ϕ1), HA +
Σk-LEM 
 ϕ′

1 → ϕ1 and PA 
 ϕ1 → ϕ′
1. It is straightforward to see that ∀xϕ′

1 ∈
EΠk+1 is a witness for ∀xϕ1 ∈ U+

k+1. For item 2, suppose ∀xϕ1 ∈ E+
k+1. Then ∀xϕ1 ∈

U+
k . By Remark 3.10, there exists ϕ′ ∈ Πk such that FV (ϕ′) = FV (ϕ) and HA +

Σk-LEM 
 ϕ′ ↔ ϕ. Since ¬ϕ′ is equivalent to some ϕ′′ ∈ Σk in the presence of
Σk-DNE (cf. Remark 5.3), we are done. �

Lemma 5.15. Let T be a theory containing HA and X be a set of HA-sentences. If
PA + X is EΠk+1-conservative over T + X , then so is Uk+1-conservative.

Proof. Let ϕ ∈ Uk+1. Suppose PA + X 
 ϕ. By Lemma 5.14, there exists ϕ′ ∈
EΠk+1 such that FV (ϕ) = FV (ϕ′), HA + Σk-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′.
Then PA + X 
 ϕ′. By our assumption, we have T + X 
 ϕ′. As in the proof of
Lemma 5.5, one can show T + X 
 Σk-LEM by using the EΠk+1-conservativity.
Then T + X 
 ϕ follows. �

Theorem 5.16. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Qk+1. Then the following are pairwise equivalent:

1. PA + X is Uk+1-conservative over T + X ;
2. PA + X is EΠk+1-conservative over T + X ;
3. T + X is closed under EΠk+1-DNE-R;
4. T + X is closed under EΠk+1-CD-R;
5. T + X is closed under Uk+1-DNE-R;
6. T + X is closed under Uk+1-CD-R.

Proof. Since EΠk+1 ⊆ Uk+1, the equivalence between (1) and (2) follows
immediately from Lemma 5.15.
(2 → 3): Let ϕ ∈ EΠk+1 and assume T + X 
 ¬¬ϕ. Since T + X ⊆ PA + X , we
have PA + X 
 ϕ. By (2), we have T + X 
 ϕ.
(3 → 4): Let ϕ,�(x) ∈ EΠk+1 and x /∈ FV (ϕ). Assume T + X 
 ∀x(ϕ ∨ �(x)).
Since HA proves ¬¬(ϕ ∨ ¬ϕ) and (ϕ ∨ ¬ϕ) ∧ ∀x(ϕ ∨ �(x)) → ϕ ∨ ∀x�(x), we
have T + X 
 ¬¬(ϕ ∨ ∀x�(x)). Since ϕ ∨ ∀x�(x) ∈ EΠk+1, by EΠk+1-DNE-R,
we have T + X 
 ϕ ∨ ∀x�(x).
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(4 → 2): Assume that T + X is closed under EΠk+1-CD-R. By Lemma 5.7, we
have T + X 
 Σk-LEM. We show that PA + X 
 ϕ1 ∨ ··· ∨ ϕn implies T + X 

ϕ1 ∨ ··· ∨ ϕn for any ϕ1, ... , ϕn ∈ EΠk+1 by induction on the sum of the complexity
of ϕ1, ... , ϕn ∈ EΠk+1.

First, suppose that all of ϕ1, ... , ϕn are in Πk+1. Let ϕi :≡ ∀xiϕ′
i with ϕ′

i ∈ Σk
for each i ∈ {1, ... , n}. Assume PA + X 
 ϕ1 ∨ ··· ∨ ϕn. Then PA + X 
 ϕ′

1 ∨ ··· ∨
ϕ′
n. Since T + X 
 Σk-LEM and X ⊆ Qk+1, by Corollary 4.3, we have T + X 

ϕ′

1 ∨ ··· ∨ ϕ′
n. Then T + X 
 ∀x1(ϕ′

1 ∨ ··· ∨ ϕ′
n) follows. By EΠk+1-CD-R, we have

T + X 
 ∀x1ϕ
′
1 ∨ ϕ′

2 ∨ ··· ∨ ϕ′
n. Iterating this procedure for more n – 1 times, we

have T + X 
 ∀x1ϕ
′
1 ∨ ··· ∨ ∀xnϕ′

n.
Secondly, suppose ϕ1, ... , ϕn ∈ EΠk+1 and ϕn :≡ ϕ′

n ∨ ϕ′′
n with ϕ′

n, ϕ
′′
n ∈ EΠk+1.

Without loss of generality, let n > 1. Assume PA + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕn, equiv-
alently, PA + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕ′

n ∨ ϕ′′
n . By the induction hypothesis, we have

T + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕ′
n ∨ ϕ′′

n , equivalently, T + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕn.
Finally, supposeϕ1, ... , ϕn ∈ EΠk+1 andϕn :≡ ∀xnϕ′

n withϕ′
n ∈ EΠk+1. Without

loss of generality, let n > 1. Assume PA + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕn. Then PA + X 

ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕ′

n follows. By the induction hypothesis, we have T + X 
 ϕ1 ∨
··· ∨ ϕn–1 ∨ ϕ′

n, and hence, T + X 
 ∀xn(ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕ′
n). By EΠk+1-CD-R,

we have T + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕn.
The implications (1 → 5) and (5 → 6) are shown as for (2 → 3) and (3 → 4)

respectively. In addition, (6 → 4) is trivial. �

Next, we characterize the (Πk+1 ∨ Πk+1)-conservativity by several rules.

Lemma 5.17. Let T be a theory containing HA. If T is closed under
(Πk ∨ Πk)-DNE-R, then so is Πk-CD-R.

Proof. The proof of (3 → 4) of Theorem 5.16 works. �

Lemma 5.18. Let T be a theory containing HA. Then T is closed under
Σk-DML⊥-R if and only if T is closed under (Πk ∨ Πk)-DNE-R.

Proof. One can show the “only if” direction as in the proof of that in Lemma 5.8.
For the converse direction, again by the corresponding proof in Lemma 5.8, it suffices
to show that if T is closed under (Πk ∨ Πk)-DNE-R, then T proves Σk–1-LEM. The
latter is the case by Lemmata 5.17 and 5.7. �

Theorem 5.19. Let T be semi-classical arithmetic and X be a set of HA-sentences
in Qk+1. Then the following are pairwise equivalent:

1. PA + X is (Πk+1 ∨ Πk+1)-conservative over T + X;
2. T + X is closed under (Πk+1 ∨ Πk+1)-DNE-R;
3. T + X is closed under Πk+1-CD-R;
4. T + X is closed under Σk+1-DML⊥-R;
5. T + X is closed under Σk+1-DML-R and T + X proves Σk-DNE.

Proof. One can show (1 → 2) as in the proof of (2 → 3) of Theorem 5.16. The
implication (2 → 3) is by Lemma 5.17.

We show (3→ 1). Assume thatT + X is closed under Πk+1-CD-R. By Lemma 5.7,
we have T + X 
 Σk-LEM. Let ϕ1 :≡ ∀x1�1 and ϕ2 :≡ ∀x2�2 with �1, �2 ∈ Σk .
Suppose PA + X 
 ∀x1�1 ∨ ∀x2�2. Then PA + X 
 ¬

(
∃x1�

⊥
1 ∧ ∃x2�

⊥
2

)
. Since
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∃x1�
⊥
1 ∧ ∃2�

⊥
2 is equivalent to a formula in Σk+1 (cf. [7, Lemma 4.3(2)]), by

Remark 5.3, there exists � ∈ Πk+1 such that FV (�) = FV (∀x1�1 ∨ ∀x�2) andHA +
Σk-DNE 
 � ↔ ¬

(
∃x1�

⊥
1 ∧ ∃x2�

⊥
2

)
. Then we have PA + X 
 �. Since X ⊆ Qk+1,

by Corollary 3.19, we have HA + X + Σk-LEM 
 �. Since Σk-DNE is derivable
from Σk-LEM, we have that T + X proves ¬

(
∃x1�

⊥
1 ∧ ∃x2�

⊥
2

)
, equivalently,

∀x1, x2¬
(
�⊥

1 ∧ �⊥
2

)
. Since T + X 
 Σk-DNE, again by Remark 5.3, we have that

T + X proves ∀x1, x2¬ (¬�1 ∧ ¬�2), equivalently, ∀x1, x2¬¬(�1 ∨ �2). Since �1 ∨
�2 is equivalent to a formula in Σk (cf. [7, Lemma 4.4]), T + X 
 ∀x1, x2(�1 ∨ �2)
follows. By using Πk+1-CD-R twice, we have T + X 
 ∀x1�1 ∨ ∀x2�2.

The equivalence (2 ↔ 4) is by Lemma 5.18. The implication (5 → 4) is by
the fact that for ϕ ∈ Σk+1, ϕ⊥ is derived from ¬ϕ in the presence of Σk-DNE
(cf. Remark 5.3). The implication (3 & 4 → 5) is by Lemma 5.7 (note that Σk-LEM
implies Σk-DNE). �

Remark 5.20. From the perspective of Remark 5.12, it is natural to ask the status
of the

∨
Πk+1-conservativity. As in the proof of Theorem 5.19, one can show the

following equivalence:

1. PA + X is
∨

Πk+1-conservative over T + X;
2. For any ϕ1, ... , ϕn ∈ Πk+1, if T + X 
 ¬¬(ϕ1 ∨ ··· ∨ ϕn), then T + X 
 ϕ1 ∨

··· ∨ ϕn;
3. For any ϕ1, ... , ϕn ∈ Πk+1 such that x /∈ FV (ϕ1 ∨ ··· ∨ ϕn–1), if T + X 


∀x(ϕ1 ∨ ··· ∨ ϕn–1 ∨ ϕn), then T + X 
 ϕ1 ∨ ··· ∨ ϕn–1 ∨ ∀xϕn;
4. For any ϕ1, ... , ϕn ∈ Σk+1, if T + X 
 ¬(ϕ1 ∧ ··· ∧ ϕn), then T + X 
 ϕ⊥

1 ∨
··· ∨ ϕ⊥

n ;
5. T + X proves Σk-DNE and for any ϕ1, ... , ϕn ∈ Σk+1, if T + X 
 ¬(ϕ1 ∧ ··· ∧
ϕn), then T + X 
 ¬ϕ1 ∨ ··· ∨ ¬ϕn;

whereX ⊆ Qk+1. This characterization suggests that the
∨

Πk+1-conservativity lies
strictly between the Uk+1-conservativity and the (Πk+1 ∨ Πk+1)-conservativity, but
we do not have the proof of the strictness.

Remark 5.21. From the comparison between [6, Corollary 7.6] and the
equivalences in Theorem 5.19, it is natural to ask whether the (contrapositive)
collection rule restricted to formulas in Πk+1 is also equivalent to the items in
Theorem 5.19. This question is still open.

§6. Conservation theorems for the classes of sentences. In the study of fragments
of PA, the conservativity for classes of sentences has been studied extensively e.g., in
[11, Section 2]. The following proposition states that the conservativity for a class of
formulas is equivalent to that restricted only to sentences if the class is closed under
taking a universal closure:

Proposition 6.1. Let Γ be a class of HA-formulas such that Γ is closed under
taking a universal closure. For any theories T and T ′ containing HA in the language
of HA, if T ′ is conservative over T for any sentences in Γ, then T ′ is Γ-conservative
over T .

Proof. Letϕ ∈ Γ. AssumeT ′ 
 ϕ. Then we haveT ′ 
 ϕ̃ where ϕ̃ is the universal
closure of ϕ. Since ϕ̃ is a sentence in Γ, by our assumption, we have T 
 ϕ̃, and
hence, T 
 ϕ. �
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Therefore, for classes as Πk,Uk,EΠk etc., the strength of the conservativity
does not vary even if we restrict them only to sentences. On the other hand, since
Σk,Ek,Fk etc. are not closed under taking a universal closure, this is not the case
for such classes. In what follows, we explore the relation on the notion that PA is
Γ-conservative over T for semi-classical arithmetic T and the class Γ of sentences.

Definition 6.2. For a class Γ ofHA-formulas, Γ˜denotes the class ofHA-sentences
in Γ.

6.1. Conservation theorems for Σk sentences and Ek sentences. For the Σk˜-
conservativity, we have the following:

Proposition 6.3. Let T be semi-classical arithmetic containing Σk–1-LEM, and X
be a set of HA-sentences in Qk . Then PA + X is Σk+1˜ -conservative over T + X if and
only if T + X is closed under Σk+1˜ -DNE-R.

Proof. We first show the “only if” direction. Let ϕ ∈ Σk+1˜ . Assume T + X 

¬¬ϕ. Then PA + X 
 ϕ. Since PA + X is now Σk+1˜ -conservative over T + X , we
have T + X 
 ϕ.

In the following, we show the converse direction. Without loss of generality,
assume k > 0. Let ∃x∀y � ∈ Σk+1˜ with � in Σk–1. Assume PA + X 
 ∃x∀y�.
By Proposition 3.2.(2), we have HA$ + X $ 
 ¬$¬$∃x∀y�$, and hence, HA$ +
Σk–1-LEM + X 
 ¬$¬$∃x∀y�$ by Lemma 3.14. Using Lemma 3.5.(2), we have
HA$ + Σk–1-LEM + X 
 ¬$¬$∃x∀y (� ∨ $). By substituting $ with ⊥ (cf. Lemma
3.16), we have HA + Σk–1-LEM + X 
 ¬¬∃x∀y�. Since T is semi-classical arith-
metic containing Σk–1-LEM, we have T + X 
 ¬¬∃x∀y�. By Σk+1˜ -DNE-R, T +
X 
 ∃x∀y� follows. �

Proposition 6.3 is a counterpart of the equivalence between (3) and (4) in
Theorem 5.9 for the case of sentences. In what follows, we deal with the Ek+1

˜

-
conservativity. In particular, we show that the Ek+1

˜

-conservativity can be reduced
to EΣk+1

˜

-conservativity.

Lemma 6.4. For HA-formulas ϕ1, ϕ2 ∈ EΣk+1, there exist �, � ∈ EΣk+1 such that
FV (�) = FV (ϕ1 ∧ ϕ2) = FV (ϕ1 ∨ ϕ2) = FV (�) and HA proves � ↔ ϕ1 ∧ ϕ2 and
� ↔ ϕ1 ∨ ϕ2.

Proof. Let ϕ1 :≡ ∃x1, ... , xnϕ
′
1 and ϕ2 :≡ ∃y1, ... , ymϕ

′
2 with ϕ′

1, ϕ
′
2 ∈ EΠk .

Without loss of generality, assume x1, ... , xn /∈ FV
(
ϕ′

2) and y1, ... , ym /∈ FV
(
ϕ′

1).
By Lemma 5.13, there exists �′ ∈ EΠk such that FV (�′) = FV

(
ϕ′

1 ∧ ϕ′
2) and

HA 
 �′ ↔ ϕ′
1 ∧ ϕ′

2. Put � :≡ ∃x1, ... , xn, y1, ... , ym �
′, which is in EΣk+1. Then it

is trivial that FV (�) = FV (ϕ1 ∧ ϕ2) and HA 
 � ↔ ϕ1 ∧ ϕ2.
Put � :≡ ∃x1, ... , xn, y1, ... , ym

(
ϕ′

1 ∨ ϕ′
2), which is in EΣk+1. Since � is equivalent

to ∃x1, ... , xnϕ
′
1 ∨ ∃y1, ... , ymϕ

′
2 over HA, we have that FV (�) = FV (ϕ1 ∨ ϕ2) and

HA 
 � ↔ ϕ1 ∨ ϕ2. �
Lemma 6.5. For a HA-formula ϕ, the following hold:
1. If ϕ ∈ U+

k+1, then there exists ϕ′ ∈ EΣk+1 such that FV (ϕ) = FV (ϕ′), HA +
Σk–1-LEM 
 ϕ′ → ¬ϕ and PA 
 ¬ϕ → ϕ′.
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2. If ϕ ∈ E+
k+1, then there exists ϕ′ ∈ EΣk+1 such that FV (ϕ) = FV (ϕ′), HA +

Σk–1-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′.

Proof. Note that U+
k+1 = R′

k+1 and E+
k+1 = J ′

k+1 where R′
k+1 and J ′

k+1 are the
classes defined in Remark 4.5. Then it suffices to show items 1 and 2 where U+

k+1
and E+

k+1 are replaced by R′
k+1 and J ′

k+1 respectively. In the following, we show the
assertions by induction on the constructions of R′

k+1 and J ′
k+1.

For ϕ ∈ E+
k ⊆ R′

k+1, by Lemma 5.14, there exists ϕ′ ∈ EΠk(⊆ EΣk+1) such that
HA + Σk–1-LEM 
 ϕ′ → ¬ϕ and PA 
 ¬ϕ → ϕ′. For ϕ ∈ U+

k ⊆ J ′
k+1, by Lemma

5.14, there exists ϕ′ ∈ EΠk(⊆ EΣk+1) such that HA + Σk–1-LEM 
 ϕ′ → ϕ and
PA 
 ϕ → ϕ′. For the induction step, let ϕ1, ϕ2 ∈ R′

k+1 and �1, �2 ∈ J ′
k+1 and

ϕ′
1, ϕ

′
2, �

′
1, �

′
2 ∈ EΣk+1 satisfy FV (ϕ1) = FV

(
ϕ′

1), FV (ϕ2) = FV
(
ϕ′

2), FV (�1) =
FV

(
�′

1), FV (�2) = FV
(
�′

2) and that HA + Σk–1-LEM proves ϕ′
1 → ¬ϕ1, ϕ′

2 →
¬ϕ2, �′

1 → �1, �′
2 → �2 and PA proves ¬ϕ1 → ϕ′

1, ¬ϕ2 → ϕ′
2, �1 → �′

1, �2 → �′
2.

By Lemma 6.4, for any conjunction and disjunction of ϕ′
1, ϕ

′
2, �

′
1, �

′
2 ∈ EΣk+1, there

exists an equivalent (overHA) � ∈ EΣk+1 which preserves the free variables. Forϕ :≡
ϕ1 ∨ ϕ2 ∈ R′

k+1, take ϕ′ ∈ EΣk+1 as an equivalent of ϕ′
1 ∧ ϕ′

2. For ϕ :≡ �1 ∨ �2 ∈
J ′
k+1, take ϕ′ ∈ EΣk+1 as an equivalent of �′

1 ∨ �′
2. For ϕ :≡ ϕ1 ∧ ϕ2 ∈ R′

k+1, take
ϕ′ ∈ EΣk+1 as an equivalent of ϕ′

1 ∨ ϕ′
2. For ϕ :≡ �1 ∧ �2 ∈ J ′

k+1, take ϕ′ ∈ EΣk+1

as an equivalent of �′
1 ∧ �′

2. For ϕ :≡ �1 → ϕ2 ∈ R′
k+1, take ϕ′ ∈ EΣk+1 as an

equivalent of �′
1 ∧ ϕ′

2. For ϕ :≡ ϕ1 → �2 ∈ J ′
k+1, take ϕ′ ∈ EΣk+1 as an equivalent

of ϕ′
1 ∨ �′

2. For ϕ :≡ ∀xϕ1 ∈ R′
k+1, take ϕ′ :≡ ∃xϕ′

1 ∈ EΣk+1. For ϕ :≡ ∃x�1 ∈
J ′
k+1, take ϕ′ :≡ ∃x�′

1 ∈ EΣk+1. We leave the routine verification for the reader. �

Corollary 6.6. For a HA-formula ϕ, the following hold:

1. If ϕ ∈ U+
k+1, then there exists ϕ′ ∈ Σk+1 such that FV (ϕ) = FV (ϕ′), HA +

(Πk ∨ Πk)-DNE 
 ϕ′ → ¬ϕ and PA 
 ¬ϕ → ϕ′.
2. If ϕ ∈ E+

k+1, then there exists ϕ′ ∈ Σk+1 such that FV (ϕ) = FV (ϕ′), HA +
(Πk ∨ Πk)-DNE 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′.

Proof. Since ϕ′ ∈ EΣk+1 is of the form ∃xϕ′
1 where ϕ′

1 ∈ EΠk ⊆ U+
k , by

Theorem 3.9.(2), there exists � ∈ Σk+1 such that FV (ϕ′) = FV (�) and HA +
(Πk ∨ Πk)-DNE 
 ϕ′ ↔ �. Since HA + (Πk ∨ Πk)-DNE proves Σk–1-LEM, our
corollary follows from Lemma 6.5. �

Theorem 6.7. Let T be semi-classical arithmetic and X be a set of HA-sentences.
Then PA + X is Ek+1

˜

-conservative over T + X if and only if PA + X is EΣk+1

˜

-
conservative over T + X .

Proof. The “only if” direction is trivial since EΣk+1

˜

⊆ Ek+1
˜

. We show the
converse direction. Let ϕ ∈ Ek+1

˜

. Assume PA + X 
 ϕ. By Lemma 6.5, there
exists ϕ′ ∈ EΣk+1

˜

such that HA + Σk–1-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′. Then
PA + X 
 ϕ′. By our assumption, we haveT + X 
 ϕ′. On the other hand, as in the
proof of Lemma 5.5, one can show T + X 
 Σk–1-LEM (note that EΠk˜ can be seen
as a sub-class of EΣk+1

˜

and the EΠk˜ -conservativity implies the EΠk-conservativity

by Proposition 6.1). Then we have T + X 
 ϕ. �
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6.2. Conservation theorem for Fk sentences. Next, we characterize the Fk˜-
conservativity. To investigate the class Fk , it is convenient to consider the following
class:

Definition 6.8. Let B+
k be the class of formulas which are constructed from

formulas in E+
k ∪ U+

k by using logical connectives ∧,∨ and →. Let B+
k -LEM be

LEM restricted to formulas in B+
k .

Proposition 6.9. HA 
 Σk-LEM ↔ B+
k -LEM.

Proof. First, HA + B+
k -LEM 
 Σk-LEM is trivial since Σk ⊆ E+

k . We show the
converse direction. By Remark 3.10, inside HA + Σk-LEM, one may assume that
ϕ ∈ B+

k is constructed from formulas in Σk ∪ Πk by using logical connectives ∧,∨
and →. Then we have HA + Σk-LEM 
 B+

k -LEM in a straightforward way. �
Proposition 6.10. B+

k = Fk .

Proof. Since F+
k = Fk (cf. Remark 3.8), it suffices to show B+

k = F+
k .

First, B+
k ⊆ F+

k is trivial since E+
k ⊆ F+

k , U+
k ⊆ F+

k and the fact that F+
k is closed

under ∧,∨ and →.
We show that ϕ ∈ F+

k implies ϕ ∈ B+
k for all HA-formulas ϕ by induction on

the structure of formulas. If ϕ is prime, since ϕ ∈ B+
k , then we are done. For the

induction step, assume that it holds forϕ1 andϕ2. Ifϕ1 ∧ ϕ2 ∈ F+
k , thenϕ1, ϕ2 ∈ F+

k
follows. By the induction hypothesis, we haveϕ1, ϕ2 ∈ B+

k , and hence,ϕ1 ∧ ϕ2 ∈ B+
k .

The cases of ϕ1 ∨ ϕ2 and ϕ1 → ϕ2 are similar. If ∀xϕ1 ∈ F+
k , by the definition, we

have ∀xϕ1 ∈ U+
k , and hence, ∀xϕ1 ∈ B+

k . The case of ∃xϕ1 ∈ F+
k is similar. �

Corollary 6.11 (cf. [1, Corollary 2.8(i)]). HA 
 Σk-LEM ↔ Fk-LEM.

Proof. Immediate from Propositions 6.9 and 6.10. �
Remark 6.12. By using Proposition 6.10 and Theorem 3.9, one can show the

following: If ϕ ∈ Fk , then HA$ + Σk-LEM 
 ϕ$ ↔ ϕ ∨ $. This is an extension of
Lemma 3.5.

Lemma 6.13. For all ϕ ∈ B+
k , there exist ϕ′ and ϕ′′ which are constructed from

formulas in EΠk
⋃

Σk by using ∧ and ∨ only, and satisfy FV (ϕ′) = FV (ϕ′′) =
FV (ϕ), HA + Σk–1-LEM proves ϕ′ → ϕ and ϕ′′ → ¬ϕ, and PA proves ϕ → ϕ′ and
¬ϕ → ϕ′′.

Proof. By induction on the construction of B+
k .

For the base case, first assume ϕ ∈ U+
k . By Lemma 5.14, there exists ϕ′ ∈

EΠk such that FV (ϕ) = FV (ϕ′), HA + Σk–1-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′.
By Corollary 6.6, there exists ϕ′′ ∈ Σk such that FV (ϕ) = FV (ϕ′′), HA +
Σk–1-LEM 
 ϕ′′ → ¬ϕ (cf. Remark 3.10) and PA 
 ¬ϕ → ϕ′′. Next assume ϕ ∈
E+
k . By Corollary 6.6, there exists ϕ′ ∈ Σk such that FV (ϕ) = FV (ϕ′), HA +

Σk–1-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′. By Lemma 5.14, there exists ϕ′′ ∈ EΠk
such that FV (ϕ) = FV (ϕ′′), HA + Σk–1-LEM 
 ϕ′′ → ¬ϕ and PA 
 ¬ϕ → ϕ′′.

For the induction step, let ϕ1, ϕ2 ∈ B+
k and ϕ′

1, ϕ
′′
1 , ϕ

′
2, ϕ

′′
2 constructed from

formulas in EΠk
⋃

Σk by using ∧ and ∨ only satisfy the following: FV
(
ϕ′

1) =
FV

(
ϕ′′

1 ) = FV (ϕ1), FV
(
ϕ′

2) = FV
(
ϕ′′

2 ) = FV (ϕ2), HA + Σk–1-LEM proves ϕ′
1 →

ϕ1, ϕ′
2 → ϕ2, ϕ′′

1 → ¬ϕ1, ϕ′′
2 → ¬ϕ2 and PA proves ϕ1 → ϕ′

1, ϕ2 → ϕ′
2, ¬ϕ1 → ϕ′′

1 ,
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¬ϕ2 → ϕ′′
2 . Forϕ :≡ ϕ1 ∧ ϕ2, takeϕ′ :≡ ϕ′

1 ∧ ϕ′
2 andϕ′′ :≡ ϕ′′

1 ∨ ϕ′′
2 . Forϕ :≡ ϕ1 ∨

ϕ2, take ϕ′ :≡ ϕ′
1 ∨ ϕ′

2 and ϕ′′ :≡ ϕ′′
1 ∧ ϕ′′

2 . For ϕ :≡ ϕ1 → ϕ2, take ϕ′ :≡ ϕ′′
1 ∨ ϕ′

2
and ϕ′′ :≡ ϕ′

1 ∧ ϕ′′
2 . We leave the routine verification for the reader. �

Theorem 6.14. Let T be semi-classical arithmetic and X be a set of HA-sentences.
Then PA + X is Fk˜-conservative over T + X if and only if PA + X is

(
Σk˜ ∨ EΠk˜

)
-

conservative over T + X .

Proof. The “only if” direction is trivial since Σk˜ ∨ EΠk˜ ⊆ Fk˜. We show
the converse direction. Let ϕ ∈ Fk˜. Assume PA + X 
 ϕ. By Lemma 6.13 and
Proposition 6.10, there exist ϕ′ which is constructed from formulas in Σk˜

⋃
EΠk˜by using ∧ and ∨ only, and satisfy HA + Σk–1-LEM 
 ϕ′ → ϕ and PA 
 ϕ → ϕ′.

Without loss of generality, one may assume that ϕ′ is of conjunctive normal form
such that each conjunct is a disjunction of sentences in Σk˜

⋃
EΠk˜ . Since disjunction

of sentences in Σk˜ is equivalent to a sentence in Σk˜ overHA and EΠk˜ is closed under∨,
each conjunct can be assumed to be of the form � ∨ � where � ∈ Σk˜ and � ∈ EΠk˜ .
Let ϕ′ :≡

∧
1≤i≤n (�i ∨ �i) where �i ∈ Σk˜ and �i ∈ EΠk˜ . Since PA + X 
 ϕ′, by

the
(

Σk˜ ∨ EΠk˜
)

-conservativity, we have that T + X proves �i ∨ �i for each i.

Then we have T + X 
 ϕ′. Since PA + X is now EΠk-conservative over T + X
(cf. Proposition 6.1), as in the proof of Lemma 5.5, we have T + X 
 Σk–1-LEM.
Then T + X 
 ϕ follows. �

In what follows, by further investigating the
(

Σk˜ ∨ EΠk˜
)

-conservativity in

Theorem 6.14, we give a characterization of the Fk˜-conservativity by axiom
schemata.

Definition 6.15. Let Γ be a class of HA-formulas. We introduce the following
axiom schemata:

• Γ-DNE
˜

: ¬̃¬ϕ → ϕ̃;
• Γ-DNS

˜
: ¬̃¬ϕ → ¬¬ϕ̃;

where ϕ ∈ Γ and ¬̃¬ϕ and ϕ̃ are universal closures of ¬¬ϕ and ϕ respectively.

Proposition 6.16. Let Γ be a class of HA-formulas such that Γ is closed under
taking a universal closure. Then Γ-DNE

˜
is equivalent to Γ-DNS

˜
+ Γ˜-DNE over HA.

Proof. It is trivial that Γ-DNE
˜

implies Γ-DNS
˜

and also Γ˜-DNE. We show
HA + Γ-DNS

˜
+ Γ˜-DNE 
 Γ-DNE

˜
. Letϕ ∈ Γ. By Γ-DNS

˜
, ¬̃¬ϕ implies¬¬ϕ̃. Since

ϕ̃ is now in Γ, by Γ˜-DNE, ¬¬ϕ̃ implies ϕ̃. Thus we have HA + Γ-DNS
˜

+ Γ˜-DNE 

¬̃¬ϕ → ϕ̃. �

Lemma 6.17. LetT be a theory containingHA and satisfying the deduction theorem,
and X be a set of HA-sentences in Qk . If T + X proves Σk˜-LEM and T + X is
closed under EΠk-DNE-R with assumptions of sentences in Πk : T + X 
 � → ¬¬ϕ
implies T + X 
 � → ϕ for all � ∈ Πk˜ and ϕ ∈ EΠk , then PA + X is

(
Σk˜ ∨ EΠk˜

)
-

conservative over T + X .

Proof. Letϕ ∈ Σk˜ and� ∈ EΠk˜ . Assume PA + X 
 ϕ ∨ �. SinceT satisfies the

deduction theorem andϕ⊥ ∈ Πk˜ , by our second assumption, we have thatT + X +
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ϕ⊥ is closed under EΠk-DNE-R. Since ϕ⊥ ∈ Qk , by Theorem 5.16, we have that
PA + X + ϕ⊥ is EΠk-conservative over T + X + ϕ⊥. Since PA + X + ϕ⊥ 
 �, we
have T + X + ϕ⊥ 
 �, and hence,

T + X 
 ϕ⊥ → � (3)

by the deduction theorem. In addition, by our second assumption and Theorem 5.16,
we have that T + X is closed under EΠk-CD-R, and hence, T + X 
 Σk–1-LEM
by Lemma 5.7. Then, by Remark 5.3, we have T + X 
 ¬ϕ → ϕ⊥, and hence,
T + X 
 ¬ϕ → � by (3). On the other hand, by our first assumption, we have
T + X 
 ϕ ∨ ¬ϕ. Then T + X 
 ϕ ∨ � follows. �

Theorem 6.18. LetT be semi-classical arithmetic satisfying the deduction theorem
and X be a set of HA-sentences in Qk . Then the following are pairwise equivalent:

1. PA + X is Fk˜-conservative over T + X ;
2. T + X proves Fk˜-LEM and Uk-DNS

˜
;

3. T + X proves Σk˜-LEM and Uk-DNE
˜

;
4. T + X proves Σk˜-LEM and EΠk-DNE

˜
.

Proof. (1 → 2): Let ϕ ∈ Fk˜. Then ϕ ∨ ¬ϕ ∈ Fk˜. Since PA 
 ϕ ∨ ¬ϕ, we have
T + X 
 ϕ ∨ ¬ϕ by (1). Let� ∈ Uk . Then ¬̃¬� → ¬¬�̃ ∈ Fk˜. SincePA 
 ¬̃¬� →
¬¬�̃, we have T + X 
 ¬̃¬� → ¬¬�̃ by (1).

(2 → 3): It suffices to show Uk-DNE
˜

by using Fk˜-LEM and Uk-DNS
˜

. Since
Uk˜ ⊆ Fk˜ and Uk˜ -LEM implies Uk˜ -DNE, by Proposition 6.16, we are done.

(3 → 4): Trivial.
(4 → 1): By Theorem 6.14 and Lemma 6.17, it suffices for (1) to show that

T + X is closed under EΠk-DNE-R with assumptions of Πk sentences. Let� ∈ Πk˜andϕ ∈ EΠk . AssumeT + X 
 � → ¬¬ϕ. ThenT + X + � 
 ¬̃¬ϕ. SinceT + X
proves EΠk-DNE

˜
now, we have T + X + � 
 ϕ̃, and hence, T + X + � 
 ϕ. Since

T satisfies the deduction theorem, T + X 
 � → ϕ follows. �

Remark 6.19. Uk-DNS
˜

in Theorem 6.18.(2) is equivalent over HA to the closed
fragment of Uk-DNS:

¬¬∀xϕ → ∀x¬¬ϕ,

where ϕ ∈ Uk such that FV (ϕ) = {x}.

In the following, we show that Fk˜-LEM and Uk-DNS
˜

in Theorem 6.18.(2) are
independent over HA.

Proposition 6.20. HA + Γ˜-LEM � (Π1 ∨ Π1)-DNS
˜

for any class Γ of HA-
formulas.

Proof. Suppose HA + Γ˜-LEM 
 (Π1 ∨ Π1)-DNS
˜

. As in the proof of Propo-
sition 5.10, let φ(x) ∈ Π1 ∨ Π1 be formula (2). Since HA 
 ∀x¬¬φ(x), we have
HA + Γ˜-LEM 
 ¬¬∀xΨ(x). Since the double negation of each instance of Γ˜-LEM
is provable in HA, by (the proof of) [7, Lemma 4.1], we have HA 
 ¬¬∀xφ(x). This
is a contradiction as shown in the proof of Proposition 5.10. �
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Proposition 6.21. HA + DNS � Σ1˜ -LEM where DNS is the axiom scheme of the
double-negation-shift ∀x(∀y¬¬ϕ(x, y) → ¬¬∀yϕ(x, y)).

Proof. Let ϕ be a sentence in Π1 such that PA � ϕ and PA � ¬ϕ (e.g., the
Gödel sentence for Gödel’s first incompleteness theorem). Since each instance
of DNS is intuitionistically equivalent to a negated sentence (cf. [7, Remark
2.8]), by [13, Theorem 3.1.4 and Lemma 3.1.6], we have that HA + DNS has the
disjunction property. Suppose HA + DNS 
 ϕ⊥ ∨ ¬ϕ⊥ (where ϕ⊥ ∈ Σ1˜ ). Then,
by the disjunction property, we have HA + DNS 
 ϕ⊥ or HA + DNS 
 ¬ϕ⊥, and
hence, PA 
 ¬ϕ or PA 
 ϕ. This is a contradiction. �

Remark 6.22. By using the disjunction property of HA + DNS as in the proof of
Proposition 6.21, one can extend Proposition 5.10 to that PA is not (Π1 ∨ Π1)-
conservative over HA + DNS: Suppose that PA is (Π1 ∨ Π1)-conservative over
HA + DNS. Then, by (the proof of) Theorem 5.19, HA + DNS is closed under
Σ1-DML⊥-R. Let ϕ and � be sentences in Σ1 such that HA proves

ϕ ↔ ∃x
(
Pf

(
x, �ϕ⊥�

)
∧ ∀y ≤ x¬Pf

(
y, ��⊥�

))
and

� ↔ ∃y
(
Pf

(
y, ��⊥�

)
∧ ∀x < y¬Pf

(
x, �ϕ⊥�

))
,

where Pf (z, ���) denotes a proof predicate asserting that z is a code of the proof
� in HA + DNS (cf. [2, Chapter 2]). Since HA 
 ¬(ϕ ∧ �), by using Σ1-DML⊥-R,
we have HA + DNS 
 ϕ⊥ ∨ �⊥. Since HA + DNS has the disjunction property, we
have that HA + DNS 
 ϕ⊥ or HA + DNS 
 �⊥. However, in both cases, we have a
contradiction by our choice of ϕ and �.

Next, we show that Uk-DNE
˜

, EΠk-DNE
˜

in Theorem 6.18 and the rule in
Lemma 6.17 are pairwise equivalent.

Proposition 6.23. Let T be semi-classical arithmetic satisfying the deduction
theorem and X be a set of HA-sentences in Qk . Then the following are pairwise
equivalent:

1. T + X 
 Uk-DNE
˜

;
2. T + X 
 EΠk-DNE

˜
;

3. T + X is closed under EΠk-DNE-R with assumptions of sentences in Πk ;
4. For any � ∈ Πk˜ , PA + X + � is Uk-conservative over T + X + �;
5. T + X is closed under Uk-DNE-R with assumptions of sentences in Uk ;
6. T + X is closed under Uk-DNE-R with assumptions of any sentences.

Proof. The implications (1 → 2) and (6 → 5) are trivial.
(2 → 3): By the proof of (4 → 1) in Theorem 6.18.
(3 → 4): Fix � ∈ Πk˜ . Let ϕ ∈ Uk . Assume PA + X + � 
 ϕ. Since X ∪ {�} ⊆ Qk ,
by Theorem 5.16, we have T + X + � 
 ϕ.
(4 → 5): Assume T + X 
 � → ¬¬ϕ where � ∈ Uk˜ and ϕ ∈ Uk . By Corollary
6.6.(1), there exists �′ ∈ Σk˜ such that HA + Σk–1-LEM 
 �′ → ¬� (cf. Remark

3.10) andPA 
 ¬� → �′. Let�′′ :≡ (�′)⊥. By Remark 5.3, we have�′′ ∈ Πk˜ ,HA +
Σk–1-LEM 
 ¬¬� → �′′ and PA 
 �′′ → �. Then we have now PA + X + �′′ 
 ϕ.
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By our assumption, T + X + �′′ 
 ϕ follows. Since T satisfies the deduction
theorem, we haveT + X 
 �′′ → ϕ. On the other hand, by (the proof of) Lemma 5.5
and our assumption, we have T + X 
 Σk–1-LEM. Then T + X 
 � → ϕ follows.
(5 → 1): Let ϕ ∈ Uk . Note that ¬̃¬ϕ ∈ Uk˜ . Since T + X + ¬̃¬ϕ 
 ¬¬ϕ, by the
deduction theorem, we have T + X 
 ¬̃¬ϕ → ¬¬ϕ. By our assumption, we have
T + X 
 ¬̃¬ϕ → ϕ, and hence, T + X 
 ¬̃¬ϕ → ϕ̃.
(1 → 6): Assume T + X 
 � → ¬¬ϕ where � is a sentence and ϕ ∈ Uk . Then
we have T + X + � 
 ¬̃¬ϕ. By our assumption, we have T + X + � 
 ϕ̃, and
hence, T + X + � 
 ϕ. Since T satisfies the deduction theorem, T + X 
 � → ϕ
follows. �

Corollary 6.24. Let X be a set of HA-sentences in Qk . Then PA + X is Uk-
conservative over HA + X + Uk-DNE

˜
.

§7. Interrelations between conservation theorems and logical principles. The Ek+1
˜

-
conservativity implies both of Σk+1˜ -conservativity and Fk˜-conservativity. In what
follows, we investigate the relation among them.

Proposition 7.1. LetT be semi-classical arithmetic and X be a set ofHA-sentences.
If PA + X is Σk+1˜ -conservative over T + X and T + X proves (Πk ∨ Πk)-DNE, then
PA + X is Ek+1

˜

-conservative over T + X .

Proof. By Theorem 6.7, it suffices to show EΣk+1

˜

-conservativity instead of
the Ek+1

˜

-conservativity. Let ϕ :≡ ∃x1, ... , xn � ∈ EΣk+1

˜

with � ∈ EΠk . Assume

PA + X 
 ϕ. By Theorem 3.9.(2), there exists �′ ∈ Πk such that FV (�) = FV (�′)
andHA + (Πk ∨ Πk)-DNE 
 �′ ↔ �. Now we havePA + X 
 ∃x1, ... , xn �

′. Since
∃x1, ... , xn �

′ ∈ Σk+1˜ , by our first assumption, we have that T + X 
 ∃x1, ... , xn �
′.

By our second assumption, T + X 
 ϕ follows. �
Proposition 7.2. Let T be a theory containing HA. If PA is Σk+1˜ -conservative

over T , then T proves Σk˜-LEM and also Σk–2-LEM.

Proof. Assume that PA is Σk+1˜ -conservative overT . Then PA is Πk-conservative

over T (cf. Proposition 6.1), and hence, T proves Σk–2-LEM by (the proof of)
Theorem 5.9. Letϕ ∈ Σk˜. Thenϕ⊥ ∈ Πk˜ . Since Σk˜ and Πk˜ can be seen as sub-classes
of Σk+1˜ and Σk+1˜ is closed under ∨ (in the sense of [7, Lemma 4.4]), one may assume

ϕ ∨ ϕ⊥ ∈ Σk+1˜ . Since PA 
 ϕ ∨ ϕ⊥, by our assumption, we have T 
 ϕ ∨ ϕ⊥, and
hence, T 
 ϕ ∨ ¬ϕ. �

Corollary 7.3. Let T be semi-classical arithmetic satisfying the deduction
theorem and X be a set of HA-sentences in Qk . If PA + X is Σk+1˜ -conservative over
T + X and T proves Uk-DNE

˜
, then PA + X is Fk˜-conservative over T + X .

Proof. Immediate by Theorem 6.18 and Proposition 7.2. �
Remark 7.4. By using Theorem 3.9.(2), one can show that (Πk ∨ Πk)-DNE

implies Uk-DNE
˜

in a straightforward way. On the other hand, Uk-DNE
˜

implies
the Uk-conservativity by Corollary 6.24. In contrast, (Πk ∨ Πk)-DNE does not
imply Fk˜-conservativity since the latter is characterized by Σk˜-LEM + Uk-DNE

˜(cf. Theorem 6.18) and (Πk ∨ Πk)-DNE does not imply Σk˜-LEM (see [5]).
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Σk–1-LEM Πk+1-CONS Σk-CONS Ek-CONS Fk–1-CONS

(Πk ∨ Πk)-CONS

(Πk ∨ Πk)-DNE
˜

Uk-CONS

Uk-DNE
˜

(Πk ∨ Πk)-DNE + Σk˜-LEM

(Πk ∨ Πk)-DNE

Fk˜-CONS Uk-DNE
˜

+ Σk˜-LEM

Uk-DNE
˜

& Σk+1
˜

-CONS

Ek+1
˜

-CONS

(Πk ∨ Πk)-DNE & Σk+1
˜

-CONS

Σk-LEM Πk+2-CONS Σk+1-CONS Ek+1-CONS Fk-CONS

Figure 1. Conservation theorems in the arithmetical hierarchy of logical principles.

Remark 7.5. It is straightforward to see that if a theory T containing HA proves
(Πk ∨ Πk)-DNE

˜
, thenT is closed under (Πk ∨ Πk)-DNE-R. Thus (Πk ∨ Πk)-DNE

˜implies the (Πk ∨ Πk)-conservativity (cf. Theorem 5.19). On the other hand,
(Πk ∨ Πk)-DNE

˜
is a fragment of Uk-DNE

˜
.

Proposition 7.6. Let X be a set of HA-sentences in Qk . Then PA + X is Σk+1
˜

-
conservative over HA + X + Σk+1

˜

-DNE + Σk–1-LEM.

Proof. Since HA + X + Σk+1
˜

-DNE + Σk–1-LEM contains Σk–1-LEM and is
closed under Σk+1

˜

-DNE-R, by Proposition 6.3, we are done. �

Remark 7.7. Propositions 7.6 and 7.2 reveal that the Σk+1
˜

-conservativity lies
between Σk+1

˜

-LEM + Σk–1-LEM and Σk˜-LEM + Σk–2-LEM. This seems to be
another view of the status of the Σk+1

˜

-conservativity.

Our results on the relation between conservation theorems and logical principles
are summarized in Figure 1 where Γ-CONS denotes the Γ-conservativity for class
Γ of HA-formulas. Figure 1 reveals that the logical principle Uk-DNE

˜
, which has

been first studied in the current paper (cf. Definition 6.15), is closely related to
the conservation theorems. For the comprehensive information on the arithmetical
hierarchy of logical principles including Σk-LEM and (Πk ∨ Πk)-DNE, we refer the
reader to [6]. For the underivability, we know only that Σk–1-LEM does not imply
(Πk ∨ Πk)-CONS (cf. Proposition 5.10) and that (Πk ∨ Πk)-DNE does not imply
Fk˜-CONS (cf. Remark 7.4). In addition, for Γ ∈ {Σk,Πk,Πk ∨ Πk,Ek,Fk,Uk,Σk˜},
we have characterized Γ-CONS by some fragment of the double-negation-
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elimination rule DNE-R. On the other hand, we have not achieved that for Ek˜and Fk˜.

§8. Appendix: A relativized soundness theorem of the Friedman A-translation for
HA + Σk-LEM. We provide a detailed proof of a relativized soundness theorem of
the Friedman A-translation [4] for HA + Σk-LEM (see Theorem 8.3). In fact, this
result was suggested already in [8, Section 4.4] and the detailed proof for k = 1
can be found in [12, Lemma 3.1]. The authors, however, couldn’t find the proof
for arbitrary natural number k anywhere, which is the reason why we present the
detailed proof here. For the relativized soundness theorem, we use a variant of
Lemma 3.5 with respect to the Friedman A-translation.

We first recall the definition of the Friedman A-translation. In this section, we use
symbol ∗ for place holder instead of $ in the previous sections.

Definition 8.1 (A-translation [4]). For a HA-formula ϕ, we define ϕ∗ as a
formula obtained from ϕ by replacing all the prime formulas ϕp in ϕ with ϕp ∨ ∗
(of course, ϕ∗ is officially defined by induction on the logical structure of ϕ). In
particular,⊥∗:≡ (⊥ ∨∗), which is equivalent to ∗ overHA∗ (HA in the language with
a place holder ∗). In what follows,¬∗ ϕ denotesϕ → ∗. Note that FV (ϕ) = FV (ϕ∗)
for all HA-formulas ϕ.

The following is a variant of Lemma 3.5 with respect to the Friedman
A-translation.

Lemma 8.2. For a formula ϕ of HA, the following hold:
1. If ϕ ∈ Πk , HA

∗ + Σk-LEM 
 ϕ∗ ↔ ϕ ∨ ∗;
2. If ϕ ∈ Σk , HA

∗ + Σk–1-LEM 
 ϕ∗ ↔ ϕ ∨ ∗.
Proof. By simultaneous induction on k. The base case is verified by a routine

inspection. Assume items 1 and 2 for k to show those for k + 1. The first item for
k + 1 is shown by using the second item for k as in the proof of Lemma 3.5. For
the second item, let ϕ :≡ ∃xϕ1 where ϕ1 ∈ Πk . Then we have that HA + Σk-LEM
proves

ϕ∗ ≡ ∃x (ϕ1
∗) ←→

[I.H.] Σk -LEM
∃x(ϕ1 ∨ ∗) ←→ ϕ ∨ ∗. �

Theorem 8.3. If HA + Σk-LEM 
 ϕ, then HA∗ + Σk-LEM 
 ϕ∗.

Proof. By induction on the length of the proof of ϕ in HA + Σk-LEM. By
(the proof of) [4, Lemma 2], it suffices to show HA∗ + Σk-LEM 
 ϕ∗ for each
instance ϕ of Σk-LEM. Fix ϕ :≡ ∃xϕ1 ∨ ¬∃xϕ1 with ϕ1 ∈ Πk–1. By Lemma 8.2.(1),
HA∗ + Σk–1-LEM proves

ϕ∗ ←→ ∃x (ϕ1
∗) ∨ ¬∗∃x (ϕ1

∗)
←→

Σk–1-LEM
∃x (ϕ1 ∨ ∗) ∨ ¬∗∃x (ϕ1 ∨ ∗)

←→ ∃x (ϕ1 ∨ ∗) ∨ ¬∗∃xϕ1,

which is derived from ∃xϕ1 ∨ ¬∃xϕ1 overHA∗. ThusHA∗ + Σk-LEM provesϕ∗. �
By the relativized soundness theorem of the Friedman A-translation combined

with the usual negative translation, one can show Proposition 1.1 as follows:
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Proof Sketch of Proposition 1.1. Assume PA 
 ∀x∃yϕ where ϕ ∈ Πk . By
using Kuroda’s negative translation (cf. [7, Proposition 6.4]), we have HA 

∀x¬¬∃yϕN where ϕN is defined as in [7, Definition 6.1]. Since HA + Σk–1-LEM
proves Σk–1-DNE, we have HA + Σk–1-LEM 
 ¬¬∃yϕ (cf. [7, Lemma 6.5(2)]). By
Theorem 8.3, we haveHA∗ + Σk–1-LEM 
 ¬∗¬∗∃yϕ∗, and hence,HA∗ + Σk-LEM 

¬∗¬∗∃yϕ by Lemma 8.2.(1). By substituting ∗ with ∃yϕ (cf. Lemma 3.16), we have
that HA + Σk-LEM proves ∃yϕ, and hence, ∀x∃yϕ. �

The proof of [14, Theorem 3.5.5] (due to Visser) shows that any theory T
which contains HA and is sound for the Friedman A-translation is closed under
the independence-of-premise rule:

T 
 ¬ϕ → ∃x� implies T 
 ∃x (¬ϕ → �) ,

where x /∈ FV (¬ϕ). Then, by using Theorem 8.3, we also have the following:

Theorem 8.4. HA + Σk-LEM is closed under the independence-of-premise rule.
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