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Abstract
A network modelling approach to educational mapping leads to a scalable computational
model that supports adaptive learning, intelligent tutors, intelligent teaching assistants, and
data-driven continuous improvement. Current educationalmapping processes are generally
applied at a level of resolution that is too coarse to support adaptive learning and learning
analytics systems at scale. This paper proposes a network modelling approach to structure
extremely fine-grained statements of learning ability calledMicro-outcomes, and a method
to design sensors for inferring a learner’s knowledge state. These sensors take the form of
high-resolution assessments and trackers that collect digital analytics. The sensors are linked
to Micro-outcomes as part of the network model, enabling inference and pathway analysis.
One example demonstrates the modelling approach applied to two community college
subjects in College Algebra and Introductory Accounting. Application examples showcase
how this modelling approach provides the design foundation for an intelligent tutoring
system and intelligent teaching assistant system deployed at Arapahoe Community College
and Quinsigamond Community College. A second example demonstrates the modelling
approach deployed in an undergraduate aerospace engineering subject at theMassachusetts
Institute of Technology to support course planning and teaching improvement.

Keywords: educational mapping, network modeling, educational analytics, adaptive
learning, intelligent tutor, intelligent teaching assistant

1. Introduction
Maps for education are numerous and diverse at many levels of scale. To give
examples: there are degree maps that showcase paths through different majors
(Aleven, McLaren, & Koedinger 2010), curriculum maps that trace subject
sequences through a programme’s offerings (Arafeh 2016), concept maps that
show related topics for learners (Fiorella & Mayer 2018), and outcomes maps that
support accreditation (Willcox & Huang 2017) and learning path generation
(Seering, Willcox, & Huang 2015; Miller, Willcox, & Huang 2016; Yang, Li, &
Lau 2017). Scalable educational mapping via network modelling involves identi-
fying entities and relationships amongst these entities, and representing them
mathematically as a graph Willcox and Huang (2017). In the computer science
literature, this is referred to as a knowledge graph (Chen, Jia, & Xiang 2020).When
educational maps are used for analytics and assessment, it is vital that their
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constituent entities and relationships are of sufficient resolution to pinpoint a
learner’s status and to move the learner forward. It is also vital that these maps
encompass notions of sensing (i.e., inferring a learner’s state) and feedback
(i.e., influencing a learner’s future trajectory). This paper develops a modelling
framework for architecting and designing such a fine-grained sensor-enabled
educational map, and illustrates its potential use as a foundational model for an
intelligent tutor and intelligent teacher assistant.

In contrast to a traditional table-based format, the network model explicitly
represents relationships as first-class objects instead of as derived properties of
other objects. This is important because relationships among elements of the
model are essential to educational analytics (e.g., in pathway analyses, in under-
standing how content relates to learning objectives, etc.) and so the network model
yields a flexible representation that enables visualisation and analysis of educa-
tional data at scale. Network modelling approaches are starting to see broader use
across design science in other applications where relationships are key to inference,
analysis and design. For example, a network mapping of technology constructed
from patent data has been used to infer properties of technologies and of inventor
behaviour (Alstott et al. 2017) and its effect on concept generation (Song, Srini-
vasan, & Luo 2017). Use cases of the technologymap include guiding technological
change, exploration of design directions for inventors (Alstott et al. 2017), iden-
tifying design innovation directions in the technology space (Luo, Yan, & Wood
2017) and visualising and analysing the expansion trajectories of the design
knowledge base of a given technology domain (Song et al. 2019). Another example
is mapping of topics from multiple domains to discover creative sources of design
inspiration (Ahmed & Fuge 2018).

In mapping an educational subject, entities can range from topical knowledge
units to learning outcomes. Learning outcomes are statements of what a learner
should be able to do; however, they are typically at a granularity level that is too coarse
to support intelligent tutors that employ data-driven adaptive learning. Coarse-
grained learning material may contain multiple subtopics, learning activities and
learning objectives, which can lead to unclear meaning in connections between
learning objectives (Pardos et al. 2006; Ellis 2013; Thompson & Yonekura 2018).
In contrast, adaptive learning systems and learning analytics require fine-grained
learning objects (Battou et al. 2011), since in order for adaptive learning systems to
correctly assess a learner’s state, the knowledge units usedmust be granular (Collins,
Greer,&Huang2005; Reimann,Kickmeier-Rust,&Albert 2006;Aleven,McLaren,&
Koedinger 2010; Essa 2016). In this paper, we introduce the notion of fine-grained
learning entities that we call Micro-outcomes. Table 1 shows an example of a typical
subject-level learning outcome compared to our more granularMicro-outcomes. As
Micro-outcomes are statements of a fine-grained skill a learner should be able to do,
they will provide an effective way to infer and respond to a learner’s state. Amongst
Micro-outcomes, there are prerequisite relationships, that is, certain skills build on
others. The idea of analysing a knowledge domain into constituent skills and
recognising that there are prerequisite skills has long been a key idea in the concept
of mastery learning (Corbett & Anderson 1994). Cavanagh et al. (2020) similarly
break one learning objective into multiple more granular pieces that they call
‘learning bits’ in order to design adaptive learning. Here, we use network models
to structure the knowledge domain and represent the prerequisite and organisational
relationships amongst Micro-outcomes.
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A second challenge addressed in this paper is the need for sensors that
provide observational data that support inference of a learner’s state. What is a
sensor in the educational setting? Just as physical sensor provides (often indirect
and noisy) information about a physical or natural system state, an educational
sensor provides information about a learner’s state. Educational sensors may
take the form of assessment questions or digital analytics that track a learner’s or
instructor’s actions. Sensors may provide information at the level of an entire
course, particularly when the sensor relates to a summative assessment (e.g., a
final exam). Sensors may also be high resolution, providing information at a
more fine-grained level, as is often the case for formative assessments (e.g., an
in-class concept question poll). However, grain size is a known issue in assess-
ment (Popham 2006), and it is recognised that fine-grained statements of
learning goals tied to assessments are essential to assessment design (Falkner,
Vivian, & Falkner 2014; Yang, Li, & Lau 2017; Marion 2018; Shepard, Penuel, &
Pellegrino 2018). Especially for formative use cases, it is critical that assessments
should be of high resolution, ideally matching the granularity of the Micro-
outcome being tested, so that precise data analytics can be collected and accurate
feedback can be generated for the learner (Reimann, Kickmeier-Rust, & Albert
2006; Ellis 2013; Essa 2016).

In this paper, we introduce a method to architect and design a network
model using our high-granularity Micro-outcomes together with a sensor layer
for inferring a learner’s state using high-granularity assessments and digital
analytics. The next section presents the theoretical framework: we begin by
motivating and architecting the network model, and explain how we design
Micro-outcomes. We then introduce the approach of a high-granularity assess-
ment and/or digital tracking analytics acting as a sensor, and show how these
measurements link to the network model. We apply the process of designing
Micro-outcomes and assessments to a specific instance of modelling Community
College subjects in College Algebra and Introductory Accounting, and describe
the implementation of the resulting network model and sensors applied to an
intelligent tutoring system and intelligent teaching assistant system in commu-
nity college classrooms. The paper presents a second example of the approach
applied to develop a network model and digital analytics sensor layer for an
aerospace engineering undergraduate subject at the Massachusetts Institute of
Technology.

Table 1. A typical learning outcome contrasted with high-granularity Micro-
outcomes

Typical learning outcome

Solve algebraic equations and inequalities

Micro-outcomes

Divide both sides of an inequality by a positive number

Break absolute value into two expressions

Determine if a compound inequality is a union or intersection
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2. Educational mapping via a networkmodel and sensor
layer

This section first presents the network model that defines and connects fine-
grained Micro-outcomes. We then describe how we architect and design a sensor
layer on top of the base network model using high-resolution assessments and
digital analytics.

2.1. The network model

A network model is a set of entities and relationships arranged in a graph structure
in which entities are represented as vertices and relationships are represented as
edges. Our previous work proposed an approach for mapping educational data
with network models to obtain powerful analytical capabilities that come from
making explicit the connections amongst entities in an educational system
(Willcox & Huang 2017). Examples of entities include: an educational institution,
a department, a subject, a learning module, a learning outcome, a concept, etc.

In the network model developed in this paper, we define the notion of a Micro-
outcome entity. We name a Micro-outcome for its granularity – it is a statement
describing an extremely fine-grained learning outcome. Learning outcomesmay be
familiar to readers in education as statements of competencies; however, in this
case, it is important to emphasise that Micro-outcomes are unlike common
learning outcomes in this respect – Micro-outcomes are much more fine-grained
(as the example in Table 1 shows). The high granularity of aMicro-outcome in our
model makes themodel powerful enough to fuel many use cases, such as intelligent
tutoring applications that pinpoint a user’s difficulties, recommendation engines
that direct students to learning resources, or evaluation tools. For example, one
may construct the Micro-outcomes as elemental knowledge points that are not
further decomposable in the learning process, which paves the way to making a
learner’s state more observable. We discuss this further in the next section, where
we introduce the notion of a high-resolution sensor layer overlaying our fine-
grained network.

The networkmodel also represents the relationships betweenMicro-outcomes,
as well as the relationships between Micro-outcomes and other entities. Between
two Micro-outcomes there may be a has-prerequisite-of relationship that points
from oneMicro-outcome to the other. This relationship represents the notion that
achieving one Micro-outcome is a prerequisite to achieving the next Micro-
outcome. While the notion of prerequisites is commonly used with general
competencies, explicitly highlighting prerequisite relationships amongst such
granular Micro-outcomes is an enabler for designing sensing and adaptive feed-
back strategies. Between two Micro-outcomes there may instead be an undirected
is-related-to relationship that indicates that the Micro-outcomes are related (e.g.,
they relate to similar skills), but not necessarily in a prerequisite manner.

The other entities in ourmodel are Content,Module and Subject. AModule is a
grouping of similar Micro-outcomes. This grouping is formally represented by a
has-parent-of relationship pointing from aMicro-outcome to a Module. Similarly,
a Subject is a grouping of Modules, and this grouping is also formally represented
by a has-parent-of relationship pointing from a Module to the Subject entity.
Content is related to the Micro-outcomes it addresses through addresses
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relationships. Figure 1 depicts the schematic of our network model with Subject,
Module, Content andMicro-outcome entities, and the relationships amongst these
entities.

2.2. Architecture and design of the sensor layer

Drawing inspiration from networked systems, the sensor layer overlays the base
network. The purpose of the sensor layer is to sense a learner’s status on each node
in the network as the learner traverses through the network. The sensor layer can be
composed of Assessments, where an Assessment is a question designed to infer the
learner’s state relative to the Micro-outcomes targeted by that Assessment. The
sensor layer can also include Trackers, which collect digital analytics about a
learner’s or instructor’s actions (e.g., clickstream, page view counts, time on a
particular screen, etc.). Figure 2 illustrates the notion of anAssessment or a Tracker
serving as a sensor for a Micro-outcome.

Trackers are code implementations designed to collect interaction information
on a learner’s actions, such as click interactions and time spent on a page. In the
network model depicted in Figure 2, a Tracker measures actions executed on
Content. Inferences about learner state leverage the underlying network model,
using the addresses relationships that connect Content to Micro-outcomes.

Assessments can bemultiple-choice or free-response, word-based or graphical,
written or verbal. Because Assessments need to gather information on a learner’s
achievement of a Micro-outcome, an Assessment must have the same level of
(high) granularity as aMicro-outcome.When a learner responds to anAssessment,
the learner’s response is collected as sensor data; the sensor data contains infor-
mation on the learner’s capability of the targeted Micro-outcome, and crucially,
why the learner provided his/her response. To assess the ‘why’ of the response, the
base networkmodel comes into play: recall that Micro-outcomes have prerequisite
relationships to each other. Therefore, a gap of understanding in a prerequisite
Micro-outcome is a possible reason why the learner answered incorrectly. The

Figure 1. Schematic showing nodes (entities) and edges (relationships) in base
network model.
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sensors must be designed using the base network model to enable inference of
which prerequisite Micro-outcome underlies a learner’s gap. This takes the form,
for example, of distractor questions that target a particular prerequisite gap. Given
the sensor data (learner’s response), the inference of the learner’s state can be based
on a manually hard-coded rule, for example, Response X always maps to (prereq-
uisite) Micro-outcome A; it can be algorithmically-determined, for example, an
artificial intelligence system can classify the response as belonging to one of the
prerequisite Micro-outcomes; it can be binary, for example, belonging to Micro-
outcome A or not; or it can be probabilistic, for example, belonging to Micro-
outcomeAwith probability p.The existence of the base networkmodel enables this
determination. It also provides themodel to determine the appropriate feedback to
guide a learner through the network.

The sensor data collected provide input data to infer the learner’s state relative
to each Micro-outcome targeted by the Assessments. Here, another inference can
be made to evaluate the learner’s achievement of the Micro-outcome. The deter-
mination can be binary, that is, ‘Achieved or Not Achieved’; it can be categorical,
for example, ‘Strongly Achieved, Moderately Achieved, Not Achieved’; it can be
probabilistic, for example, ‘Achievedwith probability p’; or it can bemixtures of the
above. Furthermore, the inference can be made with a long-memory process, in
which a student’s repeated attempts at a given Micro-outcome are tracked and
remembered in the computation, or the inference can be made independently of
previous historical data. Crucially, the base network layer joined with the sensor
layer enables this inference of student state to bemade at a high level of granularity.
In the following sections, we demonstrate how this provides a foundation for an
intelligent teacher assistant and for analytics that drive teaching improvements.

3. An intelligent teacher assistant for community college
courses in College Algebra and Introductory
Accounting

This section presents the development of two specific instances of the network
model and sensor layer in the mapping of community college subjects. These
mappings provide a foundation for an intelligent teacher assistant system used in

Figure 2. Assessments (left) and Trackers (right) act as sensors for inferring learner state relative to a Micro-
outcome.
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the Fly-by-Wire project. Fly-by-Wire was deployed at two community colleges
(Arapahoe Community College in Colorado and Quinsigamond Community
College in Massachusetts) over a period of 3 years, involving 8 faculty members
and 189 students across two subjects, College Algebra and Introductory Account-
ing. It is beyond the scope of this paper to detail the Fly-by-Wire project; here, we
focus on the development of the network model and sensors, and how they form
the basis of the intelligent feedback system.

3.1. Constructing the base network map

We map the subjects of College Algebra and Introductory Accounting as taught
statewide in the Colorado Community College System. Our network model has
three types of entities: Subject, Module andMicro-outcome. Micro-outcomes were
extracted by working backwards from high-level outcomes standardised state-
wide. For instance, the state of Colorado publishes state-wide outcomes in a
syllabus format that specify what a community college graduate must be able to
do for each learning module (Algebra, Geometry, etc.). For each high-level
outcome, instructors and other subject matter experts worked backwards to arrive
at prerequisite outcomes. Learning references such as student textbooks provided
some guidance in this process and also provided some validation with respect to
prerequisite order by listing more fine-grained outcomes at the beginning of each
chapter. Figure 3 shows the College Algebra Module ‘Inverse Functions’ and some
of its Micro-outcomes. After applying the mapping process, we obtain network
models with the numbers of entities and relationships shown in Table 2. For this
example, the graphs were constructed manually by a team of instructors and
subject matter experts working together.

3.2. Architecting and designing the sensor layer

The next step is to design the Assessments constituting the sensor layer. To
construct an Assessment, we use our network map: first, we choose a node of type
Micro-outcome that is one of the most synthesising Micro-outcomes, that is, it
draws from a long chain of prerequisites. Formally, this is done by computing the
topological sort of the graph and identifying the nodes with the highest rank
induced by outgoing edges of type has-prerequisite-of.

Starting with the most synthesising Micro-outcome (with highest rank), we
create a multiple-choice question designed to evaluate the learner’s mastery of the
Micro-outcome.We chose themultiple-choice format since students in the College
Algebra course are accustomed to multiple-choice questions, but as described
earlier, our framework generalises to other types of questions. A multiple-choice
question is composed of the question wording itself and the set of answer choice
options. Within the set of choice options, there is one correct answer, and at least
one incorrect answer. Designing the incorrect answers is key; for this we use our
base network map. Using the network map, we identify the prerequisite Micro-
outcomes that lead to the targeted Micro-outcome. Formally, we follow the has-
prerequisite-of relationships to one hop away from the starting node. Given a
particular prerequisite, we construct an incorrect answer that might result if the
learner has not met that prerequisite. We do this for all prerequisites. Recall that
there can bemany differentmethods of determiningwhy an incorrect responsewas

7/18

https://doi.org/10.1017/dsj.2021.8 Published online by Cambridge University Press

https://doi.org/10.1017/dsj.2021.8


Figure 3. The ‘Inverse Functions’ Module and some of its Micro-outcomes in College Algebra. Highlighted
outcome is again shown in Figure 5.
Note: most has-parent-of relationships to ‘Inverse Functions’ have been omitted in the figure for clarity.

Table 2. Summary dimensions of the maps and sensor layers of College Algebra and Introductory
Accounting

Entities College Algebra Introductory Accounting

Subject 1 1

Module 41 17

Micro-outcome 403 186

Relationships

has-parent-of 444 203

has-prerequisite-of 446 157

Sensors

Total number of Assessments 1091 384

Average number of Assessments per Micro-outcome 2.71 2.06
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given. In this particular instance, we deterministically assign each incorrect option
to a prerequisite Micro-outcome, however, our modelling approach is generalisa-
ble to other methods of determination. Figure 4 illustrates the schematic of a
multiple-choice Assessment with incorrect options that link to prerequisite Micro-
outcomes. A concrete example of one suchAssessment is shown in Figure 5; the top
half shows the Assessment with its incorrect options (b, c and d), and the bottom
half displays the Micro-outcomes that are linked to each incorrect option.

Figure 5. A screenshot from our technology of a multiple-choice Assessment for College Algebra with
incorrect options (b, c and d) linked to their respective Micro-outcomes.

Figure 4. Schematic showing how a multiple-choice Assessment with incorrect
options is linked to prerequisite Micro-outcomes.
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The above describes the construction of one Assessment. To construct the next
Assessment, we look to the next Micro-outcome for which to write the Assessment
by traversing the graph in a breadth-first search. This yields a collection of
Assessments in which there is at least one Assessment for every Micro-outcome.
In our implementation, teams of instructors and subject matter experts con-
structed the assignments. We referenced published and validated assessments,
such as in student textbooks and assessments already used in our target classes, and
altered the specifics of the question. (Due to copyright reasons, we could not use the
assessments exactly as they were published.) Table 2 summarises the numbers of
resulting Assessments for each Subject.

The base network map comprising all Micro-outcomes, Modules and their
relationships, as well as the sensor layer comprising all Assessments and their
linkages, can be freely accessed at the Open Ed Graph APIs website.1

3.3. Deploying an intelligent tutor and teacher assistant

This network map and sensor layer form the foundations for the Fly-by-Wire
Student App, an intelligent tutoring web and mobile application designed for
formative assessment, and the Fly-by-Wire Instructor App, an intelligent tutor-
ing and analytics system to help instructors identify and address areas of
misunderstanding.

On the FbW Student App, students were assigned between five and seven
synthesisingMicro-outcomes per homework assignment. Recall from the previous
section that a synthesising Micro-outcome is one with highest rank as computed
using the base network model. For each Micro-outcome, the app displayed an
Assessment targeting the givenMicro-outcome. Figure 6 shows an assignment that
targets the Micro-outcome ‘Determine the vertex of a parabola given its function
and axis of symmetry’. This particular Micro-outcome synthesises six prerequisite
Micro-outcomes. In the figure, the user is on the first Assessment, which corre-
sponds to the targeted Micro-outcome.

If the student answers an Assessment incorrectly, the app presents another
Assessment that addresses the Micro-outcome that is linked to the incorrect
response. In this way, the student is guided in a depth-first search through the
network; this results in the student most quickly getting to the most fundamental
Micro-outcomes (i.e., the ones with lowest rank) that are the cause of their initial
incorrect response. Note that the depth-first search corresponds to the way in
which we architect the multiple-choice assessments to have distractor questions
corresponding to upstream prerequisite Micro-outcomes. Here, we see a concrete
instance of how anAssessment functions as a sensor, in which high-resolution data
are being collected as the student interacts – the incorrect response, the time spent
on a given Assessment, and any other interaction or selections the student may
have with a given answer option. These fine-grained sensor data are possible only
because the Assessments and their linked Micro-outcomes have correspondingly
high resolution.

The Fly-by-Wire Instructor App uses the sensor data generated during student
interaction on the Student App. The Instructor App highlights Micro-outcomes
with which students had difficulty, and offers guidance for how to address these

1http://mapping.mit.edu/projects/open-ed-graph/
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areas of weakness by highlighting the directed acyclic graph (DAG) formed by
these Micro-outcomes and their prerequisites. For instance, consider the example
shown in Figure 7. The synthesising Micro-outcome that 11 of 22 students did not
achieve was ‘Find all of the zeros of a polynomial function’. The graph shown is the
full DAG of the Micro-outcome and its prerequisites, and the highlighted path
shows the prerequisite Micro-outcomes with which most students had difficulty.
Using this network map, the instructor can then address these specific Micro-
outcomes using a variety of instructional methods.

4. Fine-grained Micro-outcome map to support learning
analytics in a sophomore engineering subject

This section presents the development of a network model and sensor layer for the
sophomore class Signals and Systems as taught in the aerospace engineering
undergraduate degree programme at the Massachusetts Institute of Technology
in Fall 2017. In this example, digital analytics are the high-resolution sensors that
track learning behavior and topical flow to assist in course planning and teaching
improvement.

4.1. Constructing the base network map

The Signals and Systems subject has 36 measurable outcomes, defined by depart-
mental curriculum planning. To construct a network model, we break these mea-
surable outcomes into 195 Micro-outcomes. We group the Micro-outcomes in
25 Modules. Each Micro-outcome is addressed by a specific section (or sections) in
the lecture notes; such a section is designated as an entity of type Content. The entities
in our network model are thus Subject, Module, Micro-outcome, and Content.

Figure 6. The Fly-by-Wire Student App delivers multiple-choice questions designed
as sensors to infer student state on the network of Micro-outcomes.
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A grouping of Micro-outcomes in a Module is represented mathematically by a has-
parent-of relationship. Similarly, the grouping of Modules to form the Subject is
represented by a has-parent-of relationship. The relationship between Micro-
outcomes is represented by an undirected is-related-to relationship. The relationship
between Content and Micro-outcomes is represented by an addresses relationship.
Table 3 shows the number of entities and relationships for the Massachusetts
Institute of Technology (MIT) Signals and Systems subject. Figure 8 visualises the
Signal and Systems map with Micro-outcomes grouped into 25 Modules.2

4.2. Architecting and designing the sensor layer

The base network map in this application is implemented as a web application
for student learning. Shown in Figure 9, the web application displays clickable

Figure 7. The Fly-by-Wire Instructor App assimilates sensor data and highlights
the directed acyclic graph of the Micro-outcomes with which most students had
difficulty.

Table 3. Properties of the network model for the subject Signals and Systems as
taught in the aerospace engineering undergraduate degree programme at the
Massachusetts Institute of Technology in Fall 2017

Entities Relationships

Subject 1 has-parent-of 382

Module 25 addresses 198

Micro-outcome 195 is-related-to 137

Content 124

2The interactive map can be accessed at http://mapping.mit.edu/mit-signals-systems/map-view
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Micro-outcomes arranged byModule; a click to aMicro-outcome takes the learner
to a Content page that addresses the specific Micro-outcome. In addition to
displaying as a ‘list view’ as shown in Figure 9, the network map is also displayed
as a ‘map view’ as shown in Figure 10. This is made possible via architecting the
data backend with separation of concerns against any frontend applications.

The next step is to design the Trackers constituting the sensor layer in this
application. Trackers are code implementations designed to collect interaction
information on a learner, such that this information can be used downstream for
learning analytics and decision-making. We attach a Tracker to every piece of
Content as was shown in Figure 2, and collect the following pieces of information:
the timestamp of when the learner visits the piece of Content, the location and
device of the visit, the unique identifier of the learner, the time spent on page, click
interactions on page, and the duration of time on page. Crucially, in addition to
information collected on the current node, the Tracker also collects information on
the next node, that is, the nextMicro-outcome that the learner clicks to. This linked
structure enables pathway analysis and inference across the entire graph. Figure 11
illustrates a single pathway undertaken by a learner in a single visiting session.
Pathway analyses are valuable in helping to identify sources of student misunder-
standings as well as foundational topics that relate to a large number of other
Micro-outcomes. For example, in Figure 11, the Micro-outcome ‘Determine the
Fourier series expansion of a periodic signal’ is one that relates to many other
Micro-outcomes in the Signals and Systems subject.

While a formal assessment of the effectiveness of this deployment in the MIT
Signals and Systems class was not conducted, students were specifically asked in the
end-of-semester evaluations: What about the Signals & Systems micro-outcome
tagging and online notes website did you find to be helpful or not helpful? Student
responses were overwhelmingly positive with comments such as

Figure 8.A visualisation of the map of the subject Signals and Systems as taught in the aerospace engineering
undergraduate degree program at the Massachusetts Institute of Technology in Fall 2017.
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Figure 9. The map is used to create a web application that enables searching of Micro-outcomes, arranged by
Module and linked to Content pages.

Figure 10. The network map can also be browsed in a ‘map view’ in which nodes are
Micro-outcomes, are clickable, and bring the learner to a specific piece of Content.
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I liked the modular format that allowed you to quickly find the topic you wanted to
study.
It is so helpful!! I wish other classes had this as well. It is such an organized system to
access information that I would otherwise probably google because it is faster than
flipping through textbooks.
It broke down the material into sections, making it easy to go back and learn the
material.
Micro-outcome tagging was a good way of figuring out where I was weak in specifically
and address it.
The notes and structure of outcomes were very helpful, as I was able to separate out
each subject in the class and learn it well.

These comments, while qualitative in nature, indicate that the students appreciated
the structure brought by the network model and they used the lecture notes in
anticipated ways (e.g., for exam review and self-identifying weaknesses). Site
analytics also indicated a spike in usage around midterm and final exam times.
Finally, discussions with students indicated that they used the site extensively as a
reference during their follow-on junior-level controls class.

5. Discussion
The case studies presented here were chosen to highlight the flexibility and broad
applicability of the proposed modelling approach, as well as the practical consid-
erations of having access to instructors and instructional materials. For the
community college subjects, the network model and sensor layer formed the
foundations for an intelligent teacher assistant system to be used in real-time in
the classroom setting. In contrast, the Signal and Systems example illustrated how
the network model and sensor layer were used to underpin course planning and
teaching improvement to be used over the course of a semester. In both cases, the
combination of the network model and sensor layer enable dynamic data-driven
feedback to the instructor. Rather than wait for the end-of-semester student

Figure 11. Interaction pathway of a single student session. The student first visits the List View, clicks to two
Micro-outcomes (#1 and #2), then visits Micro-outcome #3, and finally goes back to Micro-outcome #1.
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evaluations, the instructors are able to dynamically assess student learning and the
effectiveness of learning resources, and then adjust accordingly.

For the case studies presented here, the graphs were constructed manually
using instructors’ first-hand knowledge of the subjects. The human process of
creating such a large network graph is time-consuming andmay be prone to errors
and subjectivity. An alternative is to use an automatic generation process, as has
been done in the knowledge graph literature. For example, Wang et al. (2015)
extracts concepts hierarchies from the textbooks using an optimisation approach
that considers both global and local features. Another example is the KnowEdu
system, which uses a neural sequence labeling algorithm to automatically extract
educational concepts and the relationships among them (Chen et al. 2018).
Combining our mathematical modelling approach with automated knowledge
graph extraction is an important and fruitful area of future work.

6. Conclusion
This paper has presented an approach for modelling fine-grained learning objec-
tives (Micro-outcomes), their organisational entities, and organisational and pre-
requisite relationships in a network model, and then designing a sensor layer of
high-resolution Assessments and Trackers on top of the base network map. The
resulting map is a structured graph with high-resolution Assessments that provide
high-fidelity sensing of a learner’s state on the map. The high-resolution nature of
the model enables adaptive learning systems, intelligent tutoring systems, and
other forms of learning analytics. The examples presented in this paper showcase
only two applications possible with the base network map and accompanying
sensors. Many other applications, particularly for adaptive learning systems and
learning analytics, can leverage this scalable modelling approach.

An outstanding challenge is that articulating such fine-grained statements of
learning outcomes and constructing valid assessments require domain expertise
andmuch time. However, we note that if the resulting data is stored in a technology
stack that is platform-independent and is accessible via APIs, the data are easily
maintained and can be scaled to many other applications. Our APIs3 are one
example of such a technology stack.
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