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Abstract We establish a new improvement of the classical Lp-Hardy inequality on the multidimensional
Euclidean space in the supercritical case. Recently, in [14], there has been a new kind of development
of the one-dimensional Hardy inequality. Using some radialisation techniques of functions and then
exploiting symmetric decreasing rearrangement arguments on the real line, the new multidimensional
version of the Hardy inequality is given. Some consequences are also discussed.
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1. Introduction

Nowadays, one of the most popular classical functional inequalities in the analysis is the
Hardy inequality:

∫
RN

|u(x)|p

|x|p
dx ≤

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

|∇u(x)|p dx, N < p < ∞, (1.1)

which holds for all u ∈ C∞
c (RN \{o}). This range of p is called the supercritical case of the

Hardy inequality in literature. Note that the inequality is also valid for all u ∈ C∞
c (RN ) if

N > p, that is, in the subcritical case. However, in the critical case N = p such inequality
is not possible.
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The inequality (1.1) is an essential higher dimensional extension of the one-dimensional
inequality discovered by Hardy [17]. The development of the famous Hardy inequality (in
both its discrete and continuous forms) during the period 1906–1928 has its own history

and we refer to [21]. It is well-known that the so-called Hardy constant
∣∣∣ p
N−p

∣∣∣p is sharp

and never attained (except trivial function).
Therefore, one may want to improve (1.1) by adding extra non-negative terms on its

left-hand side. Say p=2 and N > 2, one may ask about the existence of non-negative
function W ∈ L1(RN ) such that the following inequality:∫

RN
W (x)|u|2 dx+

∫
RN

|u(x)|2

|x|2
dx ≤

(
2

N − 2

)2 ∫
RN

|∇u(x)|2 dx,

holds for all u ∈ C∞
c (RN ). But the operator −∆RN − (N−2)2

4
1

|x|2 is known to be a critical

operator on RN \ {o} (see [10]) and an improvement of such quadratic form inequality is
not possible. Also, see [11] for the optimal Lp Hardy-type inequalities. However, there is a
huge set of references of works about improved Hardy inequalities on bounded Euclidean
domains after the seminal works of Brezis and Marcus [6] and Brezis and Vázquez [7].
See also [1, 2, 31] and references therein.
The Hardy inequality (1.1) plays an important role in several branches of mathematics

such as partial differential equations, spectral theory, geometry, functional analysis, etc.
Improvements of the Hardy inequality on bounded Euclidean domains containing ori-
gin and improvements of such inequality on Riemannian manifolds have attracted great
attention and were investigated by many authors. Without any claim of completeness,
we refer an interested reader to [3, 4, 12, 15, 16, 27, 28] which are excellent monographs
for reviews of this subject and for the improvements of this inequality.
Let p>N. In this paper, our main result states that for all u ∈ C∞

c (RN \ {o}), the
following new sharp inequality holds in terms of the polar coordinate structure of RN :

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

|∇u(x)|p dx, (1.2)

here r is the distance between a point x ∈ RN and the origin o and SN−1 is the
N -dimensional unit sphere. Clearly, we have (see Remark 4.1):

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≥

∫
RN

|u(x)|p

|x|p
dx,

so that (1.2) gives an improvement of (1.1). The N =1 case of (1.2) (see also Theorem 4.1)
was established in the recent paper [14], that is, the authors proved the one dimen-
sional Lp-version of the improved Hardy inequality and gave an interesting application
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in the theory of Schrödinger operators. So, our inequality (1.2) extends the 1D
Frank–Laptev–Weidl inequality from [14] to dimension 1 ≤ N < p. The works on the
one-dimensional (similar) improvements of the Hardy inequality go back to [19], and [30],
see also the introductory discussions in [14] and [25] for the discrete versions.
First, we study the results for radial functions and then continue the discussion for

the non-radial setup. One of the main tools we exploited is the norm-preservation of the
symmetric decreasing rearrangements and in principle, one can see that this property
holds on some Riemannian or/and sub-Riemannian manifolds. In the same spirit, our
results can be extended to more general manifolds/spaces. Here are a few references
[5, 8, 9, 13, 20, 23, 29, 32] to revisit the work on Hardy’s inequality in those spaces.
Structure of the paper: In § 2, we discuss some basic facts of symmetric decreasing

rearrangements. Section 3 is devoted to the main supporting lemmas, and then a few
necessary tools are discussed. In § 4, we prove our main results related to developing the
new multidimensional Hardy inequality. Finally, in § 5, a novel uncertainty principle on
Euclidean space is discussed.

2. Preliminaries

Before stating the main results and their consequences, first, we will describe some pre-
liminaries on symmetric decreasing rearrangements. After that, in this section, we will
shortly discuss the polar coordinate decomposition and the radial version of the classical
gradient operator on the N -dimensional Euclidean space RN .

2.1. Symmetric decreasing rearrangements

Below we will quickly recall some definitions and facts about symmetric decreasing
rearrangement. For more details, we refer to [22, Chapter 3], for example.
Let Ω ⊂ RN be a finite Borel measurable subset. Then the symmetrisation of Ω

(denoted by Ω∗) is defined by the open ball B(o ; r) := {x ∈ RN : |x| < r}, where
r = v

−1/N
N vol(Ω)1/N is the radius, where vN is the volume of the unit N -dimensional

Euclidean ball and o is the origin as the centre of the ball. Here we are only concerned
with functions which vanish at infinity. For a real number β ∈ R, the level set {f > β}
of a function f is denoted as:

{f > β} := {x ∈ RN : f(x) > β}.

We say that a function f vanishes at infinity if:

vol({|f | > τ}) < ∞ for all τ > 0.

Now for all x ∈ RN , we define the symmetric decreasing rearrangement (or
non-increasing rearrangement) of f, denoted by f∗, as follows:

f∗(x) :=

∫ ∞

0

χ{|f |>τ}∗(x) dτ.
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Then by definition, f∗ becomes a non-negative, radially symmetric, and non-increasing
function. Therefore, for any x ∈ RN , we have f∗(x) = f∗(|x|) and one can consider f∗

as a real valued non-negative function on [0,∞). Irrespective of several properties of f∗,
a useful property in our context is:

vol({|f | > τ}) = vol({f∗ > τ}) for all τ ≥ 0.

By using the layer cake representation and the above property, we have the following
identity: ∫

RN
|f(x)|p dx =

∫
RN

|f∗(x)|p dx for all p ≥ 1. (2.1)

This relation will be very useful in the proofs.

2.2. Polar coordinates and radial gradient

Let RN be the N -dimensional Euclidean space with Lebesgue measure dx. Then,
it admits the polar coordinate decomposition with respect to the origin o ∈ RN . In
particular, for any f ∈ L1

loc(RN ) we have,∫
RN

f(x) dx =

∫ ∞

0

∫
SN−1

f(r, σ) rN−1 dσ dr, (2.2)

where for any x ∈ RN we write x = (r, σ) ∈ [0,∞)×SN−1 with r = %(x, o) (also denoted
as |x|) being the Euclidean distance between x and the fixed point o as the origin. Here
and after SN−1 = {x ∈ RN : |x| = 1} is the N -dimensional unit sphere with the surface
measure dσ.
We say that a function is radially symmetric if it depends only on the radial part. That

is, if f (x ) is a radial function, then for any x ∈ RN , we have,

f(x) = f(|x|) = f(r), where r = |x|,

and f can be considered as a function on [0,∞). Note that the radial gradient of a
differentiable function f (x ) can be defined by:

∂f

∂r
(x) =

x

|x|
· ∇f(x), (2.3)

where ‘·’ is the scalar product and ∇ is the usual gradient on RN .

3. Supporting lemmas

This section deals with the establishment of some supporting results. First, we describe
the weighted version of the Hardy inequality on the half-line involving symmetric decreas-
ing (or non-increasing) rearrangement of the function. The arguments here follow [14] but
extend those.
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Lemma 3.1. Let 1 < p < ∞. Let g be any non-negative function on (0,∞). Assume
h is a strictly positive non-decreasing function on (0,∞) such that sh(r) ≤ rh(s) for any
r, s ∈ (0,∞) with r ≤ s. Let f be a locally absolutely continuous function on (0,∞). Then,
we have∫ ∞

0

g(r) sup
0<s<∞

∣∣∣∣min

{
1

h(r)
,

1

h(s)

}∫ s

0

f(t) dt

∣∣∣∣p dr ≤
∫ ∞

0

g(r)

∣∣∣∣ 1

h(r)

∫ r

0

f∗(t) dt

∣∣∣∣p dr,
(3.1)

where f∗ is the non-increasing rearrangement of f.

Proof. For any fixed r > 0, we have

sup
0<s<∞

∣∣∣∣min

{
1

h(r)
,

1

h(s)

}∫ s

0

f(t) dt

∣∣∣∣ ≤ sup
0<s<∞

min

{
1

h(r)
,

1

h(s)

}∫ s

0

f∗(t) dt.

The above follows from∣∣∣∣ ∫ s

0

f(t) dt

∣∣∣∣ ≤ ∫ s

0

|f(t)| dt ≤
∫ s

0

f∗(t) dt.

The advantage of f∗ is that it is non-increasing and this fact enables computing the
supremum.
Case 1: Let 0 < s ≤ r < ∞. Then using the non-decreasing property of h, we have

min

{
1

h(r)
,

1

h(s)

}∫ s

0

f∗(t) dt =
1

h(r)

∫ s

0

f∗(t) dt ≤ 1

h(r)

∫ r

0

f∗(t) dt.

Case 2: Let 0 < r ≤ s < ∞. Then exploiting the increasing property of h and the
non-increasing nature of f∗ and a change of variable, we obtain

min

{
1

h(r)
,

1

h(s)

}∫ s

0

f∗(t) dt

=
1

h(s)

∫ s

0

f∗(t) dt ≤ 1

h(s)

∫ s

0

f∗(rt/s) dt

=
s

rh(s)

∫ r

0

f∗(v) dv ≤ 1

h(r)

∫ r

0

f∗(t) dt.

Thus, combining both cases, for all r, s ∈ (0,∞) we have,

min

{
1

h(r)
,

1

h(s)

}∫ s

0

f∗(t) dt ≤ 1

h(r)

∫ r

0

f∗(t) dt.

It yields

sup
0<s<∞

∣∣∣∣min

{
1

h(r)
,

1

h(s)

}∫ s

0

f(t) dt

∣∣∣∣p ≤
∣∣∣∣ 1

h(r)

∫ r

0

f∗(t) dt

∣∣∣∣p ,
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which completes the proof. �

Let us consider a special case in Lemma 3.1.

Corollary 3.1. Let 1 ≤ N < p < ∞. Then for all f ∈ C∞
c (0,∞) the following

weighted inequality holds:

∫ ∞

0

rN−1 sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣p dr ≤
∣∣∣∣ p

N − p

∣∣∣∣p ∫ ∞

0

rN−1 |f∗(r)|p dr, (3.2)

where f∗ is the non-increasing rearrangement of f.

Proof. Let us set g(r) = rN−1 and h(r) = r for r ∈ (0,∞). Substituting these in
Lemma 3.1, we have,

∫ ∞

0

rN−1 sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}∫ s

0

f(t) dt

∣∣∣∣p dr ≤
∫ ∞

0

rN−p−1

∣∣∣∣ ∫ r

0

f∗(t) dt

∣∣∣∣p dr. (3.3)

Using the weighted one dimensional Lp-Hardy inequality (see [18, Theorem 330], or e.g.
[26, Theorem 3.1]) for the function

∫ r

0
f∗(t)dt and noticing the fact ∂

∂r

∫ r

0
f∗(t)dt = f∗(r)

which follows from the fundamental theorem of calculus, we obtain:

∫ ∞

0

rN−p−1

∣∣∣∣ ∫ r

0

f∗(t) dt

∣∣∣∣p dr ≤
∣∣∣∣ p

p−N

∣∣∣∣p ∫ ∞

0

rN−1|f∗(r)|p dr. (3.4)

Applying this to the right-hand side of (3.3), we obtain (3.2). �

Remark 3.1. Inequality (3.2) is a key ingredient in our proof. However, we are unable
to prove this inequality when p<N. The reason is that the main tool in the above proof,
the Hardy inequality in that form is valid if and only if p>N (see, e.g. [24, Example
1.1]). Therefore, the latter inequality (3.4) does not hold when p<N. This technical
challenge enables us to follow the Frank–Laptev–Weidl approach to obtain an improved
version of the multidimensional Hardy inequality in the subcritical case p<N. It makes
the subcritical improvement of the Hardy inequality an open problem.

For a continuous function on a compact set, the supremum is attained, and exploiting
this idea, one can have the following result.

Lemma 3.2. Let g ∈ C(RN ) be a non-negative function. Then, on a compact subset
K ⊂ RN , we have, (

sup
x∈K

g(x)
)p

=
(
sup
x∈K

gp(x)
)
,

for 1 ≤ p < ∞.
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4. Improvement of the classical Hardy inequality

This section’s primary goal is to establish an improved version of the classical Hardy
inequality on the N -dimensional Euclidean space RN in the supercritical case. Our strat-
egy is first to develop it for radial functions, and then, by using the radialisation technique,
we settle the non-radial version.

4.1. Radial version of the results

First, we present the results for the compactly supported smooth radial function space
denoted as C∞

c,rad(RN \ {o}).

Theorem 4.1. Let 1 ≤ N < p < ∞. Then we have

∫
RN

max

{
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
, sup
Bc(o ; |x|)

|u(y)|p

|y|p

}
dx ≤

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx,
(4.1)

for all u ∈ C∞
c,rad(RN \ {o}).

Proof. Since u ∈ C∞
c,rad(RN \ {o}) we have u(y) = u(|y|) = u(s) for s = |y|, that is,

u ∈ C∞
c (0,∞). Recall the polar coordinate decomposition x = (r, σ) where r = |x| ∈

(0,∞) and σ = x
|x| ∈ SN−1. Then, we deduce

∫
RN

max

{
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
, sup
Bc(o ; |x|)

|u(y)|p

|y|p

}
dx

=

∫ ∞

0

∫
SN−1

rN−1 max

{
sup

0<s≤r

|u(s)|p

rp
, sup
r≤s<∞

|u(s)|p

sp

}
dσ dr. (4.2)

Before going further let us mention the following identity:

sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}
u(s)

∣∣∣∣p
= sup

0<s<∞
min

{
1

rp
,
1

sp

}
|u(s)|p

= max

{
sup

0<s≤r
min

{
1

rp
,
1

sp

}
|u(s)|p , sup

r≤s<∞
min

{
1

rp
,
1

sp

}
|u(s)|p

}
= max

{
sup

0<s≤r

|u(s)|p

rp
, sup
r≤s<∞

|u(s)|p

sp

}
.

By using this and continuing with the polar coordinate decomposition (4.2), we have
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RN

max

{
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
, sup
Bc(o ; |x|)

|u(y)|p

|y|p

}
dx

=

∫
SN−1

∫ ∞

0

rN−1 sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

}
u(s)

∣∣∣∣p dr dσ
=

∫
SN−1

∫ ∞

0

rN−1 sup
0<s<∞

∣∣∣∣min

{
1

r
,
1

s

} ∫ s

0

∂u

∂t
(t) dt

∣∣∣∣p dr dσ
Corollary 1

≤
∣∣∣∣ p

N − p

∣∣∣∣p ∫
SN−1

∫ ∞

0

rN−1

∣∣∣∣(∂u

∂r

)∗

(r)

∣∣∣∣p dr dσ
=

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣( ∂u

∂|x|

)∗

(x)

∣∣∣∣p dx
=

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ ∂u∂|x|
(x)

∣∣∣∣p dx
=

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx.
In the middle we have used Corollary 3.1 for f(t) = ∂u

∂t (t). Finally, by using (2.1) for

the function ∂u
∂r which vanishes at infinity because of the compact support of the smooth

function u and by using the identity (2.3) the desired result follows. �

4.2. Non-radial setting of the results

Now we describe the non-radial version of Theorem 4.1. Before that, it should be
mentioned that in constructing some non-radial inequality from the radial one, the radi-
alisation method is one of the common tools of functional inequalities. Let u ∈ L1(RN ),
then for any 1 < p < ∞, we define the radial symmetric function ũ as follows:

ũ(x) = ũ(r) :=

(
1

ωN

∫
SN−1

|u(rσ)|p dσ
) 1

p

for any x ∈ RN ,

where r = |x|, σ = x
|x| , and ωN is the surface area of the N -dimensional sphere SN−1.

Lemma 4.1. Let 1 < p < ∞ and let f be any non-negative measurable radial function
on RN . Then for any u ∈ C1(RN ), we have:

∫
RN

f(x)

∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣p dx ≤
∫
RN

f(x)

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx, (4.3)

where ũ(x) is the earlier defined radial symmetric version of u(x).

Proof. Let u ∈ C1(RN ). By using the Hölder inequality, we have:
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∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣ = ∣∣∣∣ x|x| · ∇
(

1

ωN

∫
SN−1

|u(rσ)|p dσ
) 1

p
∣∣∣∣

=
1

(ωN )1/p
1

p

(∫
SN−1

|u(rσ)|p dσ
) 1

p−1∣∣∣∣ ∫
SN−1

p |u(rσ)|p−2u(rσ)
x

|x|
· ∇u(rσ) dσ

∣∣∣∣
≤ 1

(ωN )1/p

(∫
SN−1

|u(rσ)|p dσ
)1−p

p

×

(∫
SN−1

|u(rσ)|p dσ
)p−1

p
(∫

SN−1

∣∣∣∣ x|x| · ∇u(rσ)

∣∣∣∣p dσ) 1
p

=
1

(ωN )1/p

(∫
SN−1

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dσ) 1
p

.

Now multiplying both sides by f (x ) and exploiting the above we derive:∫
RN

f(x)

∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣p dx
=

∫ ∞

0

∫
SN−1

f(r) rN−1

∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣p dσ dr

≤ ωN

∫ ∞

0

f(r) rN−1 1

ωN

(∫
SN−1

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dσ) dr

=

∫ ∞

0

f(r) rN−1

(∫
SN−1

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dσ) dr

=

∫
RN

f(x)

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx.
Starting with the polar coordinate decomposition, in between, we have used Fubini’s
theorem to arrive at the inequality (4.3). �

Now we proceed with another important lemma.

Lemma 4.2. Let 1 ≤ p < ∞ and let f be a non-negative measurable radial weight
function on RN . Then for any u ∈ Cc(RN \ {o}), we have:

max

{∫ ∞

0

f(r) rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,∫ ∞

0

f(r) rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤

∫
RN

f(x)max

{
sup

B̄(o ; |x|)\{o}

|ũ(y)|p

|x|p
, sup
Bc(o ; |x|)

|ũ(y)|p

|y|p

}
dx, (4.4)

where ũ(x) is the earlier defined radial symmetric version of u(x).
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Proof. Setting s = |y| and r = |x| and using polar coordinates, we compute

∫
RN

f(x)max

{
sup

B̄(o ; |x|)\{o}

|ũ(y)|p

|x|p
, sup
Bc(o ; |x|)

|ũ(y)|p

|y|p

}
dx

=

∫ ∞

0

f(r) rN−1 max

{
sup

B̄(o;|x|)\{o}

∫
SN−1 |u(sσ)|pdσ

|x|p
, sup
Bc(o;|x|)

∫
SN−1 |u(sσ)|pdσ

|y|p

}
dr

=

∫ ∞

0

max

{
f(r) rN−1 sup

0<s≤r

∫
SN−1 |u(sσ)|p dσ

rp
,

f(r) rN−1 sup
r≤s<∞

∫
SN−1 |u(sσ)|p dσ

sp

}
dr

≥ max

{∫ ∞

0

f(r)rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,∫ ∞

0

f(r)rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
.

Here we have used the fact
∫
max{a(x), b(x)} dx ≥ max{

∫
a(x) dx,

∫
b(x) dx}. �

We are now in a position to derive the non-radial version of the result from the previous
subsection which is the main contribution of this note.

Theorem 4.2. Let 1 ≤ N < p < ∞. Then, for all u ∈ C∞
c (RN \ {o}), we have

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx, (4.5)

with the sharp constant. More precisely, the Hardy constant
∣∣ p
N−p

∣∣p is sharp in the sense
that no inequality of the form

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤ C

∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx,
holds, for all u ∈ C∞

c (RN \ {o}), when C <
∣∣ p
N−p

∣∣p.
Proof. Let u ∈ C∞

c (RN \ {o}) and ũ be the radial symmetric function associated
to it. Then exploiting Lemma 4.2 with f(x) = 1 and then substituting the result into
Theorem 4.1, we deduce
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max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤

∫
RN

max

{
sup

B̄(o ; |x|)\{o}

|ũ(y)|p

|x|p
, sup
Bc(o ; |x|)

|ũ(y)|p

|y|p

}
dx

≤
∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣p dx.
Next, using Lemma 4.1 with f(x) = 1, we have∫

RN

∣∣∣∣ x|x| · ∇ũ(x)

∣∣∣∣p dx ≤
∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx.
Finally, combining the above two estimates we obtain

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≤

∣∣∣∣ p

N − p

∣∣∣∣p ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx,
which is the desired result (4.5). The sharpness follows from the known sharp constant
in the classical setup. �

Remark 4.1. On the left-hand side of (4.5), we have

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}
≥

∫ ∞

0

∫
SN−1

rN−1 |u(rσ)|p

rp
dσ dr

=

∫
RN

|u(x)|p

|x|p
dx.

By using Gauss’s lemma on the right-hand side of (4.5), we get∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣ ≤ |∇u(x)|.

Combining the above two facts, we conclude that (4.5) is an improvement of the sharp
Hardy inequality.

5. Uncertainty principle

In this section, we focus on the Heisenberg–Pauli–Weyl (HPW) type uncertainty prin-
ciple, which can be obtained immediately from the obtained new version of the Hardy
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inequality. The HPW uncertainty principle has several physical and mathematical appli-
cations. In physics, uncertainty principles may be used for establishing the stability of
matter. In quantum mechanics, the uncertainty principle implies that both the momen-
tum and the position of an object cannot be exactly measured at the same time. The
most well-known mathematical formulation of the uncertainty principle is probably the
HPW uncertainty principle. First, we present the result for radial functions and then for
the non-radial setting.

Theorem 5.1. Let 1 ≤ N < p < ∞. Then, for any u ∈ C∞
c,rad(RN \{o}), the following

uncertainty principle holds:

max

{∫
RN

sup
B̄(o ; |x|)\{o}

|u(y)|p dx,
∫
RN

sup
Bc(o ; |x|)

|u(y)|p dx
}

≤
∣∣∣∣ p

N − p

∣∣∣∣max

{(∫
RN

sup
B̄(o ; |x|)\{o}

|x|
p

p−1 |u(y)|p dx
)p−1

p

,

(∫
RN

sup
Bc(o ; |x|)

|y|
p

p−1 |u(y)|p dx
)p−1

p
}(∫

RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx) 1
p

.

Proof. For u ∈ C∞
c,rad(RN \ {o}) we estimate each term separately. Let us begin with

∫
RN

sup
B̄(o ; |x|)\{o}

|u(y)|p dx

≤
∫
RN

(
sup

B̄(o ; |x|)\{o}
|x||u(y)|p−1

)(
sup

B̄(o ; |x|)\{o}

|u(y)|
|x|

)
dx

≤
(∫

RN

(
sup

B̄(o ; |x|)\{o}
|x||u(y)|p−1

) p
p−1

dx

)p−1
p

(∫
RN

(
sup

B̄(o ; |x|)\{o}

|u(y)|
|x|

)p

dx

) 1
p

=

(∫
RN

sup
B̄(o ; |x|)\{o}

|x|
p

p−1 |u(y)|p dx
)p−1

p
(∫

RN
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
dx

) 1
p

=

(∫
RN

sup
B̄(o ; |x|)\{o}

|x|
p

p−1 |u(y)|p dx
)p−1

p

×

(∫
RN

max

{
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
, sup
Bc(o ; |x|)

|u(y)|p

|y|p

}
dx

) 1
p

≤
∣∣∣∣ p

N − p

∣∣∣∣( ∫
RN

sup
B̄(o ; |x|)\{o}

|x|
p

p−1 |u(y)|p dx
)p−1

p
(∫

RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx) 1
p

.
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In the above, we have used the Hölder inequality, Lemma 3.2 twice, and finally
Theorem 4.1 step by step. Exploiting the similar steps as earlier, we compute∫

RN
sup

Bc(o ; |x|)
|u(y)|p dx

≤
∫
RN

(
sup

Bc(o ; |x|)
|y||u(y)|p−1

)(
sup

Bc(o ; |x|)

|u(y)|
|y|

)
dx

≤
(∫

RN

(
sup

Bc(o ; |x|)
|y||u(y)|p−1

) p
p−1

dx

)p−1
p

(∫
RN

(
sup

Bc(o ; |x|)

|u(y)|
|y|

)p

dx

) 1
p

=

(∫
RN

sup
Bc(o ; |x|)

|y|
p

p−1 |u(y)|p dx
)p−1

p
(∫

RN
sup

Bc(o ; |x|)

|u(y)|p

|y|p
dx

) 1
p

=

(∫
RN

sup
Bc(o ; |x|)

|y|
p

p−1 |u(y)|p dx
)p−1

p

×

(∫
RN

max

{
sup

B̄(o ; |x|)\{o}

|u(y)|p

|x|p
, sup
Bc(o ; |x|)

|u(y)|p

|y|p

}
dx

) 1
p

≤
∣∣∣∣ p

N − p

∣∣∣∣( ∫
RN

sup
Bc(o ; |x|)

|y|
p

p−1 |u(y)|p dx
)p−1

p
(∫

RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx) 1
p

.

Finally, combining both cases, we arrive at the desired result. �

Now, we state the version for non-radial functions.

Theorem 5.2. Let 1 ≤ N < p < ∞. Then for any u ∈ C∞
c (RN \ {o}), the following

uncertainty principle holds:

max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}

≤
∣∣∣∣ p

N − p

∣∣∣∣max

{(∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

r
p

p−1 |u(sσ)|p dσ dr

)p−1
p

,

(∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

s
p

p−1 |u(sσ)|p dσ dr

)p−1
p

}(∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx) 1
p

.

Proof. Let u ∈ C∞
c (RN \ {o}) and using polar coordinates we have,∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p dσ dr

=

∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|
r

· r |u(sσ)|p−1 dσ dr
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≤
∫ ∞

0

rN−1 sup
0<s≤r

(∫
SN−1

|u(sσ)|p

rp
dσ

) 1
p
(∫

SN−1
r

p
p−1 |u(sσ)|p dσ

)p−1
p

dr

≤
∫ ∞

0

rN−1 sup
0<s≤r

(∫
SN−1

|u(sσ)|p

rp
dσ

) 1
p

sup
0<s≤r

(∫
SN−1

r
p

p−1 |u(sσ)|p dσ
)p−1

p

dr

=

∫ ∞

0

{
r
N−1
p sup

0<s≤r

(∫
SN−1

|u(sσ)|p

rp
dσ

) 1
p
}
×

{
r
(N−1)(p−1)

p sup
0<s≤r

(∫
SN−1

r
p

p−1 |u(sσ)|p dσ
)p−1

p
}
dr

≤
(∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr

) 1
p

×

(∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

r
p

p−1 |u(sσ)|p dσ dr

)p−1
p

≤
(
max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}) 1
p

×

(∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

r
p

p−1 |u(sσ)|p dσ dr

)p−1
p

≤
∣∣∣∣ p

N − p

∣∣∣∣( ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣p dx) 1
p
(∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

r
p

p−1 |u(sσ)|p dσ dr

)p−1
p

.

In the above, we have exploited the Hölder inequality, Lemma 3.2, and finally Theorem 4.2
step by step. Following the similar steps as earlier, we compute:∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p dσ dr

=

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|
s

· s |u(sσ)|p−1 dσ dr

≤
∫ ∞

0

rN−1 sup
r≤s<∞

(∫
SN−1

|u(sσ)|p

sp
dσ

) 1
p
(∫

SN−1
s

p
p−1 |u(sσ)|p dσ

)p−1
p

dr

≤
∫ ∞

0

rN−1 sup
r≤s<∞

(∫
SN−1

|u(sσ)|p

sp
dσ

) 1
p

sup
r≤s<∞

(∫
SN−1

s
p

p−1 |u(sσ)|p dσ
)p−1

p

dr

=

∫ ∞

0

{
r
N−1
p sup

r≤s<∞

(∫
SN−1

|u(sσ)|p

sp
dσ

) 1
p
}
×

{
r
(N−1)(p−1)

p sup
r≤s<∞

(∫
SN−1

s
p

p−1 |u(sσ)|p dσ
)p−1

p
}
dr
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≤
(∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

) 1
p

×

(∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

s
p

p−1 |u(sσ)|p dσ dr

)p−1
p

≤
(
max

{∫ ∞

0

rN−1 sup
0<s≤r

∫
SN−1

|u(sσ)|p

rp
dσ dr,

∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

|u(sσ)|p

sp
dσ dr

}) 1
p

×

(∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

s
p

p−1 |u(sσ)|p dσ dr

)p−1
p

≤
∣∣∣∣ p

N − p

∣∣∣∣( ∫
RN

∣∣∣∣ x|x| · ∇u(x)

∣∣∣∣pdx) 1
p
(∫ ∞

0

rN−1 sup
r≤s<∞

∫
SN−1

s
p

p−1 |u(sσ)|p dσ dr

)p−1
p

.

By combining both cases, we immediately arrive at the desired result. �
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2019).

(28) M. Sano and F. Takahashi, Scale invariance structures of the critical and the subcritical
Hardy inequalities and their improvements, Calc. Var. Partial Differential Equations
56(3): (2017), 1–14.

https://doi.org/10.1017/S0013091523000780 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000780


Multidimensional Frank–Laptev–Weidl improvement 167

(29) D. Suragan. A survey of hardy type inequalities on homogeneous groups, Mathematical
Analysis, its Applications and Computation. ISAAC 2019. Springer Proceedings in
Mathematics and Statistics, (In: P. Cerejeiras and M. Reissig, eds), Volume 385 Springer,
Cham, 2022.

(30) G. Tomaselli, A class of inequalities, Boll. Un. Mater. Ital. 4(2): (1969), 622–631.

(31) J. L. Vázquez and E. Zuazua, The Hardy inequality and the asymptotic behaviour of the
heat equation with an inverse-square potential, J. Funct. Anal. 173(1): (2000), 103–153.

(32) Q. Yang, D. Su and Y. Kong, Hardy inequalities on Riemannian manifolds with negative
curvature, Commun. Contemp. Math. 16(2): (2014), 1350043.

https://doi.org/10.1017/S0013091523000780 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091523000780

	Multidimensional Frank–Laptev–Weidl improvement of the Hardy inequality
	1. Introduction
	2. Preliminaries
	2.1. Symmetric decreasing rearrangements
	2.2. Polar coordinates and radial gradient

	3. Supporting lemmas
	4. Improvement of the classical Hardy inequality
	4.1. Radial version of the results
	4.2. Non-radial setting of the results

	5. Uncertainty principle
	Acknowledgements
	References


