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Wall-resolved large-eddy simulation (LES) of a non-equilibrium turbulent boundary layer
(TBL) is performed. The simulations are based on the experiments of Volino (2020a
J. Fluid Mech. 897, A2), who reported profile measurements at several streamwise
stations in a spatially developing zero pressure gradient TBL evolving through a region
of favourable pressure gradient (FPG), a zero pressure gradient recovery and subsequently
an adverse pressure gradient (APG) region. The pressure gradient quantified by the
acceleration parameter K was held constant in each of these three regions. Here,
K = −(ν/ρU 3

e )dPe/dx , where ν is the kinematic viscosity, ρ is density, Ue is the free
stream velocity and dPe/dx is the streamwise pressure gradient at the edge (denoted
by the subscript ‘e’) of the TBL. The simulation set-up is carefully designed to
mimic the experimental conditions while keeping the computational cost tractable. The
computational grid appropriately resolves the increasingly thinning and thickening of the
TBL in the FPG and APG regions, respectively. The results are thoroughly compared with
the available experimental data at several stations in the domain, showing good agreement.
The results show that the computational set-up accurately reproduces the experimental
conditions and the results demonstrate the accuracy of LES in predicting the complex flow
field of the non-equilibrium TBL. The scaling laws and models proposed in the literature
are evaluated and the response of the TBL to non-equilibrium conditions is discussed.

Key words: turbulent boundary layers, turbulence simulation

1. Introduction
Turbulent boundary layers (TBL) have been extensively studied since the seminal work
of Prandtl (Prandtl 1904), due to their theoretical and engineering relevance. Mean and
second-order statistics of the velocity field in TBL evolving under nominally zero pressure
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gradients (ZPG) have been extensively reported in the literature (see reviews by Fernholz
& Finley (1996), Klewicki (2010) and Smits, McKeon & Marusic (2011)). However, many
flows of practical interest have TBL evolving under pressure gradients, both favourable
(FPG) and adverse (APG). The FPG is known to stabilise the boundary layer and can
reduce turbulence to the extent of relaminarisation (Narasimha & Sreenivasan 1973;
Araya, Castillo & Hussain 2015), whereas APG enhances turbulence and can cause flow
separation (Simpson 1989).

Several non-dimensional parameters have been proposed to quantify pressure gradient
effects on TBL, based on different length and velocity scales used to normalise the free
stream pressure gradient (dPe/dx). Some of the popular pressure gradient parameters are
the Rotta–Clauser pressure gradient parameter (β), acceleration parameter (K ) and inner-
scaled pressure-gradient parameter (p+

x ), defined as

β = δ∗

ρu2
τ

dPe

dx
, (1.1)

K = − ν

ρU 3
e

dPe

dx
, (1.2)

p+
x = ν

ρu3
τ

dPe

dx
, (1.3)

where ν is the kinematic viscosity, ρ is density, δ∗ is the displacement thickness, Ue is the
free stream velocity and uτ is the friction velocity defined as uτ = √

τw/ρ. Note that β and
K are related as β = −K Reδ∗(U 2

e /u2
τ ), where Reδ∗ is the displacement thickness-based

Reynolds number and subscript ‘e’ denotes the value at the edge of the boundary layer.
There are several past studies on TBL evolving under the influence of pressure gradients,

using both experiments (Launder & Jones 1969; Jones & Launder 1972; Skåre & Krogstad
1994; Fernholz & Warnack 1998; Warnack & Fernholz 1998; Castillo & George 2001;
Jones, Marusic & Perry 2001; Aubertine & Eaton 2005; Harun et al. 2013; Knopp
et al. 2021; Romero et al. 2022) and simulations (Spalart 1986; Skote, Henningson &
Henkes 1998; Piomelli, Balaras & Pascarelli 2000; Lee & Sung 2009; Bobke et al. 2017;
Kitsios et al. 2017; Lee 2017; Pozuelo et al. 2022), primarily focused on near-equilibrium
TBL. Strictly speaking, the boundary layer reaches equilibrium when the mean flow and
Reynolds-stress components become independent of the streamwise position, when scaled
appropriately with local velocity and length scales (Townsend 1956). However, a less
restrictive near-equilibrium condition can be defined when the mean velocity defect is
self-similar in the outer region, which is true at high Reynolds number (Re) (Marusic
et al. 2010). Townsend (1956) and Mellor & Gibson (1966) showed that these near-
equilibrium conditions can be obtained when Ue is prescribed by a power law such that
Ue ∝ (x − x0)

m , where x0 is a virtual origin and m is the power-law exponent, larger
than −1/3 in order to obtain near-equilibrium conditions. Any high Re TBL with a
constant β (including the ZPG TBL where β = 0) is a particular case of near-equilibrium
TBL, in which the outer region has a self-similar mean velocity defect (Marusic et al.
2010). Some numerical studies on pressure gradient TBL (for example, Yuan & Piomelli
(2014, 2015) and Wu & Piomelli (2018)) have even included the effect of wall roughness
in their simulation set-up. The present literature review is not comprehensive as there
are several other past studies which have also looked at TBL undergoing separation
and reattachment, relaminarisation, unsteady pressure gradients effects, etc. Devenport
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& Lowe (2022) reviewed recent progress in equilibrium and non-equilibrium TBL.
Bobke et al. (2017) studied history effects in APG TBL using wall-resolved large-eddy
simulation (LES). Their simulations of flow over flat plate were designed carefully to
induce large region of near-constant β. They also simulated TBL with non-constant β and
performed comparative studies to quantify history effects on the evolution of APG TBL.
They concluded that β and the friction-based Reynolds number (Reτ ) are insufficient to
fully characterise the state of a general pressure gradient TBL. Recently, Pozuelo et al.
(2022) reported wall-resolved LES results of APG TBL where β was held approximately
constant at 1.4 up to a momentum-thickness-based Reynolds number Reθ ≈ 8700. Their
simulations are the highest Re reported until date for near-equilibrium APG TBL.

The analysis of non-equilibrium TBL poses many challenges. Several length and
velocity scales have been proposed for the inner and outer regions of TBL evolving
under pressure gradients. Maciel et al. (2018) proposed a consistent framework to analyse
APG TBL and identified three parameters to characterise APG TBL. These parameters,
namely, the pressure gradient parameter, Reynolds number and the inertial parameter
were obtained using scaling analysis of the governing equations. They also discussed
how their general parameters relate to commonly used quantities like β and Reτ and the
Zagarola–Smits velocity scale (Zagarola & Smits 1998a,b).

Recently, Volino (2020a) conducted experiments to study TBL subject to pressure
gradients. Their experiments were unique in the sense that an initial equilibrium TBL at
ZPG is subjected to FPG, then recovered to ZPG, followed by APG. The desired pressure
gradient was applied using a ramp as a top wall, which essentially sets K to a constant
value in different regions of the ramp. Here K was held constant and mild enough to avoid
relaminarisation or separation. The mean velocity and turbulence statistics along with the
integral quantities and wall shear determined from them were documented. In particular,
profile measurements were reported at 12 streamwise stations (Station 1–12) in their set-up
where Station 1, 6 and 9 were located at the beginning of FPG, ZPG recovery and APG
regions, respectively. They performed experiments at eight different physical conditions
by setting Ue at the inflow and K in the FPG, APG region using different ramps. Their
Case 4, where Ue = 1 ms−1 at the inflow and K = 5 × 10−7 in the FPG region is taken
as the reference for the present work. The Reθ for this case varies from 1578 at Station
1 to 3846 at Station 6. The present gradient causes the boundary layer to become thin
in the FPG region and thick in the APG region. Capturing thin boundary layer in FPG
region demands fine grid resolution, and thick boundary layer in APG region requires
bigger spanwise domain. This particular case was chosen due to its unique combination
of pressure gradient and Re range. The pressure gradient for the case is moderate and its
Reτ ranges from 570–1072 (table 1 of Volino 2020a), which is moderately high. Higher
pressure gradient and Reτ will significantly increase the computational cost.

The main goals of the present work are to accurately simulate the reference experiment
(Case 4 of Volino 2020a) and analyse the results to understand the behaviour of TBL
in non-equilibrium conditions. Simulation of such non-equilibrium TBL has several
challenges. First of all, the rapid thinning and thickening of the boundary layer thickness
requires careful design of the computational grid in order to ensure adequate resolution
of the inner layer. The boundary layer becomes very thin in the FPG region, which is
the most critical region for the present case as any error in this region can cause large
mismatch in rest of the flow field downstream. Second, accurate prediction of turbulent
stresses and skin-friction at high Re is demanding. Third, the domain size and boundary
conditions should be such that the experimental conditions are closely matched without
compromising accuracy.

1014 A20-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
27

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10270


P. Kumar and K. Mahesh

In this work, wall-resolved LES of non-equilibrium TBL is performed, closely matching
the set-up of the reference experiment. The present simulations are the first of its kind
where the entire streamwise evolution of the non-equilibrium TBL in the reference
experiment is captured. The rest of the paper is organised as follows. The simulation details
are described in § 2. Results are described in § 3. The present problem is analysed in § 4
where the scaling behaviour, the modelling implications and the response of TBL to non-
equilibrium conditions are discussed. The key findings of the present work are summarised
in § 5.

2. Simulation details

2.1. Numerical algorithm
In LES, large scales are resolved by the spatially filtered Navier–Stokes equations and
the effect of small scales is modelled. The spatially filtered incompressible Navier–Stokes
equations are

∂ui

∂t
+ ∂

∂x j
(ui u j ) = − ∂ p

∂xi
+ ν

∂2ui

∂x j∂x j
− ∂τi j

∂x j
,

∂ui

∂xi
= 0,

(2.1)

where ui is the velocity, p is the pressure and ν is the kinematic viscosity. The overbar
(·) denotes spatial filtering and τi j = ui u j − ui u j is the subgrid stress. The subgrid stress
is modelled using the dynamic Smagorinsky Model (Germano et al. 1991; Lilly 1992).
The Lagrangian time scale is dynamically computed based on surrogate correlation of the
Germano-identity error (Park & Mahesh 2009). This approach, extended to unstructured
grids, has shown good performance for a variety of flows including plane channel flow,
circular cylinder and flow past a marine propeller in crashback (Verma & Mahesh 2012).

Equation (2.1) is solved using a numerical method developed by Mahesh,
Constantinescu & Moin (2004) for incompressible flows on unstructured grids. The
algorithm is derived to be robust without numerical dissipation. It is a finite volume
method where the Cartesian velocities and pressure are stored at the centroids of the
cells and the face normal velocities are stored independently at the centroids of the faces.
A predictor–corrector approach is used. The predicted velocities at the control volume
centroids are first obtained and then interpolated to obtain the face normal velocities.
The predicted face normal velocity is projected so that the continuity equation in (2.1) is
discretely satisfied. This yields a Poisson equation for pressure which is solved iteratively
using a multigrid approach. The pressure field is used to update the Cartesian control
volume velocities using a least-square formulation. Time advancement is performed using
an implicit Crank–Nicolson scheme. The algorithm has been validated for a variety of
problems over a range of Re including flow over axisymmetric hull (Kumar & Mahesh
2018).

2.2. Computational domain and boundary conditions
Figure 1 shows a schematic of the computational domain, which is based on the
experimental set-up of Volino (2020a). The reference coordinate system is chosen such
that the streamwise, wall-normal and spanwise coordinates are x , y and z, respectively, and
the origin is located on the bottom wall (y = 0 plane) at the inflow plane (x = 0 plane).
The flow is in the direction of positive x . In the reference experiment, the top wall is
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Plate 1
Plate 2

Plate 3

Plate 4

ZPG FPG

Wall

Recovery APG ZPG

OutflowInflow

Figure 1. A schematic of the computational domain in xy plane showing ZPG, FPG, recovery and APG
regions. Plates 2–4 at the top boundary correspond to those used in the reference experiments (Volino 2020a)
to impose streamwise varying pressure gradients.

Location x Pressure gradient

Plate 1 0–5.46 ZPG
Plate 2 5.46–40.64 FPG
Plate 3 40.64–75.75 ZPG
Plate 4 75.75–102.61 APG
Plate 5 102.61–109.89 ZPG

Table 1. Details of the computational domain in grid units. Note that δ = 1 at the inflow is taken as the
reference length for the domain.

comprised of four plates that were adjusted to prescribe a desired K in different regions.
In the computational domain, those plates are geometrically identical except for Plate 1
which is made shorter, the reason for that will be discussed later. The test section in the
reference experiment ends at the end of Plate 4. However in the computational domain, a
horizontal wall (Plate 5) is appended at the end of Plate 4 to ensure minimal effect of the
outflow boundary condition.

The boundary layer thickness (δ) and Ue is nominally unity at the inflow plane. The
inflow plane (x = 0) is located 5.46 units upstream of the beginning of Plate 2. The outflow
plane (x = 109.89) is 7.28 units downstream of the end of Plate 4. Plates 1 and 5 are
parallel to the bottom wall and situated at a wall-normal distance of 7.51 and 7.09 units,
respectively, from the bottom wall. Additional details of the computational domain are
listed in table 1. The location of the streamwise stations corresponding to the measurement
stations in the reference experiment is listed in table 2.

Periodic boundary conditions are applied in the spanwise direction and convective
boundary conditions are prescribed at the outflow. Bottom and top boundaries are
prescribed as a no-slip condition. A ZPG TBL of desired parameters is prescribed at
the inflow plane. This TBL is generated in an auxiliary simulation using the recycle–
rescale method of Lund, Wu & Squires (1998) extended to unstructured grids employing
the numerical method discussed in § 2.1. The inflow generation method is described and
validated for a range of Reθ in Appendix A.

The bottom wall is tripped far away from the test section in the reference experiment.
The use of the auxiliary simulation to generate turbulent inflow enables drastic reduction
in the computational cost by reducing the TBL development region in the present set-up
while ensuring equilibrium TBL before the start of FPG region. The decision to place the
inflow and outflow boundaries as described earlier is based on the prior experience of the
authors in simulating spatially developing TBL. Simulations were performed for a domain
with a spanwise length of 3 units initially (not shown here). But owing to the rapid growth
of TBL thickness in the APG region, the simulations were repeated for a domain with
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Station x

1 2.17
2 10.85
3 17.00
4 22.11
5 28.61
6 37.14
7 51.97
8 63.65
9 71.77
10 80.02
11 84.71
12 89.32

Table 2. Streamwise coordinate of Stations 1–12 where the profiles are compared with the reference
experimental data of Volino (2020a).

double the spanwise length (6 units) to ensure minimal domain effects. The difference in
flow field was minimal between the two domains (see Appendix B).

The grid generation for the present flow problem is challenging due to rapidly
varying TBL thickness and strong gradients. The nominally ZPG TBL undergoes a
region of FPG, ZPG and APG consequently, which requires a carefully designed non-
uniform grid in streamwise and wall-normal directions. The computational grid of the
main simulation consists of 395.2 × 106 (Nx × Ny × Nz = 2470 × 400 × 400) hexahedral
control volumes. The five segments of the bottom wall shown in figure 1 contain 120,
800, 800, 650 and 100 cells in that order. The authors performed simulations with several
coarser grids to arrive at the final grid. The grid is uniform in the z direction only. The
first off-wall cell height is 0.0005 throughout the domain at the bottom wall. No attempt
was made to resolve the top wall. The first off-wall cell height is ∼0.1 at the top wall.
The grid was generated such that the computational cells are normal to the top wall for at
least the first few cells. The grid progressively becomes finer in x going from the inflow
to the FPG region, becomes coarser slowly until the beginning of the APG region, after
which it maintains uniformity in x direction for the entire APG region. Subsequently, the
grid is coarsened slowly towards the outflow plane. Figure 2 shows the grid resolution
in viscous units in the domain at the first cell height. The wall-normal and spanwise
resolution remains below 0.4 and 12, respectively, throughout the domain. The streamwise
grid resolution stays below 36 and 30 in the FPG and APG regions, respectively. The
entire grid was partitioned over 5280 processors and the simulations were performed with
a time step of 0.001 unit. The flow field statistics were computed for over one flow through
time, after the simulations were performed for at least two flow-through times to discard
transients.

2.3. Inflow generation
An auxiliary LES employing the method described in the Appendix A is performed to
obtain a turbulent inflow at Reθ = 1435 and δ ≈ 1. The computational domain of the
simulation consists of a box of dimension 100θi × 30θi × 60θi in the x , y and z directions,
respectively, where θi is the momentum thickness at the inflow plane. The values of θi and
Reθi are set to 0.1 and 1342, respectively. These values are chosen so that the target plane
where Reθ = 1435 stays sufficiently away from the inflow and outflow boundaries. The
grid consists of 300, 200 and 400 cells in the x , y and z directions. The grid is uniform
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0 20 40 60 80 100
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20

30x+
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40

50

Figure 2. Grid resolution in viscous units at the first off-wall cell height.

0.0046

0.0044

0.0042
Cf

0.0040

0.0038

1350 1400 1450

Reθ

1500 1550

Fit, Schlatter & Orlu

Current

Figure 3. Here C f compared with the correlation of Schlatter & Örlü (2010).

in x and z with a clustering in y with 1 % growth to ensure adequate near-wall resolution.
Figure 3 shows the comparison of C f with the correlation of Schlatter & Örlü (2010)
showing good agreement away from the inflow. Two profiles are extracted and compared
with the direct numerical simulation (DNS) data at Reθ = 1420 (Schlatter & Örlü 2010),
and Reθ = 1551 (Jiménez et al. 2010) in figure 4. Note that throughout this work, η = y/δ,
where δ is the local boundary layer thickness defined as the wall-normal distance where
the mean streamwise velocity reaches 99 % of its local free stream value. The results show
very good agreement with the reference data. The grid resolution at these two stations is
listed in table 3.

The flow field at the station where Reθ = 1435 is stored at each time step and
interpolated on the inflow plane of the main simulation. Note that the spanwise length of
the auxiliary simulation and the computational time step match that of the main simulation.
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Figure 4. Mean and second-order statistics at Reθ = 1420 (a, b) and 1551 (c, d). Symbols are DNS from
Schlatter & Örlü (2010) (a,b) and Jiménez et al. (2010) (c,d).

x Reθ x+ y+ z+

2.55 1420 19.65 0.29 8.84
8.88 1551 19.59 0.29 8.81

Table 3. Grid resolution in wall units at different streamwise stations of the auxiliary simulation.

But the wall-normal extent of the main simulation is larger than that of the auxiliary
simulation. So the velocity field is extrapolated to free stream for y > 30θi .

As mentioned earlier, the top wall is prescribed a no-slip boundary condition. In the
reference experiments, the boundary layer was only tripped at the bottom wall where all
the measurements where conducted. Hence, no attempt was made to prescribe a TBL at
the top wall in the present set-up. It will be shown later that the present set-up was able to
accurately simulate the physical conditions of the reference experiments.
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Figure 5. Instantaneous pressure (a), streamwise velocity (b), wall-normal velocity (c) and spanwise vorticity
(d) in xy plane. The quantities are normalised with the free stream velocity and boundary layer thickness at
the inflow plane.

3. Results

3.1. Instantaneous flow field
Figure 5 shows contour plots of pressure, streamwise velocity, wall-normal velocity
and spanwise vorticity fields in the xy plane. The pressure field shows rapid variation
throughout the domain. It first rapidly decreases in the FPG region, followed by nearly
constant value in the recovery zone and subsequently, increasing rapidly in the APG
region. Such rapid variation in pressure causes rapid change in the thickness of the
incoming TBL as it passes through the domain, as evident from the streamwise velocity
field (figure 5b). The grid is designed to appropriately resolve the TBL of the bottom wall.
However, a boundary layer can also be observed on the top wall as well in figure 5(b−d).
Note that the top wall in the reference experiments was intended to prescribe a desired
external pressure gradient only and not tripped. Moreover, no attempt was made to
characterise the top wall boundary layer. Hence, the simulation set-up did not prescribe
any boundary layer on the top wall. However, owing to the no slip condition on the top
wall, it is natural to expect it to have a boundary layer development on its own, which ends
up growing rapidly and likely turning turbulent in the APG region. At this point, it is not
clear how significantly the top wall boundary layer affects the bottom wall TBL. However,
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Figure 6. Mean streamwise (a) and wall-normal (b) velocity fields in xy plane. The quantities are normalised
with the free stream velocity and boundary layer thickness at the inflow plane.

it is likely that its effect is negligible in most of the domain. As it will shown later, the
results of the TBL at the bottom wall match well with the reference data, confirming that
the effect of the top wall boundary layer is minimal. As one would expect, the spanwise
vorticity is confined in the boundary layer region of the walls.

3.2. Mean flow field
The mean flow field is shown in figure 6 for streamwise and wall-normal components
of velocity. The rapidly varying boundary layer thickness is evident on the bottom wall
throughout the domain. The top wall has negligible boundary layer thickness until the
beginning of APG region. Due to APG, the boundary layer thickness on the top wall
grows rapidly and becomes comparable to that of the bottom wall towards the end of
the flow domain. The streamwise gradient of U should be equal to the negative of wall-
normal gradient of V to satisfy mass continuity. Hence, the region of accelerating free
stream shows reduction V away from the wall and vice versa. The recovery region on the
other hand shows constant V outside TBL as expected from a ZPG region.

3.3. Comparison with experiments
The profiles of mean streamwise velocity, resolved root-mean-square (r.m.s.) fluctuations
in streamwise and wall-normal velocities along with Reynolds shear stress are compared
with the reference data at selected stations (Stations 1, 6, 9 and 12) in figures 7, 8, 9 and 10,
respectively. The profile comparisons at other stations are shown in Appendix C for
completeness.

The streamwise velocity profiles are shown in the form of velocity defect normalised by
the local free stream velocity. The results show very good agreement at all the stations. The
grid is able to capture the defect profile adequately even at Station 6, where the boundary
layer thickness is very small. The LES results for the r.m.s. of streamwise velocity show
some differences at Stations 6–12 in the outer layer. The profiles of the r.m.s. of wall-
normal velocity fluctuations and the Reynolds shear stress show good agreement with the
reference data at all the stations.

Figure 11 shows the TBL evolution through the flow domain. As observed in
figure 11(a), (Ue) shows good agreement with the reference data in the FPG region.
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Figure 7. Mean velocity defect profiles (lines) are compared with the reference data (symbols) of Volino
(2020a) at Stations 1, 6 (a) and 9, 12 (b).
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Figure 8. The r.m.s. of streamwise velocity fluctuations (lines) are compared with the reference data
(symbols) of Volino (2020a) at Stations 1 (a), 6 (b), 9 (c) and 12 (d).

There is a slight mismatch in the recovery and APG regions. In particular, the results
show slightly lower Ue in the APG region. One possible reason for this behaviour can
be the difference in the top wall boundary layer between the LES and the reference
experiment. The problem set-up is such that the same mass flow passes through the
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Figure 9. The r.m.s. of wall-normal velocity fluctuations (lines) are compared with the reference data
(symbols) of Volino (2020a) at Stations 1 (a), 6 (b), 9 (c) and 12 (d).

domain. So if the top wall boundary layer in the present simulation is thinner than the
reference experiment, Ue will be smaller at the bottom wall. The LES results indicate that
the reference experiment has thicker top wall boundary layer in the APG region than the
present simulation. The streamwise evolution of uτ on the bottom wall is compared with
the reference data in figure 11(b). Volino (2020a) obtained uτ indirectly from the U profile
measurements and reported an uncertainty of 3 % which is shown as error bars. The LES
results overpredict uτ in the FPG and recovery regions. The evolution of δ (figure 11c) is
captured well throughout the domain except at the last two stations where there is small
mismatch. On the other hand, Reτ (figure 11d) evolution compares well with the reference
data throughout the domain. The shape factor (H ) is compared with the reference data in
figure 11(e), showing good overall agreement. Figure 11( f ) shows the evolution of Reθ .
There is a slight underprediction of Reθ compared with the reference data. This may be
reasonable given the comparison of δ and H . Figure 12(a) compares (β) with the reference
data. Here β ≈ 0 at the inflow, as expected. The magnitude of β is underpredicted at the
first few stations. This observation is consistent with the overprediction in uτ as shown
in figure 11(b). Figure 12(b) shows the streamwise variation in K . Note the value of K
in the reference experiment was 5 × 10−7 in the FPG region. Here K appears constant
in FPG, recovery and APG regions as expected, and its value is close to the reference
experiment in the FPG and recovery regions. However, K is slightly lower in magnitude
in the APG region, compared with the experiments where it was set at K = −5 × 10−7.
This again can be a consequence of difference in the top wall boundary layer in the present
simulation compared with the reference experimental set-up.
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Figure 10. Reynolds shear stress profiles (lines) are compared with the reference data (symbols) of Volino
(2020a) at Stations 1 (a), 6 (b), 9 (c) and 12 (d).

Given the complexity of the problem and uncertainty associated with the top-wall
boundary layer, the present results for the boundary layer integral quantities can be
considered adequate.

4. Analysis

4.1. Scaling behaviour
Appropriate length and velocity scales in TBL have been widely studied in the literature.
In particular, Ue and δ are often used as appropriate scales to collapse defect profiles in
the outer layer of TBL. Volino (2020a) showed that defect profiles did not collapse using
Ue and δ. In the present section, appropriate length and velocity scales are sought for the
present case using the reference data of Volino (2020a).

Zagarola & Smits (1998a) proposed a velocity scale (uzs = Ueδ
∗/δ, called the ZS

scaling henceforth) for pipe flow as an appropriate outer velocity scale, which was
able to collapse the outer-layer velocity profiles. The ZS velocity scale was later
found to be appropriate even for ZPG TBL (Zagarola & Smits 1998b; George 2006).
Wei & Maciel (2018) derived uzs from the mean continuity equation in ZPG TBL. Maciel
et al. (2018) analysed the scaling of APG TBL and concluded that uzs was appropriate
velocity scale for a variety of TBL databases they analysed.

Recently, Pirozzoli & Smits (2023) proposed a new set of velocity (u ps) and length (δps)
scales for outer layer of TBL (called the PS scaling henceforth) given by

u ps =
(

H − 1
H

)
Ue, (4.1)
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Figure 11. Here Ue, (a), uτ (b), δ (c), Reτ (d), H (e) and Reθ ( f ) are compared with the reference data.
Error bars of 3 % are shown in (b) as reported in Volino (2020a). Here Ue and uτ are normalised with the free
stream velocity at the inflow whereas δ is normalised with the inflow boundary layer thickness.

δps =
(

H

H − 1

)
δ∗. (4.2)

They tested their scaling on various ZPG TBL databases showing good collapse in the
outer layer. It remains unclear if ZS and PS scalings would hold for a non-equilibrium
TBL such as the present case.

The applicability of ZS and PS scales is assessed in figure 13 using the reference
experimental data. The results show that both these scalings collapse the velocity defect
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Figure 12. The streamwise variation in β (a) and K (b).
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Figure 13. Velocity defect in the scaling proposed by Zagarola & Smits (1998a) (a) and Pirozzoli & Smits
(2023) (b) at all the stations.

profiles adequately well in the outer layer, with PS scaling performing slightly better as one
moves closer to the wall. The PS scaling is able to collapse the defect profiles in the FPG,
ZPG and APG regions adequately, suggesting that even the non-equilibrium effects are
adequately captured in u ps and δps . Overall, it can be concluded that PS scaling appears to
be generally applicable to TBL ranging for equilibrium, near-equilibrium and the present
non-equilibrium case. However, its applicability to stronger non-equilibrium cases is yet
to be evaluated.

Next, the scaling of urms is considered. Alfredsson, Segalini & Örlü (2011) proposed a
scaling for urms in the outer layer in the TBL,

urms

U
= a + b

U

Ue
, (4.3)

where a = 0.286 and b = −0.255, which was also found to hold for other wall-bounded
flows (Alfredsson, Örlü & Segalini 2012). Figure 14 shows urms/U profiles plotted
against U/Ue for the FPG, ZPG and APG regions. The line in the figures correspond
to (4.3) evaluated at Station 2, Station 7 and Station 10 in figures 14(a), 14(b) and 14(c),
respectively. The profiles collapse to (4.3) surprisingly well in all three regions. Note that

1014 A20-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
27

0 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10270


P. Kumar and K. Mahesh

Station 2

Station 3

Station 4

Station 5

Station 6

(a)

(c)

(b)

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0

0.2 0.4 0.6 0.8 1.0
0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5
Station 7

Station 8

Station 9

0

0.1

0.2

0.3

0.4

0.5
Station 10

Station 11

Station 12

U/Ue

u r
m

s/
U

u r
m

s/
U

u r
m

s/
U

U/Ue

U/Ue

Figure 14. Here urms/U profiles in FPG (a), ZPG (b) and APG (c) regions along with (4.3) (line) evaluated
at Station 2 in (a), Station 7 in (b) and Station 10 in (c).

Stations 2, 7 and 10 are chosen as they are the first station in each of these regions.
Choosing a different station to evaluate (4.3) would not make any difference in the results.
It is worth mentioning that Dróżdż et al. (2015) proposed a modification to (4.3) for
pressure gradient TBL by including

√
H in the denominator of the left-hand side and

modifying the values of a and b for different pressure gradient conditions. It appears that
such modifications are not needed for the present case where (4.3) adequately describes
the linear region in figure 14.

4.2. Modelling implications
Mean total shear stress (T ) in the TBL is the sum of viscous and Reynolds shear stress.
In the outer layer, the viscous stress is negligible. Hence, T ≈ −u′v′ in the outer layer.
Kumar & Mahesh (2021) observed that T + plotted against η was insensitive to Re for
ZPG TBLs. This observation holds even for APG TBL under near-equilibrium conditions
when β is held constant (Kumar & Mahesh 2022). Figure 15 shows −u′v′+ plotted against
η in the FPG, recovery and APG regions. It is observed that the mean shear stress in the
outer layer does not collapse onto a single curve, except in the recovery region where the
pressure gradient is negligible and a reasonable collapse is observed for Stations 8 and 9. In
the FPG region, −u′v′+ keeps decreasing from Station 2–6 for a given η for η > 0.1. The
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Figure 15. Reynolds shear stress profiles in FPG (a), recovery (b) and APG (c) regions.

trend is opposite in the APG region. Therefore, the total shear stress model of Kumar &
Mahesh (2022) derived for near-equilibrium pressure-gradient TBL (i.e. β held constant)
is not expected to work for the present case.

Kumar & Mahesh (2021) also proposed a model for wall-normal velocity (V ) in ZPG
TBL. They observed that V scaled with its edge value collapse well for a range of Re when
plotted against η. This led them to fit a hyperbolic tangent function with two constants to
obtain a model for V . Later, they extended the model for pressure-gradient TBL by simply
multiplying it by a function to enforce it to satisfy the continuity equation outside the
boundary layer. Figure 16 shows V/Ve plotted as a function of η for the FPG, recovery
and APG regions. First thing to note is that Ve appears to be appropriate scale for V even
in non-equilibrium TBL. The collapse is the best in the APG region. It is interesting to
observe that the shape of V/Ve is very different than what is observed for equilibrium
and near-equilibrium TBL (Kumar & Mahesh 2021, 2022). Even in the recovery region,
which is nominally at ZPG conditions, the profile shape of V/Ve deviates significantly
from the ZPG TBL profiles shown in Kumar & Mahesh (2021). This behaviour suggests
that the V/Ve model of Kumar & Mahesh (2022) which showed good performance for
near-equilibrium TBL may not hold in non-equilibrium TBL.

In particular, it appears that V/Ve ≈ η in FPG and APG regions. This behaviour can
be explained using continuity equation as follows. Using the continuity equation for mean
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Figure 16. Mean wall-normal velocity profiles in FPG (a), recovery (b) and APG (c) regions.

flow, it can be shown that

∂V

∂y
= −∂U

∂x
≈ −dUe

dx
=⇒ V = −y

dUe

dx
. (4.4)

It is easy to see that (4.4) will lead to V/Ve ≈ η, as observed in FPG (figure 16a) and APG
(figure 16c) regions.

4.3. Response of TBL to non-equilibrium conditions
In the present study, an equilibrium TBL evolves under streamwise varying pressure
gradient conditions, from favourable to zero to adverse. In order to understand the response
of the TBL to such non-equilibrium conditions, Volino (2020a) plotted the difference
in velocity defect (AZ PG − A) as a function of streamwise location at η = 0.4, where
A = (Ue − U )/Ue. Here AZ PG was obtained from the prior ZPG experiments (Volino
2020b). Here, a change function Δ( f ) = f − f0 is defined, where f is a flow quantity and
the subscript ‘0’ denotes the inflow plane. Here Δ quantifies the change in a flow quantity
with respect to the inflow plane as the TBL evolves through the domain.

The Δ of U and turbulent kinetic energy (T K E) in inner units are shown in figure 17 at
three constants η = 0.1, 0.2 and 0.4. Note that for a ZPG TBL, η < 0.2 is approximately the
extent of the inner layer. Therefore, η = 0.1 and η = 0.4 location in TBL can be considered
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Figure 17. Streamwise evolution of the change in U+ (a) and T K E+ (b) at η = 0.1, 0.2 and 0.4.
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to represent the inner and outer layer, respectively. Recall that the FPG region extends from
x = 5.46 to 40.64, followed by a recovery region up to x = 75.75 and an APG region until
x = 102.61.

The Δ(U+) at the shown η locations appears identical in the FPG region, beyond which
the change increases as η increases throughout the rest of the flow domain. The plot
suggests that the response of the inner scaled velocity field to the FPG condition is same
at all shown η locations. In the subsequent regions, Δ(U+) increases with increase in η.
The response of T K E (figure 17b) appears similar at all η locations until halfway in the
FPG region, beyond which the lowest η location shows the largest value until the end of
the recovery region. In the APG region, the Δ in T K E decreases for η = 0.1, whereas the
other η locations show an increase.

In order to better understand the response of TBL, the change in different components of
the Reynolds stress tensor are shown in figure 18 at the same η locations as figure 17. The
Δ in the streamwise component shows identical decrease in the first-half of the FPG region
at all η locations, beyond which all the η locations show increasing trend for rest of the
FPG region. In the APG region, the η = 0.1 location shows a decrease, whereas the other
locations maintain an increasing trend. This is consistent with the APG TBL behaviour
where the streamwise component increases in the outer layer as the TBL evolves. The Δ

in the wall-normal component shows increasing trend throughout the domain, whereas the
spanwise component behaves similar to the streamwise component. So the behaviour of
T K E where it drops in the latter-half of the APG region at η = 0.1 appears to be the result
of drop in streamwise component. The Reynolds shear stress increases from the middle of
the FPG until the middle of the recovery region, followed by a nearly constant value until
the mid of the APG region, and subsequent drop in the rest of the APG region.

The Reynolds stress components can be used to define anisotropy tensor as

bi j = ui u j

ukuk
− δi j

3
, (4.5)

where δi j is the Kronecker delta. In the limit of one-dimensional turbulence, b11 = 2/3
and b22 = b33 = −1/3. Figure 19 shows the streamwise variation in b11 and b22 at three
constant η locations. As expected, b11 and b22 are quite different than the one-dimensional
limiting values. The values remain fairly constant beyond the middle of the FPG region
for η = 0.2 and 0.4 locations, suggesting that the anisotropy of the flow does not change
in the latter-half of the domain at these locations. The η = 0.1 location shows the largest
variation, where b11 decreases while b22 increases starting from the recovery region.

5. Summary
Wall-resolved LES of a non-equilibrium smooth wall TBL is performed, closely matching
the experimental set-up of Volino (2020a). The computational domain is carefully
chosen to match the physical conditions in the reference experiment while keeping the
computational cost tractable. The grid is carefully designed to ensure that the streamwise
and wall-normal gradients are adequately captured. The detailed comparisons of the flow
field with the reference data show that the LES is successful in predicting the non-
equilibrium TBL. The simulations reveal the importance of capturing the FPG region
accurately, which is the most critical part of the present flow problem. The boundary layer
is very thin in the FPG region, requiring careful design of the computational grid.

The scaling analysis reveals that the velocity and length scales proposed by Pirozzoli
& Smits (2023) are adequate for the present non-equilibrium TBL case. However, its
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Figure 19. Streamwise evolution of b11 (a) and b22 (b) at η = 0.1, 0.2 and 0.4.

general applicability in stronger non-equilibrium remains to be evaluated. Additionally,
the scaling of urms based on the diagnostic plot (Alfredsson et al. 2011) holds well in the
outer layer of the present case. The results also show that the V and T models developed
in the literature for near-equilibrium TBL require substantial improvements to incorporate
the non-equilibrium effects. The response of the flow to non-equilibrium conditions is
described at various η locations in terms of the inner scaled mean velocity field and
Reynolds stress components as well as the components of the anisotropy tensor.

The present work is the first attempt to perform resolved LES of the reference
experimental set-up, to the best of our knowledge. The simulations complement the
experiments of Volino (2020a) towards the goal of better understanding the behaviour
of TBL in non-equilibrium conditions. Future work will focus on leveraging the present
data to develop models for mean flow quantities and better wall models to enable such
simulations at even higher Re.
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Appendix A. Turbulent inflow generation

A.1. Brief description of the method
Unlike fully developed channel or pipe flows, the flow is inhomogeneous in the streamwise
direction in spatially evolving boundary layers. The inflow is prescribed using the so-
called recycle–rescale method proposed by Lund et al. (1998), where the flow field at
a streamwise location downstream is rescaled as per known well-established theoretical
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boundary layer scaling laws and reintroduced at the inflow. This way, the simulation
generates its own inflow, described briefly as follows.

The velocities at the inflow plane, x = xin , are written as

u(y, z, t) = β[γ Ū (xr , yo
r , t) + (1 − γ )U∞

+ γ u′(xr , yo
r , zr , t)]

+ (1 − β)[γ Ū (xr , yi
r , t)

+ γ u′(xr , yi
r , zr , t)], (A1)

v(y, z, t) = β[V̄ (xr , yo
r , t) + γ v′(xr , yo

r , z, t)]
+ (1 − β)[V̄ (xr , yi

r , t)

+ γ v′(xr , yi
r , z, t)], (A2)

w(y, z, t) = βγw′(xr , yo
r , z, t)

+ (1 − β)γw′(xr , yi
r , z, t), (A3)

where the ¯(·) is the spanwise average through time, ‘r’ denotes the recycle plane, ‘i’
denotes the inner scale, ‘o’ denotes the outer scale. The inner scales are based on the
y+ = yuτ /ν scaling and the outer scales are based on η = y/δ99. Here β is Lund’s
weighting function as given in (A4), which is used to blend the inner and outer scales.
The values of constants are a = 4 and b = 0.2 in the following:

β(η) = 1
2

⎡
⎢⎢⎣

1 + tanh
(

a(η − b)

(1 − 2b)η + b

)

tanh(a)

⎤
⎥⎥⎦ . (A4)

The mean velocity profile is obtained by spanwise averaging at every time step and
then averaging over a sliding time window. The averaging time window is initially set to
T = Aδ99,i |0/U∞ where A = 10 to discard the transients and then switched to 100 once
the transients die out. The running average,

F(t) =
(

1 − �t

T

)
F(t − �t) + �t

T
f (t), (A5)

where f is the instantaneous spanwise average. Finally, the averaging is switched to a
simple running average with T = T0 + t − t0 where, t is the time in the simulation, t0 is
the time at which the running averaging was initiated and T0 is the value of the averaging
interval used prior to t0. This mean boundary layer velocity profile is used to evaluate the
scaling parameters (θ, δ99, uτ ) as a function of the streamwise location.

In order to generate the desired turbulent inflow, the inflow parameters uτ,i , θi and δ99,i
are specified. The value of θi is kept fixed whereas uτ,i is computed at every time step
using the following, knowing the values of flow parameters at the recycling plane:

uτ,i = uτ,r

(
θr

θi

)(1/8)

. (A6)
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Recycling plane

x = xrec Lx

Lz

Ly

Inflow plane

Flow

y

x

z

Outf low plane

Figure 20. A schematic of the computational domain showing the recycle–rescale method. The velocities at
recycling plane (x = xrec) are rescaled and prescribed to the inflow plane at each time step to generate turbulent
inflow (Lund et al. 1998).

The rescale parameter γ is defined as

γ = uτ,i

uτ,r
=

(
θr

θi

)(1/8)

, (A7)

which is used to construct velocities at the inflow plane. The constructed inflow plane
velocity profiles are adjusted through a Newton–Raphson scheme to obtain δ99,i .

A.2. Validation
Simulations are performed for spatially developing TBL for two inflow Reynolds
number, Reθ,in = 1410 and 2200 using the numerical algorithm described in (2.1). The
computational domain used for simulations is a box of length Lx , width Lz and height
L y as shown in figure 20. The subscripts x , y and z refer to streamwise, wall-normal and
spanwise directions, respectively. Flow is from the left-hand side to the right-hand side.
The wall is situated at y = 0 plane. No-slip boundary condition is applied on the wall.
Convective boundary conditions are prescribed at the outflow. The boundary conditions
on the top surface (y = L y) are

∂u

∂y
= 0, v = U∞

∂δ∗

∂x
,

∂w

∂y
= 0, (A8)

where δ∗ is the boundary layer displacement thickness and U∞ is the free stream velocity.
At every time step, δ∗ is computed from the mean velocity field as a function of x and then
the derivative ∂δ∗/∂x is computed as an average slope, whose value is usually small.

The θin is kept fixed at 0.1 for both cases. The location of recycling plane has to be
sufficiently far away from the inflow and outflow to avoid any unphysical behaviour.
The computational grid is uniform in streamwise (x) and spanwise (z) direction with a
clustering near wall in wall-normal (y) direction to resolve fine near-wall flow structures.
The details of the simulations are listed in table 4.

The profiles for mean velocity and second-order statistics from the low-Re case are
compared with the DNS results at Reθ = 1420 (Schlatter & Örlü 2010), Reθ = 1551 and
Reθ = 1968 (Jiménez et al. 2010) as shown in figure 21. The profiles are extracted at three
streamwise locations for the low-Re case and two streamwise locations for the high-Re
case (see table 4). The extracted profiles from the high-Re case are compared with DNS
results at Reθ = 2540 and Reθ = 3032 (Schlatter & Örlü 2010) as shown in figure 22.
The results from both cases show very good agreement with the DNS data available in the
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Case Reθ,in Lx/θin L y/θin Lz/θin Nx Ny Nz xrec/Lx

Low-Re 1410 300 30 20 1000 200 200 27.5 %
High-Re 2200 300 30 20 1000 200 200 82.5 %

Table 4. Domain size and grid distribution for the DNS. Here, Lx , L y and Lz are the domain size in the
streamwise, wall-normal and spanwise directions, respectively; and Nx , Ny and Nz are the number of control
volumes in those directions, respectively. Here xrec is the location of the recycling plane and θin is the
prescribed momentum thickness at the inflow. Here Reθ,in is the prescribed inflow Reynolds number based on
θin .
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Figure 21. Low-Re: mean and second-order velocity statistics at Reθ = 1420 (a, b), 1551 (c, d) and 1968
(e, f ). Symbols are DNS from Schlatter & Örlü (2010) (a, b) and Jiménez et al. (2010) (c− f ).
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Figure 22. High-Re: mean and second-order velocity statistics at Reθ = 2540 (a, b) and 3032 (c, d). Symbols
are DNS from Schlatter & Örlü (2010).

Case x Reθ x+ y+ z+

Low-Re 0.255 1420 18.6 0.31 6.2
Low-Re 5.085 1551 18.5 0.31 6.17
Low-Re 20.985 1968 17.8 0.3 5.95
High-Re 8.925 2540 18.8 0.45 8.93
High-Re 21.765 3032 26.4 0.44 8.8

Table 5. Grid resolution at different streamwise locations in wall units. The streamwise (x) and spanwise (z)
directions have uniform grid distribution whereas the grid is clustered near wall in wall-normal (y) direction.
Here, y+ is the first cell size near wall. The low-Re and high-Re are cases with Reθ,in = 1410 and 2200,
respectively.

literature. The corresponding grid details are listed in table 5. Thus, the simulation method
to generate a ZPG TBL of desired properties can be considered validated.

Appendix B. Sensitivity to domain size
Simulations were performed on two different computational domains, which differed only
in the spanwise length (Lz). Domain 1 had Lz = 3δ99, where δ99 = 1 is the boundary layer
thickness at the inflow plane. Domain 2 had double the size in spanwise direction. Both
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Figure 23. The streamwise variation of Ue (a) and uτ (b) velocities are compared between Domain1 (Lz = 3)
and Domain 2 (Lz = 6).
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Figure 24. The wall-normal profiles of Reynolds stress components are compared between Domain1 (Lz = 3)
and Domain 2 (Lz = 6) at Station 6 (a) and Station 12 (b).

computational domains had identical grid resolutions. Figure 23 shows the streamwise
variation of Ue and uτ for the two cases. Figure 24 shows the wall-normal profiles of
Reynolds shear stress components at Stations 6 and 12 for the two cases. Note that the
values are not normalised for direct comparison. Some difference can be observed at
Station 12 in the streamwise Reynolds shear stress. The mean velocity profiles at these
stations (not shown here) were identical for the two cases. Overall, the results suggest that
Domain 2 was sufficiently wide for the present flow problem. Even wider domain is not
expected to make any appreciable difference in the results shown in this work.

Appendix C. Additional profile comparisons
The profile comparisons with the reference data at Stations 2–5, 7, 8, 10 and 11 are shown
for the mean velocity defect (figure 25), the r.m.s. of streamwise (figure 26) and wall-
normal (figure 27) velocity fluctuations, and the Reynolds shear stress (figure 28). All the
profiles are normalised by the local mean streamwise velocity in the free stream.
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Figure 25. Mean velocity defect profiles (lines) are compared with the reference data (symbols) of Volino
(2020a) at Stations 2–5 (a − d), Stations 7–8 (e, f ) and Stations 10–11 (g, h).
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Figure 26. The r.m.s. of streamwise velocity fluctuations (lines) are compared with the reference data
(symbols) of Volino (2020a) at the same stations as figure 25.
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Figure 27. The r.m.s. of wall-normal velocity fluctuations (lines) are compared with the reference data
(symbols) of Volino (2020a) at the same stations as figure 25.
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Figure 28. Reynolds shear stress profiles (lines) are compared with the reference data (symbols) of Volino
(2020a) at the same stations as figure 25.
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